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LIST OF ABBREVIATIONS 

TB: tuberculosis; PTB: pulmonary tuberculosis; MTB: Mycobacterium tuberculosis; TB-

IGRA: interferon-gamma release assays for tuberculosis; lncRNA: long noncoding RNA; 

LTBI: latent TB infection; DE: differentially expressed; EHR: electronic health record; TBM: 

tuberculous meningitis; non-TB DC: non-TB disease control; PBMC: peripheral blood 

mononuclear cell; VIF: variance inflation factor; DCA: decision curve analysis; LV: 

lentivirus vector; BCG: Bacillus Calmette-Guerin; LDH: lactate dehydrogenase. 
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ABSTRACT 

Background Clinically diagnosed pulmonary tuberculosis (PTB) patients lack 

Mycobacterium tuberculosis (MTB) microbiologic evidence, and misdiagnosis or delayed 

diagnosis often occurs as a consequence. We investigated the potential of lncRNAs and 

corresponding predictive models to diagnose these patients. 

Methods We enrolled 1372 subjects, including clinically diagnosed PTB patients, non-TB 

disease controls and healthy controls, in three cohorts (Screening, Selection and Validation). 

Candidate lncRNAs differentially expressed in blood samples of the PTB and healthy control 

groups were identified by microarray and qRT-PCR in the Screening Cohort. Logistic 

regression models were developed using lncRNAs and/or electronic health records (EHRs) 

from clinically diagnosed PTB patients and non-TB disease controls in the Selection Cohort. 

These models were evaluated by AUC and decision curve analysis, and the optimal model 

was presented as a Web-based nomogram, which was evaluated in the Validation Cohort. 

The biological function of lncRNAs was interrogated using ELISA, lactate dehydrogenase 

release analysis and flow cytometry. 

Results Three differentially expressed lncRNAs (ENST00000497872, n333737, n335265) 

were identified. The optimal model (i.e., nomogram) incorporated these three lncRNAs and 

six EHR variables (age, hemoglobin, weight loss, low-grade fever, CT calcification and TB-

IGRA). The nomogram showed an AUC of 0.89, sensitivity of 0.86 and specificity of 0.82 in 

the Validation Cohort, which demonstrated better discrimination and clinical net benefit than 

the EHR model. ENST00000497872 may regulate inflammatory cytokine production, cell 

death and apoptosis during MTB infection.  
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Conclusions LncRNAs and the user-friendly nomogram could facilitate the early 

identification of PTB cases among suspected patients with negative MTB microbiologic 

evidence. 

KEYWORDS lncRNA, electronic health record, clinically diagnosed pulmonary 

tuberculosis, nomogram 
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INTRODUCTION 1 

Tuberculosis (TB) is the leading cause of death from an infectious agent 
1
, but only 56% of 2 

plmonary tuberculosis (PTB) cases reported to WHO in 2017 were bacteriologically 3 

confirmed. Thus, approximately half of all PTB cases are clinically diagnosed worldwide, 4 

and this proportion can reach 68% in China 
1
. Clinically diagnosed PTB cases are 5 

symptomatic but lack evidence of Mycobacterium tuberculosis (MTB) infection by smear 6 

microscopy, culture or nucleic acid amplification test 
1–3

. The diagnostic procedure for 7 

clinically diagnosed PTB is inadequate and time-consuming and often results in misdiagnosis 8 

or delayed diagnosis 
3
, leading to an increased risk of morbidity and mortality 

4
, or 9 

overtreatment 
5
. There is thus an urgent need to develop rapid and accurate strategies to 10 

diagnose PTB cases without MTB microbiologic evidence 
6, 7

. The exploration of effective 11 

host immune-response signatures represents an attractive approach for this type of assay.  12 

Long noncoding RNAs (lncRNAs) can function as critical regulators of inflammatory 13 

responses to infection, especially for T-cell responses 
8, 9

. Increasing evidence indicates that 14 

blood lncRNA expression profiles are closely associated with TB disease 
10–12

, suggesting 15 

lncRNAs could function as potential noninvasive biomarkers for TB detection. However, 16 

previous studies have suffered from small sample size (ranging from 66 to 510) and lack 17 

independent validation. 18 

Recent effort has focused on establishing clinical prediction rules or predictive models for 19 

TB diagnosis based on patients’ electronic health record (EHR) information 
13–16

. Such 20 

models can cost-effectively facilitate PTB diagnosis with a limited number of clinical-21 

radiological predictors. For example, a 6-signature model from Griesel et al. (a cough lasting 22 

≥14 days, the inability to walk unaided, a temperature > 39°C, chest radiograph assessment, 23 

hemoglobin level and white cell count) attained an AUC of 0.81 [0.80-0.82] in seriously ill 24 

HIV-infected PTB patients 
13

. However, despite these advances, current EHR models remain 25 
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insufficient for precise TB diagnosis. Compelling studies have proposed that models 26 

incorporating biomarkers and EHR information attain better performance for prediction of 27 

sepsis 
17

 and abdominal aortic aneurysm 
18

. We previously reported that combining exosomal 28 

microRNAs and EHRs in the diagnosis of tuberculous meningitis (TBM) achieved AUCs of 29 

up to 0.97 versus an AUC of 0.67 obtained using EHR alone 
19

. Based on these studies, we 30 

hypothesized that combining lncRNAs with well-defined EHR predictors could be used to 31 

develop improved predictive models to identify PTB cases that lack microbiologic evidence 32 

of  MTB infection. 33 

This study was therefore performed to investigate the diagnostic potential of lncRNAs and 34 

predictive models incorporating lncRNA and EHR data for the identification of PTB cases 35 

without microbiologic MTB evidence. This study also explored the regulatory functions of 36 

lncRNA candidates during MTB infection to evaluate the biological basis for their predictive 37 

abilities. 38 

 39 

MATERIAL AND METHODS  40 

Study design 41 

We performed this study through a four-stage approach. LncRNAs that were differentially 42 

expressed (DE) between clinically diagnosed PTB patients and healthy subjects were profiled 43 

by microarray in the Screening Step. The expression of top five lncRNAs were then analyzed 44 

in a large prospective cohort in the Selection Step of the study, which reduced the number of 45 

five lncRNAs to three based on expression difference among groups. In the Model Training 46 

Step, lncRNAs and EHRs were used to develop predictive models for clinically diagnosed 47 

PTB patients and non-tuberculosis disease control (non-TB DC) patients, and the optimal 48 

model was visualized as a nomogram. Finally, we validated lncRNAs and the nomogram in 49 
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an independent prospective cohort. Functional analyses were also performed to elucidate the 50 

biological significance of lncRNAs. The study strategy is shown in Figure 1. 51 

Subjects enrolment  52 

Screening Cohort We retrospectively collected age- and gender-matched 7 PTB cases and 5 53 

healthy controls as the Screening Cohort. They were 6 males and 6 females from ages 22 to 54 

59 years. PTB cases were clinically confirmed PTB patients with positive TB symptoms, 55 

negative MTB pathogenic examinations, and good response to anti-TB therapy. Healthy 56 

subjects had a normal physical examination and no history of TB. 57 

Selection Cohort and Validation Cohort Inpatients with clinical-radiological suspicion of 58 

PTB but lacking evidence of MTB infection were prospectively enrolled from West China 59 

Hospital between Dec 2014 and May 2017. The inclusion criteria for highly suspected 60 

patients were: (a) new patients with high clinical-radiological suspicion of PTB, (b) anti-TB 61 

therapy < 7 days on admission, (c) patients with negative MTB evidence (i.e., at least two 62 

consecutive negative smears, one negative MTB-DNA PCR and one negative culture result), 63 

(d) age ≥ 15 years, and (e) patients without severe immunosuppressive disease, HIV infection, 64 

or cardiac or renal failure. Two experienced pulmonologists reviewed and diagnosed all 65 

presumptive PTB patients, and final diagnoses for all cases were based on the combination of 66 

clinical assessment, radiological and laboratory results, response to the treatment 
1, 2

. A 12-67 

month follow-up observation was used to confirm the classification of PTB and non-TB 68 

patients. The detailed description of patients’ symptoms and recruitment, inclusion and 69 

exclusion criteria, laboratory examinations, diagnostic criteria and procedure, treatment, and 70 

sample size estimate are provided in e-Appendix 1 and 2. In addition, healthy subjects were 71 

simultaneously recruited from a pool of healthy donors with a normal physical examination 72 

and no history of TB.  73 
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We finally enrolled a Selection Cohort of 878 participants (141 clinically diagnosed PTB, 74 

159 non-TB DC, and 578 healthy subjects) and an independent Validation Cohort of 482 75 

participants (97 clinically diagnosed PTB, 140 non-TB DC, and 245 healthy subjects). 76 

Details of the non-TB DC are listed in e-Table 1. Ethical approval was obtained from the 77 

Clinical Trials and Biomedical Ethics Committee of West China [no. 2014 (198)]. Informed 78 

consents were obtained from every participant.  79 

LncRNA detection  80 

RNA isolation and cDNA preparation Peripheral blood mononuclear cell (PBMC) samples 81 

were isolated from fresh 3 ml blood samples of each participant using a Human Lymphocyte 82 

Separation Tube Kit (Dakewe Biotech Company Limited, China). Total RNA was extracted 83 

from PBMC isolates using Trizol reagent (Invitrogen, USA). RNA concentration and purity 84 

were evaluated spectrophotometrically, and RNA integrity was determined using agarose gel 85 

electrophoresis (e-Figure 1A). The PrimeScript
TM 

RT reagent Kit with gDNA Eraser (Takara, 86 

Japan) was used to remove contaminating genomic DNA and synthesize cDNA.  87 

LncRNA microarray profiling LncRNA profiles were detected using Affymetrix Human 88 

Transcriptome Array 2.0 Chips based on a standard protocol 
20

. Raw data were normalized 89 

using the Robust Multi-Array Average Expression Measure algorithm. DE lncRNAs with p-90 

values < 0.05 and fold-changes > 2 were identified using the empirical Bayes moderated t-91 

statistics and presented by hierarchical clustering and volcano plot 
21

. Microarray data have 92 

been deposited in the Gene Expression Omnibus under the accession GSE119143.  93 

qRT-PCR for lncRNAs LncRNA expression was measured using the SYBR
®

 Green PCR Kit 94 

(Takara, Japan) in a blinded fashion, normalized to the endogenous control GAPDH, and 95 

calculated according to the 2 
-ΔΔ Cq

 method where and Cq < 35 was considered acceptable 
22

. 96 

Specific primers are presented in e-Table 2. PCR curves and the standard curve are shown in 97 
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e-Figure 1B-C. Detailed methodology for RNA isolation, reverse transcription, qRT-PCR 98 

detection (procedure, quality control, product verification, and stability test) are listed in e-99 

Appendix 3. 100 

Modeling 101 

Data used for modeling A total of 41 EHRs, including demographic, clinical, laboratory, and 102 

radiological findings were collected (see e-Appendix 4), and a 20% missing value threshold 103 

was applied to remove incomplete features. Features with p-values < 0.05 in univariate 104 

analysis or definite clinical significance were included for modeling. A total of 14 of the 44 105 

original variables (41 EHRs and 3 lncRNAs) remained after filtering, including 11 EHRs and 106 

3 lncRNAs (see e-Appendix 4). 107 

Diagnostic modeling Multivariable logistic regression was used to develop predictive models 108 

to distinguish clinically diagnosed PTB from patients with suspected PTB cases in the 109 

Selection Cohort. Feature subsets were selected and compared using the best subset selection 110 

procedure 
23

 and 10-fold cross-validation. The "EHR+lncRNA", "lncRNA only" and "EHR 111 

only" models were developed according to their respective best feature subset in the Selection 112 

Cohort. A cutoff of each model was determined by combining the Youden’s index and the 113 

sensitivity for the samples in the training dataset equal to or greater than 0.85. The models 114 

including their cutoff were used for evaluation of the Validation Cohort.  115 

Nomogram presentation and evaluation We further adopted the nomogram to visualize the 116 

optimal model with the best AUC 
24, 25

. Nomogram calibration was assessed with the 117 

calibration curve and Hosmer-Lemeshow test (p-value > 0.05 suggested no departure from 118 

perfect fit). The performance of the nomogram was tested in the independent Validation 119 

Cohort, with total points for each patient calculated. Decision curve analysis (DCA) 
25

 was 120 

performed by evaluating the clinical net benefit of the nomogram and "EHR only" model 121 
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across the overall datasets. Assessing clinical value involves comparing the nomogram and 122 

“EHR only” model using the 500 bootstrap method. The nomogram was implemented as a 123 

Web-based app using R Shiny. 124 

Analysis of ENST00000497872 (lnc AL) function 125 

The lncRNA with the most significant difference in our analysis, ENST00000497872 (lnc AL) 126 

was analyzed in functional studies. THP-1 cells with stable overexpression and knockdown 127 

of lnc AL were constructed using recombinant lentivirus vector (LV). THP-1 cells transfected 128 

with these vectors were incubated with Bacillus Calmette-Guerin (BCG) to imitate active 129 

MTB-infection 
26

. This study examined the effect BCG exposure on THP-1 cells in five 130 

groups transfected with vectors to overexpress (LV-lnc AL) or suppress (shRNA-lnc AL) lnc 131 

AL expression, their respective empty vector constructs (LV-control and shRNA-control), or 132 

with no vector (blank control). Cell culture supernatants were harvested to measure lnc AL 133 

and the expression of six cytokines (TNF-α, IL-1β, IL-12 p70, IL-10, IFN-γ, and IL-6). Cell 134 

apoptosis and cytotoxicity after 24 h infection were detected by flow cytometry and the 135 

lactate dehydrogenase (LDH) release analysis, respectively. Detailed methodology for these 136 

experiments is presented in e-Appendix 5. 137 

Statistical analysis 138 

Categorical variables were analyzed by univariate analysis with a Chi-square test and 139 

continuous variables were analyzed using Mann-Whitney U tests or Student’s t-tests. All tests 140 

were 2-sided, and p-values < 0.05 were considered statistically significant. Modeling was 141 

constructed and validated by individuals who were blinded to diagnostic categorizations. R 142 

code and data for modeling are available from 143 

https://github.com/xuejiaohu123/TBdiagnosisModel. 144 

 145 
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RESULTS 146 

Characteristics of prospectively enrolled participants  147 

The demographic and clinical characteristics of participants in the Selection and Validation 148 

Cohorts are provided in Table 1. PTB patients were younger and had greater IGRA positivity 149 

rates than their non-TB DC (p-value < 0.0001 for both the Selection and Validation Cohorts), 150 

but these groups did not differ by gender, BMI, or smoking status. Healthy subjects were age-, 151 

gender-, and BMI-matched with PTB patients, who had significantly different blood test 152 

results compared with PTB patients (Table 1). 153 

    Clinically diagnosed PTB patients were responsible for 29.82% (238/798) of all active 154 

PTB patients (see e-Appendix 1). This rate is markedly lower than a nationwide estimate of 155 

68% based on primary public health institutions 
1
, but represents the clinically diagnosed 156 

PTB rate in a referral hospital with experienced specialists. 157 

LncRNAs microarray profiles and candidate selection 158 

In the Screening Step, microarray profiling identified a total of 325 lncRNAs that were 159 

differentially expressed (287 upregulated and 38 downregulated) in the clinically diagnosed 160 

PTB patients versus healthy subjects. Hierarchical clustering and a volcano plot revealed 161 

clearly distinguishable lncRNA expression profiles (e-Figure 2). Top five lncRNA candidates 162 

were chosen based on a set of combined criteria: fold-change > 2 between groups, p-value < 163 

0.05, signal intensity > 25 
27

, and including unreported lncRNAs in TB literature 
28

. Three of 164 

these five lncRNAs were upregulated (n335265, ENST00000518552 and TCONS_00013664) 165 

and two were downregulated (n333737 and ENST00000497872) in PTB versus control 166 

subjects (e-Table 3). 167 

Differentially expressed lncRNAs in clinically diagnosed PTB 168 
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The expression level of these five candidate lncRNAs was measured by qRT-PCR in the 169 

Selection Cohort, which consisted of 141 clinically diagnosed PTB, 159 non-TB DC, and 578 170 

healthy subjects. Two lncRNAs (ENST00000518552 and TCONS_00013664) were excluded 171 

from further analysis due to their low abundance expression (Cq > 35) in this cohort. Of the 172 

three remaining lncRNAs, ENST00000497872 and n333737 were downregulated and 173 

n335265 was upregulated in PTB patients versus healthy subjects (e-Table 4). Comparison 174 

between clinically diagnosed PTB cases and non-TB DC patients revealed a decreased 175 

expression of ENST00000497872 and n333737 in PTB patients (e-Figure 3A), age-adjusted 176 

p-values both < 0.0001). 177 

    Short-term stability, an essential prerequisite of a potential lncRNA biomarker, was 178 

assessed in PBMC samples. This study found that incubation up to 24 h had minimal effect 179 

on the expression of ENST00000497872, n333737, and n335265 (e-Table 5), in accordance 180 

with a previous report of lncRNA stability in blood 
29

.  181 

Diagnostic modeling and nomogram visualization 182 

Three logistic regression models, "EHR+lncRNA", "EHR only", and "lncRNA only" were 183 

evaluated as part of the training step in the Selection Cohort (see e-Appendix 4). The variance 184 

inflation factors between the features ranged from 1.02 to 1.29, indicating no collinearity 185 

within models. The "EHR+lncRNA" model yielded the highest AUC (0.92) for 186 

distinguishing clinically diagnosed PTB from suspected PTB patients, compared to AUCs of 187 

0.87 and 0.82 for the "EHR only" and "lncRNA only" models, respectively (Figure 2A). The 188 

"EHR+lncRNA" model also had the best performance in sensitivity, specificity, accuracy, 189 

positive predictive value, and negative predictive value (Table 2).  190 

The optimal "EHR+lncRNA" model was displayed as a nomogram (Figure 3A), and the 191 

top five features of the nomogram were ENST00000497872, age, n333737, CT calcification, 192 

and TB-IGRA results (e-Table 6). Seneitivity and specificity of the nomogram for prediction 193 
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of clinically diagnosed PTB was 0.89 (0.82-0.93) and 0.80 (0.73-0.85) at a cutoff of 0.37 194 

(Table 2). A calibration curve in the Selection Cohort (Figure 3B) indicated a good 195 

agreement between nomogram prediction and actual PTB cases and was confirmed by the 196 

nonsignificant Hosmer-Lemeshow test (p-value = 0.957). This nomogram was generated as a 197 

free online app (available at https://xuejiao.shinyapps.io/shiny/) to facilitate its access for 198 

other studies. This app allows the user to insert the values of specific predictors and provides 199 

the risk prediction as a whole number percentage. 200 

Validation for lncRNAs and the nomogram  201 

In the Validation Step, the three candidate lncRNAs were analyzed in an independent 202 

Validation Cohort contains 97 clinically diagnosed PTB cases, 140 non-TB DC and 245 203 

healthy subjects. This analysis observed an lncRNA expression pattern similar to that 204 

observed in the Selection Cohort (e-Table 4, e-Figure 3B). All three models were applied to 205 

the Validation Cohort, and as reported in Table 2 and Figure 2 it was found that the 206 

nomogram achieved superior discrimination (AUC: 0.89 [0.84-0.93]), good calibration 207 

(Figure 3B, and p-value = 0.668 for Hosmer-Lemeshow test) for clinically diagnosed PTB 208 

prediction. The sensitivity and specificity of the nomogram at the cutoff of 0.37 in the 209 

Validation Cohort was 0.86 (0.77-0.90) and 0.82 (0.75-0.87), respectively. DCA indicated 210 

that the nomogram outperformed the conventional "EHR only" model with a higher clinical 211 

net benefit within a threshold probability range from 0.2 to 1 (Figure 3C).  212 

LncRNA response to anti-TB treatment 213 

LncRNAs were next analyzed for the ability to predict anti-TB treatment response. Paired 214 

samples were collected from 22 clinically diagnosed PTB patients before and after 2-month 215 

intensive therapy 
30

, and the expressions of  ENST00000497872, n333737, and n335265 were 216 

measured by qRT-PCR. All these patients had good response to therapy based on the clinical 217 
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and radiological findings, and ENST00000497872 and n333737 levels significantly increased 218 

post-treatment (p-values = 0.005 and 0.0005, respectively, Figure 4), suggesting that lncRNA 219 

expression increased in response to therapy.  220 

Functional studies of ENST00000497872 221 

We investigated whether ENST00000497872 (i.e., lnc AL) could affect the host immune 222 

response. At 24 h and 48 h post BCG-infection, lnc AL overexpression (e-Figure 4) led to 223 

decreased production of proinflammatory cytokines TNF-α and IL-1β and an increase in INF-224 

γ (Figure 5A). Conversely, knockdown of lnc AL resulted in a significant TNF-α and IL-1β 225 

increases and an INF-γ reduction. Lnc AL knockdown was also associated with an increasing 226 

trend of cell apoptosis (Figure 5B and 5C) and cell death (Figure 5D). These results implicate 227 

an inflammatory regulation of lnc AL during MTB-infection.  228 

 229 

DISCUSSION 230 

The present work focused on the challenge of accurately diagnosing PTB patients without 231 

microbiological evidence of MTB infection. Our study showed that three lncRNAs 232 

(ENST00000497872, n333737, and n335265) were potential biomarkers for clinically 233 

diagnosed PTB patients. Addition of three lncRNAs (ENST00000497872, n333737 and 234 

n335265) to a conventional EHR model improved its ability to identify PTB cases from TB 235 

suspects, with the AUCs increasing from 0.83 to 0.89. The lncRNA that was most 236 

significantly enriched in the PTB group of this study, ENST00000497872 (chr14:105703964-237 

105704602), is located close to IGHA1 (chr14: 105703995-105708665), and functional 238 

analyses indicated that expression of this lncRNA was involved in the regulation of 239 

inflammatory cytokine production and cell apoptosis in MTB-infected macrophages, 240 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2019. ; https://doi.org/10.1101/863050doi: bioRxiv preprint 

https://doi.org/10.1101/863050
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15 

although further studies are needed to investigate the mechanisms responsible. Consistent 241 

with published lncRNA data 
8–12, 31

, this data provide new evidence that lncRNAs could 242 

participate in TB immunoregulation and serve as promising biomarkers for TB diagnosis.  243 

In addition to the three lncRNAs, we identified six EHR predictors (age, CT calcification, 244 

positive TB-IGRA, low-grade fever, elevated hemoglobin, and weight loss) that were 245 

essential in TB case finding, as proposed by prior findings 
15, 16

. Age was an important 246 

negative predictor for clinically diagnosed PTB, which appears to conflict with the consensus 247 

that advanced age correlates with higher TB susceptibility 
32

. This may be explained by 248 

differences in the enrollment of the PTB patients and control subjects. Previous studies 249 

included healthy and/or vulnerable subjects as controls, while we enrolled inpatients with a 250 

wide range of pulmonary diseases and older ages as disease controls.  251 

This study serves as a first proof-of-concept study to show that integrating lncRNA 252 

signatures and EHR data could be a more promising diagnostic approach for PTB patients 253 

with negative MTB pathogenic evidence. The "EHR+lncRNA" model had good 254 

discrimination (through AUC and diagnostic parameters), reliable calibration (via calibration 255 

curve and Hosmer-Lemeshow test), and potential clinical utility for decision-making (using 256 

DCA). The "EHR+lncRNA" model avoided some common problems associated with 257 

sputum-based features, such as poor sputum quality or problematic sampling 
33

, to improve 258 

its reliability and clinical utility. Nomogram has been shown to remarkably promote early 259 

diagnosis of intestinal tuberculosis 
24

 and prognosis prediction in PTB 
34

 and TBM 
35

.  260 

"EHR+lncRNA" model herein was visualized as a nomogram and further implemented in an 261 

app. The online nomogram uses readily obtainable predictors and automatically outputs a 262 

personalized quantitative risk estimate for PTB. Utilizing this user-friendly tool may facilitate 263 

the rapid identification of PTB cases among suspected TB patients without MTB 264 
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microbiologic evidence to improve TB diagnosis, especially in resource-constrained areas 265 

with high TB prevalence.  266 

Our study has several limitations. Modeling in this study was conducted based on data 267 

from a single large hospital, and multi-center validation studies are needed. Further, because 268 

Xpert MTB/RIF is still not routinely available in most clinical laboratories of China, and 269 

since previous Xpert studies reported moderate sensitivities ranged from 28% to 73% 
36–38 

in 270 

smear-negative PTB patients, we did not consider Xpert in our research, which may limit the 271 

generalization of our findings.  272 

In summary, a novel nomogram we developed and validated in this study that incorporated 273 

three lncRNAs and six EHR fields may be a useful predictive tool in identifying PTB patients 274 

with negative MTB pathogenic evidence, and merits further investigation. 275 
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TABLES 

Table 1. Demographic and clinical features of participants in the Selection and Validation Cohorts. 

Clinical features 

Suspected clinically diagnosed PTB patients Selection 
HS Selection 

(n=578) 
p2  

Suspected clinically diagnosed PTB patients Validation  

HS Validation (n=245) p4 
Clinically diagnosed 

PTB (n=141) 

Non-TB DC 

(n=159)  
p1  

Clinically diagnosed 

PTB (n=97) 

Non-TB DC 

(n=140)  
p3  

Gender, male  84 (59.57%) 95 (59.75%) 0.976 284 (49.13%) 0.026 58 (59.79%) 87 (62.14%) 0.715 126 (51.43%) 0.162 

Age (years) 37.81 ± 17.93 56.68 ± 14.52 < 0.0001 40.59 ± 13.11 0.084 38.29 ± 17.57 57.96 ± 16.66 < 0.0001 36.82 ± 9.28 0.436 

BMI (kg/m2) 20.81 ± 2.99 20.43 ± 4.03 0.359 20.65 ± 3.19 0.57 21.59 ± 3.43 21.29  ± 3.62 0.52 21.51 ± 3.52 0.843 

Smoking 61 (43.26%) 72 (45.28%) 0.725 161 (27.85%) < 0.0001 41 (42.27%) 66 (47.14%) 0.458 84 (34.29%) 0.167 

Radiologic pathology 116(82.26%) 140 (88.05%) 0.158  - 
 

86 (88.66%) 130 (92.86%) 0.264  - 
 

Laboratory tests   
         

Positive TB-IGRA  97 (68.88%) 56 (35.22%) < 0.0001  - 
 

64 (66.00%) 42 (30.00%) < 0.0001  - 
 

C-reactive protein (mg/L) 16.30 (5.32-54.05) 17.80 (6.47-60.20) 0.427  - 
 

13.60 (3.34-43.55) 18.60 (6.56-70.63) 0.037  - 
 

Hematocrit 0.37 ± 0.06 0.36 ± 0.07 0.162 0.44 ± 0.04 < 0.0001 0.38 ± 0.07 0.35 ± 0.07 0.002 0.43 ± 0.04 < 0.0001 

Erythrocytes (×1012/L)  4.33 ± 0.72 4.03 ± 0.81 0.001 4.78 ± 0.46 < 0.0001 4.46 ± 0.80 3.89 ± 0.91 < 0.0001 4.80 ± 0.46 < 0.0001 

Hemoglobin (g/L) 122.57 ± 23.22 115.82 ± 25.20 0.017 144.46 ± 13.88 < 0.0001 125.08 ± 24.25 113.11 ± 25.52 < 0.0001 145.82 ± 13.73 < 0.0001 

Platelets (×109/L) 
238.00 (177.00-

305.00) 

233.00 (149.00-

299.00) 
0.171 

193.00 (158.00-

223.00) 
< 0.0001 

220.00 (160.50-

313.00) 

199.50 (137.00-

290.75) 
0.059 

190.00 (165.00-

230.00) 
0.001 

Leukocytes (×109/L) 6.03 (4.76-8.25) 6.36 (4.71-9.07) 0.488 5.92 (5.18-6.67) 0.184 6.96 (5.06-9.14) 5.93 (4.34-8.33) 0.009 5.70 (4.91-6.55) 0.217 

Lymphocytes (×109/L) 1.15 (0.80-1.52) 1.28 (0.87-1.87) 0.056 1.86 (1.55-2.19) < 0.0001 1.29 (0.91-1.80) 1.22 (0.86-1.62) 0.343 1.85 (1.57-2.55) < 0.0001 

Neutrophils (×109/L) 4.02 (3.23-5.93) 4.08 (2.71-6.32) 0.956 3.47 (2.87-4.09) < 0.0001 4.03 (2.51-5.69) 4.85 (3.21-6.70) 0.023 3.36 (2.75-3.92) 0.006 

Monocytes (×109/L) 0.47 (0.35-0.65) 0.42 (0.26-0.61) 0.015 0.36 (0.29-0.44) < 0.0001 0.43 (0.30-0.64) 0.46 (0.34-0.71) 0.211 0.31 (0.25-0.39) < 0.0001 

Alb (g/L) 36.66 ± 6.78 36.60 ± 6.66 0.973 48.24 ± 2.67 < 0.0001 37.33 ± 7.47 36.69 ± 7.22 0.509 47.06 ± 2.25 < 0.0001 

Globin (g/L) 31.69 ± 7.66 30.68 ± 8.10  0.269 28.92 ± 3.29 0.041 30.41 ± 7.89 29.73 ± 7.91 0.514 27.41 ± 3.19 < 0.0001 
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Subscripted "Selection" or "Validation" refers to the Selection or Validation Cohort, respectively. Radiologic pathology refers to abnormal chest imaging, including at least one of the signs: polymorphic abnormality, 

calcification, cavity, bronchus sign, and pleural effusion. Abbreviations: non-TB DC, non-tuberculosis disease control patients; HS, healthy subjects. p1, p-value for the comparison of clinically diagnosed PTB patients 

and non-TB DCs in the Selection Cohort; p2, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Selection Cohort; p3, p-value for the comparison of clinically diagnosed PTB 

patients and non-TB DCs in the Validation Cohort; p4, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Validation Cohort.
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Table 2. Performances of the comparative diagnostic models. 

Model performance 

Selection Cohort    Validation Cohort 

EHR+lncRNA 
EHR only lncRNA only  

EHR+lncRNA 
EHR only lncRNA only 

  

(Nomogram) 
 

(Nomogram)   

Sensitivity 0.89 (0.82-0.93) 0.89 (0.83-0.93) 0.85 (0.76-0.88) 
 

0.86 (0.77-0.90) 0.89 (0.82-0.94) 0.85 (0.76-0.90) 
 

Specificity  0.80 (0.73-0.85) 0.62(0.54-0.68) 0.55 (0.46-0.61) 
 

0.82 (0.75-0.87) 0.65 (0.56-0.72) 0.54 (0.47-0.62) 
 

Accuracy 0.84 (0.80-0.88) 0.75 (0.69-0.79) 0.69 (0.63-0.74) 
 

0.84 (0.78-0.88) 0.75 (0.69-0.81) 0.67 (0.60-0.73) 
 

Positive predictive value 0.80 (0.73-0.85) 0.67  (0.60-0.74) 0.62 (0.55-0.69) 
 

0.77 (0.68-0.83) 0.64 (0.56-0.72) 0.56 (0.48-0.63) 
 

Negative predictive value 0.89 (0.83-0.93) 0.87 (0.79-0.91) 0.80 (0.72-0.86)   0.89 (083-0.93) 0.90 (0.83-0.94) 0.83 (0.75-0.89)   

Note: The cutoff probability in the Selection Cohort was 0.37 for "EHR+lncRNA" model, 0.26 for "EHR only" model, and 0.32 for "lncRNA" model, respectively. Features in each model are 

provided in e-Appendix 4, 4.4. The "EHR+lncRNA" formula that was developed to classify patients as PTB cases or non-TB disease controls was: -3.32 - 0.053×[age] - 

0.94×log(ENST00000497872) - 0.39×log(n333737) + 1.51×[CT calcification] + 1.16×[TB-IGRA] + 1.09×[low-grade fever] + 0.014×[hemoglobin] + 0.23×log(n335265) + 0.43×[weight loss]. 
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FIGURES CAPTIONS 

Figure 1. Overview of the strategy for investigating lncRNA and prediction model for clinically diagnosed PTB differential diagnosis.  

Abbreviations: PTB, pulmonary tuberculosis; PBMC, peripheral blood mononuclear cell; non-TB DC, non-tuberculosis disease control; DE, differentially expressed; 

EHR, electronic health record; DCA, decision curve analysis. LDH, lactate dehydrogenase. 

Figure 2. Receiver operator curves of different models in the Selection and Validation Cohort. 

(A), ROC of the Selction Cohort. The 10-fold cross-validation ROC of "EHR+lncRNA" model is provided in the e-Figure 5. P-values for model AUC comparisons in 

the Selection Cohort: 0.00012 ("EHR+lncRNA" vs "EHR only"), 1.402×10-7 ("EHR+lncRNA" vs "lncRNA only"), and 0.103 ("EHR only" vs "lncRNA only"), 

respectively. P-values < 0.016 (0.05/3) were considered statistically significant. 

 (B), ROC of the Validation Cohort. P-values for model AUC comparisons in the Validation Cohort: 0.004 ("EHR+lncRNA" vs "EHR only"), 0.0003 

("EHR+lncRNA" vs "lncRNA only"), and 0.361 ("EHR only" vs "lncRNA only"), respectively.  

Figure 3. Nomogram for the prediction of clinically diagnosed PTB based on the optimal models.  

(A), Nomogram to predict the risk of clinically diagnosed PTB patients, in which points were assigned based on the feature rank order of the effect estimates. A 

vertical line is drawn between the "Point" axis and the corresponding point for each feature to generate a total point score and PTB probability. 

(B), Calibration plot in the Selection Cohort (left in B) and Validation Cohort (right in B), with lines indicating the ideal (dashed), apparent (dotted) and bias-

corrected (unbroken) predictions of the nomogram.  

(C), Decision curve analysis for the nomogram and "EHR only" model with lines indicating the nomogram (blue), "EHR only" model (red dash), and 

assumptions that no patients or all patients have PTB (black and grey, respectively). 
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Figure 4. Alteration of lncRNAs before and after 2-month intensive therapy.  

LncRNA expressions before (blue) and after (red) a 2-month intensive anti-TB treatment regimen. Altered lncRNA expressions were calculated using log2 lncRNA 

(post-treatment expression / pre-treatment expression) and the Wilcoxon matched-paired rank test was used for comparisons among 22 paired samples. 

The median and interquartile range of log2 lncRNA were as follows: ENST00000497872 (before: -1.91 [-2.74, -1.11]; after: -1.55 [-2.61, -0.79]),  n333737: (before: -

3.88 [-4.81, -3.33] ; after: -2.30 [-2.99, -0.50]), n335265 (before: 2.12 [1.05, 2.34]; after: 1.29 [0.85, 1.69]), respectively.  

Figure 5. Regulation of lncRNA on inflammatory cytokine, cell apoptosis and cytotoxicity in BCG-infected THP-1 cells.  

(A), Cytokine expression. (B), Flow cytometry analysis of cell apoptosis. (C), Graph of apoptosis data. (D), LDH release analysis of cell cytotoxicity for BCG-

infected THP-1 cells. LV-control and shRNA-control mean values considered negative control values, and the blank control is not shown. Three cytokines (IL-12 p70, 

IL-10 and IL-6) did not significantly differ and are not shown. Difference between groups were analyzed by one-way ANOVA and Bonferroni’s post-test comparison 

among groups (*p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001).  

 

SUPPLEMENRARY FIGURE CAPTIONS 

e-Figure 1. RNA electrophoresis, amplification curve of qRT-PCR and standard curve of control cDNA 

e-Figure 2. Hierarchical clustering and volcano plot for differentially expressed lncRNA profiles in the Screening Cohort 

e-Figure 3. LncRNA expression between clinically diagnosed PTB patients and non-TB disease controls in the Selection and Validation Cohorts 

e-Figure 4. qPCR analysis of ENST00000497872 expression in BCG-infected THP-1 cells 

e-Figure 5. Ten-fold cross-validation ROC of "EHR+lncRNA" model developed using the data from the Selection Cohort 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2019. ; https://doi.org/10.1101/863050doi: bioRxiv preprint 

https://doi.org/10.1101/863050
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 26 

 

SUPPLEMENRARY TABLE CAPTIONS  

e-Table 1. Disease controls in the present study 

e-Table 2. Specific qRT-PCR primers for lncRNAs 

e-Table 3. Expression of five candidate lncRNAs in the Screening Cohort  

e-Table 4. Comparison of lncRNA expression between clinically diagnosed PTB patients and healthy subjects in the Selection and Validation 

Cohorts  

e-Table 5. Short-term stability evaluation of lncRNAs in PBMC samples 

e-Table 6. Details of "EHR+lnRNA" logistic regression model to differentiate clinically diagnosed PTB among 300 highly suspected patients 
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