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Abstract

Diffusion-weighted steady-state free precession (DW-SSFP) is an SNR-efficient diffusion imaging
method. The improved SNR and resolution available at ultra-high field has motivated its use at
7T. However, these data tend to have severe B: inhomogeneity, leading not only to spatially
varying SNR, but also to spatially varying diffusivity estimates, confounding comparisons both
between and within datasets. This study proposes the acquisition of DW-SSFP data at two-flip
angles in combination with explicit modelling of non-Gaussian diffusion to address B1
inhomogeneity at 7T. DW-SSFP datasets were acquired from five fixed whole human post-
mortem brains with a pair of flip angles that jointly optimize the diffusion contrast-to-noise
across the brain. We compared one and two flip-angle DW-SSFP data using a diffusion tensor
model that incorporates the full DW-SSFP Buxton signal model. The two-flip angle data were
subsequently fitted using a modified DW-SSFP signal model that incorporates a Gamma
distribution of diffusivities. This allowed us to generate tensor maps at a single, SNR-optimal
effective b-value yielding more consistent SNR across tissue, in addition to eliminating the B1
dependence on diffusion coefficients and orientation maps. Our proposed approach will allow the
use of DW-SSFP at 7T to derive diffusivity estimates that have greater interpretability, both

within a single dataset and between experiments.
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Highlights

® B;inhomogeneity at 7T leads to spatially varying SNR & ADC estimates in
DW-SSFP

® 2-flip angle DW-SSFP data can address B1 effects in a cohort of post-

mortem brains

® Qur approach reduces degradations in PDD estimates & improves whole

brain coverage

® Qur approach provides a means to define ADCs at an SNR-optimal

effective b-value
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Introduction

Diffusion imaging of post-mortem human brains has important applications for
both validating diffusion contrast mechanisms through comparison with
microscopy and achieving very high-resolution data with long scan times.
However, post-mortem diffusion imaging presents significant challenges due to
changes in tissue properties related to death and fixation. Unfavorable
reductions in T1, T2 and diffusion coefficient have been observed in fixed tissue
using a variety of fixation methods (Blamire et al., 1999; D’Arceuil and de
Crespigny, 2007; Dawe et al,, 2009; Shepherd et al., 2009; Yong-Hing et al.,
2005).

One method to overcome these changes is to utilize an imaging strategy
that allows for fast acquisition of the MR signal to overcome the losses associated
with the shortened T values. We have previously proposed the use of diffusion-
weighted steady-state free precession (DW-SSFP) for post-mortem imaging due
to its ability to achieve robust signal and strong diffusion contrast in short-T>
species (McNab et al,, 2009). The high signal-to-noise (SNR) efficiency of DW-
SSFP compared to diffusion-weighted spin echo (DW-SE) acquisitions enables
improvements in the quality of both diffusion tractography and estimates of
multiple fiber populations at 3T (Miller et al.,, 2012), motivating its use in post-
mortem samples (Vasung et al., 2019; Wilkinson et al., 2016).

Ultra-high field scanners have potential to enable further gains in spatial
resolution, with DW-SSFP providing a valuable tool for addressing the even
shorter T values at 7T and above (Foxley et al., 2014a). However, DW-SSFP data
acquired at 7T are compromised by B: inhomogeneity (Fig. 1a). This presents us
with a challenge: unlike other diffusion imaging sequences, both the signal (Fig.
1b) and diffusion attenuation (Fig. 1c) in DW-SSFP are sensitive to flip angle
(Buxton, 1993).

When considering B; inhomogeneity, the sensitivity of DW-SSFP to flip
angle first leads to spatially varying SNR across the brain (Fig. 1d). Second, a
different flip angle also translates into a different “effective b-value” (Tendler et
al., 2019) in DW-SSFP. When performing DW-SSFP experiments at 7T, even when
incorporating the DW-SSFP signal model (Buxton, 1993), non-Gaussian diffusion

(due to restrictions in tissue) can lead to B1-dependent diffusivity estimates
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across the brain. This is analogous to acquiring a dataset with different b-values
across the brain with a standard DW-SE experiment.

Given a B field map, we propose an approach to account for these issues
by acquiring a pair of DW-SSFP datasets at two different flip angles. This dual-
flip angle approach has two advantages: Firstly, our flip angles can be chosen so
different regions of tissue have high SNR in the individual datasets (Foxley et al.,
2014b). We can subsequently combine the datasets in a manner to yield high
SNR diffusivity estimates over the entire brain. Secondly, we can modify the DW-
SSFP signal equation to account for how the measured apparent diffusion
coefficient (ADC) varies with flip angle under a simple model of non-Gaussian
diffusion. From this, we can explicitly model the relationship between the
effective b-value and flip angle (Tendler et al., 2019). Here we describe a method
to subsequently derive diffusivity estimates over the entire brain sample
interpolated to a single SNR-optimal effective b-value, removing the influence of

B1.

Theory

Dual-flip angle acquisition to optimise diffusion contrast

It is possible to apply a desired flip angle anywhere in the brain given accurate
knowledge of the B1 distribution and appropriate choice of nominal flip angle.
This effect is demonstrated in Fig. 1d, which displays a single slice through a DW-
SSFP dataset where the nominal flip angle is changed by 10° increments from 5°©
to 115°. By changing the nominal flip angle, a bright concentric ring is seen to
move radially from the centre of the brain towards the edge.

An arbitrarily optimized flip angle for the DW-SSFP signal can therefore
be predictably positioned with knowledge of Bi. We propose that the signal
dependency on B can be mitigated by acquiring data with an optimized pair of
flip angles. Figure 2 outlines our proposed optimization procedure, which aims
to produce high contrast across the entire brain. The goal is to identify an
optimal pair of nominal flip angles based on the predicted diffusion contrast
(here defined as the difference between the non-diffusion and diffusion weighted
signals). An ideal flip angle pair would achieve both high and homogeneous

contrast over a large range of fractional B (Fig. 2). To achieve this, DW-SSFP
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contrast curves were generated for every pair of flip angles (Fig. 2a) and their
mean (i) and standard deviation (o) over a range of By values were determined.
To identify a flip angle pair that represented a balance of high contrast and
homogeneity across a range of By, we calculated the variance-normalized mean
(n/o) of all flip angle pairs (Fig. 2b), and chose the peak value as our optimal pair
of flip angles (Fig. 2c). We considered a range of 30-100% of the maximum B;
(Fig. 2a) to ensure that the optimization is not dominated by a minority of voxels

with very low Bi.
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Figure 2: Optimization used for the two-flip angle DW-SSFP acquisition. The red and blue
curves in (a) show the variation in diffusion contrast (difference of diffusion weighted and
non-diffusion-weighted signal) across the brain as a function of B1. We combined the contrast
curves across pairs of flip angles to maximize the quantity u/o (b), where u is the mean
contrast across the Bi range and o is the standard deviation. This metric aims for maximum
contrast with minimum variation across the brain (black curve on the left). Here, we only
considered a range of 30%-100% of maximum B: for our calculations of p and ¢ which
corresponds to ~90% of the brain, so as not to have the optimization dominated by a minority
of brain voxels where contrast changes rapidly with flip angle. Our simulations estimated a
CNR-optimal flip angle pair of 24° and 94° (c). Simulation parameters were approximately
matched to our protocol at 7T: T; = 500 ms, T, = 30 ms, ADC = 1 - 10~* mm? /s, TR = 30 ms,

diffusion gradient amplitude= 52 mT/m, diffusion gradient duration= 14 ms.
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A DW-SSFP effective b-value

In the presence of non-Gaussian diffusion, ADC estimates are highly susceptible
to flip-angle variations in DW-SSFP (Tendler et al., 2019). This is a direct result of
the signal representing a linear mixture of coherence pathways with different b-
values, where the relative weight of pathways is determined by the flip angle.
Figures 3a and b show simulations comparing multi-shell DW-SE and multi-flip
angle DW-SSFP signal attenuation for systems defined by a single diffusion
coefficient (Gaussian) vs a gamma distribution of diffusivities (non-Gaussian).
Under Gaussian diffusion, the diffusion attenuation curves (blue lines) do not
overlap for different diffusion coefficients. However, for non-Gaussian diffusion
(orange lines), the diffusion attenuation curves cross through the blue lines,
indicating a change in the measured ADC. The dependence of ADC on b-value in
DW-SE is well established. For DW-SSFP a similar effect exists, where the
effective b-value is indirectly modified via the flip angle.

In DW-SSFP, this flip angle dependence on ADC prevents a simple
(weighted) averaging of ADC estimates across acquisitions with multiple flip
angles (to produce a composite ADC map with homogeneous SNR). This
additionally leads to spatially-dependent ADC estimates within a single DW-SSFP
dataset, arising due to B1 inhomogeneity combined with non-Gaussian diffusion.

A solution to this problem may be as follows: From DW-SSFP data in a
voxel acquired at two nominal flip angles, we can use the standard Buxton signal
model (Buxton, 1993) to calculate an ADC estimate for each flip angle (Fig. 3c -
black dots). We can then fit these ADC estimates with a modified Buxton model
that incorporates non-Gaussian diffusion (Fig. 3c - orange line). Based on this
characterisation of the non-Gaussianity in our voxel, we can calculate the ADC
estimate at any given flip angle by interpolating (or extrapolating) along the DW-
SSFP signal model curve. Thus, we can eliminate the influence of B1 on our ADC
estimates by calculating the ADC at the same flip angle over the entire brain.

In DW-SSFP, parameters in addition to the flip angle can lead to changes
in the estimated ADC, including the relaxation times T1 and T». Motivated by this,
recent work (Tendler et al,, 2019) redefined the DW-SSFP signal in terms of an
‘effective’ b-value, b.g, the equivalent b-value with the DW-SE sequence that

leads to the same estimate of ADC (Fig. 3d) under an identical model of non-
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Gaussian diffusion. This definition accounts for the influence of these different
parameters on the measured ADC, in contrast to previous work (Miller et al.,
2012), which defined b.¢ in terms of the DW-SSFP diffusion attenuation. The
new definition of b.¢ allows for direct comparisons of results to equivalent DW-
SE data assuming the same model of non-Gaussianity. The effective b-value can
be additionally chosen to account for the variable SNR of DW-SSFP data at
different nominal flip angles/Bj, to optimize the SNR of the ADC estimates over

the entire brain (described in Supplementary Material).
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Figure 3: Simulating non-Gaussian diffusion effects on ADC. (a/b) Comparison of the
diffusion attenuation of a multi-shell DW-SE (a) and multi-flip angle DW-SSFP (b) experiment
in a system defined by a single diffusion coefficient (blue lines) or a gamma distribution of
diffusivities (orange line). Non-Gaussian diffusion (gamma distribution of diffusivities) leads
to variable measurements of ADC with b-value/flip angle. Given ADC estimates from the DW-
SSFP signal at two-flip angles (c - black dots), we can fit a gamma distribution of diffusivities
(c - orange dashed line), which predicts the ADC at any given flip angle. (d) As described in
(Tendler et al., 2019), this can further be used to describe the system at a well-defined b-value

(d).
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In this work, we utilise a Gamma distribution of diffusivities to capture
non-Gaussian diffusion (Jbabdi et al., 2012; Tendler et al., 2019). We chose a
Gamma distribution in part because it only adds a single extra free parameter in
comparison to a Gaussian diffusion model. A more common model of non-
Gaussianity is bi-exponential diffusion, but this model is both relatively crude
and requires the addition of two free parameters. Furthermore, the gamma
distribution is only defined for positive diffusion coefficients and can be
parameterised in terms of a mean, D,,, and standard deviation, D;. This allows
for the incorporation and correction for the non-Gaussian diffusion properties of
DW-SSFP data acquired at only two-flip angles. Further details of this framework
can be found in (Tendler et al., 2019).

Methods

Sample preparation

Data were acquired in post-mortem human brains (n=5), comprised of two
control brains and three brains from patients diagnosed with amyotrophic
lateral sclerosis (ALS). Brains were extracted from the skull within 72 hours
after death. All brains were fixed for at least 45 days prior to scanning, with four
brains fixed in 10% PBS buffered formalin and one brain fixed in 10% formalin.
Prior to scanning, brains were removed from formalin and submerged in a
perfluorocarbon liquid (Fluorinert FC-3283, 3M). The study was conducted
under the Oxford Brain Bank's generic Research Ethics Committee approval

(15/SC/0639).

MRI Data acquisition protocol

Data were obtained over the entire brain of each post-mortem sample on a
human 7T Siemens whole body scanner (32ch-receive/1ch-transmit head coil).
For each brain, DW-SSFP datasets were acquired at two-flip angles (24° and 94°),
chosen based on the optimization described above. At each flip angle, 120
diffusion directions (q = 300cm1) and six non-diffusion weighted datasets were
acquired (resolution = 0.85-0.85-0.85 mm?3), with the same set of directions for
both flip angles. To prevent banding artefacts in the non-diffusion weighted

datasets, a slight diffusion gradient was applied along (x,y,z) =
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(0.557,0.577,0.577) to serve as a spoiler (q = 20cm1) (Zur et al., 1988).

To aid in DW-SSFP quantification, we also acquired: B1 maps with an
actual flip angle (AFI) acquisition (Yarnykh, 2007); T1 maps from a turbo
inversion-recovery (TIR) sequence; and Tz maps from a turbo spin-echo (TSE)

sequence. Full details of the acquisition protocol are provided in Table 1.

DW-SSFP Turbo inversion-recovery (TIR)
g-value (cm1) 300 Resolution (mm3) 0.9-0.9-0.9
Diffusion Gradient Duration (ms) 13.56 Number of inversions 6
Diffusion Gradient Strength (mTm-?) 52 TE (ms) 14
Flip angles (°) 24 and 94 TR (ms) 1000
No. directions (per flip angle) 120 TIs (ms) 30, 60, 120, 240, 480 & 935
No. non-DW (per flip angle) 6 (q=20 cm?) Flip angle (°) 180
Resolution (mm3) 0.85-0.85-0.85 GRAPPA acc. factor 3
TE (ms) 21 Bandwidth (Hz per pixel) 130
TR (ms) 28 Acquisition time (per TI) 40:49
EPI factor 3 Number of averages 1
Bandwidth (Hz per pixel) 393
Acquisition time (per direction/non-DW)  5:47 Turbo spin-echo (TSE) - T,
Acquisition time (per flip angle) 12:08:42 Resolution (mm3) 0.9-0.9-0.9
No. of averages 1 Number of echoes 6

TEs (ms) 13, 25,38,50,63 & 76
Actual flip-angle imaging (AFI) - By TR (ms) 1000
Resolution (mm3) 3-3-3 Flip angle (°) 180
TE (ms) 1.5 GRAPPA acc. factor 2
TR1/TRz (ms) 4.4/11 Bandwidth (Hz per pixel) 166
Flip angle (°) 60 Acquisition time (per TE) 36:01
Bandwidth (Hz per pixel) 630 Number of averages 1
Acquisition time 0:41
Number of averages 1

Table 1: MRI imaging parameters. The imaging parameters of the DW-SSFP dependency
acquisitions (AFI, TIR and TSE) are representative of the parameters used, small modifications

were made to these acquisitions as protocols evolved.

Data Processing

All coregistrations between and within imaging modalities were performed with
a 6 degrees-of-freedom (translations and rotations) co-registration via FLIRT
(Jenkinson et al,, 2002; Jenkinson and Smith, 2001). A Gibbs ringing correction
was performed on the DW-SSFP, TIR and TSE datasets (Kellner et al., 2016). T
and T, maps were generated from the TIR and TSE data via a voxelwise fit
assuming mono-exponential signal evolution. Bi maps were generated from the
AFI datasets via the processing outlined in the original publication (Yarnykh,
2007) All data were processed and analyzed using the FMRIB software library
(FSL) (Jenkinson et al., 2012) and Python (Millman and Aivazis, 2011). A

diffusion tensor model that incorporates the full DW-SSFP Buxton signal model,

10
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including T4, Tz and B1 (Buxton, 1993) was fitted to the DW-SSFP data using
cuDIMOT (Hernandez-Fernandez et al., 2019).

This work incorporates two versions of the diffusion tensor model, one
which fits DW-SSFP data acquired at one-flip angle and one that fits a tensor to
data at two-flip angles simultaneously. The latter analysis outputs a unique set of

eigenvalues, L, ; 3, for the DW-SSFP data acquired at each flip angle, but is

constrained to a shared set of eigenvectors, 171,2,3. All comparative analyses were
done solely over white matter, with white matter masks generated using FAST
(Zhang et al., 2001), followed by manual removal of any remaining grey matter

regions.

Comparison of PDD estimates acquired with one- and two-flip angle acquisitions
To compare the resulting diffusion eigenvectors between the one- and two-flip
angle acquisitions, a time-matched comparison was performed. A subset of the
data (60 directions at each flip angle) were selected and fitted with the two-flip
angle DW-SSFP tensor model described above. These model fits were compared
to the results obtained from fitting to all 120 directions of DW-SSFP data
acquired at one-flip angle only. The subset of directions was chosen for
maximally even coverage in the angular domain, ensuring a fair comparison of an
equal number of directions and similar angular resolution between the one- and
two-flip angle analyses.

The one- vs two-flip angle PDD estimates were compared using a measure
of angular uncertainty from the orientations of samples from the posterior
distribution (Jbabdi et al., 2012). The resulting estimate (defined as a scalar
between 0 and 1, where a larger number corresponds to a higher uncertainty)
reflects the extent to which tractography can be successfully performed within

the brain.

Combination of eigenvalue estimates at two-flip angles to a single effective b-value
In order to estimate voxelwise ADC maps for a single b.¢ across the brain, we
first need to fit the parameters of our model of non-Gaussian diffusion. As in our

previous work (Tendler et al., 2019), we use a gamma distribution of diffusivities

11
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with mean, D,,, and standard deviation, D, in each voxel. Below we describe a
robust procedure to achieve this.

For each voxel, we first obtain ADC estimates obtained separately at a low
and high flip angle using the full Buxton model (Buxton, 1993). These ADC
estimates are fit with simulated ADCs for a given set of D,,, and D, (with a

measured T1 and T>) as follows:

. 2
Dmlgl ||ADCsim:a1,a2 (Dm' Ds) - ADCexp:al,az (x' Y Z) ”2

+2]|Dyy = ADCerpa, 3. DI, [1],
where a; and a, are the voxelwise DW-SSFP flip angles (defined as the nominal
flip angles scaled by the B1 gain factor), ADC,yp.q, o, are the voxelwise
experimental ADC estimates at each flip angle and ADCg;p,.4, o, are the simulated
ADC estimates for a given D,,, and D, at each flip angle. To prevent overfitting to
the experimental data, a regularisation term can be additionally introduced to
ensure the estimate of D,,, remains on the order of the ADCs estimated separately
from the one-flip angle analyses (4 is the regularisation parameter). Details of
the incorporation of a Gamma distribution of diffusivities into the Buxton model,
which form the definition of ADCg;, (D,,, Ds) can be found in (Tendler et al.,
2019).

Here, tensor estimates were first obtained using the full set of 120 DW-
SSFP directions obtained at each flip angle. Fitting a tensor model to the
experimental data, a shared set of 171,2,3 and unique L, , 3 at each flip angle were
estimated separately. In the second stage, the eigenvectors were then fixed and
the posterior distribution of the L, , ; estimates were fit using Eq. [1] to
determine voxelwise estimates of D,,, and D; as described (Tendler et al., 2019).
Fitting was performed separately for each eigenvalue to determine a unique D,,
and Dy for L4, L, and L. Fitting was performed in Python using SciPy curve_fit,
implemented with the Levenberg-Marquardt algorithm (Levenberg, 1944) and
accelerated using the Numba compiler (Lam et al., 2015).
L, ; 3 estimates were subsequently derived over the entire brain in terms of a
single begr (Fig. 3d) using the framework in (Tendler et al., 2019) (described in

Supplementary Material Fig. S1). The b was chosen to account for the variable

12
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Figure 4: Visual comparison of the PDD estimates. For the 24° dataset, B; inhomogeneity

leads to incoherent PDD estimates near the brain boundary (red box), with coherent PDD
estimates near the centre of the brain (orange box). For the 94° dataset, the converse is true.
By fitting with two-flip angles (24° + 94°), we obtain a good compromise between the low and

high flip angle datasets, yielding coherent PDD estimates over the entire brain.

SNR of the L, , ;3 estimates over the entire brain to produce SNR-optimal results,

as described in the Supplementary Material.

Results
Comparison of PDD estimates acquired with one- and two-flip angle acquisitions
The benefit of the time-matched two-flip angle approach for overcoming B

dependent CNR in PDD estimates is illustrated in Fig. 4. PDD estimates derived

13


https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/861880; this version posted December 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

from data acquired with a 24° nominal flip angle (120 directions) display greater
coherence between voxels near the centre of the brain (Fig. 4 orange box - 24°).
As the scanner sets the nominal flip angle of 24° to be matched to this region, we
expect the CNR to be maximized (as predicted in Fig. 1b). Within this region,
clear delineation of the striations within the internal capsule are visible. In this
same region, the PDD estimates with a 94° nominal flip angle (120 directions)
are less coherent (Fig. 4 orange box - 94°). At the brain boundary where the
actual flip angle is far below the nominal flip angle, the opposite is true. The PDD
estimates at 94° reveal clear depiction of cortical folding patterns (Fig. 4 red box
- 940), which are corrupted by noise at 24° (Fig. 4 red box - 24°). In comparison,
PDD estimates of the two-flip angle data (120 directions, 60 directions at 24° and
60 directions at 94°) (Fig. 4 24°+94°) demonstrate that regionally dependent
benefits associated with each single-flip analysis are captured by the two-flip
angle approach. In this combined scan time-matched dataset, it is possible to
visualize cortical folding, whilst maintaining the striations within the internal
capsule.

Figure 5 shows how the angular uncertainty varies as a function of By,
where low uncertainty indicates high CNR. In all five datasets, the low B1 near
the periphery of the brain leads to a higher angular uncertainly in the 24°
datasets when compared to those acquired at 94°. In areas of high B the
opposite is true, in agreement with Fig. 4. The dual-flip approach (24°+94°) is
able to generate PDD estimates with angular uncertainty closer to the best
performance obtained for the one-flip angle datasets at the extremes of high or
low B1, and in many cases outperforms either single-flip dataset between these
values (i.e. where the curves cross in Fig. 5). A histogram (Fig. 5, bottom right)
shows the broad range of B; values sampled in our post-mortem brains.

Figure 6 shows a map of the difference in uncertainty between the one-
and two-flip angle results. While there are parts of the brain where acquisition at
a single, optimal flip angle provides slightly lower uncertainty compared to the
two-flip angle approach (light red), over the entire dataset the dual-flip approach
provides a net gain (dark blue). By creating a histogram of the difference in PDD
angular uncertainty between the one- and two-flip angle analyses (Fig. 7), we can

see an increased fraction of voxels with the two-flip angle approach that have a
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Figure 5: PDD angular uncertainty as a function of B1. In all 5 brains, it can be seen that
PDD angular uncertainty estimates are reduced in areas of low/high B1 for the 94°/240
datasets respectively. After the proposed combination of two-flip angle data (24° + 94°), the
PDD uncertainty estimates are closer to those of the single-flip angle within their respective
regions of high CNR. Plots generated in white matter only from the PDD uncertainty and B1
maps for each of the five datasets. The standard error of PDD dispersion values are plotted for
each brain, but due to the large number of points per bin these error bars are too small to be
visualized. The B1 histogram (bottom right) reveals that the B; values sampled within these
datasets spans a wide range of B, with error bars denoting the standard deviation over the

five datasets.
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Figure 6: Visual comparison of the differences in PDD angular uncertainty. Positive values
(blue) display regions where the two-flip angle approach outperforms the single-flip angle,
whereas negative values (red) display the opposite. Areas of higher/lower uncertainty are in
good visual agreement with the coherence of the PDD estimates in Fig. 4. To aid visualization,

the uncertainty differences were smoothed with a Gaussian filter (standard deviation = 1 mm).

large reduction in uncertainty in comparison to 24° (all brains) and 94° (4/5
brains) (blue curves above red). The opposite is true for small differences in
angular uncertainty (red curves above blue). The overall improvements in
angular uncertainty for the two-flip angle approach vs 94° are reduced in
comparison to 24°, reflecting the large number of voxels at 24° which have high

angular uncertainty (Fig. 5).

Combination of eigenvalue estimates at two-flip angles to a single b

L4, 3 estimates calculated from DW-SSFP data at 24° and 94° (Fig. 8) display
observable differences in the derived diffusivity values, overall showing an
increased diffusivity estimate at 94° (confirmed in Fig. 9). Previous work
(Tendler et al., 2019) makes clear that effective b-values are overall higher with
lower flip angles, which would be consistent with these variations in diffusivity
being driven by restriction in tissue. Furthermore, this indicates that we cannot
simply average the eigenvalue estimates acquired at different DW-SSFP flip
angles, as it would combine maps with distinct ADC estimates at each flip angle.

L, , 3 maps at the SNR-optimal b (determined as bege = 7600 s/mm? - details
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of derivation in Supplementary Material) show a reduced inhomogeneity in
comparison to the 24° dataset, and improved SNR when compared to 94¢.

As shown in Fig. 9, the reconstructed L, estimates at by = 7600 s/mm?
give good agreement to the 24° results at high By, whilst maintaining a flatter
distribution at lower B1 within all five brains. The crossing point of the L, curves
at 24° and b = 7600 s/mm? reveals the approximate flip angle along L; where
bess = 7600 s/mm?.

Fractional anisotropy (FA) maps over all five brains (Fig. 10) additionally
display differences in the estimated FA at 24° and 94° (confirmed in Fig. 11),
consistent with restriction along L, ; 3. These FA maps have an increased
sensitivity to noise in comparison to the L, , ; estimates and the FA maps derived
from DW-SSFP data at 24°/94° have low SNR at the edge/centre of the brain
respectively, consistent with the PDD results in Fig. 4. The FA maps generated at
bess = 7600 s/mm? do not reveal the same spatial variation, yielding high SNR

across the brain. The impact of B is displayed in Fig. 11.

Discussion

This work demonstrates how the effects of B; inhomogeneity in DW-SSFP can be
accounted for by using data acquired at two-flip angles and an appropriate signal
model that captures non-Gaussian diffusion. By utilizing a pair of prescribed flip
angles that optimize CNR across a range of B1, we provide a means to obtain a
homogeneous and interpretable characterization of diffusion across the brain.
We demonstrate the potential of this approach by quantifying the spatial profile
of angular uncertainty in PDD estimates and diffusivity estimates as a function of
Bi.

Previous work (Foxley et al., 2014a) demonstrated that with a one-flip
angle DW-SSFP acquisition, angular uncertainty in PDD estimates was reduced
by increasing field strength from 3T to 7T, providing motivation to move to
higher field when performing tractography. This reduction in uncertainty would
be expected in local regions of tissue due to the higher SNR associated with an
increase in field strength, but would be mitigated by the B effects considered in
this work (Fig. 4). Using the two-flip approach described in this paper, PDD

estimates at 7T can be obtained over whole post-mortem brain samples (Fig. 4),

19


https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/861880; this version posted December 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Brain 1 Brain 2
2.251 7 y
2001 M—~—u__ 2.0 e
_ S N _—
L1751 = \ pd
£ = \ ~
£ 1.50 = 15 -
b b
5 1.25 5
1.0
X% 1.00 X
— 0.751 -
0.51
0.50 1
0.25 1 .
04 06 08 1.0 12 0.4 06 08 1.0 12
B, B,
Brain 3 Brain 4
/
Y 2.25 Y
o e
2.0 - 2.00 s o
0 0 P
o . — curs|
£, ~— £
£ 15 £
1.50
b b
o S 1.251
— L
R 10 =
- ~1.001
-l -
0.5 0.75
0.50 1
0.4 06 08 1.0 04 06 08 10
B; B
Brain 5
2.50 pz
2251 /S
G200 / o
o —_— 240
€
£ 175 o
; —— 94
L 150
kS, 2
X 1251 beff—7600 s/mm
)
1.00 {
0.75
04 06 08 10
B

Figure 9: Quantitative comparison of L, estimates vs B1. Here we observe an increased L,
estimate in DW-SSFP data acquired at 94°, in agreement with (Tendler et al., 2019) and Fig. 3c.
The L, estimates at b, = 7600 s/mm? display a flatter distribution, consistent with removal
of the influence of Bi. Plots generated in white matter only from the L, and B1 maps for each of
the five datasets. The standard error of L, estimates within each bin are plotted for each brain,

but due to the large number of points per bin these error bars are too small to be visualized.
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from the FA and B1 maps for each of the five datasets. The standard error of FA estimates
within each bin are plotted for each brain, but due to the large number of points per bin these
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reducing the number of voxels with high angular uncertainty in tissue regions
that experience a sub-optimal flip angle (Fig. 7). Given the pattern of B; and the
need for high quality data in central white matter for tractography, there is a
particular benefit for tractography into the grey matter. This is a potentially
important improvement as such measurements would allow for resolving inter-
cortical tracts such as U-fibers as well as more accurately depicting white matter
penetration of cortical grey matter away from the gyral crown.

For these post-mortem brain samples, SNR-optimal estimates are
predicted to be achieved at a low flip angles. Our SNR-optimal b corresponds
to an approximate flip angle of 20° — 24° (Supplementary Material Fig. S2d),
achieved at B1 values of 0.83-1/0.19-0.26 for the 24°/94° datasets. The plots in
Fig. 5 show that the two-flip angle approach achieves an angular uncertainty
estimate closer to the single flip angle approach in these B1 regions and often
performs better between these B values. Further improvement could be
achieved by incorporating weighting into the two-flip angle DWSSP tensor model
fitting (i.e. weighted least squares), reducing the influence of the DW-SSFP flip
angle with high angular uncertainty. This would be particularly noticeable for
the 940 case, where at present the high angular uncertainty associated with the
240 datasets near the brain boundary reduces the performance of the two-flip
angle method.

An increased estimate of ADC at higher flip-angles (Figs. 8 and 9)
demonstrates deviations of the DW-SSFP signal from the Buxton model,
consistent with a model of restriction and the results in (Tendler et al., 2019).
Our correction reduces the variation of ADC with B (Fig. 9), in addition to
modifying the distribution of derived metrics such as FA (Fig. 11). This allows for
more accurate comparisons of diffusivity estimates within different brain
regions. Furthermore, as the B distribution is not reliably calibrated at scan
time, our approach allows for comparison of diffusivity estimates between
different post-mortem brain samples. The divergence of the 24° and bg =
7600 s/mm? plots (Figs. 9), emphasizes the influence of B1 on measured ADC.

The FA maps in Fig. 10 reveal the trend of reduced SNR at 24° /94° near
the centre/edge of the brain, consistent with the PDD (Fig. 4) maps. However, in

the eigenvalue estimates at 24°, we observe a sharply decreasing diffusivity
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estimate in areas associated with very low B (Figs. 8 and 9), with a distinctive
shading near the brain boundary, most notable in the L; map. This shading is
hypothesised to be additionally driven by the noise floor on our DW-SSFP data,
leading to a reduced diffusivity estimate in areas of low signal (Jones and Basser,
2004). Future work will investigate the use of a noise floor correction to account
for this bias.

This study was motivated by the interest in understanding whether
diffusivity could provide biomarkers that are related to neuropathology in ALS.
This necessitates measures of diffusivity in post-mortem tissue that can be
compared to histopathological stains. To be meaningful, these diffusivity
measures need to be driven primarily by the underlying tissue (as reflected in
restrictions that cause non-Gaussian behaviour) rather than confounds like By
inhomogeneity. For example, neurodegenerative diseases such as ALS have been
shown to reduce FA in vivo (Agosta et al., 2010). A more consistent measurement
of FA across white matter, obtained from results at a single b (Fig. 10) would
allow for more accurate measurements in post-mortem data to corroborate in
vivo findings. Future work that directly compares diffusivity to histology will
consider whether there is evidence for a neuropathological signature in diffusion

MRI.

Conclusion

DW-SSFP at 7T has the potential to provide high signal and contrast diffusion
weighted imaging in post-mortem tissue. However, B; inhomogeneity coupled
with the dependence of diffusion contrast on flip angle means that the resulting
signal is not straightforward to interpret. We proposed to use a multi-flip angle
DW-SSFP acquisition alongside a non-Gaussian signal model to account for By
inhomogeneity at 7T. With this method, we can obtain improved estimates of
diffusion properties within tissue, including both quantitative diffusivities and

fibre orientations.
Acknowledgements

This study was funded by a Wellcome Trust Senior Research Fellowship

202788/Z/16/Z and Medical Research Council (MRC) grants MR/K02213X/1

24


https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/861880; this version posted December 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and MR/L009013/1. Brain samples were provided by the Oxford Brain Bank
(BBN004.29852). The Wellcome Centre for Integrative Neuroimaging is
supported by core funding from the Wellcome Trust (203139/Z/16/Z). We
acknowledge the Oxford Brain Bank, supported by the Medical Research Council
(MRC), Brains for Dementia Research (BDR) (Alzheimer Society and Alzheimer
Research UK), and the NIHR Oxford Biomedical Research Centre. The views
expressed are those of the authors and not necessarily those of the NHS, the

NIHR or the Department of Health.

References

Agosta, F., Pagani, E., Petrolini, M., Sormani, M.P., Caputo, D., Perini, M., Prelle, A,,
Salvi, F., Filippi, M., 2010. MRI predictors of long-term evolution in
amyotrophic lateral sclerosis. Eur. J. Neurosci.
https://doi.org/10.1111/j.1460-9568.2010.07445.x

Blamire, A.M., Rowe, ].G., Styles, P., McDonald, B., 1999. Optimising imaging
parameters for Post Mortem MR imaging of the human brain. Acta radiol.
https://doi.org/10.3109/02841859909175593

Buxton, R.B., 1993. The diffusion sensitivity of fast steady-state free precession
imaging. Magn. Reson. Med. https://doi.org/10.1002/mrm.1910290212

D’Arceuil, H., de Crespigny, A., 2007. The effects of brain tissue decomposition on
diffusion tensor imaging and tractography. Neuroimage.
https://doi.org/10.1016/j.neuroimage.2007.02.039

Dawe, R.J,, Bennett, D.A,, Schneider, J.A., Vasireddi, S.K., Arfanakis, K., 2009.
Postmortem MRI of human brain hemispheres: T 2 relaxation times during
formaldehyde fixation. Magn. Reson. Med.
https://doi.org/10.1002/mrm.21909

Foxley, S., Jbabdi, S., Clare, S., Lam, W., Ansorge, O., Douaud, G., Miller, K., 2014a.
Improving diffusion-weighted imaging of post-mortem human brains: SSFP
at 7T. Neuroimage. https://doi.org/10.1016/j.neuroimage.2014.08.014

Foxley, S., Jbabdi, S., Clare, S., Miller, K., 2014b. Correcting for B1 inhomogeneities
in post-mortem DWSSFP human brain data at 7T using multiple flip angles,
in: Proc. Intl. Soc. Mag. Reson. Med. p. 4438.

Hernandez-Fernandez, M., Reguly, L., Jbabdi, S., Giles, M., Smith, S., Sotiropoulos,

25


https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/861880; this version posted December 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

S.N,, 2019. Using GPUs to accelerate computational diffusion MRI: From
microstructure estimation to tractography and connectomes. Neuroimage.
https://doi.org/10.1016/j.neuroimage.2018.12.015

Jbabdj, S., Sotiropoulos, S.N., Savio, A.M., Grafa, M., Behrens, T.E.]., 2012. Model-
based analysis of multishell diffusion MR data for tractography: How to get
over fitting problems. Magn. Reson. Med.
https://doi.org/10.1002/mrm.24204

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for
the robust and accurate linear registration and motion correction of brain
images. Neuroimage 17, 825-841. https://doi.org/10.1016/S1053-
8119(02)91132-8

Jenkinson, M., Beckmann, C.F., Behrens, T.E.]., Woolrich, M.W., Smith, S.M., 2012.
FSL - Review. Neuroimage.
https://doi.org/10.1016/j.neuroimage.2011.09.015

Jenkinson, M., Smith, S., 2001. A global optimisation method for robust affine
registration of brain images. Med. Image Anal. 5, 143-156.
https://doi.org/10.1016/5S1361-8415(01)00036-6

Jones, D.K,, Basser, P.J., 2004. “Squashing peanuts and smashing pumpkins”: How
noise distorts diffusion-weighted MR data. Magn. Reson. Med.
https://doi.org/10.1002/mrm.20283

Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M., 2016. Gibbs-ringing artifact
removal based on local subvoxel-shifts. Magn. Reson. Med.
https://doi.org/10.1002/mrm.26054

Lam, S.K,, Pitrou, A, Seibert, S., 2015. Numba: A LLVM-based python JIT compiler,
in: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC - LLVM "15.
https://doi.org/10.1145/2833157.2833162

Levenberg, K., 1944. A method for the solution of certain non-linear problems in
least squares. Q. Appl. Math. https://doi.org/10.1090/qam /10666

McNab, J.A., Jbabdi, S., Deoni, S.C.L., Douaud, G., Behrens, T.E.]., Miller, K.L., 2009.
High resolution diffusion-weighted imaging in fixed human brain using
diffusion-weighted steady state free precession. Neuroimage.

https://doi.org/10.1016/j.neuroimage.2009.01.008

26


https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/861880; this version posted December 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Miller, K.L., McNab, J.A,, Jbabdi, S., Douaud, G., 2012. Diffusion tractography of
post-mortem human brains: Optimization and comparison of spin echo and
steady-state free precession techniques. Neuroimage.
https://doi.org/10.1016/j.neuroimage.2011.09.054

Millman, K.J., Aivazis, M., 2011. Python for scientists and engineers. Comput. Sci.
Eng. https://doi.org/10.1109/MCSE.2011.36

Shepherd, T.M,, Flint, ].J]., Thelwall, P.E,, Stanisz, G.J., Mareci, T.H., Yachnis, A.T.,
Blackband, S.J., 2009. Postmortem interval alters the water relaxation and
diffusion properties of rat nervous tissue - Implications for MRI studies of
human autopsy samples. Neuroimage.
https://doi.org/10.1016/j.neuroimage.2008.09.054

Tendler, B.C,, Foxley, S., Cottaar, M., Jbabdj, S., Miller, K., 2019. Modelling an
equivalent b-value in diffusion-weighted steady-state free precession. arXiv
1911.01093.

Vasung, L., Rezayev, A, Yun, H.J,, Song, ] W,, van der Kouwe, A, Stewart, N., Palani,
A., Shiohama, T., Chouinard-Decorte, F., Levman, ]., Takahashi, E., 2019.
Structural and Diffusion MRI Analyses With Histological Observations in
Patients With Lissencephaly. Front. Cell Dev. Biol.
https://doi.org/10.3389/fcell.2019.00124

Wilkinson, M., Wang, R,, van der Kouwe, A., Takahashi, E., 2016. White and gray
matter fiber pathways in autism spectrum disorder revealed by ex vivo
diffusion MR tractography. Brain Behav. https://doi.org/10.1002/brb3.483

Yarnykh, V.L., 2007. Actual flip-angle imaging in the pulsed steady state: A
method for rapid three-dimensional mapping of the transmitted
radiofrequency field. Magn. Reson. Med.
https://doi.org/10.1002/mrm.21120

Yong-Hing, C.J.,, Obenaus, A,, Stryker, R., Tong, K., Sarty, G.E., 2005. Magnetic
resonance imaging and mathematical modeling of progressive formalin
fixation of the human brain. Magn. Reson. Med.
https://doi.org/10.1002/mrm.20578

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR images through a
hidden Markov random field model and the expectation-maximization

algorithm. IEEE Trans. Med. Imaging. https://doi.org/10.1109/42.906424

27


https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/861880; this version posted December 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Zur, Y., Stokar, S., Bendel, P., 1988. An analysis of fast imaging sequences with
steady-state transverse magnetization refocusing. Magn. Reson. Med.

https://doi.org/10.1002/mrm.1910060206

28


https://doi.org/10.1101/861880
http://creativecommons.org/licenses/by-nc-nd/4.0/

