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Abstract		

Diffusion-weighted	steady-state	free	precession	(DW-SSFP)	is	an	SNR-efficient	diffusion	imaging	

method.	The	improved	SNR	and	resolution	available	at	ultra-high	field	has	motivated	its	use	at	

7T.	However,	these	data	tend	to	have	severe	B1	inhomogeneity,	leading	not	only	to	spatially	

varying	SNR,	but	also	to	spatially	varying	diffusivity	estimates,	confounding	comparisons	both	

between	and	within	datasets.	This	study	proposes	the	acquisition	of	DW-SSFP	data	at	two-flip	

angles	in	combination	with	explicit	modelling	of	non-Gaussian	diffusion	to	address	B1	

inhomogeneity	at	7T.	DW-SSFP	datasets	were	acquired	from	five	fixed	whole	human	post-

mortem	brains	with	a	pair	of	flip	angles	that	jointly	optimize	the	diffusion	contrast-to-noise	

across	the	brain.	We	compared	one	and	two	flip-angle	DW-SSFP	data	using	a	diffusion	tensor	

model	that	incorporates	the	full	DW-SSFP	Buxton	signal	model.	The	two-flip	angle	data	were	

subsequently	fitted	using	a	modified	DW-SSFP	signal	model	that	incorporates	a	Gamma	

distribution	of	diffusivities.	This	allowed	us	to	generate	tensor	maps	at	a	single,	SNR-optimal	

effective	b-value	yielding	more	consistent	SNR	across	tissue,	in	addition	to	eliminating	the	B1	

dependence	on	diffusion	coefficients	and	orientation	maps.	Our	proposed	approach	will	allow	the	

use	of	DW-SSFP	at	7T	to	derive	diffusivity	estimates	that	have	greater	interpretability,	both	

within	a	single	dataset	and	between	experiments.	
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Highlights	

• B1	inhomogeneity	at	7T	leads	to	spatially	varying	SNR	&	ADC	estimates	in	
DW-SSFP	

• 2-flip	angle	DW-SSFP	data	can	address	B1	effects	in	a	cohort	of	post-
mortem	brains	

• Our	approach	reduces	degradations	in	PDD	estimates	&	improves	whole	
brain	coverage	

• Our	approach	provides	a	means	to	define	ADCs	at	an	SNR-optimal	
effective	b-value	
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Introduction	

Diffusion	imaging	of	post-mortem	human	brains	has	important	applications	for	

both	validating	diffusion	contrast	mechanisms	through	comparison	with	

microscopy	and	achieving	very	high-resolution	data	with	long	scan	times.	

However,	post-mortem	diffusion	imaging	presents	significant	challenges	due	to	

changes	in	tissue	properties	related	to	death	and	fixation.	Unfavorable	

reductions	in	T1,	T2	and	diffusion	coefficient	have	been	observed	in	fixed	tissue	

using	a	variety	of	fixation	methods	(Blamire	et	al.,	1999;	D’Arceuil	and	de	

Crespigny,	2007;	Dawe	et	al.,	2009;	Shepherd	et	al.,	2009;	Yong-Hing	et	al.,	

2005).	

One	method	to	overcome	these	changes	is	to	utilize	an	imaging	strategy	

that	allows	for	fast	acquisition	of	the	MR	signal	to	overcome	the	losses	associated	

with	the	shortened	T2	values.	We	have	previously	proposed	the	use	of	diffusion-

weighted	steady-state	free	precession	(DW-SSFP)	for	post-mortem	imaging	due	

to	its	ability	to	achieve	robust	signal	and	strong	diffusion	contrast	in	short-T2	

species	(McNab	et	al.,	2009).	The	high	signal-to-noise	(SNR)	efficiency	of	DW-

SSFP	compared	to	diffusion-weighted	spin	echo	(DW-SE)	acquisitions	enables	

improvements	in	the	quality	of	both	diffusion	tractography	and	estimates	of	

multiple	fiber	populations	at	3T	(Miller	et	al.,	2012),	motivating	its	use	in	post-

mortem	samples	(Vasung	et	al.,	2019;	Wilkinson	et	al.,	2016).	

Ultra-high	field	scanners	have	potential	to	enable	further	gains	in	spatial	

resolution,	with	DW-SSFP	providing	a	valuable	tool	for	addressing	the	even	

shorter	T2	values	at	7T	and	above	(Foxley	et	al.,	2014a).	However,	DW-SSFP	data	

acquired	at	7T	are	compromised	by	B1	inhomogeneity	(Fig.	1a).	This	presents	us	

with	a	challenge:	unlike	other	diffusion	imaging	sequences,	both	the	signal	(Fig.	

1b)	and	diffusion	attenuation	(Fig.	1c)	in	DW-SSFP	are	sensitive	to	flip	angle	

(Buxton,	1993).		

When	considering	B1	inhomogeneity,	the	sensitivity	of	DW-SSFP	to	flip	

angle	first	leads	to	spatially	varying	SNR	across	the	brain	(Fig.	1d).		Second,	a	

different	flip	angle	also	translates	into	a	different	“effective	b-value”	(Tendler	et	

al.,	2019)	in	DW-SSFP.	When	performing	DW-SSFP	experiments	at	7T,	even	when	

incorporating	the	DW-SSFP	signal	model	(Buxton,	1993),	non-Gaussian	diffusion	

(due	to	restrictions	in	tissue)	can	lead	to	B1-dependent	diffusivity	estimates		
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across	the	brain.	This	is	analogous	to	acquiring	a	dataset	with	different	b-values	

across	the	brain	with	a	standard	DW-SE	experiment.	

Given	a	B1	field	map,	we	propose	an	approach	to	account	for	these	issues	

by	acquiring	a	pair	of	DW-SSFP	datasets	at	two	different	flip	angles.	This	dual-

flip	angle	approach	has	two	advantages:	Firstly,	our	flip	angles	can	be	chosen	so	

different	regions	of	tissue	have	high	SNR	in	the	individual	datasets	(Foxley	et	al.,	

2014b).	We	can	subsequently	combine	the	datasets	in	a	manner	to	yield	high	

SNR	diffusivity	estimates	over	the	entire	brain.	Secondly,	we	can	modify	the	DW-

SSFP	signal	equation	to	account	for	how	the	measured	apparent	diffusion	

coefficient	(ADC)	varies	with	flip	angle	under	a	simple	model	of	non-Gaussian	

diffusion.	From	this,	we	can	explicitly	model	the	relationship	between	the	

effective	b-value	and	flip	angle	(Tendler	et	al.,	2019).	Here	we	describe	a	method	

to	subsequently	derive	diffusivity	estimates	over	the	entire	brain	sample	

interpolated	to	a	single	SNR-optimal	effective	b-value,	removing	the	influence	of	

B1.		

	

Theory	

Dual-flip	angle	acquisition	to	optimise	diffusion	contrast	

It	is	possible	to	apply	a	desired	flip	angle	anywhere	in	the	brain	given	accurate	

knowledge	of	the	B1	distribution	and	appropriate	choice	of	nominal	flip	angle.	

This	effect	is	demonstrated	in	Fig.	1d,	which	displays	a	single	slice	through	a	DW-

SSFP	dataset	where	the	nominal	flip	angle	is	changed	by	10˚	increments	from	5o	

to	115o.	By	changing	the	nominal	flip	angle,	a	bright	concentric	ring	is	seen	to	

move	radially	from	the	centre	of	the	brain	towards	the	edge.	

An	arbitrarily	optimized	flip	angle	for	the	DW-SSFP	signal	can	therefore	

be	predictably	positioned	with	knowledge	of	B1.	We	propose	that	the	signal	

dependency	on	B1	can	be	mitigated	by	acquiring	data	with	an	optimized	pair	of	

flip	angles.	Figure	2	outlines	our	proposed	optimization	procedure,	which	aims	

to	produce	high	contrast	across	the	entire	brain.	The	goal	is	to	identify	an	

optimal	pair	of	nominal	flip	angles	based	on	the	predicted	diffusion	contrast	

(here	defined	as	the	difference	between	the	non-diffusion	and	diffusion	weighted	

signals).	An	ideal	flip	angle	pair	would	achieve	both	high	and	homogeneous	

contrast	over	a	large	range	of	fractional	B1	(Fig.	2).	To	achieve	this,	DW-SSFP	
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contrast	curves	were	generated	for	every	pair	of	flip	angles	(Fig.	2a)	and	their	

mean	(μ)	and	standard	deviation	(σ)	over	a	range	of	B1	values	were	determined.		

To	identify	a	flip	angle	pair	that	represented	a	balance	of	high	contrast	and	

homogeneity	across	a	range	of	B1,	we	calculated	the	variance-normalized	mean	

(μ/σ)	of	all	flip	angle	pairs	(Fig.	2b),	and	chose	the	peak	value	as	our	optimal	pair	

of	flip	angles	(Fig.	2c).	We	considered	a	range	of	30-100%	of	the	maximum	B1	

(Fig.	2a)	to	ensure	that	the	optimization	is	not	dominated	by	a	minority	of	voxels	

with	very	low	B1.	

	

 
 

Figure	2:	Optimization	used	for	the	two-flip	angle	DW-SSFP	acquisition.	The	red	and	blue	

curves	in	(a)	show	the	variation	in	diffusion	contrast	(difference	of	diffusion	weighted	and	

non-diffusion-weighted	signal)	across	the	brain	as	a	function	of	B1.		We	combined	the	contrast	

curves	across	pairs	of	flip	angles	to	maximize	the	quantity	𝜇/𝜎	(b),	where	𝜇	is	the	mean	

contrast	across	the	B1	range	and	𝜎	is	the	standard	deviation.	This	metric	aims	for	maximum	

contrast	with	minimum	variation	across	the	brain	(black	curve	on	the	left).	Here,	we	only	

considered	a	range	of	30%-100%	of	maximum	B1	for	our	calculations	of	μ	and	σ	which	

corresponds	to	~90%	of	the	brain,	so	as	not	to	have	the	optimization	dominated	by	a	minority	

of	brain	voxels	where	contrast	changes	rapidly	with	flip	angle.	Our	simulations	estimated	a	

CNR-optimal	flip	angle	pair	of	24o	and	94o	(c).	Simulation	parameters	were	approximately	

matched	to	our	protocol	at	7T:		𝑇& = 500	ms,	𝑇, = 30	ms,	ADC = 1 ⋅ 1034	mm,/s,	TR = 30	ms,	

diffusion	gradient	amplitude= 52	mT/m,	diffusion	gradient	duration= 14	ms.		
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A	DW-SSFP	effective	b-value	

In	the	presence	of	non-Gaussian	diffusion,	ADC	estimates	are	highly	susceptible	

to	flip-angle	variations	in	DW-SSFP	(Tendler	et	al.,	2019).	This	is	a	direct	result	of	

the	signal	representing	a	linear	mixture	of	coherence	pathways	with	different	b-

values,	where	the	relative	weight	of	pathways	is	determined	by	the	flip	angle.	

Figures	3a	and	b	show	simulations	comparing	multi-shell	DW-SE	and	multi-flip	

angle	DW-SSFP	signal	attenuation	for	systems	defined	by	a	single	diffusion	

coefficient	(Gaussian)	vs	a	gamma	distribution	of	diffusivities	(non-Gaussian).	

Under	Gaussian	diffusion,	the	diffusion	attenuation	curves	(blue	lines)	do	not	

overlap	for	different	diffusion	coefficients.	However,	for	non-Gaussian	diffusion	

(orange	lines),	the	diffusion	attenuation	curves	cross	through	the	blue	lines,	

indicating	a	change	in	the	measured	ADC.	The	dependence	of	ADC	on	b-value	in	

DW-SE	is	well	established.	For	DW-SSFP	a	similar	effect	exists,	where	the	

effective	b-value	is	indirectly	modified	via	the	flip	angle.		

In	DW-SSFP,	this	flip	angle	dependence	on	ADC	prevents	a	simple	

(weighted)	averaging	of	ADC	estimates	across	acquisitions	with	multiple	flip	

angles	(to	produce	a	composite	ADC	map	with	homogeneous	SNR).	This	

additionally	leads	to	spatially-dependent	ADC	estimates	within	a	single	DW-SSFP	

dataset,	arising	due	to	B1	inhomogeneity	combined	with	non-Gaussian	diffusion.	

A	solution	to	this	problem	may	be	as	follows:	From	DW-SSFP	data	in	a	

voxel	acquired	at	two	nominal	flip	angles,	we	can	use	the	standard	Buxton	signal	

model	(Buxton,	1993)	to	calculate	an	ADC	estimate	for	each	flip	angle	(Fig.	3c	–	

black	dots).	We	can	then	fit	these	ADC	estimates	with	a	modified	Buxton	model	

that	incorporates	non-Gaussian	diffusion	(Fig.	3c	–	orange	line).	Based	on	this	

characterisation	of	the	non-Gaussianity	in	our	voxel,	we	can	calculate	the	ADC	

estimate	at	any	given	flip	angle	by	interpolating	(or	extrapolating)	along	the	DW-

SSFP	signal	model	curve.	Thus,	we	can	eliminate	the	influence	of	B1	on	our	ADC	

estimates	by	calculating	the	ADC	at	the	same	flip	angle	over	the	entire	brain.	

In	DW-SSFP,	parameters	in	addition	to	the	flip	angle	can	lead	to	changes	

in	the	estimated	ADC,	including	the	relaxation	times	T1	and	T2.	Motivated	by	this,	

recent	work	(Tendler	et	al.,	2019)	redefined	the	DW-SSFP	signal	in	terms	of	an	

‘effective’	b-value,	b:;; ,	the	equivalent	b-value	with	the	DW-SE	sequence	that	

leads	to	the	same	estimate	of	ADC	(Fig.	3d)	under	an	identical	model	of	non-
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Gaussian	diffusion.	This	definition	accounts	for	the	influence	of	these	different	

parameters	on	the	measured	ADC,	in	contrast	to	previous	work	(Miller	et	al.,	

2012),	which	defined	b:;;	in	terms	of	the	DW-SSFP	diffusion	attenuation.	The	

new	definition	of	b:;; 	allows	for	direct	comparisons	of	results	to	equivalent	DW-

SE	data	assuming	the	same	model	of	non-Gaussianity.	The	effective	b-value	can	

be	additionally	chosen	to	account	for	the	variable	SNR	of	DW-SSFP	data	at	

different	nominal	flip	angles/B1,	to	optimize	the	SNR	of	the	ADC	estimates	over	

the	entire	brain	(described	in	Supplementary	Material).	

 
Figure	3:	Simulating	non-Gaussian	diffusion	effects	on	ADC.	(a/b)	Comparison	of	the	

diffusion	attenuation	of	a	multi-shell	DW-SE	(a)	and	multi-flip	angle	DW-SSFP	(b)	experiment	

in	a	system	defined	by	a	single	diffusion	coefficient	(blue	lines)	or	a	gamma	distribution	of	

diffusivities	(orange	line).	Non-Gaussian	diffusion	(gamma	distribution	of	diffusivities)	leads	

to	variable	measurements	of	ADC	with	b-value/flip	angle.	Given	ADC	estimates	from	the	DW-

SSFP	signal	at	two-flip	angles	(c	–	black	dots),	we	can	fit	a	gamma	distribution	of	diffusivities	

(c	–	orange	dashed	line),	which	predicts	the	ADC	at	any	given	flip	angle.	(d)	As	described	in	

(Tendler	et	al.,	2019),	this	can	further	be	used	to	describe	the	system	at	a	well-defined	b-value	

(d).		
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In	this	work,	we	utilise	a	Gamma	distribution	of	diffusivities	to	capture	

non-Gaussian	diffusion	(Jbabdi	et	al.,	2012;	Tendler	et	al.,	2019).	We	chose	a	

Gamma	distribution	in	part	because	it	only	adds	a	single	extra	free	parameter	in	

comparison	to	a	Gaussian	diffusion	model.	A	more	common	model	of	non-

Gaussianity	is	bi-exponential	diffusion,	but	this	model	is	both	relatively	crude	

and	requires	the	addition	of	two	free	parameters.	Furthermore,	the	gamma	

distribution	is	only	defined	for	positive	diffusion	coefficients	and	can	be	

parameterised	in	terms	of	a	mean,	𝐷=,	and	standard	deviation,	𝐷>.	This	allows	

for	the	incorporation	and	correction	for	the	non-Gaussian	diffusion	properties	of	

DW-SSFP	data	acquired	at	only	two-flip	angles.	Further	details	of	this	framework	

can	be	found	in	(Tendler	et	al.,	2019).		

	
Methods	

Sample	preparation	

Data	were	acquired	in	post-mortem	human	brains	(n=5),	comprised	of	two	

control	brains	and	three	brains	from	patients	diagnosed	with	amyotrophic	

lateral	sclerosis	(ALS).	Brains	were	extracted	from	the	skull	within	72	hours	

after	death.	All	brains	were	fixed	for	at	least	45	days	prior	to	scanning,	with	four	

brains	fixed	in	10%	PBS	buffered	formalin	and	one	brain	fixed	in	10%	formalin.	

Prior	to	scanning,	brains	were	removed	from	formalin	and	submerged	in	a	

perfluorocarbon	liquid	(Fluorinert	FC-3283,	3M).	The	study	was	conducted	

under	the	Oxford	Brain	Bank‘s	generic	Research	Ethics	Committee	approval	

(15/SC/0639).	

	

MRI	Data	acquisition	protocol	

Data	were	obtained	over	the	entire	brain	of	each	post-mortem	sample	on	a	

human	7T	Siemens	whole	body	scanner	(32ch-receive/1ch-transmit	head	coil).	

For	each	brain,	DW-SSFP	datasets	were	acquired	at	two-flip	angles	(24o	and	94o),	

chosen	based	on	the	optimization	described	above.	At	each	flip	angle,	120	

diffusion	directions	(q	=	300cm-1)	and	six	non-diffusion	weighted	datasets	were	

acquired	(resolution	=	0.85·0.85·0.85	mm3),	with	the	same	set	of	directions	for	

both	flip	angles.	To	prevent	banding	artefacts	in	the	non-diffusion	weighted	

datasets,	a	slight	diffusion	gradient	was	applied	along	(x,y,z)	=	
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(0.557,0.577,0.577)	to	serve	as	a	spoiler	(q	=	20cm-1)	(Zur	et	al.,	1988).		

To	aid	in	DW-SSFP	quantification,	we	also	acquired:	B1	maps	with	an	

actual	flip	angle	(AFI)	acquisition	(Yarnykh,	2007);	T1	maps	from	a	turbo	

inversion-recovery	(TIR)	sequence;	and	T2	maps	from	a	turbo	spin-echo	(TSE)	

sequence.	Full	details	of	the	acquisition	protocol	are	provided	in	Table	1.		

	

Table	1:	MRI	imaging	parameters.	The	imaging	parameters	of	the	DW-SSFP	dependency	

acquisitions	(AFI,	TIR	and	TSE)	are	representative	of	the	parameters	used,	small	modifications	

were	made	to	these	acquisitions	as	protocols	evolved.	

 

Data	Processing	

All	coregistrations	between	and	within	imaging	modalities	were	performed	with	

a	6	degrees-of-freedom	(translations	and	rotations)	co-registration	via	FLIRT	

(Jenkinson	et	al.,	2002;	Jenkinson	and	Smith,	2001).	A	Gibbs	ringing	correction	

was	performed	on	the	DW-SSFP,	TIR	and	TSE	datasets	(Kellner	et	al.,	2016).	T1	

and	T2	maps	were	generated	from	the	TIR	and	TSE	data	via	a	voxelwise	fit	

assuming	mono-exponential	signal	evolution.	B1	maps	were	generated	from	the	

AFI	datasets	via	the	processing	outlined	in	the	original	publication	(Yarnykh,	

2007)	All	data	were	processed	and	analyzed	using	the	FMRIB	software	library	

(FSL)	(Jenkinson	et	al.,	2012)	and	Python	(Millman	and	Aivazis,	2011).	A	

diffusion	tensor	model	that	incorporates	the	full	DW-SSFP	Buxton	signal	model,	

DW-SSFP	 	 Turbo	inversion-recovery	(TIR)	 	
q-value	(cm-1)	 300		 Resolution	(mm3)	 0.9·0.9·0.9	
Diffusion	Gradient	Duration	(ms)	 13.56		 Number	of	inversions	 6		
Diffusion	Gradient	Strength	(mTm-1)	 52		 TE	(ms)	 14	
Flip	angles	(o)	 24	and	94	 TR	(ms)	 1000	
No.	directions	(per	flip	angle)	 120	 TIs	(ms)	 30,	60,	120,	240,	480	&	935	
No.	non-DW	(per	flip	angle)	 6	(q=20	cm-1)	 Flip	angle	(o)	 180	
Resolution	(mm3)	 0.85·0.85·0.85		 GRAPPA	acc.	factor	 3	
TE	(ms)	 21		 Bandwidth	(Hz	per	pixel)	 130		
TR	(ms)	 28		 Acquisition	time	(per	TI)	 40:49	
EPI	factor	 3	 Number	of	averages	 1	
Bandwidth	(Hz	per	pixel)	 393		 	 	
Acquisition	time	(per	direction/non-DW)	 5:47	 Turbo	spin-echo	(TSE)	–	T2																																			
Acquisition	time	(per	flip	angle)	 12:08:42	 Resolution	(mm3)	 0.9·0.9·0.9	
No.	of	averages	 1	 Number	of	echoes	 6	
	 	 TEs	(ms)	 13,	25,	38,	50,	63	&	76		
Actual	flip-angle	imaging	(AFI)	–	B1					 	 TR	(ms)	 1000	
Resolution	(mm3)	 3·3·3	 Flip	angle	(o)	 180	
TE	(ms)	 1.5	 GRAPPA	acc.	factor	 2	
TR1/TR2	(ms)	 4.4/11	 Bandwidth	(Hz	per	pixel)	 166		
Flip	angle	(o)	 60	 Acquisition	time	(per	TE)	 36:01	
Bandwidth	(Hz	per	pixel)	 630		 Number	of	averages	 1	
Acquisition	time	 0:41	 	 	
Number	of	averages	 1	 	 	
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including	T1,	T2	and	B1	(Buxton,	1993)	was	fitted	to	the	DW-SSFP	data	using	

cuDIMOT	(Hernandez-Fernandez	et	al.,	2019).		

This	work	incorporates	two	versions	of	the	diffusion	tensor	model,	one	

which	fits	DW-SSFP	data	acquired	at	one-flip	angle	and	one	that	fits	a	tensor	to	

data	at	two-flip	angles	simultaneously.	The	latter	analysis	outputs	a	unique	set	of	

eigenvalues,	𝐿&,,,A,		for	the	DW-SSFP	data	acquired	at	each	flip	angle,	but	is	

constrained	to	a	shared	set	of	eigenvectors,	𝑉C⃗&,,,A.	All	comparative	analyses	were	

done	solely	over	white	matter,	with	white	matter	masks	generated	using	FAST	

(Zhang	et	al.,	2001),	followed	by	manual	removal	of	any	remaining	grey	matter	

regions.		

	

Comparison	of	PDD	estimates	acquired	with	one-	and	two-flip	angle	acquisitions	

To	compare	the	resulting	diffusion	eigenvectors	between	the	one-	and	two-flip	

angle	acquisitions,	a	time-matched	comparison	was	performed.	A	subset	of	the	

data	(60	directions	at	each	flip	angle)	were	selected	and	fitted	with	the	two-flip	

angle	DW-SSFP	tensor	model	described	above.	These	model	fits	were	compared	

to	the	results	obtained	from	fitting	to	all	120	directions	of	DW-SSFP	data	

acquired	at	one-flip	angle	only.	The	subset	of	directions	was	chosen	for	

maximally	even	coverage	in	the	angular	domain,	ensuring	a	fair	comparison	of	an	

equal	number	of	directions	and	similar	angular	resolution	between	the	one-	and	

two-flip	angle	analyses.	

The	one-	vs	two-flip	angle	PDD	estimates	were	compared	using	a	measure	

of	angular	uncertainty	from	the	orientations	of	samples	from	the	posterior	

distribution	(Jbabdi	et	al.,	2012).	The	resulting	estimate	(defined	as	a	scalar	

between	0	and	1,	where	a	larger	number	corresponds	to	a	higher	uncertainty)	

reflects	the	extent	to	which	tractography	can	be	successfully	performed	within	

the	brain.	

	

Combination	of	eigenvalue	estimates	at	two-flip	angles	to	a	single	effective	b-value	

In	order	to	estimate	voxelwise	ADC	maps	for	a	single	b:;;	across	the	brain,	we	

first	need	to	fit	the	parameters	of	our	model	of	non-Gaussian	diffusion.	As	in	our	

previous	work	(Tendler	et	al.,	2019),	we	use	a	gamma	distribution	of	diffusivities	
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with	mean,	𝐷=	and	standard	deviation,	𝐷>	in	each	voxel.	Below	we	describe	a	

robust	procedure	to	achieve	this.	

For	each	voxel,	we	first	obtain	ADC	estimates	obtained	separately	at	a	low	

and	high	flip	angle	using	the	full	Buxton	model	(Buxton,	1993).	These	ADC	

estimates	are	fit	with	simulated	ADCs	for	a	given	set	of	𝐷=	and	𝐷>	(with	a	

measured	T1	and	T2)	as	follows:	

		min
GH,GI

JADCKLM:OP,OQ(𝐷=,𝐷>) − ADC:UV:OP,OQ(𝑥, 𝑦, 𝑧)J,
,
			

+𝜆J𝐷= − ADC:UV:OQ(𝑥, 𝑦, 𝑧)J,
,	
								[1],						

where	𝛼&	and	𝛼,	are	the	voxelwise	DW-SSFP	flip	angles	(defined	as	the	nominal	

flip	angles	scaled	by	the	B1	gain	factor),	ADC]UV:OP,OQ 	are	the	voxelwise	

experimental	ADC	estimates	at	each	flip	angle	and	ADCKLM:OP,OQare	the	simulated	

ADC	estimates	for	a	given	𝐷=	and	𝐷>	at	each	flip	angle.	To	prevent	overfitting	to	

the	experimental	data,	a	regularisation	term	can	be	additionally	introduced	to	

ensure	the	estimate	of	𝐷=	remains	on	the	order	of	the	ADCs	estimated	separately	

from	the	one-flip	angle	analyses	(𝜆	is	the	regularisation	parameter).	Details	of	

the	incorporation	of	a	Gamma	distribution	of	diffusivities	into	the	Buxton	model,	

which	form	the	definition	of	ADCKLM(𝐷=,𝐷>)	can	be	found	in	(Tendler	et	al.,	

2019).	

	Here,	tensor	estimates	were	first	obtained	using	the	full	set	of	120	DW-

SSFP	directions	obtained	at	each	flip	angle.	Fitting	a	tensor	model	to	the	

experimental	data,	a	shared	set	of	𝑉C⃗&,,,A	and	unique	𝐿&,,,A	at	each	flip	angle	were	

estimated	separately.	In	the	second	stage,	the	eigenvectors	were	then	fixed	and	

the	posterior	distribution	of	the	𝐿&,,,A	estimates	were	fit	using	Eq.	[1]	to	

determine	voxelwise	estimates	of	𝐷=	and	𝐷>	as	described	(Tendler	et	al.,	2019).	

Fitting	was	performed	separately	for	each	eigenvalue	to	determine	a	unique	𝐷=	

and	𝐷>	for	𝐿&,	𝐿,	and	𝐿A.	Fitting	was	performed	in	Python	using	SciPy curve_fit, 

implemented with the Levenberg-Marquardt algorithm (Levenberg, 1944) and 

accelerated	using	the	Numba	compiler	(Lam	et	al.,	2015).	

𝐿&,,,A	estimates	were	subsequently	derived	over	the	entire	brain	in	terms	of	a	

single	b:;; 	(Fig.	3d)	using	the	framework	in	(Tendler	et	al.,	2019)	(described	in	

Supplementary	Material	Fig.	S1).	The	b:;;	was	chosen	to	account	for	the	variable		
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Figure	4:	Visual	comparison	of	the	PDD	estimates.	For	the	24o	dataset,	B1	inhomogeneity	

leads	to	incoherent	PDD	estimates	near	the	brain	boundary	(red	box),	with	coherent	PDD	

estimates	near	the	centre	of	the	brain	(orange	box).	For	the	94o	dataset,	the	converse	is	true.	

By	fitting	with	two-flip	angles	(24o	+	94o),	we	obtain	a	good	compromise	between	the	low	and	

high	flip	angle	datasets,	yielding	coherent	PDD	estimates	over	the	entire	brain.		

	

SNR	of	the	𝐿&,,,A	estimates	over	the	entire	brain	to	produce	SNR-optimal	results,	

as	described	in	the	Supplementary	Material.	

	

Results	

Comparison	of	PDD	estimates	acquired	with	one-	and	two-flip	angle	acquisitions	

The	benefit	of	the	time-matched	two-flip	angle	approach	for	overcoming	B1	

dependent	CNR	in	PDD	estimates	is	illustrated	in	Fig.	4.	PDD	estimates	derived	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2019. ; https://doi.org/10.1101/861880doi: bioRxiv preprint 

https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

from	data	acquired	with	a	24˚	nominal	flip	angle	(120	directions)	display	greater	

coherence	between	voxels	near	the	centre	of	the	brain	(Fig.	4	orange	box	–	24o).	

As	the	scanner	sets	the	nominal	flip	angle	of	24o	to	be	matched	to	this	region,	we	

expect	the	CNR	to	be	maximized	(as	predicted	in	Fig.	1b).	Within	this	region,	

clear	delineation	of	the	striations	within	the	internal	capsule	are	visible.	In	this	

same	region,	the	PDD	estimates	with	a	94˚	nominal	flip	angle	(120	directions)	

are	less	coherent	(Fig.	4	orange	box	–	94o).	At	the	brain	boundary	where	the	

actual	flip	angle	is	far	below	the	nominal	flip	angle,	the	opposite	is	true.	The	PDD	

estimates	at	94o	reveal	clear	depiction	of	cortical	folding	patterns	(Fig.	4	red	box	

-	94o),	which	are	corrupted	by	noise	at	24˚	(Fig.	4	red	box	-	24o).	In	comparison,	

PDD	estimates	of	the	two-flip	angle	data	(120	directions,	60	directions	at	24o	and	

60	directions	at	94o)	(Fig.	4	24o+94o)	demonstrate	that	regionally	dependent	

benefits	associated	with	each	single-flip	analysis	are	captured	by	the	two-flip	

angle	approach.	In	this	combined	scan	time-matched	dataset,	it	is	possible	to	

visualize	cortical	folding,	whilst	maintaining	the	striations	within	the	internal	

capsule.		

	 Figure	5	shows	how	the	angular	uncertainty	varies	as	a	function	of	B1,	

where	low	uncertainty	indicates	high	CNR.	In	all	five	datasets,	the	low	B1	near	

the	periphery	of	the	brain	leads	to	a	higher	angular	uncertainly	in	the	24o	

datasets	when	compared	to	those	acquired	at	94o.	In	areas	of	high	B1	the	

opposite	is	true,	in	agreement	with	Fig.	4.	The	dual-flip	approach	(24o+94o)	is	

able	to	generate	PDD	estimates	with	angular	uncertainty	closer	to	the	best	

performance	obtained	for	the	one-flip	angle	datasets	at	the	extremes	of	high	or	

low	B1,	and	in	many	cases	outperforms	either	single-flip	dataset	between	these	

values	(i.e.	where	the	curves	cross	in	Fig.	5).	A	histogram	(Fig.	5,	bottom	right)	

shows	the	broad	range	of	B1	values	sampled	in	our	post-mortem	brains.	

	 Figure	6	shows	a	map	of	the	difference	in	uncertainty	between	the	one-	

and	two-flip	angle	results.	While	there	are	parts	of	the	brain	where	acquisition	at	

a	single,	optimal	flip	angle	provides	slightly	lower	uncertainty	compared	to	the	

two-flip	angle	approach	(light	red),	over	the	entire	dataset	the	dual-flip	approach	

provides	a	net	gain	(dark	blue).	By	creating	a	histogram	of	the	difference	in	PDD	

angular	uncertainty	between	the	one-	and	two-flip	angle	analyses	(Fig.	7),	we	can	

see	an	increased	fraction	of	voxels	with	the	two-flip	angle	approach	that	have	a		
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Figure	5:	PDD	angular	uncertainty	as	a	function	of	B1.		In	all	5	brains,	it	can	be	seen	that	

PDD	angular	uncertainty	estimates	are	reduced	in	areas	of	low/high	B1	for	the	94o/24o	

datasets	respectively.	After	the	proposed	combination	of	two-flip	angle	data	(24o	+	94o),	the	

PDD	uncertainty	estimates	are	closer	to	those	of	the	single-flip	angle	within	their	respective	

regions	of	high	CNR.	Plots	generated	in	white	matter	only	from	the	PDD	uncertainty	and	B1	

maps	for	each	of	the	five	datasets.	The	standard	error	of	PDD	dispersion	values	are	plotted	for	

each	brain,	but	due	to	the	large	number	of	points	per	bin	these	error	bars	are	too	small	to	be	

visualized.	The	B1	histogram	(bottom	right)	reveals	that	the	B1	values	sampled	within	these	

datasets	spans	a	wide	range	of	B1,	with	error	bars	denoting	the	standard	deviation	over	the	

five	datasets.	
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Figure	6:	Visual	comparison	of	the	differences	in	PDD	angular	uncertainty.	Positive	values	

(blue)	display	regions	where	the	two-flip	angle	approach	outperforms	the	single-flip	angle,	

whereas	negative	values	(red)	display	the	opposite.	Areas	of	higher/lower	uncertainty	are	in	

good	visual	agreement	with	the	coherence	of	the	PDD	estimates	in	Fig.	4.	To	aid	visualization,	

the	uncertainty	differences	were	smoothed	with	a	Gaussian	filter	(standard	deviation	=	1	mm).	

	

large	reduction	in	uncertainty	in	comparison	to	24o	(all	brains)	and	94o	(4/5	

brains)	(blue	curves	above	red).	The	opposite	is	true	for	small	differences	in	

angular	uncertainty	(red	curves	above	blue).	The	overall	improvements	in	

angular	uncertainty	for	the	two-flip	angle	approach	vs	94o	are	reduced	in	

comparison	to	24o,	reflecting	the	large	number	of	voxels	at	24o	which	have	high	

angular	uncertainty	(Fig.	5).		

	

Combination	of	eigenvalue	estimates	at	two-flip	angles	to	a	single	b:;; 	

𝐿&,,,A	estimates	calculated	from	DW-SSFP	data	at	24o	and	94o	(Fig.	8)	display	

observable	differences	in	the	derived	diffusivity	values,	overall	showing	an	

increased	diffusivity	estimate	at	94o	(confirmed	in	Fig.	9).	Previous	work	

(Tendler	et	al.,	2019)	makes	clear	that	effective	b-values	are	overall	higher	with	

lower	flip	angles,	which	would	be	consistent	with	these	variations	in	diffusivity	

being	driven	by	restriction	in	tissue.	Furthermore,	this	indicates	that	we	cannot	

simply	average	the	eigenvalue	estimates	acquired	at	different	DW-SSFP	flip	

angles,	as	it	would	combine	maps	with	distinct	ADC	estimates	at	each	flip	angle.	

𝐿&,,,A	maps	at	the	SNR-optimal	b:;;	(determined	as	b:;; = 7600	s/mm,	–	details		
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Figure	7:	Quantitative	comparison	of	the	differences	in	PDD	angular	uncertainty.	These	

PDD	uncertainty	difference	histograms	represent	the	number	of	voxels	where	the	one-/two-

flip	angle	PDD	estimates	outperforms	the	other.	Here,	solid/dashed	lines	refer	to	the	

difference	between	the	24o/94o	and	the	two-flip	angle	approach	respectively.	Blue	lines	

indicate	the	number	of	voxels	that	the	two-flip	angle	approach	outperforms	the	single-flip	

angle,	whereas	the	red	lines	display	the	opposite.	A	log	scale	is	used	on	both	the	x-	and	y-axes.	
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of	derivation	in	Supplementary	Material)	show	a	reduced	inhomogeneity	in	

comparison	to	the	24o	dataset,	and	improved	SNR	when	compared	to	94o.	

	 As	shown	in	Fig.	9,	the	reconstructed	𝐿&	estimates	at	b:;; = 7600	s/mm,	

give	good	agreement	to	the	24o	results	at	high	B1,	whilst	maintaining	a	flatter	

distribution	at	lower	B1	within	all	five	brains.	The	crossing	point	of	the	𝐿&	curves	

at	24o	and	b:;; = 7600	s/mm,	reveals	the	approximate	flip	angle	along		𝐿&	where	

b:;; = 7600	s/mm,.		

Fractional	anisotropy	(FA)	maps	over	all	five	brains	(Fig.	10)	additionally	

display	differences	in	the	estimated	FA	at	24o	and	94o	(confirmed	in	Fig.	11),	

consistent	with	restriction	along	𝐿&,,,A.	These	FA	maps	have	an	increased	

sensitivity	to	noise	in	comparison	to	the	𝐿&,,,A	estimates	and	the	FA	maps	derived	

from	DW-SSFP	data	at	24o/94o	have	low	SNR	at	the	edge/centre	of	the	brain	

respectively,	consistent	with	the	PDD	results	in	Fig.	4.	The	FA	maps	generated	at	

b:;; = 7600	s/mm,	do	not	reveal	the	same	spatial	variation,	yielding	high	SNR	

across	the	brain.	The	impact	of	B1	is	displayed	in	Fig.	11.	

	

Discussion	

This	work	demonstrates	how	the	effects	of	B1	inhomogeneity	in	DW-SSFP	can	be	

accounted	for	by	using	data	acquired	at	two-flip	angles	and	an	appropriate	signal	

model	that	captures	non-Gaussian	diffusion.	By	utilizing	a	pair	of	prescribed	flip	

angles	that	optimize	CNR	across	a	range	of	B1,	we	provide	a	means	to	obtain	a	

homogeneous	and	interpretable	characterization	of	diffusion	across	the	brain.	

We	demonstrate	the	potential	of	this	approach	by	quantifying	the	spatial	profile	

of	angular	uncertainty	in	PDD	estimates	and	diffusivity	estimates	as	a	function	of	

B1.		

	 Previous	work	(Foxley	et	al.,	2014a)	demonstrated	that	with	a	one-flip	

angle	DW-SSFP	acquisition,	angular	uncertainty	in	PDD	estimates	was	reduced	

by	increasing	field	strength	from	3T	to	7T,	providing	motivation	to	move	to	

higher	field	when	performing	tractography.	This	reduction	in	uncertainty	would	

be	expected	in	local	regions	of	tissue	due	to	the	higher	SNR	associated	with	an	

increase	in	field	strength,	but	would	be	mitigated	by	the	B1	effects	considered	in	

this	work	(Fig.	4).	Using	the	two-flip	approach	described	in	this	paper,	PDD	

estimates	at	7T	can	be	obtained	over	whole	post-mortem	brain	samples	(Fig.	4),	
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Figure	9:	Quantitative	comparison	of	𝑳𝟏	estimates	vs	B1.	Here	we	observe	an	increased	𝐿&	

estimate	in	DW-SSFP	data	acquired	at	94o,	in	agreement	with	(Tendler	et	al.,	2019)	and	Fig.	3c.	

The	𝐿&	estimates	at	b:;; = 7600	s/mm,	display	a	flatter	distribution,	consistent	with	removal	

of	the	influence	of	B1.	Plots	generated	in	white	matter	only	from	the	𝐿&	and	B1	maps	for	each	of	

the	five	datasets.	The	standard	error	of	𝐿&	estimates	within	each	bin	are	plotted	for	each	brain,	

but	due	to	the	large	number	of	points	per	bin	these	error	bars	are	too	small	to	be	visualized.	
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Figure	11:	Quantitative	comparison	of	FA	estimates	vs	B1.	Here	we	observe	an	increased	FA	

estimate	in	DW-SSFP	data	acquired	at	94o,	consistent	with	variations	in	the	non-Gaussian	

properties	of	tissue	along	the	estimated	eigenvalues.	Plots	generated	in	white	matter	only	

from	the	FA	and	B1	maps	for	each	of	the	five	datasets.	The	standard	error	of	FA	estimates	

within	each	bin	are	plotted	for	each	brain,	but	due	to	the	large	number	of	points	per	bin	these	

error	bars	are	too	small	to	be	visualized.	
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reducing	the	number	of	voxels	with	high	angular	uncertainty	in	tissue	regions	

that	experience	a	sub-optimal	flip	angle	(Fig.	7).	Given	the	pattern	of	B1	and	the	

need	for	high	quality	data	in	central	white	matter	for	tractography,	there	is	a	

particular	benefit	for	tractography	into	the	grey	matter.	This	is	a	potentially	

important	improvement	as	such	measurements	would	allow	for	resolving	inter-

cortical	tracts	such	as	U-fibers	as	well	as	more	accurately	depicting	white	matter	

penetration	of	cortical	grey	matter	away	from	the	gyral	crown.	

	 For	these	post-mortem	brain	samples,	SNR-optimal	estimates	are	

predicted	to	be	achieved	at	a	low	flip	angles.	Our	SNR-optimal	b:;;	corresponds	

to	an	approximate	flip	angle	of	20o	−	24o	(Supplementary	Material	Fig.	S2d),	

achieved	at	B1	values	of	0.83-1/0.19-0.26	for	the	24o/94o	datasets.	The	plots	in	

Fig.	5	show	that	the	two-flip	angle	approach	achieves	an	angular	uncertainty	

estimate	closer	to	the	single	flip	angle	approach	in	these	B1	regions	and	often	

performs	better	between	these	B1	values.	Further	improvement	could	be	

achieved	by	incorporating	weighting	into	the	two-flip	angle	DWSSP	tensor	model	

fitting	(i.e.	weighted	least	squares),	reducing	the	influence	of	the	DW-SSFP	flip	

angle	with	high	angular	uncertainty.	This	would	be	particularly	noticeable	for	

the	94o	case,	where	at	present	the	high	angular	uncertainty	associated	with	the	

24o	datasets	near	the	brain	boundary	reduces	the	performance	of	the	two-flip	

angle	method.	

An	increased	estimate	of	ADC	at	higher	flip-angles	(Figs.	8	and	9)	

demonstrates	deviations	of	the	DW-SSFP	signal	from	the	Buxton	model,	

consistent	with	a	model	of	restriction	and	the	results	in	(Tendler	et	al.,	2019).	

Our	correction	reduces	the	variation	of	ADC	with	B1	(Fig.	9),	in	addition	to	

modifying	the	distribution	of	derived	metrics	such	as	FA	(Fig.	11).	This	allows	for	

more	accurate	comparisons	of	diffusivity	estimates	within	different	brain	

regions.	Furthermore,	as	the	B1	distribution	is	not	reliably	calibrated	at	scan	

time,	our	approach	allows	for	comparison	of	diffusivity	estimates	between	

different	post-mortem	brain	samples.	The	divergence	of	the	24o	and	b:;; =

7600	s/mm,	plots	(Figs.	9),	emphasizes	the	influence	of	B1	on	measured	ADC.	

The	FA	maps	in	Fig.	10	reveal	the	trend	of	reduced	SNR	at	24o	/94o	near	

the	centre/edge	of	the	brain,	consistent	with	the	PDD	(Fig.	4)	maps.	However,	in	

the	eigenvalue	estimates	at	24o,	we	observe	a	sharply	decreasing	diffusivity	
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estimate	in	areas	associated	with	very	low	B1	(Figs.	8	and	9),	with	a	distinctive	

shading	near	the	brain	boundary,	most	notable	in	the	𝐿&	map.	This	shading	is	

hypothesised	to	be	additionally	driven	by	the	noise	floor	on	our	DW-SSFP	data,	

leading	to	a	reduced	diffusivity	estimate	in	areas	of	low	signal	(Jones	and	Basser,	

2004).	Future	work	will	investigate	the	use	of	a	noise	floor	correction	to	account	

for	this	bias.	

This	study	was	motivated	by	the	interest	in	understanding	whether	

diffusivity	could	provide	biomarkers	that	are	related	to	neuropathology	in	ALS.	

This	necessitates	measures	of	diffusivity	in	post-mortem	tissue	that	can	be	

compared	to	histopathological	stains.	To	be	meaningful,	these	diffusivity	

measures	need	to	be	driven	primarily	by	the	underlying	tissue	(as	reflected	in	

restrictions	that	cause	non-Gaussian	behaviour)	rather	than	confounds	like	B1	

inhomogeneity.	For	example,	neurodegenerative	diseases	such	as	ALS	have	been	

shown	to	reduce	FA	in	vivo	(Agosta	et	al.,	2010).	A	more	consistent	measurement	

of	FA	across	white	matter,	obtained	from	results	at	a	single	b:;;	(Fig.	10)	would	

allow	for	more	accurate	measurements	in	post-mortem	data	to	corroborate	in	

vivo	findings.	Future	work	that	directly	compares	diffusivity	to	histology	will	

consider	whether	there	is	evidence	for	a	neuropathological	signature	in	diffusion	

MRI.		

		

Conclusion	

DW-SSFP	at	7T	has	the	potential	to	provide	high	signal	and	contrast	diffusion	

weighted	imaging	in	post-mortem	tissue.	However,	B1	inhomogeneity	coupled	

with	the	dependence	of	diffusion	contrast	on	flip	angle	means	that	the	resulting	

signal	is	not	straightforward	to	interpret.	We	proposed	to	use	a	multi-flip	angle	

DW-SSFP	acquisition	alongside	a	non-Gaussian	signal	model	to	account	for	B1	

inhomogeneity	at	7T.	With	this	method,	we	can	obtain	improved	estimates	of	

diffusion	properties	within	tissue,	including	both	quantitative	diffusivities	and	

fibre	orientations.		
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