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Abstract 

Genetic interactions, defined as the non-additive phenotypic impact of combinations of genes, are 

a hallmark of the mapping from genotype to phenotype. However, genetic interactions remain 

challenging to systematically test given the massive number of possible combinations. In 

particular, while large-scale screening efforts in yeast have quantified pairwise interactions that 

affect cell viability, or synthetic lethality, between all pairs of genes as well as for a limited number 

of three-way interactions, it has previously been intractable to perform the large screens needed to 

comprehensively assess interactions in a mammalian genome. Here, we develop Shuffle-Seq, a 

scalable method to assay genetic interactions. Shuffle-Seq leverages the co-inheritance of 

genetically encoded barcodes in dividing cells and can scale in proportion to sequencing 

throughput. We demonstrate the technical validity of Shuffle-Seq and apply it to screening for 

mechanisms underlying drug resistance in a melanoma model. Shuffle-Seq should allow screens 

of hundreds of millions of combinatorial perturbations and facilitate the understanding of genetic 

dependencies and drug sensitivities.  
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Genetic interactions occur when the combined impact of n genes cannot be determined by their 

additive individual impacts. A comprehensive test for interactions requires generating datasets of 

a sufficient scale to test for all possible interactions between the genes within a sizeable set, with 

the number of combinations growing as 2n with n being the number of genes in the set or nC2 for 

pairwise interactions only. A common example phenotype is cell fitness, where an extreme case 

of a genetic interaction is synthetic lethality. In yeast, all pairs of genetic deletions have been 

constructed over the course of a decade and quantified for their relative fitness impact1–3, with 

recent studies targeting a small portion of all three gene deletions4. While it is likely that the total 

number of significant interactions, with respect to fitness in yeast, is far larger numerically for 

three-way interactions than pairwise, their prevalence is likely lower (3% of pairs as opposed to 

1% for three-way). Their scarcity does not preclude their importance; these higher-order genetic 

interactions can play a major role in the evolution of genetic networks5,6, and have been 

translationally leveraged for cellular reprogramming7. In mammalian systems, studies have 

examined the impact of pairwise gene interactions only for small subsets of genes (between 25 and 

323), assessing cell growth8–11, drug resistance10,12, cell morphology13, or gene expression14–17.  

Because the potential number of combinations to screen is vast (>108 and >1012 for all 2- and 3-

way combinations of genes in the human genome) it has been challenging to perform 

comprehensive screens. Broadly, existing methods either (1) create each interaction independently 

in massive arrays (e.g., in yeast1–3), (2) create a single barcoded vector containing multiple 

perturbations8–11,27, or (3) use single cell profiling to determine, post hoc, the set of perturbations 

present in a cell14–17. They are respectively limited by (1) time, reagent, and labor costs required 

to scale, (2) scale and length limitations on oligo synthesis, titer decreases associated with longer 

insert lengths18, decreased stability as more perturbations are introduced19, and the inability to 
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simultaneously test interactions between orthogonal types of perturbations like overexpression and 

knockout libraries, and (3) the cost of scRNA-seq and similar methods14 (Supplementary Table 

1). 

To tackle these limitations for mammalian screens – including viability and FACS-based screens 

– we developed Shuffle-Seq, combining the benefits of coupling perturbations at a single cell level 

with the scale of pooled screens (Fig. 1a,b). Shuffle-Seq uses Unique Transduction Barcodes 

(UTBs), similar to those used in previous CRISPR screens20,21, such that the probability of two 

cells getting the same combination of perturbation-UTBs is extremely low. Multiple perturbations 

are delivered into the cell through one or more rounds of viral transduction. The cells are allowed 

to expand in a pool and subsets from the pool of cells from the multiple resulting clonal populations 

are randomly distributed into standard multiwell plates. Barcoded perturbation pairs that were 

delivered to the same transduced cell, will propagate to its progeny prior to the distribution step, 

and, as a result, their probability of co-occurrence across wells is significantly higher than for 

random pairs (not from the same cell) (Supplementary Fig. 2b,e,f). By co-association across 

wells, pairs can be merged together to reconstruct the set of perturbations present within each 

clone. Thus, we can infer the clonal origin of sets of perturbations from the patterns of their co-

occurrence across wells (Fig. 1a, bottom). This inference, for n barcodes, is analogous to an 

approach developed for pairing endogenously expressed T cell receptors22. Finally, we identify, as 

in any screen, combinations of perturbations that are enriched or depleted. Shuffle-seq can be 

applied after a strong positive selection, such as FACS based gating, or in a negative selection 

screen, where it is performed shortly after the introduction of perturbations to establish clonal 

pairings, followed by bulk sequencing to observe how clonal frequencies change over time (Fig. 

1b).  
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To maximize the detection of the perturbation-UTB, we modified the CROP-seq plasmid17, which 

generates a polyadenylated sgRNA transcript, to include an optimized trRNA23 and a UTB 

(Supplementary Fig. 1a). These modifications are introduced during the sgRNA cloning step 

(Supplementary Fig. 1b) and do not reduce cutting efficiency (Supplementary Fig. 1c). 

Sequencing of the sgRNA-UTB library shows that the number of distinct sgRNA-UTB pairs likely 

exceeds 50 million (Supplementary Fig. 1d,e).  

We optimized experimental and computational approaches for clonal inference. If clonal 

abundances are biased, as may happen due to selection, an over-sampled clone might be present 

in all wells, while an under-sampled clone would be present in few or no wells. To mitigate this, 

we devised a modified procedure, akin to high dynamic range (HDR) photography, in which 

different numbers of cells are sorted per well – such that some wells have many more cells than 

others – in order to represent each clone in an intermediate number of wells (Supplementary Fig. 

2b-d). Bulk sequencing of the perturbation library in advance of the Shuffle-seq experiment can 

inform the sort procedure. We performed simulations to determine the relationship between our 

statistical power to infer clones and the sgRNA-UTB detection probability and number of unique 

barcodes. We found that for reasonable detection efficiency and sequencing depth, a 96 well plate 

can be used to infer over a million clonally shared barcodes, while a 384 well plate can be used to 

infer over a billion (Supplementary Fig. 2e,f, Methods).  

We next validated that Shuffle-seq can infer clones independently of fitness effects associated with 

the perturbations. We transduced our high complexity sgRNAs-UTB lentiviral library into K562 

cells without Cas9, and, as positive controls, isolated 88 single cell clones from the transduced 

pool, and sequenced their sgRNAs-UTBs. In parallel, we reintroduced cells from these 88 clones 

to the parental pool at varying concentrations, and then performed Shuffle-seq on the entire pool 
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(Fig. 1c). Based on the positive control clones, we obtained an AUC of 0.998 for recovering known 

pairs of sgRNA-UTBs from a background of pairs derived from a randomly permuted set of 

sgRNA-UTB abundances across the ~300,000 other clones present in the wells (Fig. 1d). Our 

results were robust to the number of perturbations per cell, the expression level of the sgRNAs-

UTB, and the number of wells a clone was present in (Supplementary Fig. 3c,d). We estimated 

our probability of detecting an sgRNA-UTB at ~78% per well, based on the percentage of wells 

with co-occurrence of sgRNA-UTBs that were ascertained as co-occuring in one of the 88 clones 

(Supplementary Fig. 3e).  

To show the feasibility of applying Shuffle-Seq in a biological perturbation experiment, we used 

the model system of resistance of the melanoma A375 cell line to the B-Raf inhibitor vemurafenib 

(Fig. 2a), which had previously been used for loss-of-function screens24 We infected cells in two 

rounds (to ensure at least two perturbations per cell) with a genome wide lentiviral library of 

51,467 sgRNAs depleted for essential genes and including 5,000 non-targeting and 5,000 

intergenic sgRNAs. In each round, we combined pools of cells transduced at viral MOI of 

approximately 1, 6, and 16 (to obtain a wide distribution of perturbations per clone).  The first 

round used a vector containing puromycin resistance followed by a second round using a vector 

containing hygromycin resistance. During the two rounds selection, the cells were bottlenecked to 

approximately 100,000 clones. After positive selection with vemurafenib, we performed Shuffle-

seq, in HDR mode, sorting between 25 and 20,000 cells per well. 

We inferred 1,765 sgRNA-UTB pairs with shared clonal origin (Fig. 2b-d), even though the virus 

library constructed was bottlenecked relative to the initial plasmid pool and our culture scale was 

small relative to the library size resulting in poor representation of different genetic perturbations 

in our screen (Supplementary Fig. 4a). The inferred pairs were enriched for genes that are highly 
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expressed in A375 cells (p=8.6*10-39) (Supplementary Fig. 4e). Grouping pairs that shared an 

sgRNA-UTBs, we consolidated to 597 inferred clones with 2-9 sgRNA-UTBs per cell 

(Supplementary Fig. 4b). Most (92%) of these inferred clones contained an sgRNA targeting 

MED12, a hit from previous CRISPR screens of vemurafenib resistance. Another 432 pairs of 

sgRNAs that did not contain MED12 were significantly enriched for co-occurrence across the 

clones (hypergeometric test, q-val <0.05, Fig. 2e).  

Shuffle-seq enables large scale combinatorial screening by leveraging the encoding capacity of 

multiwell plates and the throughput of sequencing. In a proof-of-concept demonstration, it 

recovered clones, associating multiple barcodes, and generated hypotheses about potential new 

interactions that may underlie resistance in a melanoma cell lines; these interactions can be tested 

experimentally. In contrast to traditional approaches that operate in a regime where each cell 

contains a single distinct perturbation, Shuffle-Seq opens the way to high-throughput 

combinatorial screening in which each cell contains larger numbers of perturbations. While a large 

number of double strand breaks from multiple CRISPR/Cas9 perturbations could cause toxicity25, 

Shuffle-Seq can be generally applied to any perturbations that can stably propagate alongside their 

affected cell, including CRISPRi, overexpression, and variant ORF libraries. Uniquely, the 

approach can couple combinations of these perturbations from distinct vector constructs. The 

clonal inference in Shuffle-seq can also be extended to enhance detection in pooled high 

dimensional single cell screens in primary cells, where conventional detection of the perturbation 

in an individual cell can be lower than 60%14, to allow more accurate reconstruction of the initial 

set of perturbations present in cells sharing an sgRNA-UTB.  

For those phenotypes, like drug resistance, where we expected only a small number of 

perturbations to have an impact, Shuffle-seq may be applied in the context of group testing and 
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compressed sensing of perturbations26 to rapidly identify the relevant synergies (Supplementary 

Fig. 2g). We expect sequencing costs to be the main limiting factor associated with the total 

number of clonally associated perturbations that can be inferred with a Shuffle-seq experiment. As 

such, Shuffle-seq has the potential to facilitate the screening of hundreds of millions of clones, 

each of which can contain multiple perturbations, and should accelerate the discovery of new 

synergistic combinations that lead to translationally relevant phenotypes.  
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Figure 1. Shuffle Seq approach 

(a) Shuffle-seq. Cells are transduced with virus (at high MOI and/or multiple rounds with 

orthogonal selectable markers), such that most have more than one perturbation, and allowed to 

clonally expand. After a screening assay, cells are sorted into a multiwell plate with multiple cells 

per well (10 to >10,000 cells/well) . Wells are profiled by targeted amplicon sequencing of unique 

perturbation barcodes. Clonal origin is inferred from correlated patterns of perturbation identities 

across wells, provided the library size is significantly greater than the number of clones to be 

inferred. (b) Shuffle-seq can be applied in multiple screening contexts, including positive and 

negative selection screens. Top: in positive selection, Shuffle-Seq is performed (right) after sorting 

of positive cells (left). Bottom: In negative selection, Shuffle-Seq is performed first (left), followed 

by bulk targeted amplicon sequencing of the unique perturbation barcodes over time (right). (c,d) 

Clone inference with Shuffle-Seq. (c) Experimental design. K562 cells without Cas9 were 

transduced by an sgRNA Shuffle-Seq library. 88 clones were sorted, grown, and representative 

cells were either profiled (top path) or spiked-in back to the pool at different concentrations, prior 

to Shuffle-Seq (bottom path). (d) Receiver operating characteristic (ROC) curve of the True 

Positive Rate (TPR) (y axis; proportion of sgRNA-UTB pairs inferred by Shuffle-seq out of the 

pairs ascertained in the 88 positive controls) and False Positive Rate (FPR) (x axis; proportion of 

pairs from distinct clones that were co-associated across Shuffle-seq wells) (Methods). Inset: 

Zoom in to the region between FPR 0.0 and 0.2.  
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Figure 2. Shuffle-seq in a Vemurafenib resistance screen in a melanoma cell line.  

(a) Screen overview. (b-d) Clone inference (Methods). (b) Similarity structure of sgRNA-UTB 

abundances across wells. UMAP embedding of sgRNA-UTBs (dots) occurrence profiles across 

wells colored by number of wells in which the sgRNA-UTB is detected. Larger dots correspond 

to sgRNA-UTBs from ten randomly selected clones, colored by clone. (c) sgRNA-UTB 

distribution across wells. Number of wells (y axis) and number of reads (log10(total number of 

reads), x axis) for each sgRNA-UTBs. (d) Enrichment in pairwise correlation of sgRNA-UTB pairs 

relative to permuted sgRNA-UTB pairs. Q-Q plot of the Pearson correlation coefficient between 

pairs of sgRNA-UTBs of various abundances in the real data (y axis) and in a permuted sgRNA-

UTB abundance matrix (x axis). (e) sgRNA interaction matrix of significant co-occurrences across 

clones. Significance (log10(hypergeometric q-value), color bar) of co-occurrence for sgRNA pairs 

(rows, columns). sgRNAs have been subset to the those with at least four significant interactions. 

Left colorbar: log10(individual read abundance) of each sgRNA in the Shuffle-seq library. 
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Supplementary Figure Legends 

Supplementary Figure 1. The Shuffle-Seq vector 

(a) Shuffle-Seq vector. The CROP-seq vector17 (top) was modified to include an optimized 

scaffold23, a 3' 14 bp random barcode to serve as the UTB, and one of several alternative selection 

markers (bottom). (b) Cloning strategy. The scaffold and barcode are added onto an 

oligonucleotide array of an sgRNA library during a PCR stem. (c) Successful knockdown by the 

modified vector. Distribution of GFP levels (x axis) in Cas9-P2A-GFP K562 cells transduced with 

the modified (top) or control (bottom) vector, showing 97% reduction in GFP expression. (d) High 

detection of the Shuffle-Seq sgRNA-UTB. Distribution of number of reads per sgRNA-UTB pair 

(x axis, log10(number of reads)) after deep sequencing of the high complexity sgRNA-UTB library. 

(e) Estimation of Shuffle-Seq sgRNA-UTB complexity. Log-likelihood (y axis) fit of the observed 

distribution of reads to a Poisson distribution ( l, y axis). Bottom right: calculation to infer that at 

least 86 million barcodes are present in the CRISPR-KO library. 
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Supplementary Figure 2. Simulation based assessment of Shuffle-seq approach.   

(a) Overview of approach. From right: Relative abundance of each sgRNA-UTB in the library 

overall is estimated based on bulk sequencing. Cells are sorted into a multiwell plate, such that 

each clone is expected to be represented in at least 5 wells. Reverse transcription and PCR are used 

to identify which sgRNA-UTBs occur in which wells. Pair-wise correlations in well occurrence 

profiles are calculated for each pair of sgRNA-UTBs, to identify significantly co-occurring 

barcode pairs (based on a permutation test associated with a randomly permuted matrix of sgRNA-

UTBs across wells) and infer clonal identity. (b) The number of wells a clone must be represented 

in for accurate detection depends on number of wells and detection probability. Significance (-

log10(P-value), hypergeometric test, color bar) for the co-occurrence of a pair of sgRNA-UTB from 

the same clone for different probabilities of sgRNA-UTB detection (y axis) when the clone is 

present at varying number of wells (x axis) out of 96 (left), 384 (middle) and 768 (right) wells 

overall. (c,d) HDR sorting strategy can address skewed sgRNA-UTB abundances. (c) Illustrative 

sort strategy. (d) Number of wells in which each clone is present (y axis) for clones (dots) of 

different abundance (x axis) in a highly skewed pool of clones sorted uniformly such that rare 

clones (green) are under sampled and very abundant clones (blue) are oversampled, vs. in HDR 

Shuffle-Seq (red). (e) Incorporation of sgRNA-UTB abundance per well. The maximum 

correlation (y axis) between two Poisson distributed vectors across a 96 (purple) or 384 (orange) 

well plate for different total number of sgRNA-UTBs present (x axis). (f) The correlation 

coefficient in quantitative abundances (y axis) between two sgRNA-UTBs across wells derived 

from the same cells at different detection probabilities (x axis) and sequencing depths (colors). (g) 

Representation advantage of testing large sets of perturbations when higher order interactions are 

rare. Approximate number of cells required to represent all items of a screen (y axis, 100x the total 
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number of parameters) for different numbers of perturbations in each cell (x axis). Dark grey 

shaded area: traditional screens. Light grey area: screens enabled by Shuffle-seq. 
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Supplementary Figure 3. Statistics of a K562 Shuffle-Seq assay to infer clones without gene 

perturbation.  

(a-c) Positive controls. (a) Distribution of the number of sgRNA-UTBs observed in each of 88 

derived single cell clones. (b) Expression of sgRNA-UTB. Distribution of expression levels 

(log2(TPM+1), x axis) of sgRNA-UTBs across 88 clones. (c) The number of sgRNA-UTBs in the 

clone (x axis) is not significantly correlated (r=-0.14, p=0.19) to the standard deviation of sgRNA-

UTB expression (y axis, top) and is at most weakly correlated (r=0.19, p=0.07) to the range of 

expression (max – min, y axis, bottom). (d) Accuracy of clone detection does not strongly depend 

on the number of sgRNA-UTBs per clone and the number of wells the clone is present in. Area 

Under the Curve (AUC) (y axis) – associated with Fig. 1d - for clones with different numbers of 

sgRNA-UTBs (x axis, top) or present in different numbers of wells (x axis, bottom). (e) Sensitivity 

of clone detection. Distribution of Jaccard overlap across wells (x axis) between sgRNA-UTBs 

belonging to the same clone. Detection sensitivity is estimated at >75%.  
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Supplementary Figure 4. Statistics of a Shuffle-Seq screen of Vemurafenib resistance  

(a) Library representation. Representation of genes (log10(number of reads)) in the initial plasmid 

library (x axis) and after transduction into cells (y axis). Screen representation is skewed due to 

limited scale of viral production in a 6-well plate (Methods). (b) Distribution of sgRNA-UTBs 

per clone. Number of sgRNA-UTBs observed per clone (x axis) in 597 clones inferred from the 

Shuffle-seq experiment. (c) sgRNA-UTBs across wells. Number of distinct sgRNA-UTBs 

(log10(number unique sgRNA-UTBs)) in each well of a 96 well plate. (d) Similarity structure of 

permuted sgRNA-UTB abundances across wells. UMAP embedding (Methods) of sgRNA-UTBs 

(dots) occurrence profiles across wells colored by number of wells in which the sgRNA-UTB is 

detected, after randomly permuting the sgRNA-UTB abundance matrix. (E) Genes involved in 

interactions are more likely to be expressed in A375 cells. Distribution (box: quartiles; whiskers: 

1.5 interquartile range) of expression levels (y axis, log10(TPM+1)) of all genes (blue) and of the 

most common genes occurring in clonally inferred sgRNA-UTB pairs that survived vemurafenib 

selection. (f) The relation between the log10(number of clones) (x axis) and log10(number of wells) 

(y axis) in which each pair of significantly co-associated sgRNA-UTBs is present. 
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Supplementary Figure Legends 

Supplementary Table 1. Guide for the Miserly 

Spreadsheet comparing the approximate current costs associated with a standard CRISPR screen, 

a Shuffle-seq screen, and a single cell RNA-seq based Perturb-seq screen for a desired number of 

clones to be tested. 

 

Supplementary Table 2. sgRNA Table 

Spreadsheet listing the sgRNA oligo pools used in this paper. 
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Methods 

 

EXPERIMENTAL PROCEDURES 

Plasmid generation 

The CROP-seq plasmid1 (Addgene 86708) was digested (SnaBI and NsiI) and replaced with a 

gBlock, which removed the sgRNA scaffold. Three plasmids containing different resistance 

markers (puromycin, hygromycin, and blasticidin, Supplementary Fig. 1a) were created from this 

modified CROP-seq vector. An oligonucleotide array (Custom Array, Inc.) was constructed to 

contain 41,467 CRISPR/Cas9 sgRNAs and partial optimized scaffolds targeting 18,377 genes in 

the human genome (Supplementary Table 2), (2.25 guides/gene). The library was depleted for 

sgRNAs targeting essential genes (containing only 1,981 guides targeting 1,629 essential genes), 

and included 10,000 control guides (targeting both intergenic regions and non-targeting guides) 

based on sgRNAs from previous studies2–4. 

 

The oligo pool was amplified first using sub-pool specific primers, and then with the following 

primers to add on the remaining optimized scaffold, UTB, and subsequent plasmid homology, 

resulting in a 220bp product. 

crop_rnd

1s_F 

TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGAC

GAAACACCG 

crop_rnd

1_R 

TCTCAAGATCTAGTTACGCCAAGCTTNNNNNNNNNNNNNNaaaaaagcaccgact

cggtgccactttttcaagttgataacggactagcc 

 

SUB1_F GTGAGCTCGACAAGTTTCAG 
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SUB1_R GTTAGTGATTTGCCCGTCAC 

SUB3_F CTGCCCTCACTAATACCTGC 

SUB3_R GAGGTACTTGTCGGGGTGTG 

 

Cloning was performed as described previously.5 

The three vectors (Supplementary Fig.1a) were used to generate lentiviral pools for all of our 

CRISPR screens as well as for the experiment validating Shuffle-seq specificity and sensitivity. 

 

Lentivirus production 

HEK293FT cells were seeded into 6-well plates at a density of 1 x 106 cells/well and grown 

overnight. The following morning, the 70-80% confluent cells were transfected with 780 ng 

psPAX2 (Addgene plasmid #12260), 510 ng pMD2.G (Addgene plasmid #12259) and 1020 ng 

transfer plasmid using Lipofectamine® LTX with PlusTM Reagent (Life Technologies), according 

to the manufacturer’s protocol. Media were exchanged after 6 hours. Viral supernatant was 

harvested 24 and 48 hours following transfection, filtered through a 0.45µm polyethersulfone 

syringe filter (Millipore Sigma), concentrated with 100 kDA Amicon® Ultra-15 Centrifugal Filter 

Units (Millipore Sigma), and snap frozen at -80°C. Lentiviral stocks were titered in accordance 

with the alamarBlue Cell Viability Assay from the Genetic Perturbation Platform at the Broad 

Institute. 

 

Cell culture 

HEK293FT (ATCC CRL-1573) and A375 cells constitutively expressing Cas9 (a gift from the 

Genetic Perturbation Platform at the Broad Institute) were cultured in DMEM GlutaMAX (Thermo 
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Fisher) supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen) and 100 U/mL 

penicillin-streptomycin (Thermo Fisher) at 37°C, 5% CO2. K562 cells were cultured in RPMI 1640 

Medium + GlutaMAX (Thermo Fisher) supplemented with 15% heat-inactivated FBS (Invitrogen) 

and 100 U/mL penicillin-streptomycin at 37°C, 5% CO2.  

 

Estimation of the cutting efficiency of the Shuffle-seq vector 

Cas9 cutting efficiency in A375 cells was measured by transducing GFP positive Cas9 containing 

cells with a Shuffle-seq vector targeting GFP followed by flow cytometry.  

 

Validation of Shuffle-seq specificity and sensitivity 

Two pools of 150,000 K562 cells without Cas9 were transduced with a pool of lentivirus 

expressing the Puromycin resistance gene from the Ef1a promoter in the presence of 8 µg/mL 

polybrene (Millipore Sigma) one at an MOI of 1 and the other at an MOI of 5. Cells were spin 

infected at 800 g for 45 minutes at room temperature and kept at 37°C, 5% CO2 overnight. The 

following day, the media were changed to remove the polybrene. 48 hours following transduction, 

cells were selected with 2 µg/mL puromycin (Thermo Fisher) for four days. Cells in the two wells 

were then transduced with a lentiviral pool expressing the blasticidin resistance gene from the 

Ef1a promoter in the presence of 8 µg/mL polybrene one at an MOI of 1 and the other at an MOI 

of 5 (as in the first transfection). Cells were spin infected at 800 g for 45 minutes at room 

temperature and kept at 37°C, 5% CO2 overnight. The following day, the media were changed to 

remove the polybrene. 48 hours following transduction, cells were selected with 6 µg/mL 

blasticidin for 12 days. After selection, cells from the two MOI conditions were pooled, and 

expanded into a T25 tissue culture flask.  
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As clonal controls, single cells were sorted into individual wells of one and a half 96-well plates 

(for a total of 144 unique clones) by flow cytometry using the Sony SH800 Cell Sorter instrument, 

and allowed to clonally expand for a month. After library construction, wells with low cell numbers 

were removed from subsequent analysis, resulting in 88 remaining wells. Libraries were prepared 

and sequenced as described below. 

 

Meanwhile, the cell pool in the T25 flask (above) was expanded into a T75 flask and passaged 

every 2 days to maintain the cells in exponential growth phase. In this experiment, our bottleneck 

size was 25,000 cells. Once the single cell clones were confluent, varying number of cells from 

different clones were spiked into the confluent T75 flask containing the cell pool: 5 cells from each 

well of row A, 10 cells from each well of row B, 25 cells from each well of row C, 75 cells from 

each well of row D, 150 cells from each well of row E, 300 cells from each well of row F, 750 

cells from each well of row G, and 1,500 cells from each well of row H. Once the contents of the 

T75 flask were thoroughly mixed, 10,000 cells were plated per well in a 96 well plate. 48 hours 

later, cells were lysed with RLT Plus buffer and stored at -80°C for downstream Shuffle-seq library 

construction as described below. 

 

Melanoma drug resistance screen 

100,000 A375 cells containing Cas9 were plated in each well of a 12 well plate. Wells were 

transduced with a lentiviral pool expressing the puromycin resistance gene from the Ef1a promoter 

in the presence of 8 µg/mL polybrene (Millipore Sigma) at a MOI of 1, 6, or 16 (4 wells per each 

MOI). Cells were spin infected at 1,400g for 2 hours at 33°C and kept at 37°C, 5% CO2 overnight. 
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24 hours after transduction, media were exchanged to remove polybrene. Cells were then co-

selected with 1 µg/mL puromycin (Thermo Fisher) and 2 µg/mL of blasticidin (for Cas9 

expression).  

 

A week after transduction, cells were transduced with a hygromycin lentiviral pool. Each well was 

transduced at the same MOI as before. 24 hours after transduction, media was exchanged to 

remove polybrene. Cells were then selected with 300 µg/mL hygromycin (Thermo Fisher) for 10 

days. Two days later, 1,875,000 cells were expanded into a T75 flask and treated with 2 µM 

Vemurafenib (PLX4032; Selleckchem).   

 

On the following day, single cells were sorted into individual wells of a 96-well plate by flow 

cytometry using the Sony SH800 Cell Sorter instrument and allowed to clonally expand for a 

month in order to make an empirical estimate of MOI.  

 

Three weeks after initiation of drug treatment, the cell density of the Vemurafenib-dosed cells in 

the T75 flask was measured on the hemocytometer, and the cells were manually pipetted into each 

well of a 96-well plate to achieve the following densities: 

Row Number of cells/well 
A 20,000 
B 10,000 
C 5,000 
D, E 2,500 
F, G 250 
H 25 

 
Cells were then pelleted by centrifugation, lysed in RLT Plus buffer. Shuffle-seq library prep was 

performed as described below. Finally, the plate was sequenced on an Illumina Nextseq. 
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sgRNA library construction and sequencing 

RNA was isolated from the cell lysate using Agencourt RNAClean XP SPRI beads (Beckman 

Coulter) in a 2X ratio. Each sample was eluted in a mix composed of: 3.55µL nuclease-free water, 

0.1µL of 100 µM TSO, 0.5 µL of 10 mM dNTP mix (Thermo Fisher), 1 µL PEG 8000 (New 

England Biolabs; 50% stock), 2 µL 5X RT Buffer, 0.35 µL RNase inhibitor, 0.5 µL Maxima H 

Minus Reverse Transcriptase, and 2 µL RT primer. Reverse transcription was performed at 50°C 

for 90 minutes, followed by heat inactivation at 85°C for 5 minutes. The transcriptome was 

amplified by spiking in the following mix to each reaction: 12.5µL 2X KAPA HiFi HotStart 

ReadyMix, 0.25µL of 10µM ISPCR primer, and 2.25µL nuclease-free water. Whole 

Transcriptome Amplification (WTA) PCR cycling conditions were:  

Temperature Time 
98 °C 3 min 
98 °C 
67 °C 
72 °C 

20 s 
15 s                                 Repeat for a total of 10 cycles 
6 min 

72 °C 5 min 
 

cDNA was then purified by a 1X Agencourt AMPure XP bead clean-up (Beckman Coulter) and 

eluted in 15µL nuclease-free water. The yield was measured using a 96-well plate reader Qubit 

HS assay (Invitrogen), and the product was run on a 2% Agarose E-gel to check for the presence 

of a peak at 1.5-2 kb, and the absence of any fragments smaller than 500 bp.  

 

DNA libraries were prepared by taking a fraction of the WTA product to amplify the sgRNA 

region and attach the Nextera adapters using the primer sequences below.  
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cropU6nexteraF TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGTGGAAAG

GACGAAACACC 

croppostscaffnext

eraR 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTAGTTA

CGCCAAGCTT 

 

Each of the 96 PCR reactions was performed using 1-10ng of WTA, 12.5µL NEBNext® High-

Fidelity 2X PCR Master Mix, 2.5µL of 10µM primer mix, and nuclease-free water (for a final 

volume of 25 µL). The optimal number of cycles was determined by qPCR. The PCR cycling 

conditions were: 

Temperature Time 
98 °C 30 s 
98 °C 
61 °C 
72 °C 

10 s 
10 s, repeated, with cycle number empirically determined by WTA 
yield 
20 s 

72 °C 2 min 
 

The resulting PCR 1 product was purified by a 0.8X Agencourt AMPure XP bead clean-up 

(Beckman Coulter). The yield was measured using a Qubit HS assay, and the size was verified by 

running the product on a 2% Agarose E-gel. Next, the PCR 1 product was further amplified to 

attach barcoded Nextera indices. Each of the 96 PCR reactions was performed using 1-10ng of 

PCR 1 product, 12.5 µL NEBNext® High-Fidelity 2X PCR Master Mix, 2.5µL of 10 µM Nextera 

P5/P7 primer mix, and nuclease-free water (for a final volume of 25µL). The optimal number of 

cycles was again determined by qPCR. The PCR cycling conditions were: 

Temperature Time 
98 °C 30 s 
98 °C 
72 °C 

10 s 
30 s                                 Repeat for a total of 10 cycles 
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72 °C 2 min 
  

The barcoded PCR 2 products were then pooled and purified twice by a 0.8X Agencourt AMPure 

XP bead clean-up to remove any residual primer or primer-dimer. The yield was measured using 

a Qubit HS assay, and the size was verified by running the product on a 2% Agarose E-gel.  

 

Pair-end sequencing was performed on a NextSeqTM 500 instrument. The run parameters were: 42 

cycles for read 1 (sgRNA), 34 cycles for read 2 (UTB), 8 cycles for index 1, and 8 cycles for index 

2. To improve run quality and base clustering, 10-50% of PhiX Control v3 Library was spiked into 

each run. 

 

COMPUTATIONAL ANALYSIS 

 

Data pre-processing 

Sequencing data was demultiplexed using bcl2fastq and a sample sheet containing the index 

barcodes for each well of the 96 well plate. Reads for each well were aligned using bowtie26 with 

a reference genome consisting of a portion of the modified CROP-seq vector centered on the 

sgRNA-UTB construct with 60bp flanking either end. The UTB was replaced with N (ambiguous 

bases). After alignment, reads with fewer than two mismatches to their corresponding sgRNA were 

used for subsequent analysis. The UTB section was extracted from read 2 (the 14 bp downstream 

of the constant priming region) and counts of sgRNA-UTB were created by using Linux command 

uniq -c for the sgRNA-UTB pair extracted from the BAM file. This process was performed for 

each well and the resulting sgRNA-UTB abundance vectors were compiled by a custom Python 
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script to create a sgRNA-UTB abundance matrix, where each column corresponded to a difference 

well. 

Normalization of sgRNA-UTB matrix 

After sequencing of a Shuffle-seq library, a matrix of sgRNA-UTB abundances across wells was 

generated. PCR chimeras (in which spurious associations between sgRNAs and UTBs are created 

during amplification) were removed as previously described7. Read depth normalization was 

performed by normalizing the read counts for each well to sum to 1 million (TPM). Finally, a log2 

transform was performed to create a normalized sgRNA-UTB matrix. 

 

Estimation of sgRNA-UTB plasmid library complexity 

For a Shuffle-seq experiment, sgRNA-UTB barcode complexity should significantly exceed the 

number of clones in the experiment. The number of reads per sgRNA-UTB was used to estimate 

a zero-truncated Poisson parameter ( l). The log-likelihood was evaluated as: 

𝐿𝐿(𝜆) = & log	(𝑂(𝑘)	𝑃𝑍𝑇[𝜆, 𝑘])
34
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Where O(k) is the number of sgRNA-UTBs with k reads detected and 𝑃𝑍𝑇[𝜆, 𝑘] is a zero-truncated 

Poisson distribution. Library complexity was estimated as the total number of reads divided by the 

estimated 𝜆.  
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Statistical inference of clones 

To infer clonal associations between pairs of sgRNA-UTBs, an empirical null distribution was 

generated by randomly permuting (up to 100 times) the normalized sgRNA-UTB by well matrix. 

In an HDR-Shuffle-seq experiment (with variable numbers of cells per well), the permutation is 

performed only between those wells that have received similar number of cells (in the case of the 

vemurafenib experiment for each row of the 96 well plate). This permutation procedure ensures 

an empirical distribution that reflects variation in conditional distributions for the rows and 

columns of the sgRNA-UTB by well matrix. 

Only sgRNA-UTBs that occur in similar number of wells need to be tested, thus reducing both 

computational complexity and the number of hypotheses tested in the family. Overlapping sets of 

sgRNA-UTBs whose well abundance was within a factor of 2 of one another were evaluated. For 

each set, pairwise Pearson correlation coefficients were calculated for each pairs of sgRNA-UTBs 

for the actual and permuted corresponding sgRNA-UTB submatrices, respectively. Empirical p-

values for each pair of sgRNA-UTB were estimated by evaluating their real correlation as a 

percentile in the corresponding subset of the permuted distribution. A Benjamini-Hochberg 

procedure was used to control for the False Discovery Rate and a clonal pair is reported if its 

corresponding q-value is less than 0.05.  

Estimation of specificity/sensitivity for 88 clones 
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In order to determine the sensitivity and specificity of the Shuffle-seq approach. The ability to 

recover sgRNA-UTBs that were known to co-associate based on 88 single cell clones was 

evaluated. The statistical inference procedure was performed as above, The permuted sgRNA-

UTB was constructed using both all sgRNA-UTBs known not to be present in the 88 single cell 

clones and the sgRNA-UTBs known to be present in the 88 single cell clones. For both approaches 

the AUC of recovering true sgRNA-UTB pairs was >0.996. 
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