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ABSTRACT

Background Clinically diagnosed pulmonary tuberculosis (PTB) patients lack
Mycobacterium tuberculosis (MTB) microbiologic evidence, and misdiagnosis or delayed
diagnosis often occurs as a consequence. We investigated the potential of INcRNAs and

corresponding predictive models to diagnose these patients.

Methods We enrolled 1372 subjects, including clinically diagnosed PTB patients, non-TB
disease controls and healthy controls, in three cohorts (Screening, Selection and Validation).
Candidate IncRNAs differentially expressed in blood samples of the PTB and healthy control
groups were identified by microarray and gRT-PCR in the Screening Cohort. Logistic
regression models were developed using INcRNAs and/or electronic health records (EHRS)
from clinically diagnosed PTB patients and non-TB disease controls in the Selection Cohort.
These models were evaluated by AUC and decision curve analysis, and the optimal model
was presented as a Web-based nomogram, which was evaluated in the Validation Cohort.
The biological function of IncRNAs was interrogated using ELISA, lactate dehydrogenase

release analysis and flow cytometry.

Results Three differentially expressed INcRNAs (ENST00000497872, n333737, n335265)

were identified. The optimal model (i.e., nomogram) incorporated these three INCRNAs and

six EHR variables (age, hemoglobin, weight loss, low-grade fever, CT calcification and TB-
IGRA). The nomogram showed an AUC of 0.89, sensitivity of 0.86 and specificity of 0.82 in
the Validation Cohort, which demonstrated better discrimination and clinical net benefit than
the EHR model. ENST00000497872 may regulate inflammatory cytokine production, cell

death and apoptosis during MTB infection.
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Conclusions LncRNAs and the user-friendly nomogram could facilitate the early
identification of PTB cases among suspected patients with negative MTB microbiologic

evidence.

KEYWORDS IncRNA, electronic health record, clinically diagnosed pulmonary

tuberculosis, nomogram
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INTRODUCTION
Tuberculosis (TB) is the leading cause of death from an infectious agent *, but only 56% of
plmonary tuberculosis (PTB) cases reported to WHO in 2017 were bacteriologically
confirmed. Thus, approximately half of all PTB cases are clinically diagnosed worldwide,
and this proportion can reach 68% in China *. Clinically diagnosed PTB cases are
symptomatic but lack evidence of Mycobacterium tuberculosis (MTB) infection by smear
microscopy, culture or nucleic acid amplification test . The diagnostic procedure for
clinically diagnosed PTB is inadequate and time-consuming and often results in misdiagnosis
or delayed diagnosis *, leading to an increased risk of morbidity and mortality *, or
overtreatment °. There is thus an urgent need to develop rapid and accurate strategies to
diagnose PTB cases without MTB microbiologic evidence ®’. The exploration of effective
host immune-response signatures represents an attractive approach for this type of assay.
Long noncoding RNAs (IncRNAs) can function as critical regulators of inflammatory
responses to infection, especially for T-cell responses ® °. Increasing evidence indicates that

blood INcRNA expression profiles are closely associated with TB disease '°*?

, suggesting
IncRNAs could function as potential noninvasive biomarkers for TB detection. However,
previous studies have suffered from small sample size (ranging from 66 to 510) and lack
independent validation.

Recent effort has focused on establishing clinical prediction rules or predictive models for
TB diagnosis based on patients’ electronic health record (EHR) information ***°. Such
models can cost-effectively facilitate PTB diagnosis with a limited number of clinical-
radiological predictors. For example, a 6-signature model from Griesel et al. (a cough lasting
>14 days, the inability to walk unaided, a temperature > 39°C, chest radiograph assessment,

hemoglobin level and white cell count) attained an AUC of 0.81 [0.80-0.82] in seriously ill

HIV-infected PTB patients **. However, despite these advances, current EHR models remain
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insufficient for precise TB diagnosis. Compelling studies have proposed that models
incorporating biomarkers and EHR information attain better performance for prediction of
sepsis *" and abdominal aortic aneurysm *2. We previously reported that combining exosomal
microRNAs and EHRs in the diagnosis of tuberculous meningitis (TBM) achieved AUCs of
up to 0.97 versus an AUC of 0.67 obtained using EHR alone *°. Based on these studies, we
hypothesized that combining IncRNAs with well-defined EHR predictors could be used to
develop improved predictive models to identify PTB cases that lack microbiologic evidence
of MTB infection.

This study was therefore performed to investigate the diagnostic potential of IncRNAs and
predictive models incorporating INcRNA and EHR data for the identification of PTB cases
without microbiologic MTB evidence. This study also explored the regulatory functions of
IncRNA candidates during MTB infection to evaluate the biological basis for their predictive

abilities.

MATERIAL AND METHODS
Study design

We performed this study through a four-stage approach. LncRNAs that were differentially
expressed (DE) between clinically diagnosed PTB patients and healthy subjects were profiled
by microarray in the Screening Step. The expression of top five InCRNAs were then analyzed
in a large prospective cohort in the Selection Step of the study, which reduced the number of
five INcCRNAs to three based on expression difference among groups. In the Model Training
Step, INcRNAs and EHRs were used to develop predictive models for clinically diagnosed
PTB patients and non-tuberculosis disease control (hon-TB DC) patients, and the optimal

model was visualized as a nomogram. Finally, we validated IncRNAs and the nomogram in
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an independent prospective cohort. Functional analyses were also performed to elucidate the

biological significance of IncRNAs. The study strategy is shown in Figure 1.

Subjects enrolment

Screening Cohort We retrospectively collected age- and gender-matched 7 PTB cases and 5
healthy controls as the Screening Cohort. They were 6 males and 6 females from ages 22 to
59 years. PTB cases were clinically confirmed PTB patients with positive TB symptoms,
negative MTB pathogenic examinations, and good response to anti-TB therapy. Healthy

subjects had a normal physical examination and no history of TB.

Selection Cohort and Validation Cohort Inpatients with clinical-radiological suspicion of
PTB but lacking evidence of MTB infection were prospectively enrolled from West China
Hospital between Dec 2014 and May 2017. The inclusion criteria for highly suspected
patients were: (a) new patients with high clinical-radiological suspicion of PTB, (b) anti-TB
therapy < 7 days on admission, (c) patients with negative MTB evidence (i.e., at least two
consecutive negative smears, one negative MTB-DNA PCR and one negative culture result),
(d) age > 15 years, and (e) patients without severe immunosuppressive disease, HIV infection,
or cardiac or renal failure. Two experienced pulmonologists reviewed and diagnosed all
presumptive PTB patients, and final diagnoses for all cases were based on the combination of
clinical assessment, radiological and laboratory results, response to the treatment 2. A 12-
month follow-up observation was used to confirm the classification of PTB and non-TB

patients. The detailed description of patients’ symptoms and recruitment, inclusion and
exclusion criteria, laboratory examinations, diagnostic criteria and procedure, treatment, and
sample size estimate are provided in e-Appendix 1 and 2. In addition, healthy subjects were

simultaneously recruited from a pool of healthy donors with a normal physical examination

and no history of TB.
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74 We finally enrolled a Selection Cohort of 878 participants (141 clinically diagnosed PTB,
75 159 non-TB DC, and 578 healthy subjects) and an independent Validation Cohort of 482

76  participants (97 clinically diagnosed PTB, 140 non-TB DC, and 245 healthy subjects).

77  Details of the non-TB DC are listed in e-Table 1. Ethical approval was obtained from the

78  Clinical Trials and Biomedical Ethics Committee of West China [no. 2014 (198)]. Informed

79  consents were obtained from every participant.

80 LncRNA detection

81 RNA isolation and cDNA preparation Peripheral blood mononuclear cell (PBMC) samples

82  were isolated from fresh 3 ml blood samples of each participant using a Human Lymphocyte

83  Separation Tube Kit (Dakewe Biotech Company Limited, China). Total RNA was extracted

84  from PBMC isolates using Trizol reagent (Invitrogen, USA). RNA concentration and purity
85  were evaluated spectrophotometrically, and RNA integrity was determined using agarose gel
86 electrophoresis (e-Figure 1A). The PrimeScript™ RT reagent Kit with gDNA Eraser (Takara,
87  Japan) was used to remove contaminating genomic DNA and synthesize cDNA.

88  LncRNA microarray profiling LncRNA profiles were detected using Affymetrix Human

| °. Raw data were normalized

89  Transcriptome Array 2.0 Chips based on a standard protoco
90  using the Robust Multi-Array Average Expression Measure algorithm. DE IncRNAs with p-
91  values < 0.05 and fold-changes > 2 were identified using the empirical Bayes moderated t-

92  statistics and presented by hierarchical clustering and volcano plot 2*. Microarray data have

93  been deposited in the Gene Expression Omnibus under the accession GSE119143.

94  gRT-PCR for InNcRNAs LncRNA expression was measured using the SYBR® Green PCR Kit
95 (Takara, Japan) in a blinded fashion, normalized to the endogenous control GAPDH, and
96 calculated according to the 2 “** “@ method where and Cq < 35 was considered acceptable %.

97  Specific primers are presented in e-Table 2. PCR curves and the standard curve are shown in
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98 e-Figure 1B-C. Detailed methodology for RNA isolation, reverse transcription, gRT-PCR
99  detection (procedure, quality control, product verification, and stability test) are listed in e-

100  Appendix 3.

101  Modeling

102  Data used for modeling A total of 41 EHRSs, including demographic, clinical, laboratory, and
103  radiological findings were collected (see e-Appendix 4), and a 20% missing value threshold
104  was applied to remove incomplete features. Features with p-values < 0.05 in univariate

105 analysis or definite clinical significance were included for modeling. A total of 14 of the 44
106  original variables (41 EHRs and 3 IncRNASs) remained after filtering, including 11 EHRs and

107 3 IncRNAs (see e-Appendix 4).

108  Diagnostic modeling Multivariable logistic regression was used to develop predictive models
109 to distinguish clinically diagnosed PTB from patients with suspected PTB cases in the

110  Selection Cohort. Feature subsets were selected and compared using the best subset selection
111  procedure % and 10-fold cross-validation. The "EHR+IncRNA", "IncRNA only" and "EHR
112  only" models were developed according to their respective best feature subset in the Selection
113  Cohort. A cutoff of each model was determined by combining the Youden’s index and the
114  sensitivity for the samples in the training dataset equal to or greater than 0.85. The models

115 including their cutoff were used for evaluation of the Validation Cohort.

116  Nomogram presentation and evaluation We further adopted the nomogram to visualize the
117  optimal model with the best AUC #* 2. Nomogram calibration was assessed with the

118 calibration curve and Hosmer-Lemeshow test (p-value > 0.05 suggested no departure from
119  perfect fit). The performance of the nomogram was tested in the independent Validation
120  Cohort, with total points for each patient calculated. Decision curve analysis (DCA) ?° was

121 performed by evaluating the clinical net benefit of the nomogram and "EHR only™ model
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122  across the overall datasets. Assessing clinical value involves comparing the nomogram and
123  “EHR only” model using the 500 bootstrap method. The nomogram was implemented as a

124 Web-based app using R Shiny.

125  Analysis of ENST00000497872 (Inc AL) function

126 The IncRNA with the most significant difference in our analysis, ENST00000497872 (Inc AL)
127  was analyzed in functional studies. THP-1 cells with stable overexpression and knockdown
128  of Inc AL were constructed using recombinant lentivirus vector (LV). THP-1 cells transfected
129  with these vectors were incubated with Bacillus Calmette-Guerin (BCG) to imitate active

130  MTB-infection . This study examined the effect BCG exposure on THP-1 cells in five

131  groups transfected with vectors to overexpress (LV-Inc AL) or suppress (ShRNA-Inc AL) Inc
132 AL expression, their respective empty vector constructs (LV-control and shRNA-control), or
133 with no vector (blank control). Cell culture supernatants were harvested to measure Inc AL
134  and the expression of six cytokines (TNF-a, IL-1p, IL-12 p70, IL-10, IFN-y, and IL-6). Cell
135  apoptosis and cytotoxicity after 24 h infection were detected by flow cytometry and the

136 lactate dehydrogenase (LDH) release analysis, respectively. Detailed methodology for these

137  experiments is presented in e-Appendix 5.

138  Statistical analysis

139  Categorical variables were analyzed by univariate analysis with a Chi-square test and

140  continuous variables were analyzed using Mann-Whitney U tests or Student’s t-tests. All tests
141  were 2-sided, and p-values < 0.05 were considered statistically significant. Modeling was

142  constructed and validated by individuals who were blinded to diagnostic categorizations. R
143  code and data for modeling are available from

144  https://github.com/xuejiaohul23/TBdiagnosisModel.

145

10
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146 RESULTS

147  Characteristics of prospectively enrolled participants

148  The demographic and clinical characteristics of participants in the Selection and Validation
149  Cohorts are provided in Table 1. PTB patients were younger and had greater IGRA positivity
150 rates than their non-TB DC (p-value < 0.0001 for both the Selection and Validation Cohorts),
151  but these groups did not differ by gender, BMI, or smoking status. Healthy subjects were age-,
152  gender-, and BMI-matched with PTB patients, who had significantly different blood test

153  results compared with PTB patients (Table 1).

154 Clinically diagnosed PTB patients were responsible for 29.82% (238/798) of all active

155  PTB patients (see e-Appendix 1). This rate is markedly lower than a nationwide estimate of
156  68% based on primary public health institutions *, but represents the clinically diagnosed

157  PTB rate in a referral hospital with experienced specialists.

158 LncRNAs microarray profiles and candidate selection

159  Inthe Screening Step, microarray profiling identified a total of 325 IncRNAs that were

160 differentially expressed (287 upregulated and 38 downregulated) in the clinically diagnosed
161  PTB patients versus healthy subjects. Hierarchical clustering and a volcano plot revealed

162 clearly distinguishable INcRNA expression profiles (e-Figure 2). Top five IncRNA candidates
163  were chosen based on a set of combined criteria: fold-change > 2 between groups, p-value <
164  0.05, signal intensity > 25 #’, and including unreported INcRNAs in TB literature %. Three of
165 these five INCRNAs were upregulated (n335265, ENST00000518552 and TCONS_00013664)
166  and two were downregulated (n333737 and ENST00000497872) in PTB versus control

167  subjects (e-Table 3).

168  Differentially expressed IncRNAs in clinically diagnosed PTB

11
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169  The expression level of these five candidate INCRNAs was measured by gRT-PCR in the
170  Selection Cohort, which consisted of 141 clinically diagnosed PTB, 159 non-TB DC, and 578
171  healthy subjects. Two IncRNAs (ENST00000518552 and TCONS_00013664) were excluded
172 from further analysis due to their low abundance expression (Cq > 35) in this cohort. Of the
173 three remaining INcRNAs, ENST00000497872 and n333737 were downregulated and

174  n335265 was upregulated in PTB patients versus healthy subjects (e-Table 4). Comparison
175  between clinically diagnosed PTB cases and non-TB DC patients revealed a decreased

176  expression of ENST00000497872 and n333737 in PTB patients (e-Figure 3A), age-adjusted
177  p-values both < 0.0001).

178 Short-term stability, an essential prerequisite of a potential IncRNA biomarker, was

179  assessed in PBMC samples. This study found that incubation up to 24 h had minimal effect
180  on the expression of ENST00000497872, n333737, and n335265 (e-Table 5), in accordance

181  with a previous report of InNcRNA stability in blood %.

182  Diagnostic modeling and nomogram visualization

183  Three logistic regression models, "EHR+IncRNA", "EHR only", and "IncRNA only" were
184  evaluated as part of the training step in the Selection Cohort (see e-Appendix 4). The variance
185 inflation factors between the features ranged from 1.02 to 1.29, indicating no collinearity

186  within models. The "EHR+INcCRNA" model yielded the highest AUC (0.92) for

187  distinguishing clinically diagnosed PTB from suspected PTB patients, compared to AUCs of
188 0.87 and 0.82 for the "EHR only" and "IncRNA only" models, respectively (Figure 2A). The
189 "EHR+IncRNA" model also had the best performance in sensitivity, specificity, accuracy,
190  positive predictive value, and negative predictive value (Table 2).

191 The optimal "EHR+IncCRNA" model was displayed as a nomogram (Figure 3A), and the
192  top five features of the nomogram were ENST00000497872, age, n333737, CT calcification,

193  and TB-IGRA results (e-Table 6). Seneitivity and specificity of the nomogram for prediction

12
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194  of clinically diagnosed PTB was 0.89 (0.82-0.93) and 0.80 (0.73-0.85) at a cutoff of 0.37

195 (Table 2). A calibration curve in the Selection Cohort (Figure 3B) indicated a good

196  agreement between nomogram prediction and actual PTB cases and was confirmed by the
197  nonsignificant Hosmer-Lemeshow test (p-value = 0.957). This nomogram was generated as a

198  free online app (available at https://xuejiao.shinyapps.io/shiny/) to facilitate its access for

199  other studies. This app allows the user to insert the values of specific predictors and provides

200  the risk prediction as a whole number percentage.

201  Validation for IncRNAs and the nomogram

202  Inthe Validation Step, the three candidate IncRNAs were analyzed in an independent

203  Validation Cohort contains 97 clinically diagnosed PTB cases, 140 non-TB DC and 245
204  healthy subjects. This analysis observed an INcCRNA expression pattern similar to that

205  observed in the Selection Cohort (e-Table 4, e-Figure 3B). All three models were applied to
206  the Validation Cohort, and as reported in Table 2 and Figure 2 it was found that the

207  nomogram achieved superior discrimination (AUC: 0.89 [0.84-0.93]), good calibration

208  (Figure 3B, and p-value = 0.668 for Hosmer-Lemeshow test) for clinically diagnosed PTB
209  prediction. The sensitivity and specificity of the nomogram at the cutoff of 0.37 in the

210  Validation Cohort was 0.86 (0.77-0.90) and 0.82 (0.75-0.87), respectively. DCA indicated
211  that the nomogram outperformed the conventional "EHR only™ model with a higher clinical

212  net benefit within a threshold probability range from 0.2 to 1 (Figure 3C).

213  LncRNA response to anti-TB treatment

214 LncRNAs were next analyzed for the ability to predict anti-TB treatment response. Paired
215  samples were collected from 22 clinically diagnosed PTB patients before and after 2-month
216 intensive therapy ¥, and the expressions of ENST00000497872, n333737, and n335265 were

217  measured by qRT-PCR. All these patients had good response to therapy based on the clinical

13
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218 and radiological findings, and ENST00000497872 and n333737 levels significantly increased
219  post-treatment (p-values = 0.005 and 0.0005, respectively, Figure 4), suggesting that IncRNA

220  expression increased in response to therapy.

221  Functional studies of ENST00000497872

222  We investigated whether ENST00000497872 (i.e., Inc AL) could affect the host immune

223 response. At 24 h and 48 h post BCG-infection, Inc AL overexpression (e-Figure 4) led to

224 decreased production of proinflammatory cytokines TNF-a and IL-1f and an increase in INF-
225 vy (Figure 5A). Conversely, knockdown of Inc AL resulted in a significant TNF-a and IL-1§
226  increases and an INF-y reduction. Lnc AL knockdown was also associated with an increasing
227  trend of cell apoptosis (Figure 5B and 5C) and cell death (Figure 5D). These results implicate
228  an inflammatory regulation of Inc AL during MTB-infection.

229

230 DISCUSSION

231  The present work focused on the challenge of accurately diagnosing PTB patients without
232 microbiological evidence of MTB infection. Our study showed that three INCRNAs

233  (ENST00000497872, n333737, and n335265) were potential biomarkers for clinically
234  diagnosed PTB patients. Addition of three INcRNAs (ENST00000497872, n333737 and

235 n335265) to a conventional EHR model improved its ability to identify PTB cases from TB
236  suspects, with the AUCs increasing from 0.83 to 0.89. The IncRNA that was most

237  significantly enriched in the PTB group of this study, ENST00000497872 (chr14:105703964-
238 105704602), is located close to IGHAL (chrl4: 105703995-105708665), and functional

239 analyses indicated that expression of this INCcRNA was involved in the regulation of

240  inflammatory cytokine production and cell apoptosis in MTB-infected macrophages,

14
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241  although further studies are needed to investigate the mechanisms responsible. Consistent
242 with published INcRNA data ®*# 3! this data provide new evidence that IncRNAs could

243  participate in TB immunoregulation and serve as promising biomarkers for TB diagnosis.

244 In addition to the three IncRNAs, we identified six EHR predictors (age, CT calcification,
245  positive TB-IGRA, low-grade fever, elevated hemoglobin, and weight loss) that were

246  essential in TB case finding, as proposed by prior findings *>*°. Age was an important

247  negative predictor for clinically diagnosed PTB, which appears to conflict with the consensus
248  that advanced age correlates with higher TB susceptibility *. This may be explained by

249  differences in the enrollment of the PTB patients and control subjects. Previous studies

250 included healthy and/or vulnerable subjects as controls, while we enrolled inpatients with a
251  wide range of pulmonary diseases and older ages as disease controls.

252 This study serves as a first proof-of-concept study to show that integrating InCRNA

253  signatures and EHR data could be a more promising diagnostic approach for PTB patients
254 with negative MTB pathogenic evidence. The "EHR+IncRNA" model had good

255  discrimination (through AUC and diagnostic parameters), reliable calibration (via calibration
256  curve and Hosmer-Lemeshow test), and potential clinical utility for decision-making (using
257 DCA). The "EHR+IncRNA" model avoided some common problems associated with

258  sputum-based features, such as poor sputum quality or problematic sampling *, to improve
259 itsreliability and clinical utility. Nomogram has been shown to remarkably promote early
260  diagnosis of intestinal tuberculosis * and prognosis prediction in PTB ** and TBM *,

261  "EHR+IncRNA™ model herein was visualized as a nomogram and further implemented in an
262  app. The online nomogram uses readily obtainable predictors and automatically outputs a
263  personalized quantitative risk estimate for PTB. Utilizing this user-friendly tool may facilitate

264  the rapid identification of PTB cases among suspected TB patients without MTB
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265  microbiologic evidence to improve TB diagnosis, especially in resource-constrained areas
266  with high TB prevalence.

267 Our study has several limitations. Modeling in this study was conducted based on data
268  from asingle large hospital, and multi-center validation studies are needed. Further, because
269  Xpert MTB/RIF is still not routinely available in most clinical laboratories of China, and

36-38 ;
in

270  since previous Xpert studies reported moderate sensitivities ranged from 28% to 73%
271  smear-negative PTB patients, we did not consider Xpert in our research, which may limit the
272  generalization of our findings.

273 In summary, a novel nomogram we developed and validated in this study that incorporated
274 three IncRNAs and six EHR fields may be a useful predictive tool in identifying PTB patients
275  with negative MTB pathogenic evidence, and merits further investigation.
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TABLES

Table 1. Demographic and clinical features of participants in the Selection and Validation Cohorts.

Suspected clinically diagnosed PTB patients sejection

Suspected clinically diagnosed PTB patients vajigation

Clinical features Clinically diagnosed ~ Non-TB DC Tr?zsg%;n p2 Clinically diagnosed ~ Non-TB DC HS vaiaaion (N=245) p4

PTB (n=141) (n=159) p1 PTB (n=97) (n=140) p3
Gender, male 84 (59.57%) 95 (59.75%) 0.976 284 (49.13%)  0.026 58 (59.79%) 87 (62.14%) 0.715 126 (51.43%) 0.162
Age (years) 37.81+17.93 56.68 + 14.52 < 0.0001 40.59 + 13.11 0.084 38.29 + 17.57 57.96 + 16.66 <0.0001 36.82 £ 9.28 0.436
BMI (kg/mz) 20.81 +2.99 20.43 £4.03 0.359 20.65+3.19 0.57 21.59 +3.43 21.29 +£3.62 0.52 21.51+3.52 0.843
Smoking 61 (43.26%) 72 (45.28%) 0.725 161 (27.85%)  <0.0001 41 (42.27%) 66 (47.14%) 0.458 84 (34.29%) 0.167
Radiologic pathology 116(82.26%) 140 (88.05%) 0.158 - 86 (88.66%) 130 (92.86%) 0.264 -
Laboratory tests
Positive TB-IGRA 97 (68.88%) 56 (35.22%) <00001 - 64 (66.00%) 42 (30.00%) <0.0001 -
C-reactive protein (mg/L)  16.30 (5.32-54.05)  17.80 (6.47-60.20)  0.427 - 13.60 (3.34-43.55) 18.60 (6.56-70.63)  0.037 -
Hematocrit 0.37 £ 0.06 0.36 + 0.07 0.162 0.44 £0.04 <0.0001 0.38 £ 0.07 0.35+0.07 0.002 0.43+0.04 < 0.0001
Erythrocytes (><1012/L) 4.33+0.72 4.03+0.81 0.001 4,78 £0.46 <0.0001 4.46 +0.80 3.89+0.91 <0.0001 4.80 £ 0.46 <0.0001
Hemoglobin (g/L) 122.57 + 23.22 115.82 + 25.20 0.017 144.46 + 13.88 <0.0001 125.08 + 24.25 113.11 + 25.52 <0.0001 145.82 + 13.73 <0.0001
sy GBWMOTI0 ZRO@O0 g SSOOUS0N gy 000K ST g 000 gy,
Leukocytes (x10°/L) 6.03 (4.76-8.25) 6.36 (4.71-9.07) 0.488 5.92 (5.18-6.67) 0.184 6.96 (5.06-9.14) 5.93(4.34-833)  0.009 5.70 (4.91-6.55) 0.217
Lymphocytes (x10°/L) 1.15 (0.80-1.52) 1.28 (0.87-1.87) 0.056 1.86 (155-2.19) < 0.0001 1.29 (0.91-1.80) 1.22(0.86-1.62)  0.343 1.85 (1.57-2.55) <0.0001
Neutrophils (x10°/L) 4.02 (3.23-5.93) 4.08 (2.71-6.32) 0.956 3.47 (2.87-4.09) < 0.0001 4.03 (2.51-5.69) 485(3.21-670)  0.023 3.36 (2.75-3.92) 0.006
Monocytes (x10%/L) 0.47 (0.35-0.65) 0.42 (0.26-0.61) 0.015 0.36 (0.29-0.44) < 0.0001 0.43 (0.30-0.64) 046 (0.34-0.71)  0.211 0.31 (0.25-0.39) <0.0001
Alb (g/L) 36.66 + 6.78 36.60 + 6.66 0.973 48.24 + 2.67 <0.0001 37.33+7.47 36.69 + 7.22 0.509 47.06 + 2.25 <0.0001
Globin (g/L) 31.69 + 7.66 30.68 +8.10 0.269 28.92 +3.29 0.041 30.41+7.89 29.73+7.91 0.514 27.41+3.19 <0.0001
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Subscripted "Selection" or "Validation" refers to the Selection or Validation Cohort, respectively. Radiologic pathology refers to abnormal chest imaging, including at least one of the signs: polymorphic abnormality,
calcification, cavity, bronchus sign, and pleural effusion. Abbreviations: non-TB DC, non-tuberculosis disease control patients; HS, healthy subjects. p1, p-value for the comparison of clinically diagnosed PTB patients
and non-TB DCs in the Selection Cohort; p2, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Selection Cohort; p3, p-value for the comparison of clinically diagnosed PTB

patients and non-TB DCs in the Validation Cohort; p4, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Validation Cohort.
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Table 2. Performances of the comparative diagnostic models.

Selection Cohort

Validation Cohort

Model performance

EHR+INcRNA

(Nomogram)

EHR only

IncRNA only

EHR+INcRNA
(Nomogram)

EHR only

IncRNA only

Sensitivity

Specificity

Accuracy

Positive predictive value

Negative predictive value

0.89 (0.82-0.93)
0.80 (0.73-0.85)
0.84 (0.80-0.88)
0.80 (0.73-0.85)
0.89 (0.83-0.93)

0.89 (0.83-0.93)
0.62(0.54-0.68)

0.75 (0.69-0.79)
0.67 (0.60-0.74)
0.87 (0.79-0.91)

0.85 (0.76-0.88)
0.55 (0.46-0.61)

0.69 (0.63-0.74)
0.62 (0.55-0.69)
0.80 (0.72-0.86)

0.86 (0.77-0.90)
0.82 (0.75-0.87)

0.84 (0.78-0.88)
0.77 (0.68-0.83)
0.89 (083-0.93)

0.89 (0.82-0.94)
0.65 (0.56-0.72)
0.75 (0.69-0.81)
0.64 (0.56-0.72)
0.90 (0.83-0.94)

0.85 (0.76-0.90)
0.54 (0.47-0.62)

0.67 (0.60-0.73)
0.56 (0.48-0.63)
0.83 (0.75-0.89)

Note: The cutoff probability in the Selection Cohort was 0.37 for "EHR+IncRNA" model, 0.26 for "EHR only" model, and 0.32 for "IncRNA" model, respectively. Features in each model are

provided in e-Appendix 4, 4.4. The "EHR+IncRNA" formula that was developed to classify patients as PTB cases or non-TB disease controls was: -3.32 - 0.053x[age] -
0.94x10g(ENST00000497872) - 0.39%log(n333737) + 1.51x[CT calcification] + 1.16x[TB-IGRA] + 1.09x[low-grade fever] + 0.014x[hemoglobin] + 0.23xlog(n335265) + 0.43x%[weight loss].
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FIGURES CAPTIONS

Figure 1. Overview of the strategy for investigating INcRNA and prediction model for clinically diagnosed PTB differential diagnosis.
Abbreviations: PTB, pulmonary tuberculosis; PBMC, peripheral blood mononuclear cell; non-TB DC, non-tuberculosis disease control; DE, differentially expressed:;

EHR, electronic health record; DCA, decision curve analysis. LDH, lactate dehydrogenase.

Figure 2. Receiver operator curves of different models in the Selection and Validation Cohort.
(A), ROC of the Selction Cohort. The 10-fold cross-validation ROC of "EHR+IncRNA" model is provided in the e-Figure 5. P-values for model AUC comparisons in
the Selection Cohort: 0.00012 ("EHR+IncRNA" vs "EHR only"), 1.402x10" ("EHR+IncRNA" vs "IncRNA only"), and 0.103 ("EHR only" vs "IncRNA only"),

respectively. P-values < 0.016 (0.05/3) were considered statistically significant.

(B), ROC of the Validation Cohort. P-values for model AUC comparisons in the Validation Cohort: 0.004 ("EHR+IncRNA" vs "EHR only"), 0.0003
("EHR+IncRNA" vs "IncRNA only"), and 0.361 ("EHR only" vs "IncRNA only"), respectively.

Figure 3. Nomogram for the prediction of clinically diagnosed PTB based on the optimal models.

(A), Nomogram to predict the risk of clinically diagnosed PTB patients, in which points were assigned based on the feature rank order of the effect estimates. A
vertical line is drawn between the "Point" axis and the corresponding point for each feature to generate a total point score and PTB probability.

(B), Calibration plot in the Selection Cohort (left in B) and Validation Cohort (right in B), with lines indicating the ideal (dashed), apparent (dotted) and bias-
corrected (unbroken) predictions of the nomogram.

(C), Decision curve analysis for the nomogram and "EHR only™ model with lines indicating the nomogram (blue), "EHR only" model (red dash), and

assumptions that no patients or all patients have PTB (black and grey, respectively).
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Figure 4. Alteration of IncRNAs before and after 2-month intensive therapy.

LncRNA expressions before (blue) and after (red) a 2-month intensive anti-TB treatment regimen. Altered IncRNA expressions were calculated using log, INCRNA
(post-treatment expression / pre-treatment expression) and the Wilcoxon matched-paired rank test was used for comparisons among 22 paired samples.

The median and interquartile range of log, INCRNA were as follows: ENST00000497872 (before: -1.91 [-2.74, -1.11]; after: -1.55 [-2.61, -0.79]), n333737: (before: -
3.88 [-4.81, -3.33] ; after: -2.30 [-2.99, -0.50]), n335265 (before: 2.12 [1.05, 2.34]; after: 1.29 [0.85, 1.69]), respectively.

Figure 5. Regulation of IncRNA on inflammatory cytokine, cell apoptosis and cytotoxicity in BCG-infected THP-1 cells.

(A), Cytokine expression. (B), Flow cytometry analysis of cell apoptosis. (C), Graph of apoptosis data. (D), LDH release analysis of cell cytotoxicity for BCG-
infected THP-1 cells. LV-control and shRNA-control mean values considered negative control values, and the blank control is not shown. Three cytokines (IL-12 p70,
IL-10 and IL-6) did not significantly differ and are not shown. Difference between groups were analyzed by one-way ANOVA and Bonferroni’s post-test comparison

among groups (*p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001).

SUPPLEMENRARY FIGURE CAPTIONS

e-Figure 1. RNA electrophoresis, amplification curve of gRT-PCR and standard curve of control cDNA

e-Figure 2. Hierarchical clustering and volcano plot for differentially expressed INcRNA profiles in the Screening Cohort

e-Figure 3. LncRNA expression between clinically diagnosed PTB patients and non-TB disease controls in the Selection and Validation Cohorts
e-Figure 4. gPCR analysis of ENST00000497872 expression in BCG-infected THP-1 cells

e-Figure 5. Ten-fold cross-validation ROC of "EHR+IncRNA" model developed using the data from the Selection Cohort
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SUPPLEMENRARY TABLE CAPTIONS

e-Table 1. Disease controls in the present study

e-Table 2. Specific qRT-PCR primers for INCRNAs

e-Table 3. Expression of five candidate IncRNAs in the Screening Cohort

e-Table 4. Comparison of IncRNA expression between clinically diagnosed PTB patients and healthy subjects in the Selection and Validation
Cohorts

e-Table 5. Short-term stability evaluation of IncRNAs in PBMC samples

e-Table 6. Details of "EHR+INRNA" logistic regression model to differentiate clinically diagnosed PTB among 300 highly suspected patients
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LncRNA Identification

Modeling and Validation

1. Screening Step

Participants
7 clinically diagnosed PTB vs 5 healthy subjects

Methods

(1) PBMC samples were profiled with Affymetrix Human
Transcriptome Array 2.0

(2) Threshold of differentially expressed IncRNAs: fold-change > 2
and p <0.05

(3) Candidate IncRNAs were narrowed down: raw data signal
> 25 and previously unreported IncRNAs in TB literature

I
Candidate IncRNAs (n = 5)

Independent evaluation

|
4. Validation Step

Participants (482, prospective Validation Cohort)

(1) 237 suspected cases (97 clinically diagnosed PTB + 140 non-TB
DC)

(2) 245 healthy subjects

Methods

(1) Validating differential expressions of 3 IncRNAs in all subjects

(2) Testing nomogram in suspected cases: c-statistic, calibration, DCA

(3) LncRNA functional analyses: cell apoptosis, LDH release assay,
cytokine production

2. Selection Step

Participants (878, prospective Selection Cohort)

(1) 300 suspected cases (141 clinically diagnosed PTB + 159 non-
TB DC)

(2) 578 healthy subjects

Methods

(1) Quantifying IncRNAs using gRT-PCR

(2) Group comparisons: clinically diagnosed PTB vs non-TB DC,
clinically diagnosed PTB vs healthy subjects

(3) Threshold of selected IncRNAs: fold-change > 2, age-adjusted p
<0.05and Cq< 35

.

I
Selected IncRNAs (n = 3)

Modeling and visualization

3. Model Training Step

Participants (from Selection Cohort)

141 clinically diagnosed PTB vs 159 non-TB DC

Data

(1) 3 IncRNAs (ENST00000497872, n333737, n335265)

(2) EHR (clinical / laboratory / radiological data)

Methods

(1) Binary logistic regression with best subset approaches

(2) 3 models: “EHR+IncRNA” vs “IncRNA only” vs “EHR only”
(3) Nomogram visualization and Web app for the optimal model

. J

\_
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