

1 Global gene expression profile during low temperature in

2 the brain of grass carp (*Ctenopharyngodon idellus*)

3 Mijuan Shi¹, Qiangxiang Zhang^{1,2}, Yongming Li¹, Wanting Zhang¹, Lanjie Liao¹, Yingyin

4 Cheng¹, Yanxin Jiang^{1,2}, Xiaoli Huang^{1,2}, You Duan^{1,2}, Lei Xia^{1,2}, Weidong Ye^{1,2}, Yaping

5 Wang^{2,3*} and Xiao-Qin Xia^{1,2*}

6 ¹ Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan,
7 China

8 ² University of Chinese Academy of Sciences, Beijing, China

9 ³ State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation
10 Academy for Seed Design ,Chinese Academy of Sciences, Wuhan, China

11
12 Correspondence authors: Xiao-Qin Xia and Yaping Wang
13 xqxia@ihb.ac.cn; wangyp@ihb.ac.cn

14
15 **Abstract:** Grass carp is an important commercial fish widely cultured in China. Large range of
16 temperature, in particular extremely low temperature, has dramatic effects on the aquaculture of this
17 teleost. However, there is relatively little research on the molecular responses in the fish exposed to
18 cold. Given the limited vision of approaches targeting individual genes, we investigated the
19 transcriptome profiles of brain in response to cold in order to comprehensively characterize
20 molecular mechanisms behind it. This study indicated that the estrogen signaling pathway was
21 inhibited in brain when grass carp acclimated to low temperature, while terpenoid backbone
22 biosynthesis pathway and steroid biosynthesis pathway were significantly activated. Such a result
23 implied the crucial role of cholesterol in cold acclimation. Moreover, plenty of differentially expressed
24 genes associated with spliceosomes were enriched during cooling process, which suggested
25 alternative splicing may be involved in the regulation of biological process in acclimation to
26 temperature changes. In researches on extremely low-temperature tolerance, we identified four
27 genes (DUSP1, HSPA6, NR4A1 and GADD45B) associated with MAPK signaling pathway. The four
28 genes, extensively up-regulated at 4°C and remained relatively low expression at moderate
29 temperature, were closely related with extremely cold condition. Further examination of the
30 candidate genes can provide insights into the mechanisms of grass carp to endure extremely low
31 temperature in the winter.

32 **Keywords:** grass carp; brain; cold acclimation; RNA-seq

33 **1. Introduction**

34 As the “abiotic master factor” [1], water temperature controls all the physiological and
35 behavioural parameters of fish [2]. In the past few decades, the world has suffered climate caprice
36 which seriously endangered aquatic poikilotherms’ survival and damaged aquaculture industry [3].
37 Given the ecological and economic importance of fish, the influence of the interaction between fish
38 and water temperature has been comprehensively studied but far from concluded.

39 While the effect of high-temperature on fish has been concerned and studied extensively due
40 to the acceleration of global warming [4], low temperature caused much more fish death and
41 brought acute economic losses to aquaculture industry [5]. Compared with studies on mammals
42 and birds, the research on cold adaptation of fish is relatively limited and the underlying
43 mechanisms remains obscure. Nevertheless, some researches have thrown light on the response
44 of fish to cold [2, 6]. As a way to respond ambient temperature change, migratory fishes simply
45 swim to suitable areas. However, non-migratory fishes have to tolerate low-temperature condition
46 with special mechanisms. Indeed, fishes living in cold water areas with low-temperature throughout
47 the year have unique physiological mechanisms to adapt the adverse conditions [7, 8]. The most
48 notable example was the antifreeze protein in Antarctic fishes [9]. In addition, some studies
49 revealed that the lack of hemoglobin and the synthesis of tubulin could improve the adaptation to
50 low-temperature environments [10-12].

51 Meanwhile, eurythermic fishes, which adapt to a wide range of water temperatures, are
52 supposed to have more complicate mechanisms to maintain homeostasis in response to fluctuation
53 of ambient water temperature. Although many studies have paid attention to the effects of cold
54 shock on fish, little exploration has been conducted on low-temperature tolerance. Limited
55 researches have focused on the physiological phenomena and molecular mechanisms of fish
56 organs or tissues at low temperatures, such as anion transport by mitochondrion-rich chloride cells
57 in fish gills (*Fundulus heteroclitus*) [13], proteomic analysis of heart (*Gillichthys mirabilis*) [14],
58 changes of free amino acids in blood (*Solea senegalensis*), and the secretion of hormones in the
59 brain [15, 16].

60 Especially, as the most important organ of the central nervous system, the brain not only plays
61 crucial function in processing external information (including temperature), but also regulates

62 homeostasis by inducing the secretion of hormones, such as growth hormone (GH), thyroid-
63 stimulating hormone (TSH), and adrenocorticotropic hormone (ACTH). Throid hormone (TH)
64 manipulated by TSH has been shown to be a regulator of heart and muscle function during cold
65 acclimation [17-19]. Although the relationship between low-temperature and hormone secretion
66 directly or indirectly manipulated by the brain has been demonstrated in fish, the mechanisms and
67 functions of the biological process in low-temperature tolerance have not been fully elucidated.
68 Moreover, the brain must maintain its normal physiological activities as well as mediating other
69 organs of the organism. Previous researches implied that some compensation mechanisms allow
70 for higher rates of metabolism in brain and increase brain fluidity at low temperature to maintain
71 their functional and structural integrity during cold adaptation [20-22].

72 With the development of technology, the methods for analyzing the organismal, cellular and
73 molecular responses of fish to temperature changes have made great progress [23-26]. Particularly,
74 with the tremendous advances in high throughput sequencing technology, RNAseq, an important
75 omics technique, has been playing a vital role in studying the systematic processes by which fish
76 respond to environmental changes [27, 28]. Given the enormous economic value of grass carp and
77 their special winter dormancy, we profiled the transcriptome in the brain during cold acclimation.
78 Even though the process of adjusting the cold environment was gradual and continuous, the grass
79 carp exhibited significantly different characteristics with the water temperature above or below 10°C.
80 Hence, we divided the physiological process into two stages. The first stage is at a temperature
81 going down from 27°C to 10°C, and the second stage is a temperature from 10°C to 4°C. We
82 supposed grass carp had different mechanisms in cold adaptation process of continuous cooling
83 and the low-temperature tolerance process initiated by low temperatures below 10°C. In this study,
84 we primarily aimed to identify genes induced by low temperature in the brain, and to investigate the
85 mechanisms of cold adaptation and low temperature tolerance of this eurythermic fish.

86 **2. Materials and Methods**

87 *2.1. Fish and cold acclimation*

88 Fifty 14-month-old grass carp, each one weighted around 100g, were maintained at $27\pm1^{\circ}\text{C}$ in
89 a 300L tank for 2 weeks, fed 3 times a day. The water temperature was gradually reduced from
90 27°C to 12°C at a rate of 0.25°C/h and maintained for 24h. Then the temperature was increasingly

91 lowered to 4⁰C as the same method. After the cooling process, the water was incrementally heated
92 to 12⁰C and ultimately to 27⁰C at the same rate of 0.25⁰C/h. At each point, the brains of eight
93 randomly selected grass carp were obtained and grinded in liquid nitrogen. Then, 100mg grinded
94 tissue was added 1ml Trizol reagent and stored at -80⁰C. The experimental samples used for RT-
95 qPCR were treated with the same project in the preparation of RNA-seq samples. At each
96 temperature point, 3 fish were randomly selected and the total brain RNA of each fish was
97 separately obtained for RT-qPCR verification. The use of all experimental grass carp was approved
98 by the Animal Research and Ethics Committees of the Institute of Hydrobiology, Chinese Academy
99 of Sciences.

100 *2.2. RNA extraction and sequencing*

101 Total RNA was extracted using Trizol according to a standard protocol (Life tech, USA). After
102 the quality inspection, mRNA was enriched using oligo(dT) magnetic beads and fragmented with
103 ultrasound. The double strands cDNA was synthesized using the mRNA fragments as template and
104 purified. Finally, sequencing adaptors were ligated to the cDNA ends. The desired fragments were
105 purified and enriched by 10-cycle PCR amplification. The library quality was checked by
106 Bioanalyzer 2100 (Agilent). The qualified library products were used for single-ended sequencing
107 via Illumina HiseqTM2000. The accession number of the raw data is CRA001859 (BIG:
108 <http://bigd.big.ac.cn/gsa>).

109 *2.3. Data processing and basic statistical analysis*

110 NGSQCToolkit (version 2.3.3) [56] was used to eliminate non-useful data with default
111 parameters. The remaining clean reads were mapped to the reference genome [29] by Tophat2
112 (version 2.0.7) [57] and the transcripts were assembled with StringTie (version v1.3.1c) [58]. The
113 sequences were Blast to nr database and the ones with an e-value $\leq 1e-5$ were annotated. The
114 prediction of non coding RNA combined the usage of CPC2 (version 1.2.2) [59] and CPAT (version
115 0.1) [60]. The reads counts and TPM of transcripts were calculated by the salmon (version 0.12.0)
116 [61] with non-alignment algorithm. The default parameters were used in all softwares above. The
117 results above were all recorded in the supplement 2.

118 *2.4. Identification of differentially expressed genes and transcripts (DEGs / DETs) and enrichment*
119 *analysis of pathways*

120 The edgeR [62] was used for differential expression analysis of genes and transcripts through
121 glm approach with the likelihood ratio tests [63]. The genes, which stably expressed with less than
122 0.2 coefficient of variation during the whole process, were used to estimate variance of samples and
123 to identify DEGs. The criteria to define differential expression was false discovery rate(FDR) ≤ 0.01
124 and absolute log2 of TPM ratio ≥ 1 (ref). The pathways database was downloaded with the API
125 interface provided by KEGG. Total 318 pathway maps, of which the ratio of grass carp genes
126 annotated to all genes of the map was more than 20%, were selected for the enrichment analysis.
127 The statistical test for enrichment analysis was performed by R scripts executing Fisher's exact test
128 with the p-value ≤ 0.05 .

129 *2.5. Validation of expression profiles using RT-qPCR*

130 Given the instability of beta-actin expression in cold condition, the gene RPL13A was took as
131 the internal control which steadily expressed during the cold adaptation [28]. Then 4 genes (5
132 transcripts) were selected and the length of PCR products was about 120-250bp (Primer list in
133 Table S4) and Tm $\sim 55^{\circ}\text{C}$.

134

135 **3. Results**

136 *3.1. The transcriptome assembly and statistic*

137 We conducted the project that decreased the water temperature from 27°C to 4°C and
138 increased it back to 27°C to simulate the temperature changing in nature. The RNA-seq data sets at
139 five temperature points (27°C - 12°C - 4°C - 12°C - 27°C) which sequentially reached during process
140 were obtained and named as A, B, C, D, E. Each data set has $8.45 \pm 0.26\text{M}$ clean reads with
141 $96.03 \pm 0.76\%$ mapping rate (Table S1). Subsequently, we implemented the transcriptome assembly
142 using published gene structure annotation information of grass carp as a reference [29] and
143 generated a new annotation file containing 52,580 transcripts of 37,531 genes.

144 With the reference genome information, all assembled transcripts were classified into twelve
145 categories (Table 1). Apart from 32,811 reference transcripts, we found another 19,769 new

146 transcripts which belong to eleven classes according to the structural differences with reference
147 genes. Afterwards we predicted 9,747 non-coding RNAs (ncRNAs) containing 5,745 single exon
148 transcripts (SETs), which accounted for 2/3 of the total SETs. After removal of predicted ncRNAs
149 and unexpressed transcripts, the remaining 38,942 transcripts were used for subsequent analysis.

150 *3.2. Differential expression of genes and transcripts*

151 In order to investigate the consecutive and phased changes of the transcriptome profiles with
152 the temperature fluctuating, we identified cumulative differentially expressed genes (cDEGs) /
153 transcripts (cDETs) and phased differentially expressed genes (pDEGs) / transcripts (pDETs).

154 On one hand, we sequentially compared test groups B, C, D, E with control A to identify cDEGs
155 and cDETs. As the temperature dropped from 27°C to 12°C, a total of 1,863 genes were differentially
156 expressed with 4,875 cDETs. When temperature was continuously dropped to 4°C, the number of
157 cDEGs and cDETs increased to 2,951 and 6,244. Conversely, when the water temperature was
158 raised from 4°C to 12°C, the number of cDEGs and cDETs was slightly reduced to 2,782 and 6,134.
159 In addition, as the water temperature rose to 27°C, we observed a sharp drop in the number of cDEGs
160 and cDETs to 183 and 1,965 (Figure 1A).

161 On the other hand, we separately investigated the difference of transcriptome profiles between
162 every two adjacent temperature points (B vs. A, C vs. B, D vs. C, E vs. D) to find pDEGs and pDETs.
163 Interestingly, as shown in Figure 1B, pDEGs and pDETs in C vs. B and D vs. C were considerable
164 less than which of B vs. A and E vs. D. The number of pDEGs and pDETs were 84 and 1,716 in C
165 vs. B, 114 and 1,770 in D vs. C, 1,863 and 4,875 in B vs. A, 2,551 and 5,888 in E vs. D.

166 *3.3. The pathway analysis of cDEGs*

167 KEGG analyses were performed to determine the pathways involved in responding to cold
168 adaptation. Our aim was to ascertain the continuous changes in pathways in brain during cooling
169 procedure. We separately enriched pathways with cDEGs from comparative analysis of four test
170 groups and the control group (B vs. A, C vs. A, D vs. A and E vs. A). A total of 21 pathways were
171 significantly enriched in metabolism, transcription, translation, signal transduction and cellular
172 processes. In addition, we performed cluster analyses on the pathways enriched in the four sets of
173 analyses in order to illuminate the dynamics of pathway combinations throughout temperature

174 variation (Figure 2 a1). In order to analyze the potential cross talk between different pathways, we
175 constructed a network of enriched pathways using the common cDEGs as linkages (Figure 2 b1).

176 In the first stage with temperature decreasing from 27°C to 12°C, overall 10 pathways were
177 significantly enriched including three for metabolism (glycine, serine and threonine metabolism,
178 steroid biosynthesis, terpenoid backbone biosynthesis), two for apoptosis (necroptosis, ferroptosis),
179 two for translation (RNA transport, mRNA surveillance pathway), one for transcription (Spliceosome),
180 one for protein metabolism (proteasome), and one for immune system (antigen processing and
181 presentation).

182 In the second stage of cooling with temperature down to 4°C, we found 9 conspicuous pathways:
183 estrogen signaling pathway, steroid biosynthesis, spliceosome, phagosome, antigen processing and
184 presentation, proximal tubule bicarbonate reclamation, and three pathways for protein metabolism
185 (proteasome, protein export, protein processing in endoplasmic reticulum).

186 After stayed one day in 4°C, the water was slowly heated to 12°C. Although the pathway of
187 steroid biosynthesis disappeared as well as RNA transport, two new pathways, mineral absorption
188 and ribosome biogenesis, emerged in this phase, while the other pathways enriched in the second
189 stage still remained significant in the third stage. As expected, all pathways identified in the low
190 temperature stages were not significantly enriched when temperature went back to 27°C.

191 3.4. The pathway analysis of pDEGs

192 To eliminate the impacts of gene cumulative expression on pathway enrichment analysis, we
193 investigated the phased changes of pathways using pDEGs between every two adjacent temperature
194 points. The cluster analysis was subsequently implemented with the data from pathway analyses and
195 the network of pathways was constructed using the same method as pathway analysis of cDEGs
196 (Figure 2 b2). Given the similarity of associated pathways, comparisons between higher temperatures
197 (B vs. A and E vs. D) were classed into one branch while comparisons between lower temperatures
198 (C vs. B and D vs. C) belonged to the other one (Figure 2 a2). Intriguingly, pathways activated in
199 moderate cold condition (12°C) were distinct from which in radical low temperature (4°C). We further
200 paid attention to the MAPK signaling pathway, in which the associated pDEGs were highly sensitive
201 to very low temperature, as shown by the gene expression heat map (Figure 3).

202 3.5. Validation of RNA-seq data with RT-qPCR

203 Considering the significance of MAPK signaling pathway in the cold response, we constructed a
204 heat map of pDEGs associated with MAPK signaling using the RNA-seq data at five temperature
205 points. Then four extensively highly expressed genes (DUSP1, HSPA6, NR4A1 and GADD45B) at
206 4°C to be verified by real-time quantitative PCR (RT-qPCR). Among these genes, two isoforms of
207 HSPA6 (HSPA6.1 and HSPA6.2) were validated separately. The results of RT-qPCR were almost
208 identical to those of RNAseq (Figure 3).

209 **4. Discussion**

210 The cold adaptation of fish was known as a continuous process which may last from days to
211 months with the transcriptome consecutively changing [30]. However, at very low temperature in
212 winter, many eurythermic fishes are able to enter dormancy, a dramatically distinct physiological
213 status[31]. The obviously different response to moderate cold condition and extremely low
214 temperature implies dissimilar mechanisms for cold adaptation. Grass carp enters dormancy when
215 the ambient temperature is below 10°C. Therefore, we assume that grass carp have different
216 mechanisms for cold acclimation during moderate cold and extremely cold periods. In our research,
217 we attempted to illuminate the cold adaptation mechanism which functions throughout low
218 temperature period and the low-temperature tolerance mechanism which activates during winter
219 dormancy.

220 *4.1 Mechanisms of cold adaption*

221 Given the cascade amplification of signal transduction and hysteresis of gene expression, the
222 changes of cumulative expression should be more representative of genes' influence on biological
223 processes. Hence, the pathway analyses of cDEGs could provide some clues for us to understand
224 the underlying mechanisms of fish to adapt cold environment. As the clustering results revealed, we
225 surveyed the emergence and persistence of pathways in different temperature stages during the
226 cooling procedure.

227 *4.1.1 Hormones regulation*

228 As many researches have confirmed that hormonal regulation played an important role in
229 response to low temperature, the estrogen signaling pathway was significantly enriched in the
230 second and third stages, and relevant gene expressions were down-regulated. This fact implies that
231 the inhibition of hormones might be a crucial step in cold adaptation at very low temperature.

232 As an important class of hormones, estrogens participate in many physiological processes by
233 binding to specific receptors [32]. Although there is relatively little evidence to unveil the relationship
234 between estrogen and cold acclimation of fish, the correlation between inhibition of estrogen
235 signaling pathway and the low levels of circulating vitellogenin in the plasma of male carp in winter
236 was unfolded [33]. Additionally, many studies demonstrated the significance of estrogens in
237 reproductive behaviors of fish [34, 35]. In the present research, we found the estrogen signaling
238 pathway was considerably suppressed with a series of vital genes down regulated in 4°C and the
239 inhibition still sustained with temperature rising to 12°C. These evidences may imply that
240 suspension of reproductive behaviors of grass carp in low temperature condition was associated
241 with the repression of estrogen signaling pathway in favor of individual survival.

242 4.1.2 Lipid metabolism

243 Homeoviscous adaptation, an adaptive response of poikilothermic organisms in the cold, has
244 been extensively studied with particular attention to the composition of membrane lipids [36].
245 Although the most observed alterations of membrane lipids involve a change of unsaturation of the
246 fatty acids bound to phospholipids, the change of phospholipid to cholesterol ratio was confirmed to
247 participate in the homeoviscous adaptation [37]. Recent studies have shown cholesterol synthesis
248 probably involved in the cold acclimation of common carp [38] and yellow drum [39].

249 When water temperature decreased to 12°C in our research, the terpenoid backbone
250 biosynthesis pathway was significantly enriched with six up-regulated cDEGs (HMGCR, HMGCS1,
251 ACAT2, MVD, IDI1 and MVK). Meanwhile, eleven cDEGs associated with the steroid biosynthesis
252 pathway were remarkably up-regulated, genes (ARHGAP32, CYP51, DHCR7, EBP, FDFT1, LSS,
253 MSMO1, NSDHL and SQLEA) up-regulated at 12°C and genes (ARHGAP32, CYP24, DHCR7,
254 EBP, FDFT1, LIPA, MSMO1, NSDHL and SQLEA) up-regulated at 4°C. Interestingly, the terpenoid
255 backbone biosynthesis pathway is located the upstream of Steroid biosynthesis pathway.
256 Combining the two pathways, we clearly observed an unimpeded route transforming Acetyl-CoA to
257 cholesterol (Figure 4). Given the effects of cholesterol on manipulating fluidity and flexibility of cell
258 membranes in the low temperature, we inferred the terpenoid backbone biosynthesis and steroid
259 biosynthesis pathway played an vital role in grass carp to endure low temperature.

260 4.1.3 Alternative splice

261 Although the quantitative changes of gene expression was comprehensively and extensively
262 explored on cold acclimation of organisms, relatively few studies have focused on the alternative
263 splicing of genes. As an important post-transcriptional modification mechanism, alternative splicing
264 can produce different transcripts from the same pre-mRNA. As the increasing studies on the role of
265 alternative splicing in plant cold resistance are conducted [40, 41], some researchers have paid
266 attentions on the effect of this mechanism on cold adaptation of fish. Alternatively spliced isoforms
267 of delta 9-acyl-CoA desaturase distinctly respond to cold in common carp [42]. With RNA-seq
268 analysis, alternative splicing of 197 genes were found to be modulated by cold stress in larval
269 zebrafish [43]. Moreover, the comparative investigations on the extent of alternative splicing of
270 genes in Atlantic killifish, threespine stickleback and zebrafish to respond cold indicated the
271 universality and specificity of this mechanism in cold adaptation of fishes [44].

272 Similarly, our results revealed many transcript isoforms were sensitive to cold and have distinct
273 expressional patterns from each other. Besides, we found the spliceosome significantly enriched
274 throughout whole low-temperature phase. Therefore, we speculated that this post-transcriptional
275 regulation was involved in the process of adaptation to cold for grass carp.

276 *4.2 Mechanisms of low-temperature tolerance*

277 While the cold adaptation of fish is a chronic and gradual process, extreme cold certainly bring
278 more stress to organisms than moderate cold conditions. Clearly, the fact that the capability to
279 survive from radically low temperature is crucial to fishes implies extremely low temperature
280 possibly triggers unique mechanisms. In order to reveal the mechanisms of low-temperature
281 tolerance in grass carp, we focused on the differentially expressed genes at 4⁰C compared to 12⁰C.

282 Surprisingly, the pDEGs (84) between 12⁰C and 4⁰C was dramatically less than those (1,863)
283 between 27⁰C and 12⁰C. Of the 84 pDEGs, nine pDEGs (DUSP1, GADD45G, FOSAB, HSPA6,
284 DUSP2, NR4A1, DUSP6, GADD45B, HSPA6.2) associated with MAPK signaling pathway were
285 upregulated at 4⁰C.

286 *4.2.1 MAPK signaling pathway in response to extremely low-temperature*

287 In general, MAPKs directly regulate the protein function through phosphorylation or indirectly
288 influence the biological process by signal transduction. This pathway has been extensively
289 concerned in freeze-resistance of plants [45, 46], and has recently been enriched in the liver

290 proteomic analysis of *Takifugu fasciatus* during the cold acclimation [47]. Although the MAPK
291 signaling pathway is involved in the adaptation to low temperature in plants and animals, the genes
292 involved are different. Although the specific mechanism of MAPK signaling pathway in cold
293 acclimation is unclear, the correlation between relevant genes and cold endurance of organism
294 have been increasingly investigated. In present research, we focused on genes associated with
295 MAPK signaling pathway and analyzed their expression patterns in response to temperature
296 changes. Furthermore, we verified their expression profile by RT-qPCR.

297 Dual specificity phosphatase 1 (DUSP1) is a phosphatase which specifically phosphorylate
298 tyrosine and threonine, and its expression increased in our RNA-seq data at 4⁰C, consistent with
299 RT-qPCR reconfirmation. Knocking down DUSP1 can significantly increase the apoptotic rate of
300 zebrafish ZF4 cells in low temperature [48]. This gene was also found highly related with low-
301 temperature-induced embryonic diapause in Blue-breasted quail [49].

302 Nuclear receptor subfamily 4 group A member 1 (NR4A1), a member of the steroid-thyroid
303 hormone-retinoid receptor superfamily, was confirmed to be upregulated in brown adipose tissue
304 (BAT) of mice exposed to cold [50]. Relatively few studies reported the effect of NR4A1 in the social
305 behavior in zebrafish [51, 52], and no report has been published about the relationship between
306 NR4A1 and cold adaptation of fish. However, we found NR4A1 significantly up-regulated at 4⁰C in
307 grass carp brain, while its expression remained in low-level at higher temperatures. The notable
308 expression pattern of NR4A1 implied an important role in grass carp to tolerate the extremely low
309 temperature.

310 Heat shock 70kDa protein 6 gene (HSPA6) is the 6th member of heat shock protein family A
311 (Hsp70), a famous molecular chaperones family. The members of Hsp70 were often found active in
312 the studies of cold acclimation or cold shock [53, 54]. Likewise, we found that HSPA6 expression
313 increased significantly as the water temperature decreased, and the two isoforms of HSPA6
314 presented different expression patterns. One isoform (HSPA6.1) was highly up-regulated at 4⁰C,
315 while the other isoform (HSPA6.2) incrementally expressed with temperature cooling from 27⁰C to
316 4⁰C. In consideration of the dissimilar sensitivity to temperature, we suppose that the two isoforms
317 of HSPA6 have different impacts on the cold acclimation of grass carp.

318 Growth arrest and DNA-damage-inducible (GADD45) is a group of genes including three
319 paralogs: GADD45A, GADD45B and GADD45G. Many studies have proven the involvement of
320 GADD45 in the regulation of growth and apoptosis. Although a recent study revealed that the mice

321 lacking GADD45G had defects in the thermogenic response to cold [55], we still know very little
322 about the role of GADD45 in cold stress. According our results, both GADD45B and GADD45G
323 seemed to be involved in this process, while the expression of GADD45A was not sensitive to
324 temperature changes.

325

326 In the research, the response of grass carp to low temperature was divided into the cold
327 adaption and the cold dormancy. The former was a systematic process, involving the hormone
328 regulation, lipid metabolism, especially the cholesterol synthesis and the alternative splicing, as well
329 as many other physiological changes and signal transduction. The genes involved in cold dormancy
330 were enriched in the MAPK signaling pathway, which can directly regulate the protein function
331 through phosphorylation.

332

333 **Author Contributions:** Conceptualization, Y.W. and X.Q.X.; methodology, M.S.; software, W.Z. and M.S.;
334 Validation, Q.Z., X.H., Y.J., Y.D., L.X. Y.C. and W.Y.; resources, Y.L. and L.J.; data curation and visualization,
335 M.S.; writing – original draft preparation, M.S.; writing-review and editing, X.Q.X.; supervision, Y.C.; project
336 administration, M.S.; funding acquisition, X.Q.X. and M.S.

337 **Funding:** This research was supported by the National Natural Science Foundation of China (Grant No.
338 31571275), the State Key Laboratory of Fresh-water Ecology and Biotechnology (2019FB07), the National High-
339 Technology Research and Development Program (863 Program, Grant No. 2011AA100403) and the Strategic
340 Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA08020201).

341

342 **Conflicts of Interest:** The authors declare no conflict of interest.

343

344 **References**

- 345 1. Brett, J.R., Energetic responses of salmon to temperature - study of some thermal relations in
346 physiology and freshwater ecology of sockeye salmon (*oncorhynchus-nerka*). *American Zoologist*,
347 **1971**. 11(1): p. 99.
- 348 2. Donaldson, M.R., et al., Cold shock and fish. *Journal of Fish Biology*, **2008**. 73(7): p. 1491-1530.
- 349 3. Brander, K.M., Global fish production and climate change. *Proceedings of the National Academy of
350 Sciences of the United States of America*, **2007**. 104(50): p. 19709-19714.
- 351 4. Logan, C.A. and B.A. Buckley, Transcriptomic responses to environmental temperature in eurythermal
352 and stenothermal fishes. *Journal of Experimental Biology*, **2015**. 218(12): p. 1915-1924.

353 5. Stauffer, B.A., et al., An oceanographic, meteorological, and biological 'perfect storm' yields a massive
354 fish kill. *Marine Ecology Progress Series*, **2012**. 468: p. 231-243.

355 6. Hu, P., et al., Global identification of the genetic networks and cis-regulatory elements of the cold
356 response in zebrafish. *Nucleic Acids Research*, **2015**. 43(19): p. 9198-9213.

357 7. Star, B., et al., The genome sequence of Atlantic cod reveals a unique immune system. *Nature*, **2011**.
358 477(7363): p. 207-210.

359 8. Chen, Z.Z., et al., Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid
360 fish. *Proceedings of the National Academy of Sciences of the United States of America*, **2008**. 105(35):
361 p. 12944-12949.

362 9. Fletcher, G.L., C.L. Hew, and P.L. Davies, Antifreeze proteins of teleost fishes. *Annual Review of
363 Physiology*, **2001**. 63: p. 359-390.

364 10. Verde, C., et al., The Hemoglobins of Fishes Living at Polar Latitudes - Current Knowledge on Structural
365 Adaptations in a Changing Environment. *Current Protein & Peptide Science*, **2008**. 9(6): p. 578-590.

366 11. Eastman, J.T. and M.J. Lannoo, Brain and sense organ anatomy and histology in hemoglobinless
367 Antarctic icefishes (Perciformes : Notothenioidei : Channichthyidae). *Journal of Morphology*, **2004**.
368 260(1): p. 117-140.

369 12. Parker, S.K. and H.W. Detrich, Evolution, organization, and expression of alpha-tubulin genes in the
370 Antarctic fish Notothenia coriiceps - Adaptive expansion of a gene family by recent gene duplication,
371 inversion, and divergence. *Journal of Biological Chemistry*, **1998**. 273(51): p. 34358-34369.

372 13. Barnes, K.R., et al., Cold acclimation of NaCl secretion in a eurythermic teleost: Mitochondrial function
373 and gill remodeling. *Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology*,
374 **2014**. 168: p. 50-62.

375 14. Jayasundara, N., et al., Proteomic analysis of cardiac response to thermal acclimation in the
376 eurythermal goby fish Gillichthys mirabilis. *Journal of Experimental Biology*, **2015**. 218(9): p. 1359-1372.

377 15. Costas, B., et al., Different environmental temperatures affect amino acid metabolism in the eurytherm
378 teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma
379 metabolites. *Amino Acids*, **2012**. 43(1): p. 327-335.

380 16. Alzaid, A., et al., Cold-induced changes in stress hormone and steroidogenic transcript levels in cunner
381 (Tautogolabrus adspersus), a fish capable of metabolic depression. *General and Comparative
382 Endocrinology*, **2015**. 224: p. 126-135.

383 17. Little, A.G. and F. Seebacher, Thyroid hormone regulates muscle function during cold acclimation in
384 zebrafish (Danio rerio). *Journal of Experimental Biology*, **2013**. 216(18): p. 3514-3521.

385 18. Little, A.G., et al., Thyroid hormone actions are temperature-specific and regulate thermal acclimation
386 in zebrafish (Danio rerio). *Bmc Biology*, **2013**. 11: p. 15.

387 19. Little, A.G. and F. Seebacher, Thyroid hormone regulates cardiac performance during cold acclimation
388 in zebrafish (Danio rerio). *J Exp Biol*, **2014**. 217(Pt 5): p. 718-25.

389 20. Roy, R., D. Ghosh, and A.B. Das, Homeoviscous adaptation of different membranes in the brain of an
390 air-breathing Indian teleost, *channa-punctatus*, during seasonal variation of environmental-temperature.
391 *Journal of Thermal Biology*, **1992**. 17(4-5): p. 209-215.

392 21. Logue, J.A., et al., Lipid compositional correlates of temperature-adaptive interspecific differences in
393 membrane physical structure. *Journal of Experimental Biology*, **2000**. 203(14): p. 2105-2115.

394 22. Iglesias, T.L., et al., Life in the unthinking depths: energetic constraints on encephalization in marine
395 fishes. *Journal of Evolutionary Biology*, **2015**. 28(5): p. 1080-1090.

396 23. Johnston, I.A., A. Clarke, and P. Ward, Temperature and Metabolic-Rate in Sedentary Fish from the

397 Antarctic, North-Sea and Indo-West Pacific-Ocean. *Marine Biology*, **1991**. 109(2): p. 191-195.

398 24. Clarke, A. and N.M. Johnston, Scaling of metabolic rate with body mass and temperature in teleost fish. *Journal of Animal Ecology*, **1999**. 68(5): p. 893-905.

399 25. Martin-Perez, M., et al., New Insights into Fish Swimming: A Proteomic and Isotopic Approach in

400 Gilthead Sea Bream. *Journal of Proteome Research*, **2012**. 11(7): p. 3533-3547.

401 26. Speers-Roesch, B. and J.S. Ballantyne, Activities of antioxidant enzymes and cytochrome c oxidase in

402 liver. of Arctic and temperate teleosts. *Comparative Biochemistry and Physiology a-Molecular &*

403 *Integrative Physiology*, **2005**. 140(4): p. 487-494.

404 27. Jayasundara, N., L.D. Gardner, and B.A. Block, Effects of temperature acclimation on Pacific bluefin

405 tuna (*Thunnus orientalis*) cardiac transcriptome. *American Journal of Physiology-Regulatory Integrative*

406 *and Comparative Physiology*, **2013**. 305(9): p. R1010-R1020.

407 28. Mininni, A.N., et al., Liver transcriptome analysis in gilthead sea bream upon exposure to low

408 temperature. *Bmc Genomics*, **2014**. 15.

409 29. Chen, Y.X., et al., The Grass Carp Genome Database (GCGD): an online platform for genome features

410 and annotations. *Database-the Journal of Biological Databases and Curation*, **2017**: p. 8.

411 30. Johnston, I.A. and J. Dunn, Temperature acclimation and metabolism in ectotherms with particular

412 reference to teleost fish. *Symposia of the Society for Experimental Biology*, **1987**. 41: p. 67-93.

413 31. Crawshaw, L.I., Low-temperature dormancy in fish. *American Journal of Physiology*, **1984**. 246(4): p.

414 R479-R486.

415 32. Nelson, E.R. and H.R. Habibi, Estrogen receptor function and regulation in fish and other vertebrates. *General and Comparative Endocrinology*, **2013**. 192: p. 15-24.

416 33. Hernandez, I., et al., Effect of seasonal acclimatization on estrogen-induced vitellogenesis and on the

417 hepatic estrogen receptors in the male carp. *Biochemistry International*, **1992**. 28(3): p. 559-567.

418 34. Verderame, M. and R. Scudiero, A comparative review on estrogen receptors in the reproductive male

419 tract of non mammalian vertebrates. *Steroids*, **2018**. 134: p. 1-8.

420 35. Wade, G.N., J.E. Schneider, and H.Y. Li, Control of fertility by metabolic cues. *American Journal of*

421 *Physiology-Endocrinology and Metabolism*, **1996**. 270(1): p. E1-E19.

422 36. Ernst, R., C.S. Ejsing, and B. Antonny, Homeoviscous Adaptation and the Regulation of Membrane

423 Lipids. *Journal of Molecular Biology*, **2016**. 428(24): p. 4776-4791.

424 37. G., J., Thompson,., Mechanisms of homeoviscous adaptation in membranes. *Cellular Acclimatisation*

425 *to Environmental Change*, **1983**.

426 38. Gracey, A.Y., et al., Coping with cold: An integrative, multitissue analysis of the transcriptome of a

427 poikilothermic vertebrate. *Proceedings of the National Academy of Sciences of the United States of*

428 *America*, **2004**. 101(48): p. 16970-16975.

429 39. Xu, D., et al., Transcriptional response to low temperature in the yellow drum (*Nibea albiflora*) and

430 identification of genes related to cold stress. *Comparative Biochemistry and Physiology D-Genomics &*

431 *Proteomics*, **2018**. 28: p. 80-89.

432 40. Iida, K., et al., Genome-wide analysis of alternative pre-mRNA splicing in *Arabidopsis thaliana* based

433 on full-length cDNA sequences. *Nucleic Acids Research*, **2004**. 32(17): p. 5096-5103.

434 41. Calixto, C.P.G., et al., Rapid and Dynamic Alternative Splicing Impacts the *Arabidopsis* Cold Response

435 Transcriptome. *Plant Cell*, **2018**. 30(7): p. 1424-1444.

436 42. Polley, S.D., et al., Differential expression of cold- and diet-specific genes encoding two carp liver Delta

437 9-acyl-CoA desaturase isoforms. *American Journal of Physiology-Regulatory Integrative and*

438 *Comparative Physiology*, **2003**. 284(1): p. R41-R50.

439 440

441 43. Long, Y., et al., Transcriptomic Characterization of Temperature Stress Responses in Larval Zebrafish.
442 *Plos One*, **2012**. 7(5).

443 44. Healy, T.M. and P.M. Schulte, Patterns of alternative splicing in response to cold acclimation in fish. *J*
444 *Exp Biol*, **2019**.

445 45. Teige, M., et al., The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. *Molecular*
446 *Cell*, **2004**. 15(1): p. 141-152.

447 46. Chinnusamy, V., K. Schumaker, and J.K. Zhu, Molecular genetic perspectives on cross-talk and
448 specificity in abiotic stress signalling in plants. *Journal of Experimental Botany*, **2004**. 55(395): p. 225-
449 236.

450 47. Wen, X., et al., iTRAQ-based quantitative proteomic analysis of Takifugu fasciatus liver in response to
451 low-temperature stress. *Journal of Proteomics*, **2019**. 201: p. 27-36.

452 48. Niu, H., et al., The role of dusp1 downregulation in apoptosis of zebrafish ZF4 cells under cold stress.
453 *Journal of Fishery Sciences of China*, **2017**. 24(5): p. 995-1002.

454 49. Cai, J.-H., et al., Temperature-induced embryonic diapause in blue-breasted quail (*Coturnix chinensis*)
455 correlates with decreased mitochondrial-respiratory network and increased stress-response network.
456 *Poultry science*, **2019**. 98(7): p. 2977-2988.

457 50. Kanzleiter, T., et al., Evidence for Nr4a1 as a cold-induced effector of brown fat thermogenesis.
458 *Physiological Genomics*, **2005**. 24(1): p. 37-44.

459 51. Malki, K., et al., Transcriptome analysis of genes and gene networks involved in aggressive behavior
460 in mouse and zebrafish. *American Journal of Medical Genetics Part B-Neuropsychiatric Genetics*, **2016**.
461 171(6): p. 827-838.

462 52. Lopes, J.S., R. Abril-de-Abreu, and R.F. Oliveira, Brain Transcriptomic Response to Social
463 Eavesdropping in Zebrafish (*Danio rerio*). *Plos One*, **2015**. 10(12).

464 53. Dietz, T.J. and G.N. Somero, Species-specific and tissue-specific synthesis patterns for heat-shock
465 proteins Hsp70 and Hsp90 in several marine teleost fishes. *Physiological Zoology*, **1993**. 66(6): p. 863-
466 880.

467 54. Iwama, G.K., et al., Heat shock proteins and physiological stress in fish. *American Zoologist*, **1999**.
468 39(6): p. 901-909.

469 55. Gantner, M.L., et al., GADD4 gamma regulates the thermogenic capacity of brown adipose tissue.
470 *Proceedings of the National Academy of Sciences of the United States of America*, **2014**. 111(32): p.
471 11870-11875.

472 56. Patel, R.K. and M. Jain, NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing
473 Data. *Plos One*, **2012**. 7(2).

474 57. Trapnell, C., et al., Differential gene and transcript expression analysis of RNA-seq experiments with
475 TopHat and Cufflinks. *Nature Protocols*, **2012**. 7(3): p. 562-578.

476 58. Pertea, M., et al., StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
477 *Nature Biotechnology*, **2015**. 33(3): p. 290-+.

478 59. Kang, Y.J., et al., CPC2: a fast and accurate coding potential calculator based on sequence intrinsic
479 features. *Nucleic Acids Research*, **2017**. 45(W1): p. W12-W16.

480 60. Wang, L., et al., CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression
481 model. *Nucleic Acids Research*, **2013**. 41(6).

482 61. Patro, R., et al., Salmon provides fast and bias-aware quantification of transcript expression. *Nature*
483 *Methods*, **2017**. 14(4): p. 417-+.

484 62. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for differential

485 expression analysis of digital gene expression data. *Bioinformatics*, **2010**. 26(1): p. 139-140.

486 63. Lun, A.T., Y. Chen, and G.K. Smyth, It's DE-licious: A Recipe for Differential Expression Analyses of

487 RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR. *Methods Mol Biol*, **2016**. 1418: p.

488 391-416.

489

490

491

Table 1 The Statistics of the Transcript Classification

Class code		NO.	SET*	ncRNA*
=		32811	3415	2903
new transcripts	j	10088	0	1125
	u	3605	2488	2869
	k	2036	0	41
	p	2035	2035	2005
	n	842	171	156
	m	828	106	81
	o	597	0	174
	i	329	286	306
	x	94	2	69
	y	22	0	17
	e	1	1	1

492

493 SET: single exon transcript

494 ncRNA: non coding RNA

495

496

497 **Figure Legends**

498 **Fig 1 The stacked bar of DEGs and DETs**

499 a. The cumulative differential expression genes (DEGs) and transcripts (DETs) comparing test group
500 B (12°C), group C (4°C), group D (12°C) and group E (27°C) with control group A (27°C). b. The phased
501 DEGs and DETs from comparisons of group B (12°C) vs. group A (27°C), group C (4°C) vs. group B
502 (12°C), group D (12°C) vs. group C (4°C) and group E (27°C) vs. group D (12°C). In both two plots, red
503 represents upregulated genes/transcripts and green represents downregulation.

504

505 **Fig 2 The heatmap and network diagram of enriched pathways**

506 a1/a2. The heatmap of enriched pathways from cDEGs/pDEGs analysis. In each group, red
507 represents the pathway is significantly enriched, while green is not. Clustering is performed based on
508 the patterns of pathways profiling.

509 b1/b2. The network of enriched pathways from cDEGs/pDEGs analysis. The pathways are classified
510 into 4 categories: Transcription and Translation (Circle), Signal Transduction (Triangle), Cellular
511 Processes (Diamond) and Metabolism (Square). The color depth of nodes represents the ratio of
512 unique DEGs in the pathway. The width of edges represents the number of common DEGs shared
513 by two adjacent pathways and the edges are marked with pink with more than 4 shared DEGs.

514

515 **Fig 3 The expression profiles of pDEGs associated with MAKP signaling pathway**

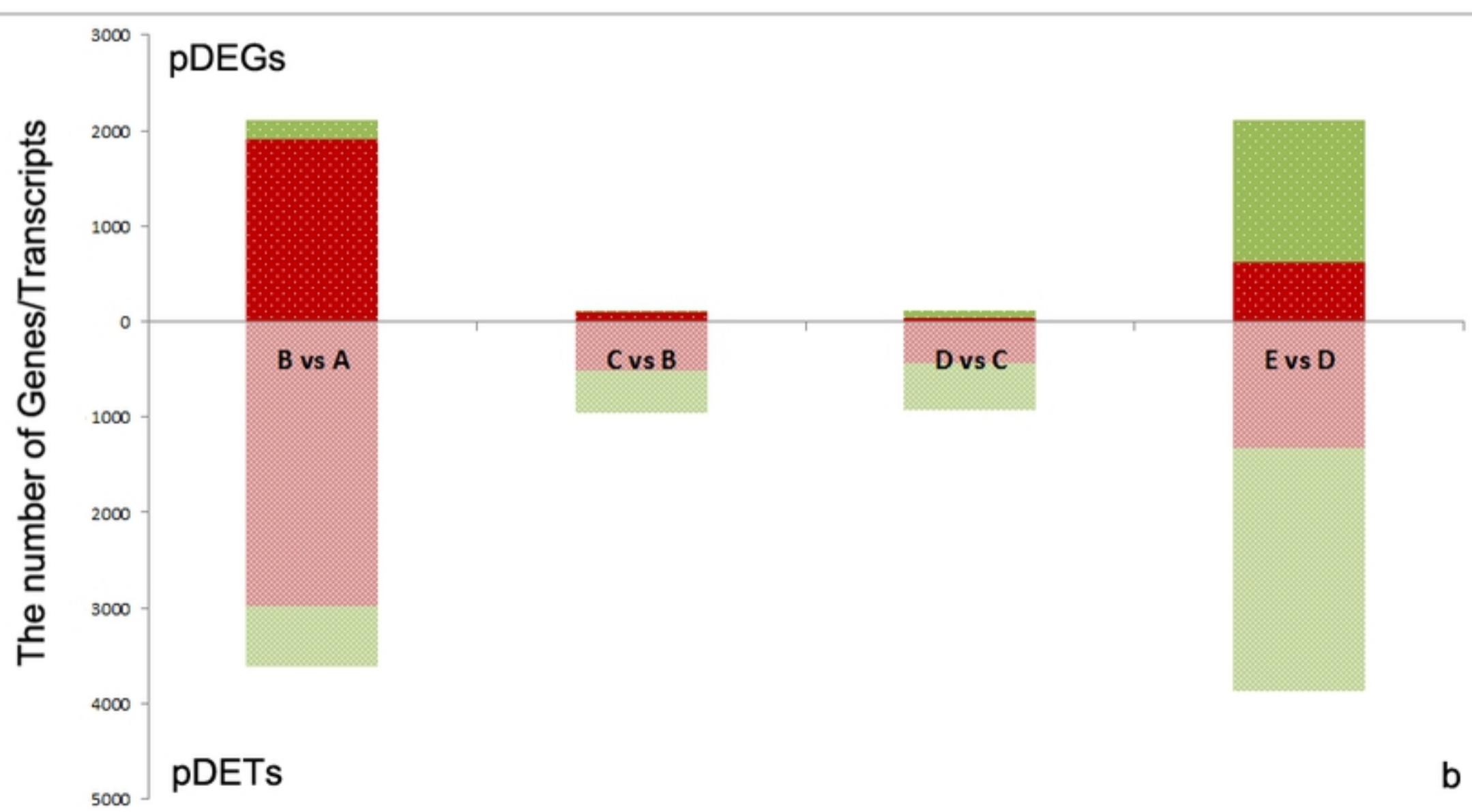
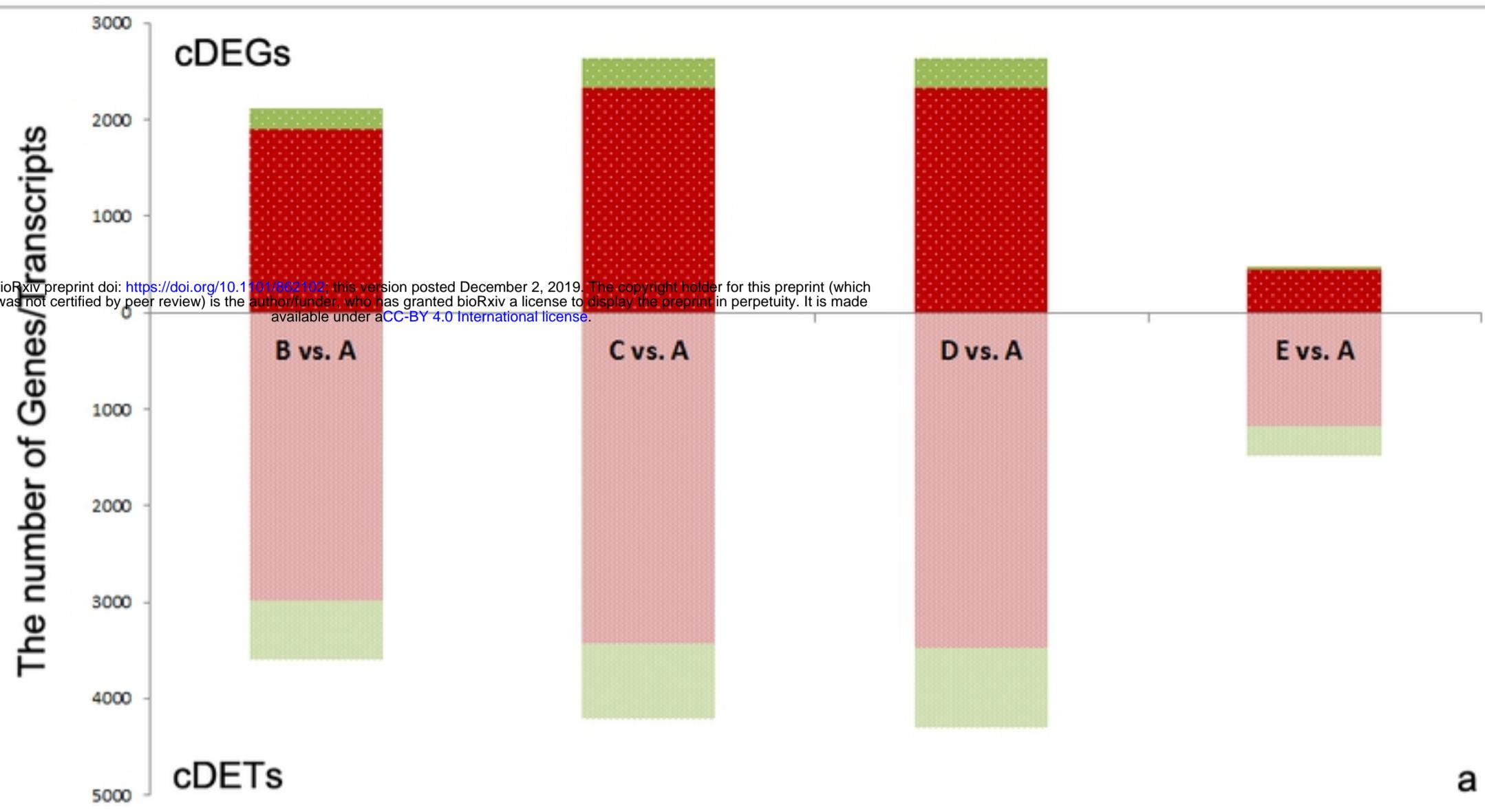
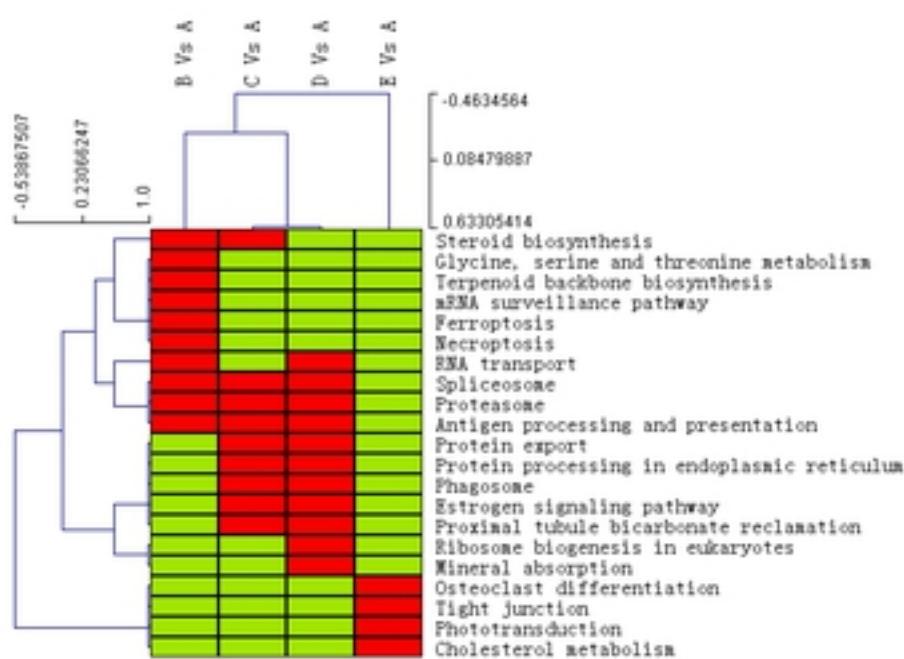
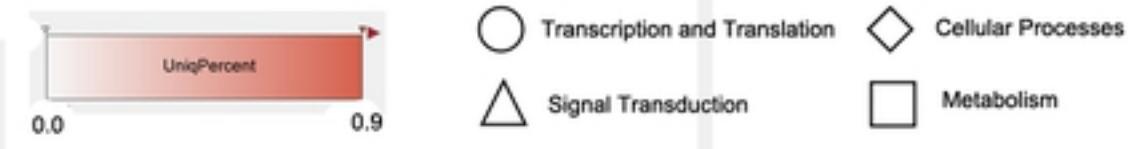
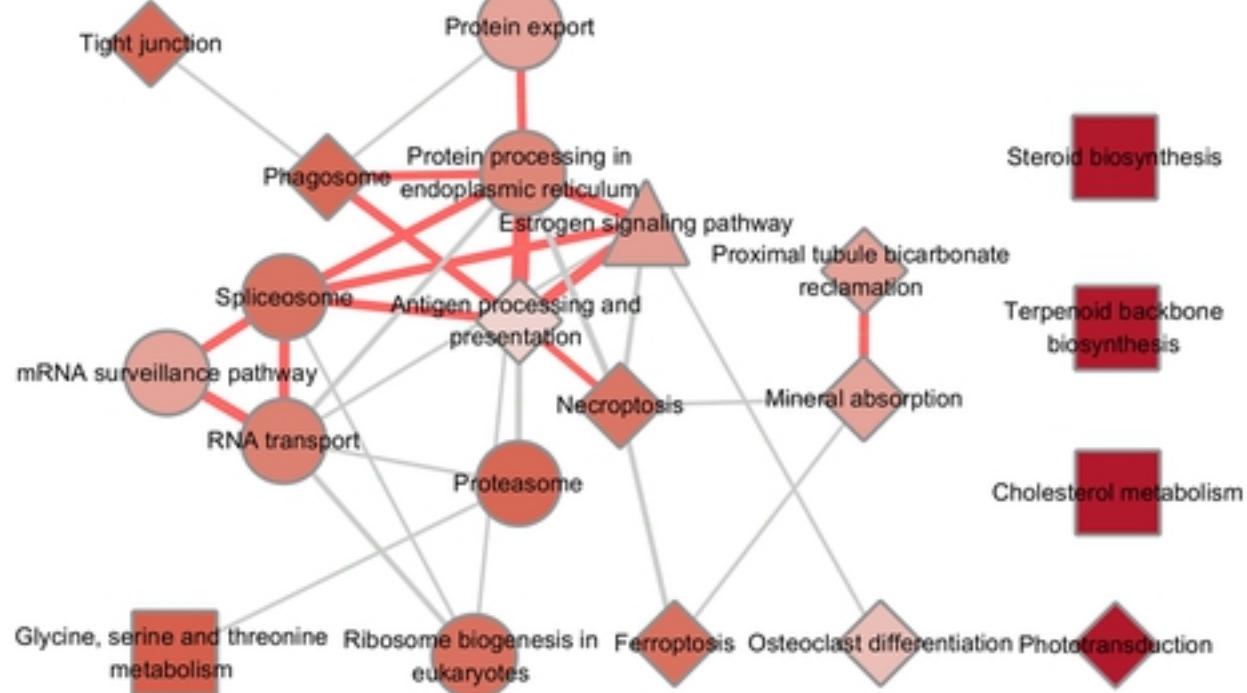
516 a. The heatmap of differential expression genes with the TPM in RNA-seq data.

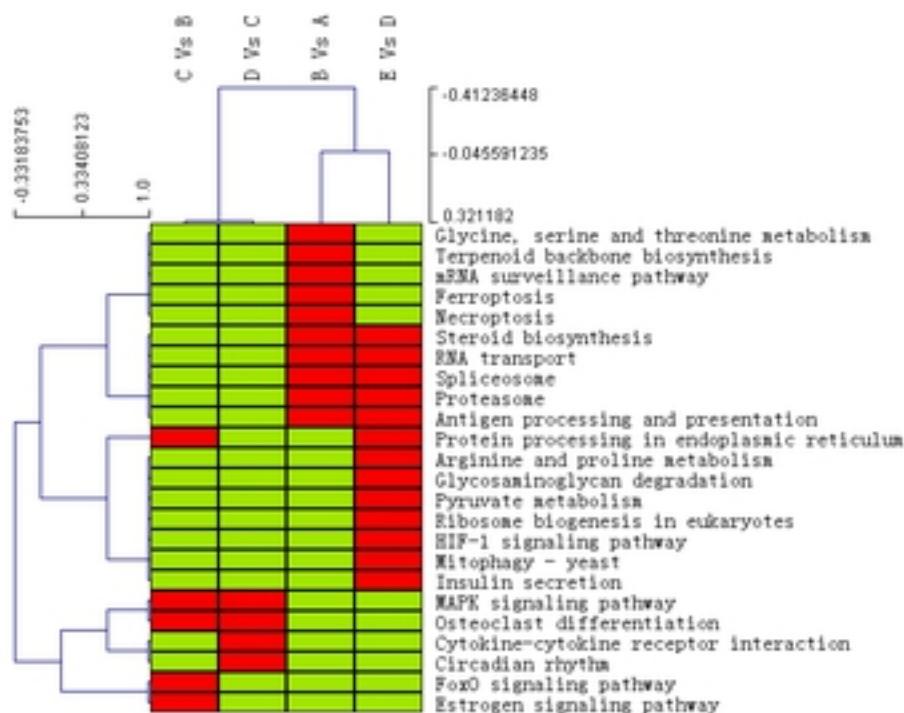
517 b1-b5. The expression profiles of DUSP1, HSPA6 (HSPA6.1, HSPA6.2), NR4A1 and GADD45B with
518 the RT-qPCR results.

519

520 **Fig 4 The schematic diagram of Cholesterol synthesis pathway**

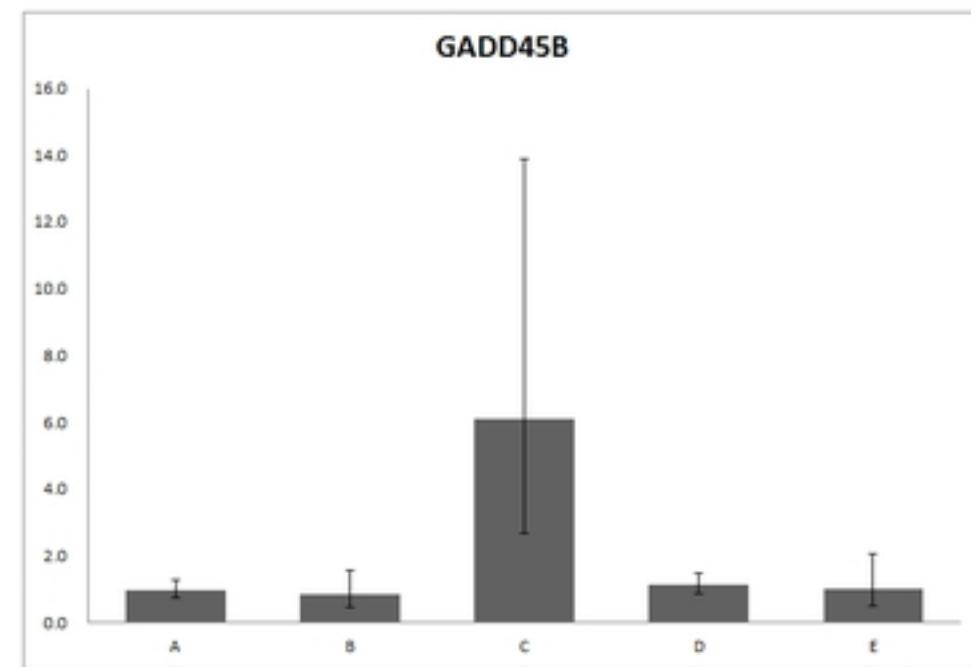
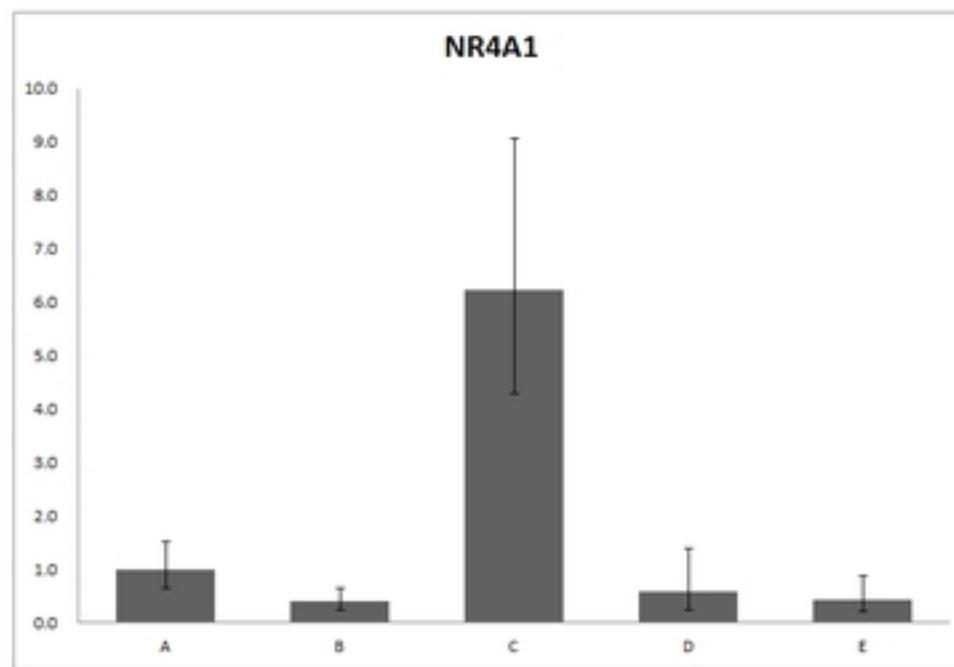
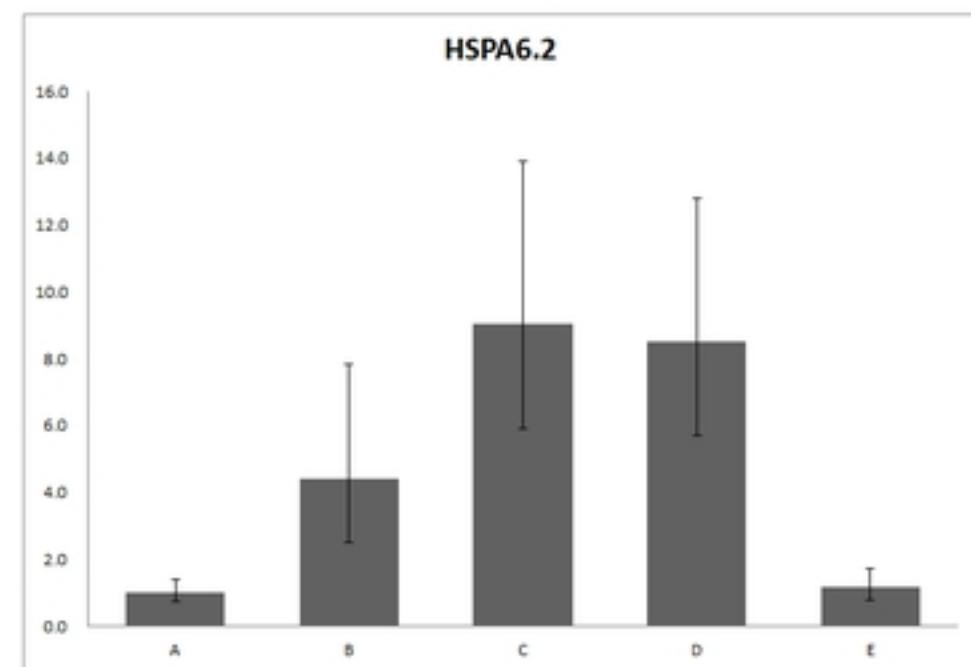
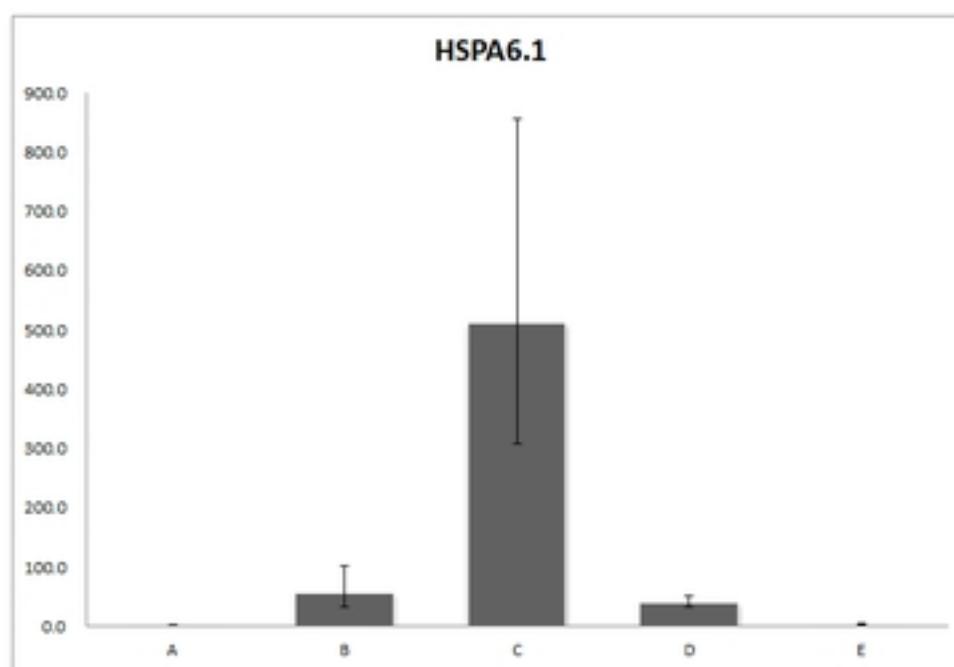
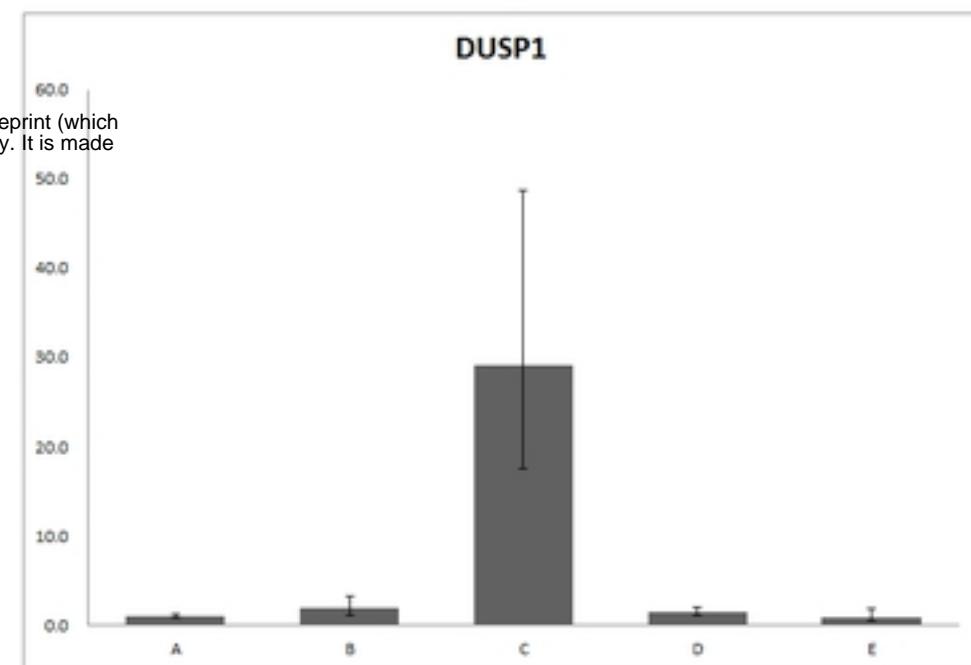
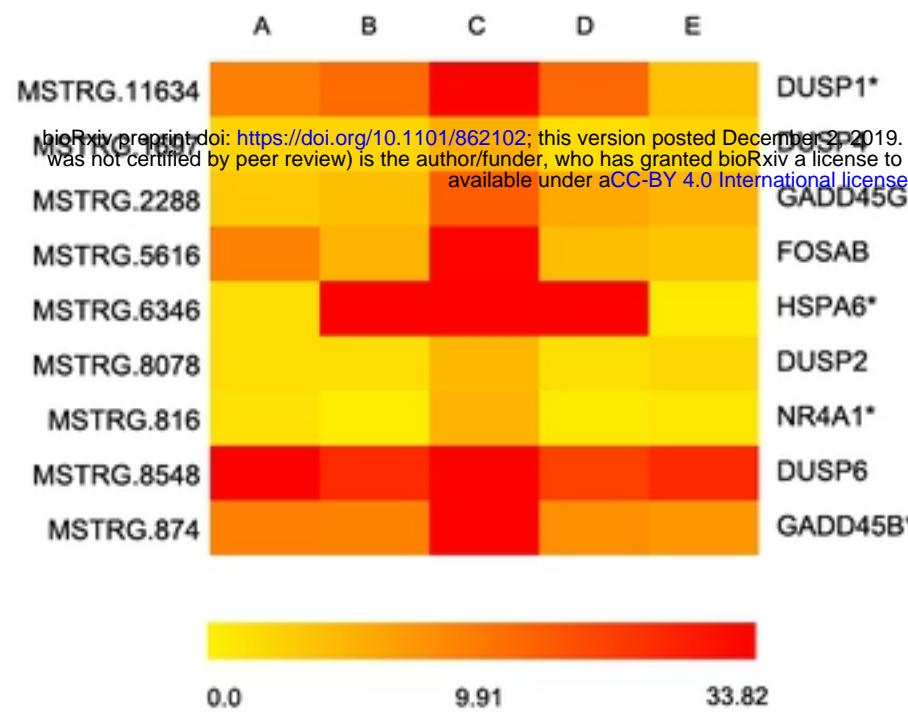
bioRxiv preprint doi: <https://doi.org/10.1101/862102>; this version posted December 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Figure 1

a1

b1

a2

b2

Figure 2

Figure 3

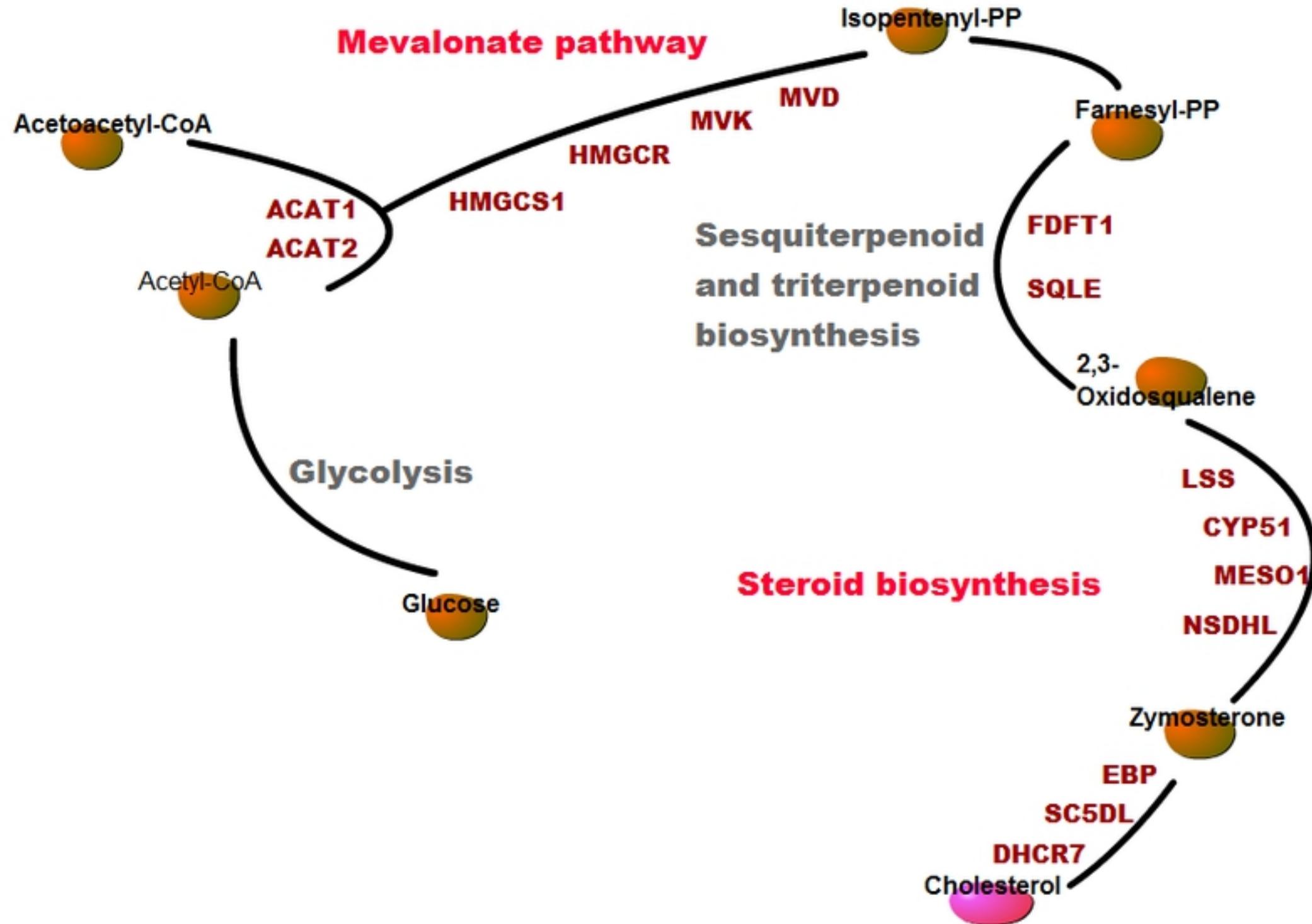


Figure 4