

TEXT WORD COUNTS: 3175

ABSTRACT WORD COUNTS: 250

LncRNA and predictive model to improve the diagnosis of clinically diagnosed pulmonary tuberculosis

Xuejiao Hu^{1,2}, Hao Chen¹, Shun Liao^{3,4}, Hao Bai¹, Shubham Gupta^{4,5}, Yi Zhou¹, Juan Zhou¹, Lin Jiao¹, Lijuan Wu¹, Minjin Wang¹, Xuerong Chen⁶, Yanhong Zhou¹, Xiaojun Lu¹, Tony Y Hu⁷, Zhaolei Zhang^{3,4,5*} and Binwu Ying^{1*}

¹ Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R China.

² Division of Laboratory Medicine, Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, P. R China.

³ Department of Computer Science, University of Toronto, Toronto, ON, Canada.

⁴ Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.

⁵ The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.

⁶ Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R China.

⁷ Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States.

* Correspondence should be addressed to Binwu Ying. Tel: [86-028-85422751]; Fax: [86-028-85422751]; Email: [docbwy@126.com]. Correspondence may also be addressed to Zhaolei Zhang. Tel: [1-4169460924]; Fax: [1-4169788287]; Email: [zhaolei.zhang@utoronto.ca].

RUNNING TITLE: lncRNA-based nomogram to assist tuberculosis diagnosis

CONFLICT OF INTEREST/FUNDING SOURCES

All the authors have declared no competing interests. This work was supported by the National Natural Science Foundation of China [81672095], and Natural Science and Engineering Council of Canada [RGPIN-2017-06743].

LIST OF ABBREVIATIONS

TB: tuberculosis; PTB: pulmonary tuberculosis; MTB: *Mycobacterium tuberculosis*; TB-IGRA: interferon-gamma release assays for tuberculosis; lncRNA: long noncoding RNA; LTBI: latent TB infection; DE: differentially expressed; EHR: electronic health record; TBM: tuberculous meningitis; non-TB DC: non-TB disease control; PBMC: peripheral blood mononuclear cell; VIF: variance inflation factor; DCA: decision curve analysis; LV: lentivirus vector; BCG: Bacillus Calmette-Guerin; LDH: lactate dehydrogenase.

ABSTRACT

Background Clinically diagnosed pulmonary tuberculosis (PTB) patients lack *Mycobacterium tuberculosis* (MTB) microbiologic evidence, and misdiagnosis or delayed diagnosis often occurs as a consequence. We investigated the potential of lncRNAs and corresponding predictive models to diagnose these patients.

Methods We enrolled 1372 subjects, including clinically diagnosed PTB patients, non-TB disease controls and healthy controls, in three cohorts (Screening, Selection and Validation). Candidate lncRNAs differentially expressed in blood samples of the PTB and healthy control groups were identified by microarray and qRT-PCR in the Screening Cohort. Logistic regression models were developed using lncRNAs and/or electronic health records (EHRs) from clinically diagnosed PTB patients and non-TB disease controls in the Selection Cohort. These models were evaluated by AUC and decision curve analysis, and the optimal model was presented as a Web-based nomogram, which was evaluated in the Validation Cohort. The biological function of lncRNAs was interrogated using ELISA, lactate dehydrogenase release analysis and flow cytometry.

Results Three differentially expressed lncRNAs (*ENST00000497872*, *n333737*, *n335265*) were identified. The optimal model (i.e., nomogram) incorporated these three lncRNAs and six EHR variables (age, hemoglobin, weight loss, low-grade fever, CT calcification and TB-IGRA). The nomogram showed an AUC of 0.89, sensitivity of 0.86 and specificity of 0.82 in the Validation Cohort, which demonstrated better discrimination and clinical net benefit than the EHR model. *ENST00000497872* may regulate inflammatory cytokine production, cell death and apoptosis during MTB infection.

Conclusions LncRNAs and the user-friendly nomogram could facilitate the early identification of PTB cases among suspected patients with negative MTB microbiologic evidence.

KEYWORDS lncRNA, electronic health record, clinically diagnosed pulmonary tuberculosis, nomogram

1 INTRODUCTION

2 Tuberculosis (TB) is the leading cause of death from an infectious agent ¹, but only 56% of
3 pulmonary tuberculosis (PTB) cases reported to WHO in 2017 were bacteriologically
4 confirmed. Thus, approximately half of all PTB cases are clinically diagnosed worldwide,
5 and this proportion can reach 68% in China ¹. Clinically diagnosed PTB cases are
6 symptomatic but lack evidence of *Mycobacterium tuberculosis* (MTB) infection by smear
7 microscopy, culture or nucleic acid amplification test ¹⁻³. The diagnostic procedure for
8 clinically diagnosed PTB is inadequate and time-consuming and often results in misdiagnosis
9 or delayed diagnosis ³, leading to an increased risk of morbidity and mortality ⁴, or
10 overtreatment ⁵. There is thus an urgent need to develop rapid and accurate strategies to
11 diagnose PTB cases without MTB microbiologic evidence ^{6,7}. The exploration of effective
12 host immune-response signatures represents an attractive approach for this type of assay.

13 Long noncoding RNAs (lncRNAs) can function as critical regulators of inflammatory
14 responses to infection, especially for T-cell responses ^{8,9}. Increasing evidence indicates that
15 blood lncRNA expression profiles are closely associated with TB disease ¹⁰⁻¹², suggesting
16 lncRNAs could function as potential noninvasive biomarkers for TB detection. However,
17 previous studies have suffered from small sample size (ranging from 66 to 510) and lack
18 independent validation.

19 Recent effort has focused on establishing clinical prediction rules or predictive models for
20 TB diagnosis based on patients' electronic health record (EHR) information ¹³⁻¹⁶. Such
21 models can cost-effectively facilitate PTB diagnosis with a limited number of clinical-
22 radiological predictors. For example, a 6-signature model from Griesel et al. (a cough lasting
23 ≥14 days, the inability to walk unaided, a temperature > 39°C, chest radiograph assessment,
24 hemoglobin level and white cell count) attained an AUC of 0.81 [0.80-0.82] in seriously ill
25 HIV-infected PTB patients ¹³. However, despite these advances, current EHR models remain

26 insufficient for precise TB diagnosis. Compelling studies have proposed that models
27 incorporating biomarkers and EHR information attain better performance for prediction of
28 sepsis ¹⁷ and abdominal aortic aneurysm ¹⁸. We previously reported that combining exosomal
29 microRNAs and EHRs in the diagnosis of tuberculous meningitis (TBM) achieved AUCs of
30 up to 0.97 versus an AUC of 0.67 obtained using EHR alone ¹⁹. Based on these studies, we
31 hypothesized that combining lncRNAs with well-defined EHR predictors could be used to
32 develop improved predictive models to identify PTB cases that lack microbiologic evidence
33 of MTB infection.

34 This study was therefore performed to investigate the diagnostic potential of lncRNAs and
35 predictive models incorporating lncRNA and EHR data for the identification of PTB cases
36 without microbiologic MTB evidence. This study also explored the regulatory functions of
37 lncRNA candidates during MTB infection to evaluate the biological basis for their predictive
38 abilities.

39

40 MATERIAL AND METHODS

41 Study design

42 We performed this study through a four-stage approach. LncRNAs that were differentially
43 expressed (DE) between clinically diagnosed PTB patients and healthy subjects were profiled
44 by microarray in the Screening Step. The expression of top five lncRNAs were then analyzed
45 in a large prospective cohort in the Selection Step of the study, which reduced the number of
46 five lncRNAs to three based on expression difference among groups. In the Model Training
47 Step, lncRNAs and EHRs were used to develop predictive models for clinically diagnosed
48 PTB patients and non-tuberculosis disease control (non-TB DC) patients, and the optimal
49 model was visualized as a nomogram. Finally, we validated lncRNAs and the nomogram in

50 an independent prospective cohort. Functional analyses were also performed to elucidate the
51 biological significance of lncRNAs. The study strategy is shown in Figure 1.

52 **Subjects enrolment**

53 *Screening Cohort* We retrospectively collected age- and gender-matched 7 PTB cases and 5
54 healthy controls as the Screening Cohort. They were 6 males and 6 females from ages 22 to
55 59 years. PTB cases were clinically confirmed PTB patients with positive TB symptoms,
56 negative MTB pathogenic examinations, and good response to anti-TB therapy. Healthy
57 subjects had a normal physical examination and no history of TB.

58 *Selection Cohort and Validation Cohort* Inpatients with clinical-radiological suspicion of
59 PTB but lacking evidence of MTB infection were prospectively enrolled from West China
60 Hospital between Dec 2014 and May 2017. The inclusion criteria for highly suspected
61 patients were: (a) new patients with high clinical-radiological suspicion of PTB, (b) anti-TB
62 therapy < 7 days on admission, (c) patients with negative MTB evidence (i.e., at least two
63 consecutive negative smears, one negative MTB-DNA PCR and one negative culture result),
64 (d) age \geq 15 years, and (e) patients without severe immunosuppressive disease, HIV infection,
65 or cardiac or renal failure. Two experienced pulmonologists reviewed and diagnosed all
66 presumptive PTB patients, and final diagnoses for all cases were based on the combination of
67 clinical assessment, radiological and laboratory results, response to the treatment ^{1,2}. A 12-
68 month follow-up observation was used to confirm the classification of PTB and non-TB
69 patients. The detailed description of patients' symptoms and recruitment, inclusion and
70 exclusion criteria, laboratory examinations, diagnostic criteria and procedure, treatment, and
71 sample size estimate are provided in e-Appendix 1 and 2. In addition, healthy subjects were
72 simultaneously recruited from a pool of healthy donors with a normal physical examination
73 and no history of TB.

74 We finally enrolled a Selection Cohort of 878 participants (141 clinically diagnosed PTB,
75 159 non-TB DC, and 578 healthy subjects) and an independent Validation Cohort of 482
76 participants (97 clinically diagnosed PTB, 140 non-TB DC, and 245 healthy subjects).

77 Details of the non-TB DC are listed in e-Table 1. Ethical approval was obtained from the
78 Clinical Trials and Biomedical Ethics Committee of West China [no. 2014 (198)]. Informed
79 consents were obtained from every participant.

80 **LncRNA detection**

81 *RNA isolation and cDNA preparation* Peripheral blood mononuclear cell (PBMC) samples
82 were isolated from fresh 3 ml blood samples of each participant using a Human Lymphocyte
83 Separation Tube Kit (Dakewe Biotech Company Limited, China). Total RNA was extracted
84 from PBMC isolates using Trizol reagent (Invitrogen, USA). RNA concentration and purity
85 were evaluated spectrophotometrically, and RNA integrity was determined using agarose gel
86 electrophoresis (e-Figure 1A). The PrimeScriptTM RT reagent Kit with gDNA Eraser (Takara,
87 Japan) was used to remove contaminating genomic DNA and synthesize cDNA.

88 *LncRNA microarray profiling* LncRNA profiles were detected using Affymetrix Human
89 Transcriptome Array 2.0 Chips based on a standard protocol ²⁰. Raw data were normalized
90 using the Robust Multi-Array Average Expression Measure algorithm. DE lncRNAs with p-
91 values < 0.05 and fold-changes > 2 were identified using the empirical Bayes moderated t-
92 statistics and presented by hierarchical clustering and volcano plot ²¹. Microarray data have
93 been deposited in the Gene Expression Omnibus under the accession GSE119143.

94 *qRT-PCR for lncRNAs* LncRNA expression was measured using the SYBR[®] Green PCR Kit
95 (Takara, Japan) in a blinded fashion, normalized to the endogenous control *GAPDH*, and
96 calculated according to the $2^{-\Delta\Delta C_q}$ method where and $C_q < 35$ was considered acceptable ²².
97 Specific primers are presented in e-Table 2. PCR curves and the standard curve are shown in

98 e-Figure 1B-C. Detailed methodology for RNA isolation, reverse transcription, qRT-PCR
99 detection (procedure, quality control, product verification, and stability test) are listed in e-
100 Appendix 3.

101 **Modeling**

102 *Data used for modeling* A total of 41 EHRs, including demographic, clinical, laboratory, and
103 radiological findings were collected (see e-Appendix 4), and a 20% missing value threshold
104 was applied to remove incomplete features. Features with p-values < 0.05 in univariate
105 analysis or definite clinical significance were included for modeling. A total of 14 of the 44
106 original variables (41 EHRs and 3 lncRNAs) remained after filtering, including 11 EHRs and
107 3 lncRNAs (see e-Appendix 4).

108 *Diagnostic modeling* Multivariable logistic regression was used to develop predictive models
109 to distinguish clinically diagnosed PTB from patients with suspected PTB cases in the
110 Selection Cohort. Feature subsets were selected and compared using the best subset selection
111 procedure ²³ and 10-fold cross-validation. The "EHR+lncRNA", "lncRNA only" and "EHR
112 only" models were developed according to their respective best feature subset in the Selection
113 Cohort. A cutoff of each model was determined by combining the Youden's index and the
114 sensitivity for the samples in the training dataset equal to or greater than 0.85. The models
115 including their cutoff were used for evaluation of the Validation Cohort.

116 *Nomogram presentation and evaluation* We further adopted the nomogram to visualize the
117 optimal model with the best AUC ^{24,25}. Nomogram calibration was assessed with the
118 calibration curve and Hosmer-Lemeshow test (p-value > 0.05 suggested no departure from
119 perfect fit). The performance of the nomogram was tested in the independent Validation
120 Cohort, with total points for each patient calculated. Decision curve analysis (DCA) ²⁵ was
121 performed by evaluating the clinical net benefit of the nomogram and "EHR only" model

122 across the overall datasets. Assessing clinical value involves comparing the nomogram and
123 “EHR only” model using the 500 bootstrap method. The nomogram was implemented as a
124 Web-based app using R Shiny.

125 **Analysis of *ENST00000497872* (lnc AL) function**

126 The lncRNA with the most significant difference in our analysis, *ENST00000497872* (lnc AL)
127 was analyzed in functional studies. THP-1 cells with stable overexpression and knockdown
128 of lnc AL were constructed using recombinant lentivirus vector (LV). THP-1 cells transfected
129 with these vectors were incubated with Bacillus Calmette-Guerin (BCG) to imitate active
130 MTB-infection ²⁶. This study examined the effect BCG exposure on THP-1 cells in five
131 groups transfected with vectors to overexpress (LV-lnc AL) or suppress (shRNA-lnc AL) lnc
132 AL expression, their respective empty vector constructs (LV-control and shRNA-control), or
133 with no vector (blank control). Cell culture supernatants were harvested to measure lnc AL
134 and the expression of six cytokines (TNF- α , IL-1 β , IL-12 p70, IL-10, IFN- γ , and IL-6). Cell
135 apoptosis and cytotoxicity after 24 h infection were detected by flow cytometry and the
136 lactate dehydrogenase (LDH) release analysis, respectively. Detailed methodology for these
137 experiments is presented in e-Appendix 5.

138 **Statistical analysis**

139 Categorical variables were analyzed by univariate analysis with a Chi-square test and
140 continuous variables were analyzed using Mann-Whitney U tests or Student’s t-tests. All tests
141 were 2-sided, and p-values < 0.05 were considered statistically significant. Modeling was
142 constructed and validated by individuals who were blinded to diagnostic categorizations. R
143 code and data for modeling are available from

144 <https://github.com/xuejiaohu123/TBdiagnosisModel>.

145

146 **RESULTS**

147 **Characteristics of prospectively enrolled participants**

148 The demographic and clinical characteristics of participants in the Selection and Validation

149 Cohorts are provided in Table 1. PTB patients were younger and had greater IGRA positivity

150 rates than their non-TB DC (p-value < 0.0001 for both the Selection and Validation Cohorts),

151 but these groups did not differ by gender, BMI, or smoking status. Healthy subjects were age-,

152 gender-, and BMI-matched with PTB patients, who had significantly different blood test

153 results compared with PTB patients (Table 1).

154 Clinically diagnosed PTB patients were responsible for 29.82% (238/798) of all active

155 PTB patients (see e-Appendix 1). This rate is markedly lower than a nationwide estimate of

156 68% based on primary public health institutions ¹, but represents the clinically diagnosed

157 PTB rate in a referral hospital with experienced specialists.

158 **LncRNAs microarray profiles and candidate selection**

159 In the Screening Step, microarray profiling identified a total of 325 lncRNAs that were

160 differentially expressed (287 upregulated and 38 downregulated) in the clinically diagnosed

161 PTB patients versus healthy subjects. Hierarchical clustering and a volcano plot revealed

162 clearly distinguishable lncRNA expression profiles (e-Figure 2). Top five lncRNA candidates

163 were chosen based on a set of combined criteria: fold-change > 2 between groups, p-value <

164 0.05, signal intensity > 25 ²⁷, and including unreported lncRNAs in TB literature ²⁸. Three of

165 these five lncRNAs were upregulated (*n335265*, *ENST00000518552* and *TCONS_00013664*)

166 and two were downregulated (*n333737* and *ENST00000497872*) in PTB versus control

167 subjects (e-Table 3).

168 **Differentially expressed lncRNAs in clinically diagnosed PTB**

169 The expression level of these five candidate lncRNAs was measured by qRT-PCR in the
170 Selection Cohort, which consisted of 141 clinically diagnosed PTB, 159 non-TB DC, and 578
171 healthy subjects. Two lncRNAs (*ENST00000518552* and *TCONS_00013664*) were excluded
172 from further analysis due to their low abundance expression ($Cq > 35$) in this cohort. Of the
173 three remaining lncRNAs, *ENST00000497872* and *n333737* were downregulated and
174 *n335265* was upregulated in PTB patients versus healthy subjects (e-Table 4). Comparison
175 between clinically diagnosed PTB cases and non-TB DC patients revealed a decreased
176 expression of *ENST00000497872* and *n333737* in PTB patients (e-Figure 3A), age-adjusted
177 p-values both < 0.0001).

178 Short-term stability, an essential prerequisite of a potential lncRNA biomarker, was
179 assessed in PBMC samples. This study found that incubation up to 24 h had minimal effect
180 on the expression of *ENST00000497872*, *n333737*, and *n335265* (e-Table 5), in accordance
181 with a previous report of lncRNA stability in blood ²⁹.

182 **Diagnostic modeling and nomogram visualization**

183 Three logistic regression models, "EHR+lncRNA", "EHR only", and "lncRNA only" were
184 evaluated as part of the training step in the Selection Cohort (see e-Appendix 4). The variance
185 inflation factors between the features ranged from 1.02 to 1.29, indicating no collinearity
186 within models. The "EHR+lncRNA" model yielded the highest AUC (0.92) for
187 distinguishing clinically diagnosed PTB from suspected PTB patients, compared to AUCs of
188 0.87 and 0.82 for the "EHR only" and "lncRNA only" models, respectively (Figure 2A). The
189 "EHR+lncRNA" model also had the best performance in sensitivity, specificity, accuracy,
190 positive predictive value, and negative predictive value (Table 2).

191 The optimal "EHR+lncRNA" model was displayed as a nomogram (Figure 3A), and the
192 top five features of the nomogram were *ENST00000497872*, age, *n333737*, CT calcification,
193 and TB-IGRA results (e-Table 6). Sensitivity and specificity of the nomogram for prediction

194 of clinically diagnosed PTB was 0.89 (0.82-0.93) and 0.80 (0.73-0.85) at a cutoff of 0.37
195 (Table 2). A calibration curve in the Selection Cohort (Figure 3B) indicated a good
196 agreement between nomogram prediction and actual PTB cases and was confirmed by the
197 nonsignificant Hosmer-Lemeshow test (p-value = 0.957). This nomogram was generated as a
198 free online app (available at <https://xuejiao.shinyapps.io/shiny/>) to facilitate its access for
199 other studies. This app allows the user to insert the values of specific predictors and provides
200 the risk prediction as a whole number percentage.

201 **Validation for lncRNAs and the nomogram**

202 In the Validation Step, the three candidate lncRNAs were analyzed in an independent
203 Validation Cohort contains 97 clinically diagnosed PTB cases, 140 non-TB DC and 245
204 healthy subjects. This analysis observed an lncRNA expression pattern similar to that
205 observed in the Selection Cohort (e-Table 4, e-Figure 3B). All three models were applied to
206 the Validation Cohort, and as reported in Table 2 and Figure 2 it was found that the
207 nomogram achieved superior discrimination (AUC: 0.89 [0.84-0.93]), good calibration
208 (Figure 3B, and p-value = 0.668 for Hosmer-Lemeshow test) for clinically diagnosed PTB
209 prediction. The sensitivity and specificity of the nomogram at the cutoff of 0.37 in the
210 Validation Cohort was 0.86 (0.77-0.90) and 0.82 (0.75-0.87), respectively. DCA indicated
211 that the nomogram outperformed the conventional "EHR only" model with a higher clinical
212 net benefit within a threshold probability range from 0.2 to 1 (Figure 3C).

213 **LncRNA response to anti-TB treatment**

214 LncRNAs were next analyzed for the ability to predict anti-TB treatment response. Paired
215 samples were collected from 22 clinically diagnosed PTB patients before and after 2-month
216 intensive therapy³⁰, and the expressions of *ENST00000497872*, *n333737*, and *n335265* were
217 measured by qRT-PCR. All these patients had good response to therapy based on the clinical

218 and radiological findings, and *ENST00000497872* and *n333737* levels significantly increased
219 post-treatment (p-values = 0.005 and 0.0005, respectively, Figure 4), suggesting that lncRNA
220 expression increased in response to therapy.

221 **Functional studies of *ENST00000497872***

222 We investigated whether *ENST00000497872* (i.e., lnc AL) could affect the host immune
223 response. At 24 h and 48 h post BCG-infection, lnc AL overexpression (e-Figure 4) led to
224 decreased production of proinflammatory cytokines TNF- α and IL-1 β and an increase in INF-
225 γ (Figure 5A). Conversely, knockdown of lnc AL resulted in a significant TNF- α and IL-1 β
226 increases and an INF- γ reduction. Lnc AL knockdown was also associated with an increasing
227 trend of cell apoptosis (Figure 5B and 5C) and cell death (Figure 5D). These results implicate
228 an inflammatory regulation of lnc AL during MTB-infection.

229

230 **DISCUSSION**

231 The present work focused on the challenge of accurately diagnosing PTB patients without
232 microbiological evidence of MTB infection. Our study showed that three lncRNAs
233 (*ENST00000497872*, *n333737*, and *n335265*) were potential biomarkers for clinically
234 diagnosed PTB patients. Addition of three lncRNAs (*ENST00000497872*, *n333737* and
235 *n335265*) to a conventional EHR model improved its ability to identify PTB cases from TB
236 suspects, with the AUCs increasing from 0.83 to 0.89. The lncRNA that was most
237 significantly enriched in the PTB group of this study, *ENST00000497872* (chr14:105703964-
238 105704602), is located close to *IGHA1* (chr14: 105703995-105708665), and functional
239 analyses indicated that expression of this lncRNA was involved in the regulation of
240 inflammatory cytokine production and cell apoptosis in MTB-infected macrophages,

241 although further studies are needed to investigate the mechanisms responsible. Consistent
242 with published lncRNA data^{8-12, 31}, this data provide new evidence that lncRNAs could
243 participate in TB immunoregulation and serve as promising biomarkers for TB diagnosis.

244 In addition to the three lncRNAs, we identified six EHR predictors (age, CT calcification,
245 positive TB-IGRA, low-grade fever, elevated hemoglobin, and weight loss) that were
246 essential in TB case finding, as proposed by prior findings^{15, 16}. Age was an important
247 negative predictor for clinically diagnosed PTB, which appears to conflict with the consensus
248 that advanced age correlates with higher TB susceptibility³². This may be explained by
249 differences in the enrollment of the PTB patients and control subjects. Previous studies
250 included healthy and/or vulnerable subjects as controls, while we enrolled inpatients with a
251 wide range of pulmonary diseases and older ages as disease controls.

252 This study serves as a first proof-of-concept study to show that integrating lncRNA
253 signatures and EHR data could be a more promising diagnostic approach for PTB patients
254 with negative MTB pathogenic evidence. The "EHR+lncRNA" model had good
255 discrimination (through AUC and diagnostic parameters), reliable calibration (via calibration
256 curve and Hosmer-Lemeshow test), and potential clinical utility for decision-making (using
257 DCA). The "EHR+lncRNA" model avoided some common problems associated with
258 sputum-based features, such as poor sputum quality or problematic sampling³³, to improve
259 its reliability and clinical utility. Nomogram has been shown to remarkably promote early
260 diagnosis of intestinal tuberculosis²⁴ and prognosis prediction in PTB³⁴ and TBM³⁵.
261 "EHR+lncRNA" model herein was visualized as a nomogram and further implemented in an
262 app. The online nomogram uses readily obtainable predictors and automatically outputs a
263 personalized quantitative risk estimate for PTB. Utilizing this user-friendly tool may facilitate
264 the rapid identification of PTB cases among suspected TB patients without MTB

265 microbiologic evidence to improve TB diagnosis, especially in resource-constrained areas
266 with high TB prevalence.

267 Our study has several limitations. Modeling in this study was conducted based on data
268 from a single large hospital, and multi-center validation studies are needed. Further, because
269 Xpert MTB/RIF is still not routinely available in most clinical laboratories of China, and
270 since previous Xpert studies reported moderate sensitivities ranged from 28% to 73% ³⁶⁻³⁸ in
271 smear-negative PTB patients, we did not consider Xpert in our research, which may limit the
272 generalization of our findings.

273 In summary, a novel nomogram we developed and validated in this study that incorporated
274 three lncRNAs and six EHR fields may be a useful predictive tool in identifying PTB patients
275 with negative MTB pathogenic evidence, and merits further investigation.

276

277 **AUTHOR'S CONTRIBUTIONS**

278 XH, HC, ZZ, and BY developed the concept and experimental design; XH, HB, YZ, JZ, LJ,
279 LW, and MW enrolled patients and performed the experiments; XH, SL, and SG developed
280 and validated the diagnostic models; XC, YZ, XL, and TYH provided expert advice and
281 support; all authors contributed to write or revise the manuscript, provided intellectual input
282 and gave final approval.

283

284 **ACKNOWLEDGEMENTS**

285 We thank Dr. Yi Zhang from Gminix (Shanghai, China) for assistance with bioinformatic
286 analyses.

REFERENCES

1. World Health Organization. Global Tuberculosis Report 2018. Accessed 18 September 2018.
2. The National Health and Family Planning Commission (NHFPC). Pulmonary tuberculosis diagnostic criteria WS288-2017 (in Chinese) . Accessed 9 November 2017.
3. Gao M. Interpretation of clinical diagnosed pulmonary tuberculosis case in new national diagnostic standard on pulmonary tuberculosis. *Chinese Journal of Antituberculosis*. 2018;40:243-246.
4. Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. *Lancet*. 2007;369:2042-2049.
5. Tostmann A, Kik SV, Kalisvaart NA, et al. Tuberculosis transmission by patients with smear-negative pulmonary tuberculosis in a large cohort in the Netherlands. *Clin Infect Dis*. 2008;47:1135-1142.
6. Haas CT, Roe JK, Pollara G, Mehta M, Noursadeghi M. Diagnostic 'omics' for active tuberculosis. *BMC medicine*. 2016;14:37.
7. Walzl G, McNerney R, du Plessis N, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. *Lancet Infect Dis*. 2018;18:7,e190-e210.
8. Wang Y, Zhong H, Xie X, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8⁺ T-cell immune responses in tuberculosis infection. *Proc Natl Acad Sci U S A*. 2015;112:E3883-E3892.
9. Zhang Q, Chao TC, Patil VS, et al. The long noncoding RNA ROCKI regulates inflammatory gene expression. *EMBO J*. 2019;38:e100041.
10. Yi Z, Li J, Gao K, Fu Y. Identification of differentially expressed long non-coding RNAs in CD4⁺ T cells response to latent tuberculosis infection. *J Infect*. 2014;69:558-568.

11. He J, Ou Q, Liu C, et al. Differential expression of long non-coding RNAs in patients with tuberculosis infection. *Tuberculosis*. 2017;107:73-79.
12. Yan H, Xu R, Zhang X, et al. Identifying differentially expressed long non-coding RNAs in PBMCs in response to the infection of multidrug-resistant tuberculosis. *Infect Drug Resist*. 2018;11:945.
13. Griesel R, Stewart A, van der Plas H, et al. Optimizing Tuberculosis Diagnosis in Human Immunodeficiency Virus-Infected Inpatients Meeting the Criteria of Seriously Ill in the World Health Organization Algorithm. *Clin Infect Dis*. 2017;66:1419-1426.
14. Martinez L, Handel A, Shen Y, et al. A Prospective Validation of a Clinical Algorithm to Detect Tuberculosis in Child Contacts. *Am J Respir Crit Care Med*. 2018;197:1214-1216.
15. Siddiqi K, Lambert M-L, Walley J. Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: the current evidence. *Lancet Infect Dis*. 2003;3:288-296.
16. Pinto LM, Pai M, Dheda K, Schwartzman K, Menzies D, Steingart KR. Scoring systems using chest radiographic features for the diagnosis of pulmonary tuberculosis in adults: a systematic review. *Eur Respir J*. 2013;42:480-494.
17. Taneja I, Reddy B, Damhorst G, et al. Combining biomarkers with EMR data to identify patients in different phases of sepsis. *Sci Rep*. 2017;7:10800.
18. Li J, Pan C, Zhang S, et al. Decoding the genomics of abdominal aortic aneurysm. *Cell*. 2018;174:1361-1372,e1310.
19. Hu X, Liao S, Bai H, et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. *EBioMedicine*. 2019;40:564-573.
20. Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. *Science*. 2014;344:310-313.

21. Tang X, Li Y, Liang S, et al. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. *Lancet Oncol.* 2018;19:382-393.
22. Mavridis K, Stravodimos K, Scorilas A. Downregulation and Prognostic Performance of MicroRNA 224 Expression in Prostate Cancer. *Clin Chem.* 2013;59:261-269.
23. Hosmer DW, Jovanovic B, Lemeshow S. Best subsets logistic regression. *Biometrics.* 1989; 45:1265-1270.
24. He Y, Zhu Z, Chen Y, et al. Development and Validation of a Novel Diagnostic Nomogram to Differentiate Between Intestinal Tuberculosis and Crohn's Disease: A 6-year Prospective Multicenter Study. *Am J Gastroenterol.* 2019;114(3):490-499.
25. Allotey J, Fernandez-Felix BM, Zamora J, et al. Predicting seizures in pregnant women with epilepsy: Development and external validation of a prognostic model. *PLoS Med.* 2019; 16:e1002802.
26. Huang J, Jiao J, Xu W, et al. MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. *Mol Med Rep.* 2015;12:7102-7108.
27. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. *Proc Natl Acad Sci U S A.* 2008;105:10513-10518.
28. MacLean E, Broger T, Yerliyaka S, Fernandez-Carballo BL, Pai M, Denkinger CM. A systematic review of biomarkers to detect active tuberculosis. *Nat Microbiol.* 2019;1.
29. Zhang K, Shi H, Xi H, et al. Genome-Wide lncRNA Microarray Profiling Identifies Novel Circulating lncRNAs for Detection of Gastric Cancer. *Theranostics.* 2017;7:213-227.
30. Jacobson KR. Tuberculosis. *Annals of Internal Medicine* 2017; 166:ITC17-ITC32.
31. Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. *Nat Immunol.* 2017;18:962.

32. Thomas TY, Rajagopalan S. Tuberculosis and aging: a global health problem. *Clin Infect Dis.* 2001;33:1034-1039.
33. Steingart KR, Ng V, Henry M, et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. *Lancet Infect Dis.* 2006;6:664-674.
34. Thao LTP, Heemskerk AD, Geskus RB, Mai NTH, Ha DTM, Chau TTH, et al. Prognostic Models for 9-Month Mortality in Tuberculous Meningitis. *Clin Infect Dis.* 2018;66(4):523-532.
35. Costa-Veiga A, Briz T, Nunes C. Unsuccessful treatment in pulmonary tuberculosis: factors and a consequent predictive model. *Eur J Public Health.* 2018;28(2):352-358.
36. Sohn H, Aero AD, Menzies D, et al. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. *Clin Infect Dis.* 2014;58:970-976.
37. Steingart KR, Sohn H, Schiller I, et al. Xpert[®] MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. *Cochrane Database Syst Rev.* 2013.
38. Lombardi G, Di Gregori V, Girometti N, Tadolini M, Bisognin F, Dal Monte P. Diagnosis of smear-negative tuberculosis is greatly improved by Xpert MTB/RIF. *PloS One.* 2017;12:e0176186.

TABLES

Table 1. Demographic and clinical features of participants in the Selection and Validation Cohorts.

Clinical features	Suspected clinically diagnosed PTB patients Selection			HS Selection (n=578)	p2	Suspected clinically diagnosed PTB patients Validation			HS validation (n=245)	p4
	Clinically diagnosed PTB (n=141)	Non-TB DC (n=159)	p1			Clinically diagnosed PTB (n=97)	Non-TB DC (n=140)	p3		
Gender, male	84 (59.57%)	95 (59.75%)	0.976	284 (49.13%)	0.026	58 (59.79%)	87 (62.14%)	0.715	126 (51.43%)	0.162
Age (years)	37.81 ± 17.93	56.68 ± 14.52	< 0.0001	40.59 ± 13.11	0.084	38.29 ± 17.57	57.96 ± 16.66	< 0.0001	36.82 ± 9.28	0.436
BMI (kg/m ²)	20.81 ± 2.99	20.43 ± 4.03	0.359	20.65 ± 3.19	0.57	21.59 ± 3.43	21.29 ± 3.62	0.52	21.51 ± 3.52	0.843
Smoking	61 (43.26%)	72 (45.28%)	0.725	161 (27.85%)	< 0.0001	41 (42.27%)	66 (47.14%)	0.458	84 (34.29%)	0.167
Radiologic pathology	116(82.26%)	140 (88.05%)	0.158	-		86 (88.66%)	130 (92.86%)	0.264	-	
Laboratory tests										
Positive TB-IGRA	97 (68.88%)	56 (35.22%)	< 0.0001	-		64 (66.00%)	42 (30.00%)	< 0.0001	-	
C-reactive protein (mg/L)	16.30 (5.32-54.05)	17.80 (6.47-60.20)	0.427	-		13.60 (3.34-43.55)	18.60 (6.56-70.63)	0.037	-	
Hematocrit	0.37 ± 0.06	0.36 ± 0.07	0.162	0.44 ± 0.04	< 0.0001	0.38 ± 0.07	0.35 ± 0.07	0.002	0.43 ± 0.04	< 0.0001
Erythrocytes (×10 ¹² /L)	4.33 ± 0.72	4.03 ± 0.81	0.001	4.78 ± 0.46	< 0.0001	4.46 ± 0.80	3.89 ± 0.91	< 0.0001	4.80 ± 0.46	< 0.0001
Hemoglobin (g/L)	122.57 ± 23.22	115.82 ± 25.20	0.017	144.46 ± 13.88	< 0.0001	125.08 ± 24.25	113.11 ± 25.52	< 0.0001	145.82 ± 13.73	< 0.0001
Platelets (×10 ⁹ /L)	238.00 (177.00-305.00)	233.00 (149.00-299.00)	0.171	193.00 (158.00-223.00)	< 0.0001	220.00 (160.50-313.00)	199.50 (137.00-290.75)	0.059	190.00 (165.00-230.00)	0.001
Leukocytes (×10 ⁹ /L)	6.03 (4.76-8.25)	6.36 (4.71-9.07)	0.488	5.92 (5.18-6.67)	0.184	6.96 (5.06-9.14)	5.93 (4.34-8.33)	0.009	5.70 (4.91-6.55)	0.217
Lymphocytes (×10 ⁹ /L)	1.15 (0.80-1.52)	1.28 (0.87-1.87)	0.056	1.86 (1.55-2.19)	< 0.0001	1.29 (0.91-1.80)	1.22 (0.86-1.62)	0.343	1.85 (1.57-2.55)	< 0.0001
Neutrophils (×10 ⁹ /L)	4.02 (3.23-5.93)	4.08 (2.71-6.32)	0.956	3.47 (2.87-4.09)	< 0.0001	4.03 (2.51-5.69)	4.85 (3.21-6.70)	0.023	3.36 (2.75-3.92)	0.006
Monocytes (×10 ⁹ /L)	0.47 (0.35-0.65)	0.42 (0.26-0.61)	0.015	0.36 (0.29-0.44)	< 0.0001	0.43 (0.30-0.64)	0.46 (0.34-0.71)	0.211	0.31 (0.25-0.39)	< 0.0001
Alb (g/L)	36.66 ± 6.78	36.60 ± 6.66	0.973	48.24 ± 2.67	< 0.0001	37.33 ± 7.47	36.69 ± 7.22	0.509	47.06 ± 2.25	< 0.0001
Globin (g/L)	31.69 ± 7.66	30.68 ± 8.10	0.269	28.92 ± 3.29	0.041	30.41 ± 7.89	29.73 ± 7.91	0.514	27.41 ± 3.19	< 0.0001

Subscripted "Selection" or "Validation" refers to the Selection or Validation Cohort, respectively. Radiologic pathology refers to abnormal chest imaging, including at least one of the signs: polymorphic abnormality, calcification, cavity, bronchus sign, and pleural effusion. Abbreviations: non-TB DC, non-tuberculosis disease control patients; HS, healthy subjects. p1, p-value for the comparison of clinically diagnosed PTB patients and non-TB DCs in the Selection Cohort; p2, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Selection Cohort; p3, p-value for the comparison of clinically diagnosed PTB patients and non-TB DCs in the Validation Cohort; p4, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Validation Cohort.

Table 2. Performances of the comparative diagnostic models.

Model performance	Selection Cohort			Validation Cohort		
	EHR+IncRNA (Nomogram)	EHR only	IncRNA only	EHR+IncRNA (Nomogram)	EHR only	IncRNA only
Sensitivity	0.89 (0.82-0.93)	0.89 (0.83-0.93)	0.85 (0.76-0.88)	0.86 (0.77-0.90)	0.89 (0.82-0.94)	0.85 (0.76-0.90)
Specificity	0.80 (0.73-0.85)	0.62 (0.54-0.68)	0.55 (0.46-0.61)	0.82 (0.75-0.87)	0.65 (0.56-0.72)	0.54 (0.47-0.62)
Accuracy	0.84 (0.80-0.88)	0.75 (0.69-0.79)	0.69 (0.63-0.74)	0.84 (0.78-0.88)	0.75 (0.69-0.81)	0.67 (0.60-0.73)
Positive predictive value	0.80 (0.73-0.85)	0.67 (0.60-0.74)	0.62 (0.55-0.69)	0.77 (0.68-0.83)	0.64 (0.56-0.72)	0.56 (0.48-0.63)
Negative predictive value	0.89 (0.83-0.93)	0.87 (0.79-0.91)	0.80 (0.72-0.86)	0.89 (0.83-0.93)	0.90 (0.83-0.94)	0.83 (0.75-0.89)

Note: The cutoff probability in the Selection Cohort was 0.37 for "EHR+IncRNA" model, 0.26 for "EHR only" model, and 0.32 for "IncRNA" model, respectively. Features in each model are provided in e-Appendix 4, 4.4. The "EHR+IncRNA" formula that was developed to classify patients as PTB cases or non-TB disease controls was: $-3.32 - 0.053 \times [\text{age}] - 0.94 \times \log(\text{ENST}00000497872) - 0.39 \times \log(n333737) + 1.51 \times [\text{CT calcification}] + 1.16 \times [\text{TB-IGRA}] + 1.09 \times [\text{low-grade fever}] + 0.014 \times [\text{hemoglobin}] + 0.23 \times \log(n335265) + 0.43 \times [\text{weight loss}]$.

FIGURES CAPTIONS

Figure 1. Overview of the strategy for investigating lncRNA and prediction model for clinically diagnosed PTB differential diagnosis.

Abbreviations: PTB, pulmonary tuberculosis; PBMC, peripheral blood mononuclear cell; non-TB DC, non-tuberculosis disease control; DE, differentially expressed; EHR, electronic health record; DCA, decision curve analysis. LDH, lactate dehydrogenase.

Figure 2. Receiver operator curves of different models in the Selection and Validation Cohort.

(A), ROC of the Selection Cohort. The 10-fold cross-validation ROC of "EHR+lncRNA" model is provided in the e-Figure 5. P-values for model AUC comparisons in the Selection Cohort: 0.00012 ("EHR+lncRNA" vs "EHR only"), 1.402×10^{-7} ("EHR+lncRNA" vs "lncRNA only"), and 0.103 ("EHR only" vs "lncRNA only"), respectively. P-values < 0.016 ($0.05/3$) were considered statistically significant.

(B), ROC of the Validation Cohort. P-values for model AUC comparisons in the Validation Cohort: 0.004 ("EHR+lncRNA" vs "EHR only"), 0.0003 ("EHR+lncRNA" vs "lncRNA only"), and 0.361 ("EHR only" vs "lncRNA only"), respectively.

Figure 3. Nomogram for the prediction of clinically diagnosed PTB based on the optimal models.

(A), Nomogram to predict the risk of clinically diagnosed PTB patients, in which points were assigned based on the feature rank order of the effect estimates. A vertical line is drawn between the "Point" axis and the corresponding point for each feature to generate a total point score and PTB probability.

(B), Calibration plot in the Selection Cohort (left in B) and Validation Cohort (right in B), with lines indicating the ideal (dashed), apparent (dotted) and bias-corrected (unbroken) predictions of the nomogram.

(C), Decision curve analysis for the nomogram and "EHR only" model with lines indicating the nomogram (blue), "EHR only" model (red dash), and assumptions that no patients or all patients have PTB (black and grey, respectively).

Figure 4. Alteration of lncRNAs before and after 2-month intensive therapy.

LncRNA expressions before (blue) and after (red) a 2-month intensive anti-TB treatment regimen. Altered lncRNA expressions were calculated using \log_2 lncRNA (post-treatment expression / pre-treatment expression) and the Wilcoxon matched-paired rank test was used for comparisons among 22 paired samples.

The median and interquartile range of \log_2 lncRNA were as follows: *ENST00000497872* (before: -1.91 [-2.74, -1.11]; after: -1.55 [-2.61, -0.79]), *n333737*: (before: -3.88 [-4.81, -3.33] ; after: -2.30 [-2.99, -0.50]), *n335265* (before: 2.12 [1.05, 2.34]; after: 1.29 [0.85, 1.69]), respectively.

Figure 5. Regulation of lncRNA on inflammatory cytokine, cell apoptosis and cytotoxicity in BCG-infected THP-1 cells.

(A), Cytokine expression. (B), Flow cytometry analysis of cell apoptosis. (C), Graph of apoptosis data. (D), LDH release analysis of cell cytotoxicity for BCG-infected THP-1 cells. LV-control and shRNA-control mean values considered negative control values, and the blank control is not shown. Three cytokines (IL-12 p70, IL-10 and IL-6) did not significantly differ and are not shown. Difference between groups were analyzed by one-way ANOVA and Bonferroni's post-test comparison among groups (*p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001).

SUPPLEMENTARY FIGURE CAPTIONS

e-Figure 1. RNA electrophoresis, amplification curve of qRT-PCR and standard curve of control cDNA

e-Figure 2. Hierarchical clustering and volcano plot for differentially expressed lncRNA profiles in the Screening Cohort

e-Figure 3. LncRNA expression between clinically diagnosed PTB patients and non-TB disease controls in the Selection and Validation Cohorts

e-Figure 4. qPCR analysis of *ENST00000497872* expression in BCG-infected THP-1 cells

e-Figure 5. Ten-fold cross-validation ROC of "EHR+lncRNA" model developed using the data from the Selection Cohort

SUPPLEMENTARY TABLE CAPTIONS

e-Table 1. Disease controls in the present study

e-Table 2. Specific qRT-PCR primers for lncRNAs

e-Table 3. Expression of five candidate lncRNAs in the Screening Cohort

e-Table 4. Comparison of lncRNA expression between clinically diagnosed PTB patients and healthy subjects in the Selection and Validation Cohorts

e-Table 5. Short-term stability evaluation of lncRNAs in PBMC samples

e-Table 6. Details of "EHR+lncRNA" logistic regression model to differentiate clinically diagnosed PTB among 300 highly suspected patients

1. Screening Step

Participants

7 clinically diagnosed PTB vs 5 healthy subjects

Methods

- (1) PBMC samples were profiled with Affymetrix Human Transcriptome Array 2.0
- (2) Threshold of differentially expressed lncRNAs: fold-change > 2 and $p < 0.05$
- (3) Candidate lncRNAs were narrowed down: raw data signal $> 2^5$ and previously unreported lncRNAs in TB literature

Candidate lncRNAs (n = 5)

2. Selection Step

Participants (878, prospective Selection Cohort)

- (1) 300 suspected cases (141 clinically diagnosed PTB + 159 non-TB DC)
- (2) 578 healthy subjects

Methods

- (1) Quantifying lncRNAs using qRT-PCR
- (2) Group comparisons: clinically diagnosed PTB vs non-TB DC, clinically diagnosed PTB vs healthy subjects
- (3) Threshold of selected lncRNAs: fold-change > 2, age-adjusted $p < 0.05$ and $Cq < 35$

Selected lncRNAs (n = 3)

Independent evaluation

4. Validation Step

Participants (482, prospective Validation Cohort)

- (1) 237 suspected cases (97 clinically diagnosed PTB + 140 non-TB DC)
- (2) 245 healthy subjects

Methods

- (1) Validating differential expressions of 3 lncRNAs in all subjects
- (2) Testing nomogram in suspected cases: c-statistic, calibration, DCA
- (3) LncRNA functional analyses: cell apoptosis, LDH release assay, cytokine production

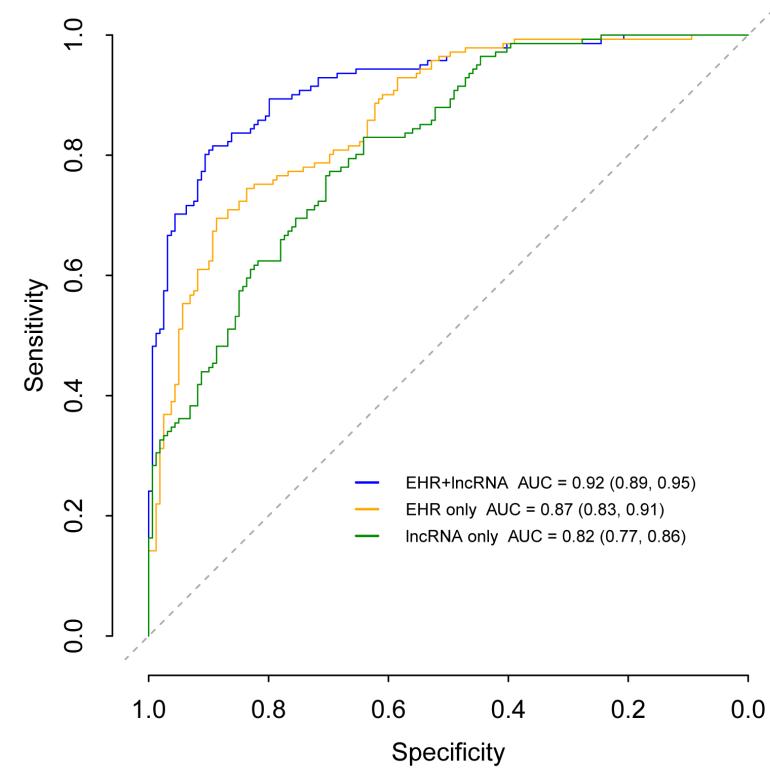
Modeling and visualization

3. Model Training Step

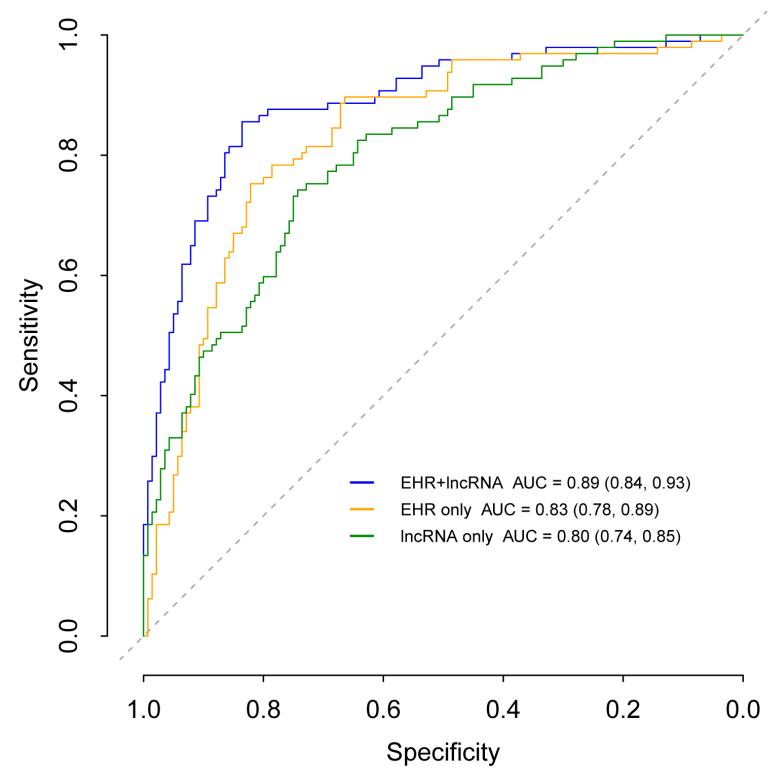
Participants (from Selection Cohort)

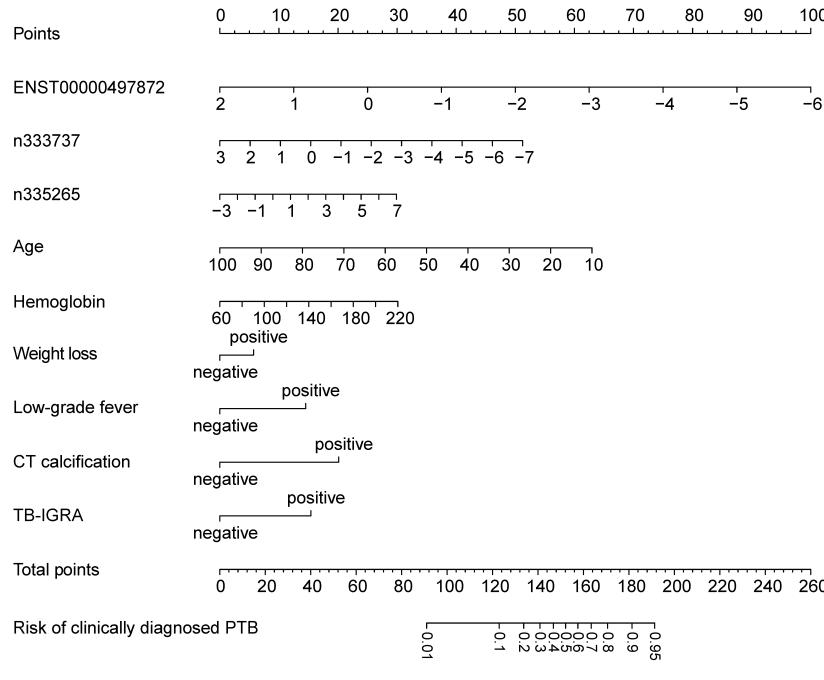
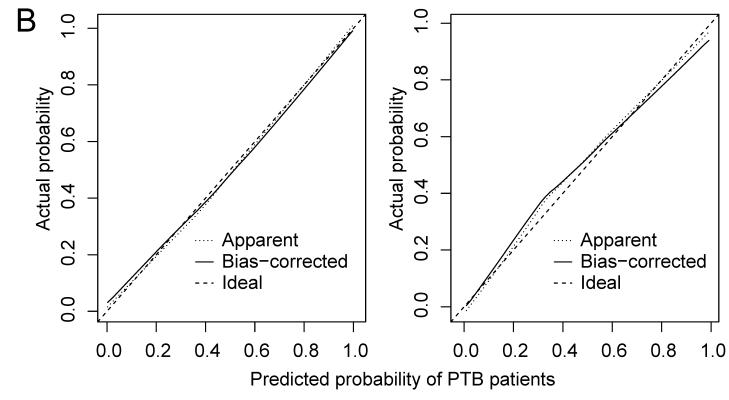
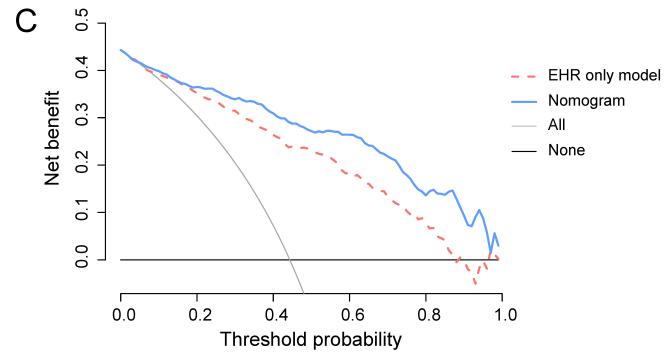
141 clinically diagnosed PTB vs 159 non-TB DC

Data

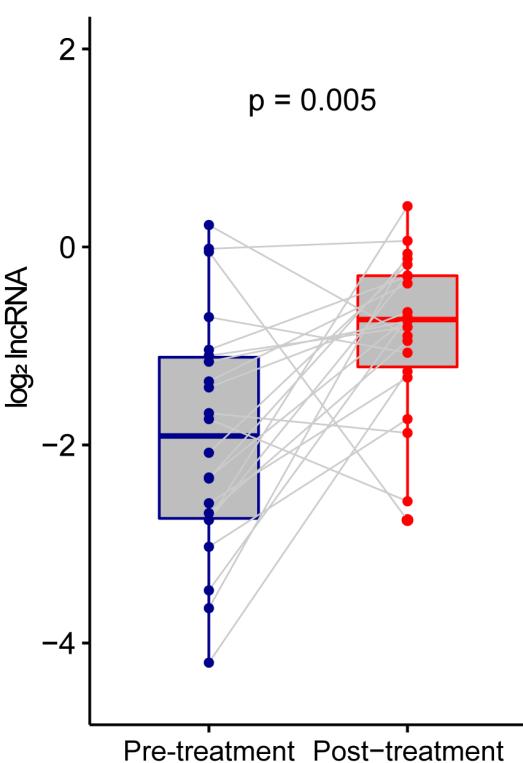

- (1) 3 lncRNAs (ENST00000497872, n333737, n335265)
- (2) EHR (clinical / laboratory / radiological data)

Methods

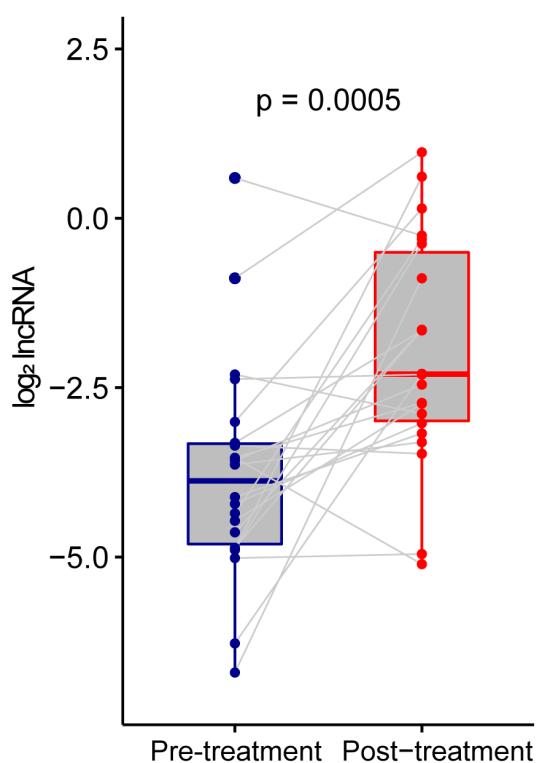

- (1) Binary logistic regression with best subset approaches
- (2) 3 models: "EHR+LncRNA" vs "LncRNA only" vs "EHR only"
- (3) Nomogram visualization and Web app for the optimal model




+ EHR

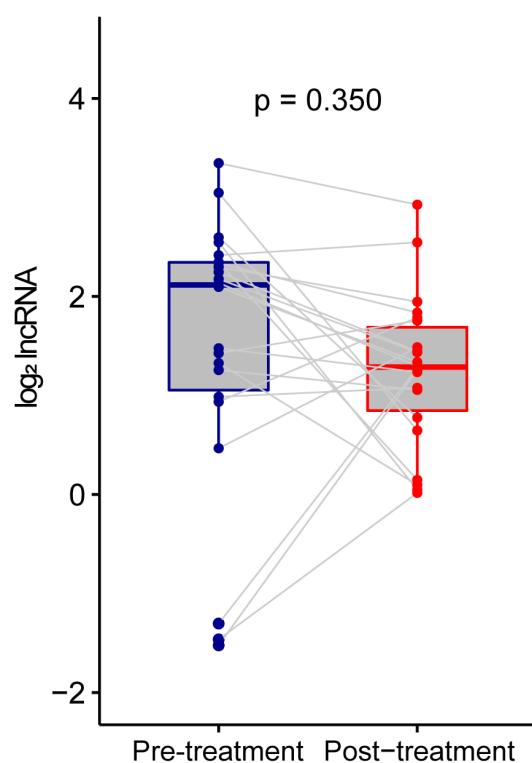
A **Selection Cohort**

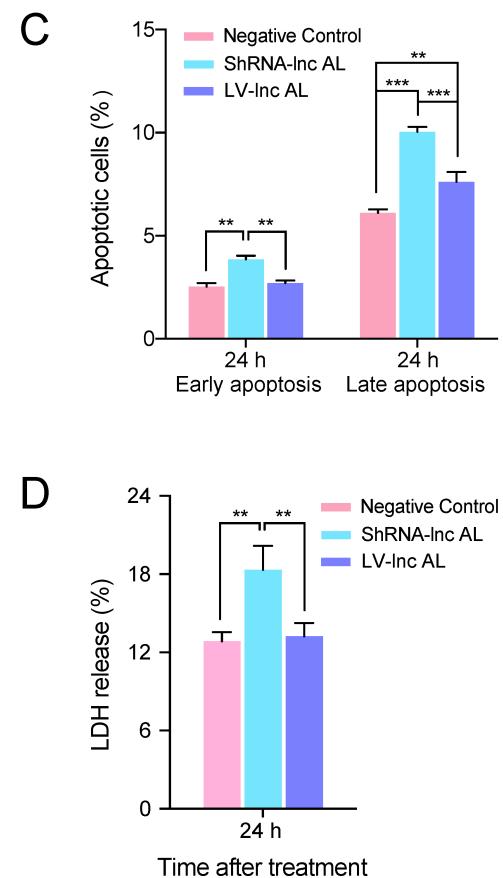
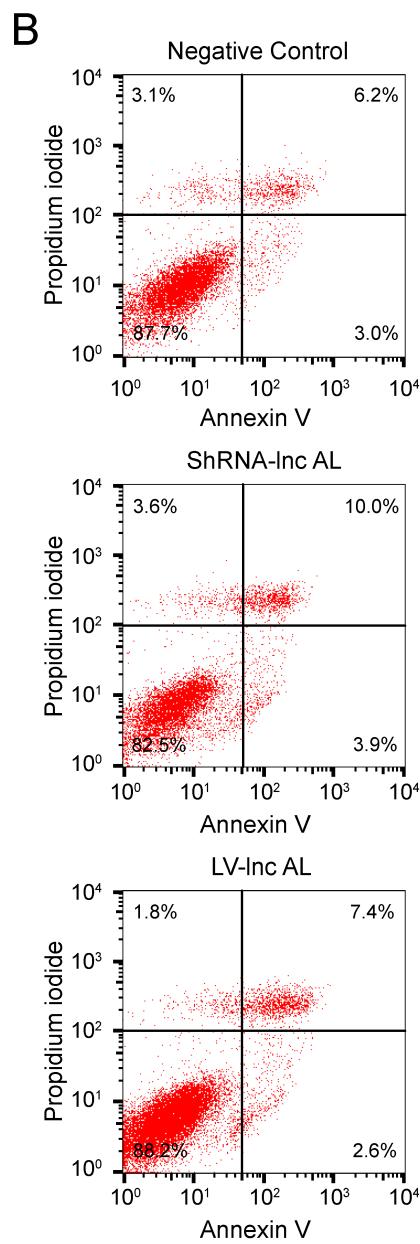
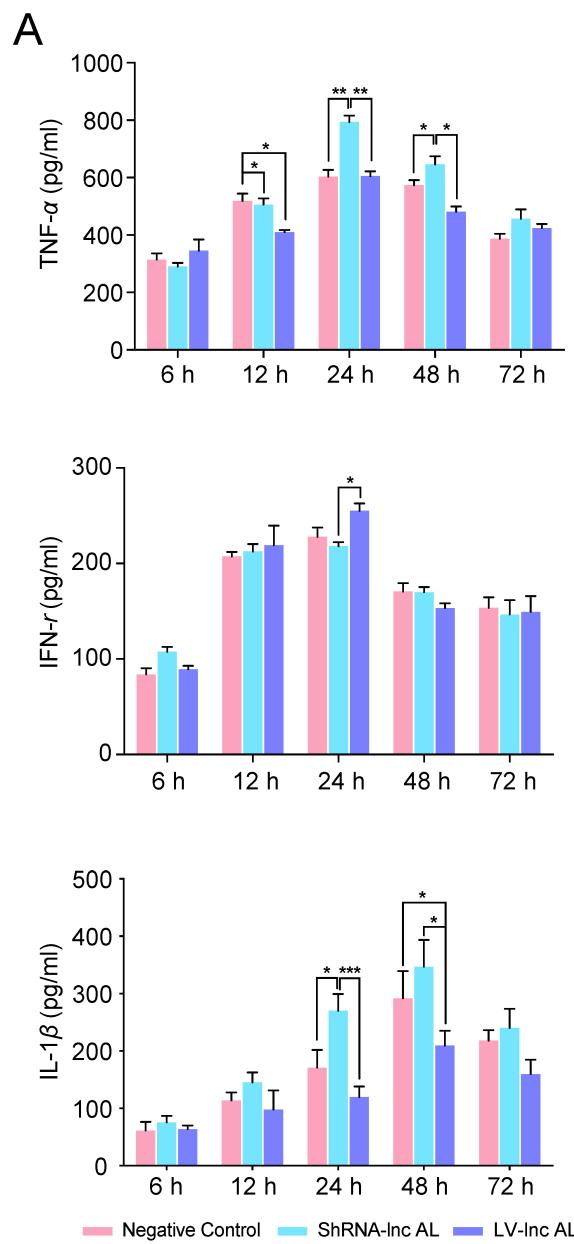


B **Validation Cohort**



A**B****C**


ENST00000497872

n333737

n335265

