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107 ABSTRACT

108  Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical
109  studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution
110  during PDX engraftment and propagation, impacting the accuracy of PDX modeling of human
111 cancer. Here we exhaustively analyze copy number alterations (CNAs) in 1451 PDX and matched
112 patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing
113 and microarray data displayed substantially higher resolution and dynamic range than gene
114  expression-based inferences, and they also showed strong CNA conservation from PTs through
115 late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-
116 late trios confirmed high-resolution CNA retention. We observed no significant enrichment of
117  cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between
118  patient and PDX tumors were comparable to variations in multi-region samples within patients.
119  Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse
120 host.

121

122 MAIN

123 A variety of models of human cancer have been used to study basic biological processes and
124 predict responses to treatment. For example, mouse models with genetically engineered
125  mutations in oncogenes and tumor suppressor genes have clarified the genetic and molecular
126  basis of tumor initiation and progression'?, though responses sometimes differ between human
127  and mouse®. Cell lines have also been widely used to study cancer cells, but they lack the
128  heterogeneity and microenvironment of in vivo tumors and have shown limitations for predicting
129  clinical response*. Human tumors engrafted into transplant-compliant recipient mice (patient-
130  derived xenografts, PDX) have advantages over prior systems for preclinical drug efficacy studies
131  because they allow researchers to directly study human cells and tissues in vivo®®. Comparisons
132 of genome characteristics and histopathology of primary tumors and xenografts of human breast

13 ovarian cancer', colorectal cancer'® and lung cancer'®'®, have demonstrated that the

133 cancer
134  biological properties of patient-derived tumors are largely preserved in xenografts. A growing body

135  of literature supports their use in cancer drug discovery and development'®?'.
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136 A caveat to PDX models is that intratumoral evolution can occur during engraftment and
11,22-25

137  passaging . Such evolution could potentially modify treatment response of PDXs with

138  respect to the patient tumors?32627

, particularly if the evolution were to systematically alter cancer-
139 related genes. This issue is related to multi-region comparisons of patient tumors®?', for which
140  local mutational and immune infiltration variations have suggested differential phenotypes among
141  multi-region samples®. However, it remains unclear how therapies should be designed with
142 respect to this variation. Comparing patient tumor-PDX evolution to the multi-region variations
143 within the patient tumor would clarify the importance of primary-PDX divergence for treatment.
144 Recently, Ben-David et al.?® reported extensive PDX copy number divergence from the
145  patient tumor of origin and across passages, based mainly on large-scale assessment of CNA
146  profiles inferred from gene expression microarray data, which allowed analysis of aberrations at
147  the scale of chromosomal arms. They raised concerns about genetic evolution in PDXs as a
148  consequence of mouse-specific selective pressures, which could impact the capacity of PDXs for
149  faithful modeling of patient treatment response. Such results contrast with reports that have
150  observed genomic fidelity of PDX models with respect to the originating patient tumors and from
151  early to late passages by direct DNA measurements (DNA sequencing or SNP arrays) in several
152  dozen PDX models®'%33,

153 Here we resolve these contradicting observations by systematically evaluating CNA
154  changes and the genes they affect during engraftment and passaging in a large, internationally
155  collected set of PDX models, comparing both RNA and DNA-based approaches. The data
156  collected, as part of the U.S. National Cancer Institute (NCI) PDXNet (PDX Development and
157  Trial Centers Research Network) Consortium and EurOPDX consortium, comprises 1548 PT and
158  PDX datasets (1451 unique samples) from 509 models derived from American, European and
159  Asian cancer patients. Our study demonstrates that prior reports of systematic copy number
160  divergence between patient tumors and PDXs are incorrect, and that there is high retention of
161  copy number during PDX engraftment and passaging. This work also finely enumerates the copy
162  number profiles in hundreds of publicly available models, which will enable researchers to assess
163  the suitability of each for individualized treatment studies.

164

165 RESULTS

166  Catalog of copy number alterations in PDXs

167 We have assembled copy number alteration (CNA) profiles of 1451 unique samples (324
168  patient tumor, PT, and 1127 PDX samples) corresponding to 509 PDX models contributed by
169 participating centers of the PDXNET, the EurOPDX consortium, and other published datasets®*
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170  (see METHODS, Supplementary Table 1 and Supplementary Fig. 1). We estimated copy number
171  (CN) from five data types: single nucleotide polymorphism (SNP) array, whole-exome sequencing
172  (WES), low-pass whole-genome sequencing (WGS), RNA sequencing (RNA-Seq) and gene
173  expression array data, yielding 1548 tumor datasets including samples assayed on multiple
174  platforms. Paired-normal DNA and in some cases, paired normal RNA, were also obtained to
175 calibrate WES and RNA-Seq tumor samples. To estimate the CNA profiles for the different data
176  types, we used tools including ASCAT for SNP arrays®, Sequenza for tumor-normal WES®,
177 gDNAseq® and ASCAT for WGS and e-karyotyping® for gene expression (RNA-Seq and gene
178  expression array) data (see METHODS). Copy number segments for each sample were filtered
179  for measurement noise, median-centered, and intersected with gene coordinates (see
180  METHODS, Supplementary Data 1).

181 The combined PDX data represent 16 broad tumor types (see METHODS), with 64%
182  (n=324) of the models having their corresponding patient tumors assayed and another 64%
183  (n=328) having multiple PDX samples of either varying passages (ranging from PO — P21) or
184  varying lineages from propagation into distinct mice (Fig. 1a, Supplementary Table 2). The
185  distributions of PT and PDX samples across different tumor types, passages, and assay platforms
186  (Fig. 1b, Supplementary Fig. 2-12) show the wide spectrum of this combined dataset, which is
187  the most comprehensive copy number profiling of PDXs compiled to date. Additionally, our data
188 include 7 patients with multiple tumors collected either from different relapse time points or
189  different metastatic sites, resulting in multiple PDX models derived from a single patient.

190

191 Comparison of CNA profiles from SNP array, WES and gene expression data

192  To compare the CNA profiles from different platforms in a controlled fashion, we assembled a
193  benchmarking dataset with matched measurements across multiple platforms (Supplementary
194  Table 3, Supplementary Fig. 13 — 17). Copy number calling has been reported to be noisy for

3940 and we observed that quantitative comparisons between CNA profiles are

195  several data types
196  sensitive to: (1) the thresholds and baselines used to define gains and losses, (2) the dynamic
197  range of copy number values from each platform, and (3) the differential impacts of normal cell
198  contamination for different measurements. To control for such systematic biases, we assessed
199 the similarity between two CNA profiles using the Pearson correlation of their log2(CN ratio) values
200  across the genome in 100kb windows. Regions with discrepant copy number were identified as
201  those with outlier values from the linear regression model (see METHODS).

202
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203  CNAs from WES are consistent with CNAs from SNP array data. While SNP arrays are widely
204 accepted for estimating tumor CNA profiles*'*?, CNA estimates from WES data have more
205  uncertainty*®*®. We implemented a WES-based CNA pipeline and benchmarked it against SNP
206  array-based estimates for matched samples, which we used as a gold standard. Copy number
207  gain or loss segments (see METHODS) from SNP arrays were of a higher resolution (Fig. 2a;
208  median/mean segment size: 1.49/4.05 Mb for SNP, 4.70/14.6 Mb for WES, p < 2.2e'®) and wider
209  dynamic range (Fig. 2b; range of log2(CN ratio): —8.62 — 2.84 for SNP, —3.04 — 1.85 for WES, p <
210 2.2e). The difference in range is apparent in the linear regressions between platforms
211  (Supplementary Fig. 19a). These observations take into account the broad factors affecting CNA
212 estimates across platforms, such as the positional distribution of sequencing loci; the sequencing
213 depth of WES (10 — 280X); and the superior removal of normal cell contamination by SNP array
214  CNA analysis workflows using SNP allele frequencies®.

215 Despite the superiority of SNP arrays, we observed strong agreement between SNP
216  arrays and WES, with significantly higher Pearson correlation coefficients on matched samples
217  than samples of different models (range: 0.913 — 0.957 for matched samples, 0.0366 — 0.354 for
218  unmatched samples, p = 1.02e™%), with the exception of 2 samples that lacked CNA aberrations
219  (Fig. 2c, Supplementary Fig. 13, 18 and 19a). Regions with discordant copy number between
220  platforms could also be identified (Supplementary Fig. 19a, see METHODS). The discordant copy
221  number regions largely correspond to small focal events (average size 1.53Mb) detectable by
222 SNP arrays but missed by WES (Supplementary Fig. 19b). Still, CNA profiling by WES is reliable
223 in most cases, with 99% of the genome locations across the samples consistent with the values
224 from SNP arrays.

225

226  Low accuracy for gene expression-derived CNA profiles. To compare the suitability of gene
227  expression for quantifying evolutionary changes in CNA, we adapted the e-karyotyping method
228  used in Ben-David et al.?®3%4 for RNA-Seq and gene expression array data. For each tumor type,
229  the expression values were calibrated relative to either median expression of non-tumor tissue
230  RNA samples, or relative to median expression of tumor samples when normal samples were not
231  available (Supplementary Fig. 15 and 17). Copy number segments calibrated by non-tumor
232 expression were of higher resolution (Fig. 2a; median/mean segment size: 36.0/51.9 Mb for
233  RNASEQ NORM, 48.2/65.3 Mb for RNASEQ TUM, p < 2.2e7'°; 62.0/72.4 Mb for EXPARR NORM,
234 80.1/85.2 Mb for EXPARR TUM, p = 2.20e"") and wider dynamic range (Fig. 2b; range of log2(CN
235  ratio): —2.07 — 2.17 for RNASEQ NORM, —1.79 — 1.81 for RNASEQ TUM, p < 2.2e"%; -1.40 —
236  1.89 for EXPARR NORM, —1.13 — 1.59 for EXPARR TUM, p = 4.09¢%) compared to segments

7
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237  calculated by calibration with tumor samples. This was true for both RNA-Seq and gene
238  expression array platforms.

239 A notable problem with the expression-based calls is that the alternative expression
240  calibrations can have a major impact on called gains and losses. This is especially apparent for
241 regions frequently called as gains or losses in specific tumor types (Supplementary Fig. 20), e.g.
242  as identified in other studies***’. Chromosomes 8q and 13 were almost exclusively identified as
243 gains and chromosomes 21 and 22 were almost exclusively as losses in the gastric cancer RNA-
244  Seq dataset when normal samples were used for calibration. Similarly, we called exclusive gains
245  in chromosomes 7q and 20 and losses in chromosomes 4q31-35, 8p,16q and 21 using normal
246  samples for calibration for the hepatocellular carcinoma expression array dataset. However,
247  changing the calibration to use tumor samples resulted in these regions being erroneously called
248  with approximately equal frequencies of gains and losses. These alternate methodologies yielded
249  strong variability in the CNA calls, and this was the case for each of the RNAseq and expression
250 array datasets (Pearson correlation range: 0.218 — 0.943 for RNASEQ NORM vs TUM, 0.377 —
251  0.869 for EXPARR NORM vs TUM, Fig. 2c and Supplementary Fig. 21). For each, this range of
252  correlations was far greater than was observed in comparisons between the DNA-based methods
253 (p =9.37e® and p = 3.28¢e™ relative to SNP vs WES). This indicates the problematic nature of
254  RNA-based CNA calling with calibration by tumor samples, which has been used when normal
255 samples are not available.

256 We observed other measures showing the limitations of RNA-based CNA calling.
257  Expression-based calling had segmental resolution an order of magnitude worse than the DNA-
258  based methods (Fig. 2a and Supplementary Fig. 14 — 17; median/mean segment size: 3.45/14.0
259  Mb for WES, 36.0/51.9 Mb for RNASEQ NORM, p < 2.2e7'°; 1.73/ 5.18 Mb for SNP, 62.0/72.4 Mb
260 for EXPARR NORM, p < 2.2e*®). The range of detectable copy number values was also superior
261  for DNA-based methods (Fig. 2b; range of log2(CN ratio): —-6.00 — 5.33 for WES, —2.07 — 2.17 for
262 RNASEQ NORM, p < 2.2e"%; —9.19 — 4.65 for SNP, —1.40 — 1.89 for EXPARR NORM, p < 2.2¢"
263 '°). In addition, there was a lack of correlation between the expression-based and DNA-based
264  methods (range: 0.0541 — 0.942 for WES vs RNASEQ (NORM); 0.00517 — 0.921 for SNP vs
265 EXPARR (NORM)) (Fig. 2c and Supplementary Fig. 22 and 23). CNA estimates after tumor-based
266  expression normalization resulted in further discordance with DNA-based copy number results
267 (range: —0.182 — 0.929, p = 0.0468 for WES vs RNASEQ (TUM); —0.0274 — 0.847, p = 2.20e™®
268  for SNP vs EXPARR (TUM)). Many focal copy number events detected by DNA-based methods,

269  aswell as some larger segments, were missed by the expression-based methods (Supplementary
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270  Fig. 24). Representative examples illustrating the superior resolution and accuracy from DNA-
271  based estimates are given in Fig. 2d (see also Supplementary Fig. 19a and 25).

272

273  Concordance of PDXs with patient tumors and during passaging

274  We tracked the similarity of CNA profiles during tumor engraftment and passaging by calculating
275  the Pearson correlation of gene-level copy-number for samples measured on the same platform
276  (see METHODS, Supplementary Fig. 26-64). All pairs of samples derived from the same PDX
277  model were compared — yielding 501 PT-PDX and 1257 PDX-PDX pairs.

278 For all DNA-based platforms we observed strong concordance between matched PT-PDX
279  and PDX-PDX pairs, significantly higher than between different models from the same tumor type
280 and the same center (p < 2.2e'®) (Fig. 3a — c, correlation heatmaps in Supplementary Fig. 27 —
281  63). We observed no significant difference in the correlation values between PT-PDX and PDX-
282  PDX pairs for SNP array data (median correlation PT-PDX = 0.950, PDX-PDX = 0.964; p > 0.05),
283  though there were small but statistically significant shifts for WES (PT-PDX = 0.874, PDX-PDX =
284  0.936; p = 2.31e'®) and WGS data (PT-PDX = 0.914, PDX-PDX = 0.931; p = 0.000299). PT
285  samples have a smaller CNA range than their derived PDXs (median ratio PT/PDX / PDX/PDX:
286  0.832/0.982, p = 0.000120 for SNP; 0.626/0.996, p < 2.2e"® for WES; 0.667/1.00, p < 2.2 for
287  WGS; Supplementary Fig. 64b and 65), which can be attributed to stromal DNA in PT samples
288  “diluting” the CNA signal. In PDXs, the human stromal DNA is reduced®'®. The minimal effect for
289  SNP array data confirm this interpretation — human stromal DNA contributions to CNA estimates
290 can be removed from SNP arrays based on allele frequencies of germline heterozygous sites,
291  while such contributions to WES and WGS have higher uncertainties.

292 We also performed intra-model comparisons using RNA-based approaches, but the
293  Pearson correlations between pairs of samples did not clearly reproduce the Pearson correlations
294 from DNA-based platforms for those same sample pairs (Supplementary Fig. 66a). To clarify this,
295  we considered just the highly-correlated cases (>0.8 for SNU-JAX Gastric cancer WES, >0.9 for
296  SIBS HCC SNP). We observed that the correlation values for the corresponding RNA-based
297  methods were lower and had higher variance (p < 0.05, Supplementary Fig. 66b). In particular,
298  the tumor-median normalization for expression data resulted in significant differences from DNA-
299  based methods.

300

301 Late PDX passages maintain CNA profiles similar to early passages. Next, we asked if there
302 is any systematic evolution of copy number during engraftment and passaging. Mouse

303  environment-driven evolution, if present, should reduce CN correlations relative to early samples,
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304  such as the primary tumor or first engraftment (P0O). However, we observed no apparent effect
305  during passaging on the SNP, WES, or WGS platforms (Fig. 3d — f, Supplementary Fig. 67). For
306 example, the SNP data showed no significant difference between passages (Fig. 3d and
307  Supplementary Fig. 67a). For those models having very late passages (14 breast cancer models,
308 P18 to P21), there was a small but statistically significant correlation decrease compared to
309  models with earlier passages (p < 8.98e %, Supplementary Fig. 68), indicating some copy number
310  changes can occur over long-term passaging (Supplementary Fig. 38). However even at these
311 late passages, the correlations to early passages remained high (median = 0.896). In any given
312 comparison, only a small proportion of the genes were affected by copy number changes (median:
313 2.72%, range: 1.03% — 11.9%). Genes that are deleted and subsequently gained in the later
314  passages (top left quadrant of regression plots, Supplementary Fig. 69) suggest selection of
315  preexisting minor clones as the key mechanism in these regions. For WES and WGS data, more
316  variability in the correlations can be observed (Fig. 3e and f, Supplementary Fig. 66b and c), likely
317  due to a few samples having more stromal contamination or low aberration levels (Supplementary
318 Fig. 64b and 65). However, the lack of downward trend over passaging was also apparent in
319  these sets.

320

321  PDX copy number profiles trace lineages. \We next compared the similarity of engrafted PDXs
322 of the same model with the same passage number (i.e. all POs, all P1s, all P2s, etc.). Surprisingly,
323  we discovered that these fragments were not more similar than PDXs from different passage
324  numbers (Fig. 3d — e and Supplementary Fig. 66b, IQR of correlation coefficient for same-
325  passages/different-passages: 0.0700/0.0619 for SNP and 0.103/0.0979 for WES). To further this
326  analysis, we defined, for JAX SNP array and PDMR WES datasets, samples within a lineage as
327  those differing only by consecutive serial passages, while we defined lineages as split when a
328  tumor was divided and propagated into multiple mice (Fig. 3g). For the EurOPDX CRC and BRCA
329  WGS datasets, such lineage splitting was due only to cases with initial engraftment of different
330 fragments of the PT, i.e., PDX samples of different passages were considered as different
331 lineages if they originate from different PT fragments. We observed lower correlation between
332 PDX samples from different lineages compared to within a lineage (Fig. 3h, p = 0.0233 for SNP,
333  p=0.00119 for WES, p = 0.000232 for WGS), despite a majority of these pairwise comparisons
334  exhibiting high correlation (>0.9). A few examples of models exhibiting large drift between
335 lineages include TMO01500 (Supplementary Fig. 29); 416634, 558786 and 665939
336  (Supplementary Fig. 50); 135848 and 762968 (Supplementary Fig. 51); 245127 and 959717
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337  (Supplementary Fig. 52); 287954 and 594176 (Supplementary Fig. 56); 174316 and 695221
338  (Supplementary Fig. 57).

339 We next asked if the phylogenetic distance between samples could explain the observed
340  shifts in the correlations. These distance relationships are clearest for the CRC and BRCA WGS
341  sets because these models have only one lineage split occurring at the engraftment stage. We
342  compared correlation as a function of phylogenetic distance within a lineage, which in this
343  phylogeny is simply equal to the difference in passage number between the two samples.
344  Increase in passage difference did not consistently reduce the correlation between samples
345  (Supplementary Fig. 70). This suggests that lineage-splitting is often responsible for deviations in
346  CNAs between samples, and that copy number evolution during passaging mainly arises from
347  evolved spatial heterogeneity?’.

348

349  Genes with copy number alterations acquired during engraftment and passaging show no
350 preference for cancer or treatment-related functions.

351  Next, we investigated which genes tend to undergo copy number changes. Genes with changes
352 during engraftment or during passaging were identified based on a residual threshold with respect
353  to the improved linear regression*® (see METHODS, Supplementary Fig. 26). A low copy number
354  change threshold (Jlog2(CN ratio) change| > 0.5) was selected to include genes with subclonal
355 alterations. To test for functional biases, we compared CNA-altered genes to gene sets with
356  known cancer- and treatment-related functions, notably genes in TCGA oncogenic signaling
357 pathways*®; genes with copy number and expression changes associated with therapeutic
358  sensitivity, resistance or changes in drug response from the JAX Clinical Knowledgebase®>*'; and
359 genes with frequent amplifications or deletions in the Cancer Gene Census® (Cosmic version
360  89). We calculated the proportion of altered genes for sample pairs from each model across all
361 platforms and tumor types. In agreement with the high maintenance of CNA profiles described
362  above, we found the proportion of altered protein-coding genes to be low (median/IQR: 1.90%/
363  4.11% PT-PDX, 1.25%/ 3.60% PDX-PDX pairs, Fig. 4a). Only 8.78% of PT-PDX pairs and 4.53%
364 PDX-PDX pairs showed >10% of their protein-coding genes altered. We observed no significant
365 increase (p <0.1) in alterations among any of the cancer gene sets compared to the background
366  of all protein-coding genes, for either the PT-PDX or PDX-PDX comparisons. This provides
367 evidence that there is no systematic selection for CNAs in oncogenic or treatment-related
368 pathways during engraftment or passaging. We next considered tumor-type-specific effects,
369 focusing on types with larger numbers of models to ensure statistical power (breast cancer,

370  colorectal cancer, lung adenocarcinoma and lung squamous cell carcinoma). Genomic
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371 Identification of Significant Targets in Cancer (GISTIC)**** analysis of TCGA tumors has
372  previously identified significantly altered genomic driver regions which can be used to differentiate

%558 We observed no significant increase in alterations in tumor-type-

373  tumor types and subtypes
374  specific GISTIC gene sets compared to the background (p < 0.1) for either PT-PDX or PDX-PDX
375  comparisons (Fig. 4b).

376

377  Low recurrence of altered genes across models. We tested if any particular genes often
378  recurred in CNAs across models. Using a stringent CNA threshold (|log2(CN ratio) change| > 1.0
379  with respect to linear regression model) to distinguish genes with possible functional impact (see
380 METHODS), we observed a very low recurrent frequency (Fig. 4c), with only 12 and 2 genes
381 recurring at > 5% frequency for PT-PDX and PDX-PDX comparisons, respectively
382  (Supplementary Table 4). No gene had a recurrence frequency higher than 8.96%. We observed
383  that all these recurrent genes overlapped models in which one sample displayed an unusually
384  large gain or loss (|log2 (CN ratio)| > 1.5). This suggests that these regions may be subject to
385  more noise in the CNA estimation procedure at these loci (Supplementary Fig. 71). None of these
386  recurrent genes overlapped cancer- or treatment-related gene sets, nor did they intersect genes
387  (n=3) reported by Ben-David et al.?® to have mouse-induced copy number changes associated
388  with drug response in the CCLE*® database. We further queried from CCLE data whether any
389  of these recurrent genes showed evidence for copy number-related drug response (see
390 METHODS, Supplementary Table 5). For the 6 genes with sufficient data available, we found no
391  association between copy number and drug response mediated by gene expression (g-value <
392 1).

393

394  Absence of CNA shifts in 130 WGS patient tumour, early passage PDX and late passage
395 PDX trios

396  We next investigated whether recurrent CNA changes occur in PDXs in a tumor-type specific
397 fashion. To this aim, we analysed further the WGS-based CNA profiles of large metastatic
398  colorectal (CRC) and breast cancer (BRCA) series (see METHODS), respectively composed of
399 87 and 43 matched trios of patient tumour (PT), PDX at early passage (PDX-early) and PDX at
400 later passage (PDX-late). We carried out GISTIC analysis to identify recurrent CNAs by evaluating
401  the frequency and amplitude of observed events®*®**. GISTIC was applied separately for each PT,
402  PDX-early (PO-P1 for CRC, P0-P2 for BRCA) and PDX-late (P2-P7 for CRC, P3-P9 for BRCA)
403  cohorts of CRC and BRCA (Supplementary Table 6). As expected, CRCs and BRCAs generated

404  different patterns of significant CNAs, with each similar to the GISTIC patterns in their respective
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405  TCGA series (Supplementary Fig. 72). However, within each tumour type GISTIC profiles of the
406 PT, PDX-early, and PDX-late cohorts were virtually indistinguishable (Fig 5a and Supplementary
407  Fig. 72), demonstrating no gross genomic alteration systematically acquired or lost in PDXs.

408 To clarify these behaviors, we carried out gene-level analysis, where each gene was
409  attributed the GISTIC score (G-score) of the respective segment (Supplementary Table_7). In both
410 the CRC and BRCA cohorts, gene-level G-scores of the PTs were highly correlated with the
411  respective PDX-early and PDX-late cohorts (Fig. 5b and c). Moreover, PT versus PDX
412  correlations were comparable to PDX-early versus PDX-late correlations. To search for
413  progressive shifts, we compared the change in G-score (AG): (i) from tumor to PDX-early and (ii)
414  from PDX-early to PDX-late. Correlations in these two AG values, as shown in the bottom-right
415 panels of Fig. 5b and ¢, was absent or even slightly negative. These results confirmed the
416  absence of systematic CNA shifts in PDXs even under high resolution, gene-level analysis.

417

418 Lack of CNA-based functional shifts in trios confirms the absence of mouse-specific
419  evolution. We then considered the possibility of systematic copy number evolution at the pathway
420  level in these triplets. To evaluate this, we performed Gene Set Enrichment Analysis (GSEA)®"52
421 using G-scores to rank genes in each cohort (See METHODS). Consistent with the known
422  recurrence of cancer CNAs at driver genes, multiple gene sets displayed significant enrichment
423 in individual cohorts. To avoid spurious apparent enrichment for sets of genes with adjacent
424  chromosomal location, we implemented an additional filter based on G-score significance (see
425  METHODS and Supplementary Table 8). After applying the Normalized Enrichment Score (NES),
426  FDR g-value and G-score filters, 49 gene sets were found to be significant in at least one of the
427  three CRC cohorts, and 89 gene sets in at least one of the three BRCA cohorts (Supplementary
428  Table 9). Importantly, control gene sets composed of GISTIC hits identified in TCGA CRC and
429 BRCA datasets were all significant, confirming that the WGS cohorts used here correctly
430  recapitulate the major CNA features of these two cancer types.

431 However, differences associated with PDX engraftment and passage were negligible. For
432  both CRC and BRCA, the NES profiles for the ~8000 gene sets of PTs were highly correlated
433 with the respective PDX-early and PDX-late cohorts (Fig. 5d and e). Moreover, PT versus PDX
434  correlations were comparable to PDX-early versus PDX-late correlations. To search for
435  progressive shifts, we calculated for each significant gene set ANES values between PT and
436  PDX-early, as well as between early and late PDX. Similarly to what was observed for the AG-
437  scores, as shown in the bottom-right panels of Fig. 5d and e, correlations were absent or at most

438  slightly negative, confirming the absence of systematic CNA-based functional shifts in PDXs.
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439

440 CNA evolution across PDXs is no greater than variation in patient multi-region samples
441  As a reference for the treatment relevance of PDX-specific evolution, we compared to levels of
442  copy number variation in multi-region samples of patient tumors. For this we used copy number
443  data from multi-region sampling of non-small-cell lung cancer (92 patient tumors, 295 multi-region
444  samples) from the TRACERx Consortium®', performing analogous CNA correlation and gene
445  analyses (|residual| > 0.5) between multi-region pairs (Supplementary Fig. 73). We observed no
446  significant differences in correlation (p > 0.05) between patient multi-region and lung cancer PT-
447  PDX pairs, while PDX-PDX pairs in fact showed significantly better correlation than the multi-
448  region pairs (p < 0.05, Fig. 6a). These findings were consistent when tumors were grouped as
449  adenocarcinomas, squamous cell carcinomas, or others. Cancer gene set analyses confirmed
450  these results, with multi-region samples showing greater differences than either PT-PDX or PDX-
451 PDX comparisons, across all the cancer gene sets considered (p < 0.05, Fig. 6b and
452  Supplementary Fig. 74). These results show that PDX-associated CNA evolution is no greater
453  than what patients experience naturally within their tumors. Our PDX collection also contains a
454  few cases in which the patient tumor was assayed at multiple time points (relapse/metastasis) or
455  multiple metastatic sites, allowing for controlled comparison of intra-patient variation versus PDX
456  evolution (Supplementary Fig. 3, 4 and 7). We observed no significant difference between the
457  CNA evolution during engraftment and passaging compared to the intra-patient samples (Fig. 6¢).
458  CNA profiles for these samples are shown visually in Fig. 6d.

459

460 DISCUSSION

461  Here we have investigated the evolutionary stability of patient-derived xenografts, an important
462  model system for which there have been prior reports of mouse-induced copy number evolution.
463  To better address this, we assembled the largest collection of CNA profiles of PDX models
464  reported to date, comprising over 1500 datasets from PDX samples of multiple passages and
465  their originating patient tumors from more than 500 PDX models across a variety of tumor types.
466  Our analysis demonstrated the reliability of copy number estimation by DNA-based
467  measurements over RNA-based inferences, which are substantially inferior in terms of resolution
468 and accuracy. The importance of DNA measurements is supported by the inconsistent
469  conclusions by two independent studies on the same PDX expression array datasets by Gao et
470  al." Ben-David et al.?®®® concluded that drastic copy number changes, driven by mouse-specific

471  selection, often occur within a few passages. On the other hand, Mer et al.®* reported high
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472  similarity between passages of the same PDX model based on direct correlations of gene
473  expression, consistent with our findings in large, independent DNA-based datasets.

474 To understand this, we note that the CN shifts inferred by Ben-David et al. are inherently
475 impacted by major technical issues. First, the microarray signal for PT samples is diluted by
476  introgressed human stromal cells, while in PDXs mouse stromal transcripts hybridize only to a
477  fraction of the human probes®®. As a consequence, PT samples with substantial stromal content
478  would display a reduced signal compared to the corresponding PDX, which can lead to an
479  erroneous inference of systematic increase in aberrations during PDX engraftment. Second, the
480  mouse host microenvironment can affect the transcriptional profile of the PDX tumor® and the
481  quantity of mouse stroma can vary across passages. This can result in variability in the expression
482  signal which can be wrongly inferred as CN changes, both from the tumor itself and through cross
483  hybridization of mouse RNA to the human microarray. Although improved concordance in
484  expression between PT and PDX can be achieved with RNA sequencing with the removal of

67,68

485 mouse reads®’*°, we observed that expression-based copy number inferences still have low

486  resolution and robustness. Hence, many cancer-driving genes, which are found mainly in focal

487  events with a size of 3Mb or lower®"2

, cannot be evaluated for PDX-specific alterations. These
488 issues are further worsened by the lack of tissue-matched normal gene expression profiles for
489  calibration®, which have been only intermittently available but can substantially impact copy
490 number inferences. Because of these considerations, the question of how much PDXs evolve as
491 a consequence of mouse-specific selective pressures cannot be adequately addressed by
492  expression data.

493 The studies we have presented here take into account the above issues by use of DNA
494  data, as well as by assessing copy number changes by pairwise correlation/residual analysis to
495  control for systematic biases, and they overall confirm the high retention of CNA profiles from
496  PDX engraftment to passaging. We do observe larger deviations between PT-PDX than in PDX-
497  PDX comparisons, though this is likely due to dilution of PT signal by human stromal cells.
498 Interestingly, we found that a major contributor to the differences between PDX samples is
499 lineage-specific drift associated with splitting of tumors into fragments during PDX propagation.
500 This spatial evolution within tumors appears to affect sample comparisons more than time or the
501  number of passages.

502 A challenge for evaluating any model system is that there is no clear threshold for genomic
503  change that determines whether the model will still reflect patient response. Genetic variation
504  among multi-region samples within a patient can shed light on this point, since the goal of a

505  successful treatment would be to eradicate all of the multiple regions of the tumor. We found that
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506  the copy number differences between PT and PDX are no greater than the variations among
507  multi-region tumor samples or intra-patient samples. Thus concerns about the genetic stability of
508 the PDX system are likely to be less important than the spatial heterogeneity of solid tumors
509 themselves. This result is consistent with our results on lineage effects during passaging, which
510 indicate that intratumoral spatial evolution is the major reason for genetic drift.

511 We observed no evidence for systematic mouse environment-induced selection for cancer
512 ortreatment-related genes via copy number changes, though individual cases vary (see example
513  in Supplementary Fig. 75). Moreover, only a small fraction of sample pairs (2.44%, 43 out of 1758)
514  shows large CNA discordance (see METHODS), suggesting that clonal selection out of a complex
515  population is rare. These results indicate that the variations observed in PDXs are mainly due to
516  spontaneous intratumoral evolution rather than murine pressures. The extreme cases (see
517  Supplementary Fig. 76 for examples with same lineage) may be informative for future studies of
518  the evolutionary process, especially through consideration of repeated spatial sampling. It may
519  be informative to compare such examples to those reported by Eirew et al.??, who described a
520  variety of clonal selection dynamics during engraftment and passaging for breast cancer PDXs,
521 as well as by Ding et al."', who demonstrated the possibility of cellular selection during xenograft
522  formation similar to that during metastasis. While such cases are uncommon in our study, further
523  subclonal analysis may be useful for clarifying potential selection pressures.

524 In summary, our in-depth tracking of CNAs throughout PDX engraftment and passaging
525  confirms that tumors engrafted and passaged in PDX models maintain a high degree of molecular
526 fidelity to the original patient tumors and their suitability for pre-clinical drug testing. Overall, we
527  find that PDX are highly concordant with the originating patient tumor and stable through multiple
528  passaging, and that differences are no greater than those observed spatially within patient solid
529  tumors. At the same time, our study does not rule out that PDXs will evolve in individual
530 trajectories over time, and for therapeutic dosing studies, the best practice is to confirm the
531 existence of expected molecular targets and obtain sequence characterizations in the cohorts
532  used for testing as close to the time of the treatment study as is practicable.
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624

625 FIGURE LEGENDS

626  Figure 1. PDXNet and EurOPDX patient derived xenograft datasets used for copy number
627  profiling across 16 tumor types. (a) Numbers of PDX models for each tumor type, with models
628  also having multiple PDX samples or having matched patient tumor samples specified. (b)
629  Distributions of datasets by passage number and assay platform for patient tumors and PDX
630 samples, separated by tumor type. “Late” passages include P18, P19 and P21 samples.

631

632  Figure 2. Comparisons of resolution and accuracy for copy number alterations estimated
633 by DNA-based and expression-based methods. (a) Pairwise comparisons of distributions of
634  segment size (Mb) of CNAs estimated by different measurement platforms in the benchmarking
635 dataset (see Supplementary Table 3). CNAs are regions with (|log2(CN ratio)| = 0.1). P-values
636 indicate significance of difference between distributions by Wilcoxon rank sum test. (b) Pairwise
637  comparisons of distributions of log>(CN ratio) of CNA segments. P-values were computed by
638  Kolmogorov-Smirnov test. (c) Distributions of Pearson correlation coefficient of median-centered
639  log2(CN ratio) in 100-kb windows from CNA segments between pairs of samples estimated by
640  different platforms (see Supplementary Table 3). Samples with non-aberrant profiles in SNP array
641 and WES data are omitted (Range (5-95 percentile) of log>(CN ratio) < 0.3). P-values indicate
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642  Wilcoxon rank sum test. (d) Examples of CNA profiles in comparisons of different platforms.
643  Pearson correlation coefficients of CNA segments between pairs of samples are shown on the
644  right. (SNP: SNP array, WES: whole-exome sequencing, RNASEQ: RNA sequencing, EXPARR:
645  gene expression array, NORM: normalization by median expression of normal samples, TUM:
646  normalization by median expression of tumor samples)

647

648  Figure 3. Comparisons of copy number alterations from patient tumor to early and late PDX
649  passages. (a-c) Distributions of Pearson correlation coefficient of gene-based copy number,
650 estimated by (a) SNP array, (b) WES, and (c) WGS, between: PT-PDX samples from the same
651  model; PDX-PDX samples of the same model; and samples of different models from a common
652  tumor type and contributing center. P-values were computed by Wilcoxon rank sum test (ns: not
653  significant p-value > 0.05). (d-f) Distributions of Pearson correlation coefficients of gene-based
654  copy number, estimated by (d) SNP array, (e) WES, and (f) WGS, among patient tumor and PDX
655 passages of the same model. Comparisons relative to PT and PO are shown (higher passages
656  are shown in Supplementary Fig. 66). (g) Schematic of lineage splitting during passaging and
657  expansion of tumors into multiple mice. This is a simplified illustration for passaging procedures
658 in which different fragments of a tumor are implanted into different mice. (h) Pearson correlation
659  distributions for PDX sample pairs of different lineages and sample pairs within the same lineage:
660 for JAX SNP array, PDMR WES, and EuroPDX WGS datasets. P-values were computed by
661  Wilcoxon rank sum test. The numbers in the parentheses represent the number of pairwise
662  correlations.

663

664  Figure 4. Cancer pathway analysis for copy number altered genes during engraftment and
665 passaging. (a) Distribution of proportion of altered genes for pairwise comparisons of PDX
666  samples for various gene sets: Protein-coding genes annotated by Ensembl; Oncogenic signaling
667 pathways identified by TCGA*; JAX CKB®*®®" Amp indicates genes with copy number gain or
668  over-expression associated with therapeutic sensitivity or resistance; JAX CKB Del indicates
669 genes with copy number loss or under-expression associated with therapeutic sensitivity or
670 resistance; Census Amp Del indicates genes with frequent amplifications or deletions in the
671  Cancer Gene Census®’. CNA genes were identified by |residual| > 0.5 from linear regression
672  model. P-values were computed by Wilcoxon rank sum test (ns: not significant, p > 0.1). (b)
673  Distribution of proportion of altered genes for pairwise comparisons within breast cancer,
674  colorectal cancer, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)

675 models. Prevalence of alterations in significantly amplified (TCGA Gistic Amp) or deleted (TCGA
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676  Gistic Del) genes for the corresponding tumor type are shown. P-values were computed by
677  Wilcoxon rank sum test (ns: not significant, p > 0.1). The numbers in the parentheses in the
678  horizontal axis represent the number of genes, and those in the plot title represent the number of
679  pairwise correlations. (¢) Recurrence frequency of protein coding genes with copy number
680  alterations, |residual| > 1, across all models in PT-PDX and PDX-PDX comparisons.

681

682  Figure 5. Absence of mouse-driven recurrent CNAs during engraftment and propagation
683  of colorectal and breast cancer PDXs. (a) Bar charts representing genome-wide GISTIC G-
684  score for amplifications (red) and deletions (blue) in each of the three cohorts (PT, PDX-early,
685  PDX-late) for CRC and BRCA. (b-c) Scatter plots comparing gene-level GISTIC G-score between
686  each of the three cohorts, for (b) CRC and (c) BRCA. Bottom-right panels of (b) and (c): scatter
687  plots comparing AG-scores from PT to PDX-early and from PDX early to PDX-late. (d-e) Scatter
688  plots comparing GSEA Normalized Enrichment Score (NES) for gene sets between each of the
689  three cohorts, for (d) CRC (e) and BRCA. Grey dots: all gene sets; red dots: gene sets significantly
690 enriched in at least one among the PT, PDX-early, PDX-late cohorts. Bottom-right panels of (d)
691 and (e): scatter plots comparing ANES from PT to PDX-early and from PDX-early to PDX-late.
692

693  Figure 6. Comparison of CNA variation during PDX engraftment and passaging to CNA
694  variation among patient multi-region, tumor relapse, and metastasis samples. (a)
695 Distributions of Pearson correlation coefficients of gene-based copy number for lung
696 adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and other lung cancer
697  subtypes. Columns compare: multi-region tumor samples from TRACERX®'; PT-PDX samples
698  from the same model; and PDX-PDX samples from the same model. P-values indicate Wilcoxon
699  rank sum test (ns: p-value > 0.05). (b) Distributions of proportion of altered genes between multi-
700  region tumor pairs from TRACERX, and PT-PDX and PDX-PDX pairs for various gene sets for
701  LUAD and LUSC. Gene sets are the same as in Fig. 4. TCGA Gistic and JAX CKB gene sets are
702 shown (other gene sets are shown in Supplementary Fig. 76). (c¢) Distributions of Pearson
703 correlation coefficients of gene-based copy number between intra-patient PT
704  (primary/relapse/metastasis) pairs from the same patient and corresponding PT-PDX/PDX-PDX
705  (derived from the same model; a different PT sample from the same patient generates a different
706  model) pairs from the same set of patients. P-values were computed by Wilcoxon rank sum test
707  (ns: p-value > 0.05). (d) CNA profiles of PT and PDX samples from patients with multiple PDX
708  models from multiple PT collection (primary/relapse/metastasis).

709
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ONLINE METHODS

Experimental details for sample collection, PDX engraftment and passaging, and array or
sequencing.

The tumor types and patient tumor (PT) and patient derived xenograft (PDX) samples contributed
by various centers are summarized in Supplementary Fig. 1-12 and Supplementary Table 1. The
sample collection, PDX engraftment and passaging, and array and sequencing methodologies by
the various centers are described below.

The Jackson Laboratory (JAX). Patient tumor engraftment and PDX passaging of various tumor
types were performed as previously described’. Detailed information of the PDX models can be
found in the PDX model search form in Mouse Tumor Biology Database (MTB,
http://tumor.informatics.jax.org/mtbwi/pdxSearch.do). SNP array samples were genotyped with
the Affymetrix Genome-Wide Human SNP Array 6.0 as described in Woo et al®. Whole-exome
sequencing were processed as follows: DNA was isolated from tumor and blood samples using
the Wizard Genomic DNA Purification Kit (Promega) according to the manufacturer’s protocols.
DNA quality was assessed using an E-Gel General Purpose Agarose Gel, 0.8% (Invitrogen) and
Nanodrop 2000 spectrophotometer (Thermo Scientific). DNA concentration was determined using
a Qubit dsDNA BR Assay Kit (Thermo Scientific). Libraries were prepared by the Genome
Technologies core facility at The Jackson Laboratory using SureSelectXT Reagents and
SureSelectXT Human All Exon V4 Target Enrichment System (Agilent Technologies), according
to the manufacturer’s instructions. Briefly, the protocol entails shearing the DNA using the Covaris
E220 Focused-ultrasonicator (Covaris), ligating lllumina specific adapters, and PCR amplification.
Amplified DNA libraries are then hybridized to the Human All Exon probes, amplified using
indexed primers, and checked for quality and concentration using the DNA High-Sensitivity
LabChip assay (Agilent Technologies) and quantitative PCR (KAPA Biosystems), according to
the manufacturers’ instructions. Libraries were sequenced on a HiSeq 2500 100bp paired-end
flow cell using TruSeq Rapid SBS reagents (lllumina). Average coverage for normal samples was
154.38x (115.13 min — 212.31 max), and was 232.10x for tumor samples (161.48 min — 280.65
max).

Seoul National University-Jackson Laboratory (SNU-JAX). Gastric cancer tissues, paired
normal gastric tissues, and blood samples were obtained from individuals who underwent
gastrectomies at the Hospital of Seoul National University from 2014 to 2016. All samples were
obtained with informed consent at the Hospital of Seoul National University, and the institutional

review board approved the study per the Declaration of Helsinki. These samples were stored into
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RPMI media with 1% penicillin/streptomycin immediately after resected from patients and shipped
using specimen ice box to the laboratory within half an hour. Gastric cancer samples were divided
into several small pieces (2mm x 2mm) and used to generate PDX models and for genomic
analysis. Mice were cared for according to institutional guidelines of the Institutional Animal Care
and Use Committee of the Seoul National University (no. 14-0016-COAQ). For PDX models,
surgically resected tissues were minced into pieces approximately ~2 mm in size and injected
into the subcutaneous area in the flanks of 6-week-old NOD/SCID/IL-2y-receptor null female mice
(NSG™ mice, Jackson Laboratory, Bar Harbor, ME). The volume of tumors and body weight of
mice were checked once or twice a week. The volume was calculated as (tumor length x tumor
width?) / 2. When a tumor reached >700~1000 mm?, the mouse was sacrificed, and tumor tissues
were stored. Tumor tissues were divided and stored for several purposes: (1) Tumor tissues were
cryopreserved in liquid nitrogen and stored at —80 °C for generating next passage PDXs. (2)
Tumor tissues were frozen in liquid nitrogen for genomic analysis. Whole-exome sequencing was
conducted as follows: Genomic DNA (gDNA) was extracted from blood and tissues using DNeasy
blood and tissue kit (QIAGEN) and checked for purity, concentration, and integrity by OD260/280
ratio using NanoDrop Instruments (NanoDrop Technologies, Wilmington, DE, USA) and agarose
gel electrophoresis. DNA was sheared by fragmentation by Bioruptor (Diagenode, Inc., Denville,
NJ, USA) and purified using Agencourt AMPure XP beads (Beckman Coulter, Fullerton, CA,
USA). DNA samples were then tested for size distribution and concentration using an Agilent
Bioanalyzer 2100. Standard protocols were utilized for adaptor ligation, indexing, high-fidelity
PCR amplification. Subsequently, exome enrichment was performed by hybrid capture with the
All Exon v5 capture library. Capture libraries were amplified, pooled, and submitted to the
commercial sequencing company (Macrogen) for 100bp paired-end, multiplex sequencing on a
HiSeq 2000 sequencing system. Average coverage for normal samples was 62.67x (38.97 min —
108.77 max), and was 102.35x for tumor samples (36.02 min — 150.49 max). RNA-Sequencing
data was generated as follows: RNA was extracted from tissues using the RNeasy Mini Kit
(Qiagen, Valencia, CA, USA). RNA-Sequencing libraries were prepared from 1 ug total RNA using
the TruSeq RNA Sample Preparation v2 Kit (lllumina, San Diego, CA) according to the
manufacturer’s protocol. Libraries were submitted to the commercial sequencing company
(Macrogen) for 100bp paired-end, multiplex sequencing on a HiSeq 2000 sequencer.

Huntsman Cancer Institute (HCI). Patient tumor engraftment and PDX passaging of breast
cancer samples were performed as previously described*®. SNP array samples were genotyped
by the Affymetrix SNP 6.0 array for profiling. These samples were processed, according to

DeRose et al’. Additionally, some samples, were also processed using the lllumina Infinium Omni
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2.5 Exome-8 v1.3 Beadchip array. Hybridized arrays were scanned using an Illumina iScan
instrument following the lllumina Infinium LCG Assay Manual Protocol and processed using
GenomeStudio. When samples had both Affymetrix and Illumina chips, we deferred to Illumina
intensity values for copy number calling. Whole-exome sequencing was conducted as follows:
Agilent SureSelectXT Human All Exon V6+COSMIC or Agilent Human All Exon 50Mb library
preparation protocols were used with inputs of 100-3000ng sheared genomic DNA (Covaris).
Library construction was performed using the Agilent Technologies SureSelectXT Reagent Kit.
The concentration of the amplified library was measured using a Qubit dsDNA HS Assay Kit
(ThermoFisher Scientific). Amplified libraries (750 ng) were enriched for exonic regions using
either the Agilent Technologies SureSelectXT Human All Exon v6+COSMIC or Agilent Human All
Exon 50Mb kits and PCR amplified. Enriched libraries were qualified on an Agilent Technologies
2200 TapeStation using a High Sensitivity D1000 ScreenTape assay and the molarity of adapter-
modified molecules was defined by quantitative PCR using the Kapa Biosystems Kapa Library
Quant Kit. The molarity of individual libraries was normalized to 5 nM, and equal volumes were
pooled in preparation for lllumina sequence analysis. Sequencing libraries (25 pM) were
chemically denatured and applied to an lllumina HiSeq v4 paired-end flow cell using an Illumina
cBot. Hybridized molecules were clonally amplified and annealed to sequencing primers with
reagents from an lllumina HiSeq PE Cluster Kit v4-cBot (PE-401-4001). Following the transfer of
the flowcell to an Illlumina HiSeq 2500 instrument (HCS v2.2.38 and RTA v1.18.61), a 125-cycle
paired-end sequence run was performed using HiSeq SBS Kit v4 sequencing reagents (FC-401-
4003). Average coverage for normal samples was 90.22x (15.28 min — 131.69 max), and was
96.66x for tumor samples (10.65 min — 166.06 max).

Baylor College of Medicine (BCM). Patient tumor engraftment and PDX passaging of breast
cancer samples were performed as previously described®’. SNP array samples were genotyped
at Huntsman Cancer Institute using the lllumina Infinium Omni 2.5Exome-8 v1.4 Beadchip array
by the procedures provided in the HCI section above.

The University of Texas MD Anderson Cancer Center (MDACC). Fresh non-small-cell lung
carcinoma tumor samples were collected from surgically resected specimens with the informed
consent of the patients. Generation and passaging of PDXs, and histological analysis and DNA
fingerprint assay for PDXs and their primary tumor tissues were performed as previously
described®. The protocols for the use of clinical specimens and data in this study were approved
by the Institutional Review Board at The University of Texas MD Anderson Cancer Center. All
animal studies were carried out in accordance with the Guidelines for the Care and Use of

Laboratory Animals (National Institutes of Health Publication 85-23) and the institutional
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guidelines of MDACC. Whole-exome sequencing was conducted at the Sequencing and
Microarray Core Facility at MD Anderson Cancer Center as follows: Genomic DNA was quantified
and quality was assessed using Picogreen (Invitrogen) and Genomic DNA Tape for the 2200
Tapestation (Agilent), respectively. DNA from each sample (100-500 ng of genomic DNA) was
sheared by sonication and then used for library preparation by using KAPA library preparation kit
(KAPA) following manufacturer’s instruction. Equimolar amounts of DNA were pooled (2-6
samples per pool) and whole exome regions were captured by using biotin labeled probes from
Roche Nimblegen (Exome V3) followed manufacture’s protocol. The captured libraries were
sequenced on a HiSeq 2000 with 100bp paired-end (lllumina Inc., San Diego, CA, USA) on a
paired-end flowcell. Average coverage for normal samples was 85.61x (40.80 min — 228.41 max),
and was 125.79x for tumor samples (25.12 min — 251.53 max).

The WISTAR Institute (WISTAR). Tumor biopsy samples were collected according to IRB-
approved protocol with the informed written consent of the patients. Collected fresh tumor pieces
were snap frozen and stored at -80 °C. Subcutaneous implantation into NSG SCID mice were
used to create PDX models. BRAF inhibitor treatment (PLX) was administered as PLX4720
200ppm chemical additive diet chow (Research Diets, New Brunswick, NJ). Whole exome
sequencing was conducted as follows: Genome DNA extraction was done using Qiagen DNeasy
Blood & Tissue Kit, and libraries for whole exome sequencing were performed using Nextera DNA
exome kit. Capture libraries were amplified, pooled, and then sequenced on an lllumina HiSeq
2500 76bp paired-end run. Average coverage for normal samples was 97.50x (71.46 min — 124.64
max), and was 208.27x for tumor samples (146.88 min — 281.20 max).

National Cancer Institute Patient-Derived Models Repository (PDMR). For engraftments,
tumor material plus a drop of Matrigel (BD BioSciences, Bedford, MA) were implanted
subcutaneously in NSG™ mouse model NOD.Cg-Prkdc®®® 112rg™"/SzJ. Mice were housed in
sterile, filter-capped polycarbonate cages, maintained in a barrier facility on a 12-hour light/dark
cycle, and were provided sterilized food and water, ad libitum. Animals were monitored weekly
for tumor growth. The initial passage of material was grown to approximately 1000-2000mm?
calculated using the following formula: weight (mg) = (tumor length x [tumor width]?) / 2. Tumor
material was then harvested, a portion cryopreserved, and the remainder implanted into NSG
host mice. Every PDX tumor harvested and cryopreserved also has 2-3 fragments snap frozen
for next generation sequence analysis and short tandem repeat validation and a piece is fixed in
neutral buffered formalin and then embedded in paraffin for histological assessment. Related
patient data, clinical history, representative histology and short-tandem repeat profiles for the PDX

models can be found at https://pdmr.cancer.gov. Full PDMR standard operating procedures for
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tumor engraftment and PDX passaging are available at https://pdmr.cancer.gov/sops. Whole-
exome sequencing data were generated with the Agilent SureSelect capture kit, and sequenced
with 125bp pair-end lllumina HiSeq 2500 runs following standard operating procedures available
here: https://pdmr.cancer.gov/sops. Average coverage for normal samples was 148.47x (50.95
min — 242.24 max), and was 174.77x for tumor samples (81.41 min — 403.22 max).

Washington University in St. Louis (WUSTL). All human tissues acquired for these
experiments were processed in compliance with NIH regulations and institutional guidelines,
approved by the Institutional Review Board at Washington University. Tumors from all patients
were obtained via core needle biopsy, skin punch biopsy, or surgical resection after informed
consent. All animal procedures were reviewed and approved by the Institutional Animal Care and
Use Committee at Washington University in St. Louis. Pancreatic cancer models were derived
from tissue fragments implanted subcutaneously into dorsal flank regions of non-humanized,
female NOD/SCID/y mice (Jackson Laboratory, Bar Harbor, ME) using Matrigel. The sample
tissues for these PDX models were obtained from archived, cryopreserved PDX harvests. Final
tumor passages in mice were kept cold and harvested into RPMI-1640 with antibiotic and
antimycotic additives. Pieces of each tumor were processed into the following: flash frozen tissue
fragments, OCT blocks and matched Haemotoxylin and Eosin (H&E) slides, formalin fixed paraffin
blocks and matched H&E slides, RNAlater tissue storage, and cryopreserved fragments (FBS +
10% DMSO). A minimum of 250 mg of flash frozen material was submitted to the Siteman Cancer
Center’s Proteomics Core. The tissues were cryo-pulverized and subsequently divided for DNA
and RNA preparation, and long-term storage. Patient tumors were obtained directly from
operating rooms and placed into sterile collection media (RPMI-1640 with antibiotic and
antimycotic additives). Pieces of each tumor were processed into the following: flash frozen tissue
fragments, OCT blocks and matched H&E slides, formalin fixed paraffin blocks and matched H&E
slides, and cryopreserved fragments (FBS + 10% DMSO). Parental genomic DNA was prepared
from OCT blocks if available, and if not available, paraffin blocks were utilized. In addition,
genomic DNA for sequencing control was prepped from peripheral blood mononuclear cells that
were both procured and processed at time of surgery. Breast cancer models were derived from
tissue fragments implanted subcutaneously into dorsal flank regions of non-humanized,
NOD/SCID/y mice (Jackson Laboratories, Bar Harbor, ME) as previously described”®. Whole-
exome sequencing was conducted as follows: Libraries were constructed using unamplified
genomic DNA (minimum 100 ng) from blood (normal), tumor, and xenograft samples. Exons were
captured via IDT Exome library kit followed by high-throughput sequencing on an lllumina

NovaSeq S4 platform (lllumina Inc., San Diego, CA) using 150bp paired-end reads. Details of
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whole exome library construction have been given elsewhere (Fisher, Barry et al. 2011). Average
coverage for normal pancreatic cancer samples was 85.73x (55.65 min — 108.91 max), and was
124.01x (49.68 min — 242.35 max) for tumor pancreatic cancer samples. Average coverage for
normal breast cancer samples was 58.33x (45.37 min — 70.30 max), and was 89.90x (17.24 min
— 149.53 max) for tumor breast cancer samples.

Shanghai Institute for Biological Sciences (SIBS). Gene expression and copy number data,
generated by the Affymetrix Human Genome U133 Plus 2.0 Array and Affymetrix Human SNP
6.0 platforms respectively, of hepatocellular carcinoma (HCC) PDX models were retrieved from
the Gene Expression Omnibus (GEQ) accession ID GSE90653'°. Expression microarray data
generated by the Affymetrix Human Genome U133 Plus 2.0 Array for normal liver were
downloaded from GEO and ArrayExpress: GSE3526"", GSE33006'? and E-MTAB-1503-3".
EurOPDX colorectal cancer (EuroPDX CRC). Liver-metastatic colorectal cancer samples were
obtained from surgical resection of liver metastases at the Candiolo Cancer Institute, the
Mauriziano Umberto | Hospital, and the San Giovanni Battista Hospital. Informed consent for
research use was obtained from all patients at the enrolling institution before tissue banking, and
study approval was obtained from the ethics committees of the three centers. Tissue from hepatic
metastasectomy in affected individuals was fragmented and either frozen or prepared for
implantation as described previously''®. Non-obese diabetic/severe combined immunodeficient
(NOD/SCID) female mice (4—6 weeks old) were used for tumor implantation. Snap-frozen aliquots
were obtained from surgical specimens and corresponding tumor grafts at different passages.
Whole genome sequencing was conducted as follows: DNA was extracted using Maxwell RSC
Blood DNA kit (Promega AS1400) from colorectal cancer liver metastasis and corresponding
tumor grafts at different passages. Genomic DNA was fragmented and used for lllumina TruSeq
library construction (lllumina) according to the manufacturer’s instructions. Libraries were then
purified with Qiagen MinElute column purification kit and eluted in 17 pl of 70°C EB to obtain 15
pl of DNA library. The libraries were sequenced on HiSeq4000 (lllumina) with single-end reads of
51bp at low coverage (~0.1x genome coverage on average).

EurOPDX breast cancer (EuroPDX BRCA). Human breast tumors were obtained from surgical
resections at the Netherland Cancer Institute (NKI), Institut Curie (IC) and Vall d’Hebron Institute
of Oncology (VHIO). Engraftment was conducted with different procedures at each center. NKI:
Small tumor fragments (2mm diameter) were implanted into the 4th mammary fat pad of 8-week-
old Swiss female nude mice. Mice were checked for tumor appearance once a week, and
supplemented with estrogen, if the tumor was ER positive. After palpable tumor detection, tumor

size was measured twice a week. When tumors reached a size of 700-1000 mm?, animals were
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sacrificed and tumors were explanted and subdivided in fragments for serial transplantation as
described above, or for frozen vital storage in liquid nitrogen. IC: Breast cancer fragments were
obtained from patients at the time of surgery, with informed written patient consent. Fragments of
30 to 60 mm? were grafted into the interscapular fat pad of 8 to 12-week-old female Swiss nude
mice. Mice were supplemented with estrogen. Xenografts appeared at the graft site 2 to 8 months
after grafting. When tumors were close to 1500 mm?, they were subsequently transplanted from
mouse to mouse and stocked frozen in DMSO-fetal calf serum (FCS) solution or frozen dried in
nitrogen. Fragment fixed tissues in phosphate buffered saline (PBS) 10% formol for histologic
studies were also stored. The experimental protocol and animal housing were in accordance with
institutional guidelines as proposed by the French Ethics Committee (Agreement B75-05-18,
France). VHIO: Fresh tumor samples from patients with breast cancer were collected for
implantation following an institutional IRB-approved protocol and the associated informed
consent, or by the National Research Ethics Service, Cambridgeshire 2 REC (REC reference
number: 08/H0308/178). Experiments were conducted following the European Union’s animal
care directive (2010/63/EU) and were approved by the Ethical Committee of Animal
Experimentation of the Vall d’Hebron Research Institute. Surgical or biopsy specimens from
primary tumors or metastatic lesions were immediately implanted in mice. Fragments of 30 to 60
mm? were implanted into the mammary fat pad (surgery samples) or the lower flank (metastatic
samples) of 6-week-old female athymic HsdCpb:NMRI-Foxn1nu mice (Harlan Laboratories).
Animals were continuously supplemented with estradiol. Upon growth of the engrafted tumors,
the model was perpetuated by serial transplantation onto the lower flank. Tumor growth was
measured with caliper bi-weekly. In all experiments, mouse weight was recorded twice weekly.
When tumors reached 1500 mm3, mice were euthanized and tumors were explanted. Whole
genome sequencing was conducted as follows: genomic DNA was extracted from breast cancers
and corresponding PDXs using (i) QlAamp DNA Mini Kit s(50) (#51304, Qiagen) (IC) or (ii)
according to Laird PW’s protocol' (NKI and VHIO). The amount of double stranded DNA in the
genomic DNA samples was quantified by using the Qubit® dsDNA HS Assay Kit (Invitrogen, cat
no Q32851). Up to 2000 ng of double stranded genomic DNA were fragmented by Covaris
shearing to obtain fragment sizes of 160-180bp. Samples were purified using 1.6X Agencourt
AMPure XP PCR Purification beads according to manufacturer’s instructions (Beckman Coulter,
cat no A63881). The sheared DNA samples were quantified and qualified on a BioAnalyzer
system using the DNA7500 assay kit (Agilent Technologies cat no. 5067-1506). With an input of
maximum 1 ug sheared DNA, library preparation for lllumina sequencing was performed using
the KAPA HTP Library Preparation Kit (KAPA Biosystems, KK8234). During library enrichment,
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4-6 PCR cycles were used to obtain enough yield for sequencing. After library preparation the
libraries were cleaned up using 1X AMPure XP beads. All DNA libraries were analyzed on the GX
Caliper (a PerkinElmer company) using the HT DNA High Sensitivity LabChip, for determining the
molarity. Up to two pools of 24 uniquely indexed samples and one pool of 81 uniquely indexed
samples were mixed together by equimolar pooling in a final concentration of 10nM, and
subjected to sequencing on an llllumina HiSeg2500 machine in a total of 12 lanes of a single read
65bp run at low coverage (~0.4x genome coverage on average), according to manufacturer's

instructions.

Consolidating tumor types from different datasets

As the terminology of tumor types/subtypes by the different contributing centers were not
consistent, we used the Disease Ontology database' (http://disease-ontology.org/), cancer types
listed in NCI website (https://www.cancer.gov/types) and in TCGA publications'® to unify and
group the tumor types/subtypes under broader terms as shown in Fig.1 and Supplementary Table
2.

Copy number alteration (CNA) estimation methods

SNP array. The estimation of CNA profiles from SNP array were detailed previously®. In short, for
Affymetrix Human SNP 6.0 arrays, PennCNV-Affy and Affymetrix Power Tools® were used to
extract the B-allele frequency (BAF) and Log R Ratio (LRR) from the CEL files. Due to the
absence of paired-normal samples, the allele-specific signal intensity for each PDX tumor were
normalized relative to 300 randomly selected sex-matched Affymetrix Human SNP 6.0 array CEL

t2'. For lllumina Infinium Omni2.5Exome-8

files obtained from the International HapMap projec
SNP arrays (v1.3 and v1.4 kit), the lllumina GenomeStudio software was used to extract the B-
allele frequency (BAF) and Log R Ratio (LRR) from the signal intensity of each probe. The single
sample mode of the lllumina GenomeStudio was used, which normalizes the signal intensities of
the probes with an lllumina in-house dataset. The single tumor version of ASCAT?? (v2.4.3 for
JAX SNP data, v2.5.1 for SIBS SNP data) was used for GC correction, predictions of the
heterozygous germline SNPs based on the SNP array platform, and estimation of ploidy, tumor
content and allele-specific copy number segments. The resultant copy humber segments were
annotated with log ratio of total copy number relative to predicted ploidy from ASCAT.

Whole-exome sequencing (WES) data. All the samples were subjected to quality control
(filtering and trimming of poor-quality reads and bases) using in-house QC script with the cut-off

that half of the read length should be 220 in base quality at phred scale. We further removed the
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known adaptors using cut-adapt® v1.15 11 at -m 36. Afterward, we aligned the reads to the
human genome (GRCh38.p5) using bwakit?* v0.7.15. Engrafted tumor samples were subjected
to the additional step of mouse read removal using Xenome?®® v1.0.0, with default parameters.
The alignment was converted to BAM format using Picard SortSam v2.8.1
(https://broadinstitute.github.io/picard/), and duplicates were removed by Picard MarkDuplicates
utility. BaseRecalibrator from the Genome Analysis Tool Kit*®?” (GATK) v4.0.5.1 was used to
adjust the quality of raw reads. Training files for the base quality scale recalibration were
Mills_and_1000G_gold_standard.indels.hg38.vcf.gz,
Homo_sapiens_assembly38.known_indels.vcf.gz, and dbSNP v151. Mean target coverage was
determined for each sample by Picard CollectHsMetrics. Aligned bams were subset to target
region by GATK and SAMTools?® v0.1.18 was used to generate the pileup for each sample. Pileup
data were used for CNA estimation as calculated with Sequenza®® v2.1.2. Both tumor and normal
data, that utilized the same capture array, were used as input. pileup2seqz and GC-windows (-w
50) modules from sequenza-utils.py utility were used to create the native seqz format file for
Sequenza and compute the average GC content in sliding windows from hg38 genome,
respectively. Finally, we ran the three Sequenza modules with these modified parameters
(sequenza.extract: assembly = "hg38", sequenza.fit: chromosome.list = 1:23, and
sequenza.results: chromosome.list = 1:23) to estimate the segments of copy number
gains/losses. Finally, segments lacking read counts, in which 250% of the segment with zero read
coverage, were removed. A reference implementation of this workflow (Supplementary Fig. 77)
is developed and deployed in the cancer genomics cloud at SevenBridges
(https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/wes-cnv-tumor-normal-
workflow/, https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/pdx-wes-cnv-
xenome-tumor-normal-workflow/).

Low-pass whole-genome sequencing (WGS) data. \Whole-genome sequence reads from
EuroPDX CRC liver metastasis and corresponding tumor grafts at different passages were
mapped to the reference human genome (GRCh37) using Burrows-Wheeler Aligner®* (BWA)
v0.7.12. SAMTools?® v0.1.18 was used to convert SAM files into BAM files and Picard v1.43 to
remove PCR duplicates (http://broadinstitute.github.io/picard/). Raw copy number profiles for
each sample were estimated by QDNAseq®* R package v1.20 by dividing the human reference
genome in non-overlapping 50 kb windows and counting the number of reads in each bin. Bins in
problematic regions were removed®'. Read counts were corrected for GC content and mappability
by a LOESS regression, median-normalized and logz-transformed. Values below —1000 in each

chromosome were floored to the first value greater than —1000 in the same chromosome. Raw
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log> ratio values were then segmented using the ASCAT? algorithm implemented in the ASCAT
R package v2.0.7. Whole-genome sequence reads from EuroPDX BRCA tumors and
corresponding tumor grafts at different passages were mapped to the reference human genome
(GRCh38) and mouse genome (GRCm38/mm10, Ensembl 76) using Burrows-Wheeler Aligner
(BWA) v0.7.15. Subsequently, mouse reads were excluded with XenofilteR®2. Other processing
steps are similar as described above. Raw copy number profiles were estimated for each sample
by dividing the human reference genome in non-overlapping 20 kb windows and counting the
number of reads in each bin. Only reads with at least mapping quality 37 were considered. Bins
within problematic regions (i.e. multimapper regions) were excluded. Downstream analysis to
estimate copy number was conducted as described above.

RNA-sequencing (RNA-Seq) and gene expression microarray (EXPARR) data. For SNU-JAX
RNA-Seq data, Simultaneous read alignment was performed to both mouse (mm10) and human
genome (GRCh38.p5) and only human specific reads were used for the expression quantification.
Expression of mRNA was quantified as Transcripts Per Million (TPM) for downstream analysis
using RNA-Seq by Expectation Maximization®® (RSEM) with ensemble GTF reference
GRCh38.92. Gene expression microarray data for SIBS HCC and normal liver samples from GEO
and ArrayExpress databases were profiled as follows. After initial quality control and outlier
removal, CEL files were normalized according to RMA algorithm and probesets were annotated
according to Affymetrix annotation file for HG-U133 Plus 2, released on 2016-03-15 build 36. For
expression-based copy number inference, we referred to the previous protocols for e-karyotyping
and CGH-Explorer**®’. For each cancer type, expression values of tumor and corresponding
normal samples were merged in a single table, and gene identifiers were annotated with
chromosomal nucleotide positions. Genes located on sex chromosomes were excluded. Genes
which values below 1 TPM (RNAseq) or probeset logz-values below 6 (microarray) in more than
20% of the analyzed dataset were removed. Remaining gene expression values below the
thresholds were respectively raised to 1 TPM or logz-value of 6. In the case of multiple transcripts
(RNA-seq) or probesets (microarray) per gene, the one with the highest median value across the
entire dataset was selected. According to the e-karyotyping protocol, the sum of squares of the
expression values relative to their median expression across all samples was calculated for each
gene, and 10% most highly variable genes were removed. For each gene, the median log:
expression value in normal samples was subtracted from the log2 expression value in each tumor
sample and subsequently input in CGH-explorer. For tumor-only datasets, the median log:
expression value in the same set of tumor samples was instead subtracted. The preprocessed

expression profiles of each sample were individually analyzed using CGH-Explorer
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(http://heim.ifi.uio.no/bioinf/Projects/CGHEXxplorer/). CGH-PCF analysis was carried out to call
copy number according to parameters previously reported®: least allowed deviation = 0.25; least

allowed aberration size = 30; winsorize at quantile = 0.001; penalty = 12; threshold = 0.01.

Filtering and gene annotation of copy humber segments

Copy number (CN) segments with logz copy number ratio estimated from the various platforms
were processed in the following steps (Supplementary Fig. 26). Segments <1kb were filtered
based on the definition of CNA®. In addition, SNP array segments had to be covered by >10
probes, with an average probe density of 1 probe per 5kb. The copy number segments were then
binned into 10kb windows to derive the median log>(CN ratio), which was subsequently used to
re-center the copy number segments. Median-centered copy number segments were visualized
using IGV* v2.4.13 and GenVisR*' v1.16.1. Median-centered copy number of genes were
calculated by intersecting the genome coordinates of copy number segments with the genome
coordinates of genes (Ensembl Genes 93 for human genome assembly GRCh38, Ensembl
Genes 96 for human genome assembly GRCh37). In the case where a gene overlaps multiple
segments, the most conservative (lowest) estimate of copy number was used to represent the

copy number of the entire intact gene.

Comparison of CN gains and losses

For the comparison of resolution, range of CN values and frequency of gains and losses between
different platforms and analysis methods, we defined copy number gain or loss segments as —
Gain: logz2(CNratio) > 0.1; Loss: log2(CN ratio) < -0.1.

Correlation of CNA profiles

The overall workflow to compare CNA profiles is shown in Supplementary Fig. 26. PDX samples
without passage information were omitted in the following downstream analysis. The copy number
segments were binned into 10kb-windows or smaller using Bedtools*? v2.26.0, and the variance
of log2(CN ratio) and range (difference) of log2(CN ratio) between 5" to 95" percentile across all
the bins were calculated as a measure of degree of aberration for each CNA profile. A non-
aberrant profile results in a low variance or range. While variance can be biased for CNA profiles
with small segments of extreme gains or losses, we preferred the use of 5™ to 95" percentile
range to identify samples with low degree of aberration, such that a narrow range indicates 290%
of the genome has very low-level gains and losses. The similarity of two CNA profiles is quantified

by the Pearson correlation coefficient of log>(CN ratio) of 100kb-windows binned from segments
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or genes between 2 samples. Gene-based and segment-based (100kb windows) correlations
were highly similar (data not shown). Using correlation avoided the issue of making copy number
gain and loss calls based on thresholds, though it can be inconsistent due to different baseline
and range in copy number values. Such variations are impacted by sample-specific variation in
human stromal contamination or sensitivity copy number detection by different platforms.
Comparison of CNA profiles between different platforms. The copy number segments of each
pair of data were intersected and binned into 100kb-windows or smaller using Bedtools. The
Pearson correlation coefficient and linear regression model was calculated for the log2(CN ratio)
of the windows. Windows with discrepant copy number were identified by outliers of the linear
regression model defined by |studentized residual| > 3. These outlier windows were mapped to
their corresponding segments to identify the size of CNA events that were discordant between
the different copy number estimation methods. The proportion of the genome discordant CNA
was calculated from the summation of the outlier windows.

Identification of genes with CNA between different samples of the same model. To compare
the CNA profiles between different samples (PT or PDX) of the same model, the Pearson
correlation coefficient and linear regression model was calculated for the log2(CN ratio) of the
genes for each pair of data. Prior to that, deleted genes with log2(CN ratio) < -3 were rescaled to
-3 to avoid large shifts in the correlation coefficient and linear regression model due to extremely
negative values on the log scale. Extreme outliers of the linear regression model defined by
|studentized residual| > 3 were removed to derive an improved linear regression model*® not
biased by few extreme values. Genes with copy number changes between the samples were
identified by the difference in log2(CN ratio) relative to the improved linear regression model of
|standard residual| < 0.5. We also removed some samples with low correlation due to sample
mislabeling as they displayed high correlation with samples from other models. We also omit
samples with low correlation values (<0.6) which resulted from non-aberrant CNA profiles in
genomically stable tumors (5" to 95" percentile range < 0.3, Supplementary Fig. 64).
Identification of aberrant sample pairs with highly discordant CNA profiles. Aberrant CNA
profiles were identified based on the 100kb-window copy number range (5th to 95th percentile)
>0.5, for both samples. Sample pairs with Pearson correlation <0.6 were selected as highly

discordant CNA profiles between them.
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Annotation with gene sets with known cancer or treatment-related functions

Copy number altered genes (|residual| < 0.5) were annotated by various gene sets with cancer
or treatment-related functions gathered from various databases and publications (Supplementary
Fig. 26):

1. Genes in 10 oncogenic signaling pathways curated by TCGA and were found to be frequently
altered in different cancer types*.

2. Genes with gain in copy number or expression, or loss in copy number or expression that
conferred therapeutic sensitivity, resistance or increase/decrease in drug response from the JAX
Clinical Knowledgebase***¢ (JAX-CKB) based on literature curation (https://ckbhome.jax.org/, as
of 06-18-2019).

3. Genes with evidence of promoting oncogenic transformation by amplification or deletion from
the Cancer Gene Census*’ (COSMIC v89).

4. Significantly amplified or deleted genes in TCGA cohorts of breast cancer*®, colorectal cancer,

lung adenocarcinoma® and lung squamous cell carcinoma®' by GISTIC analysis.

Identification of genes with recurrent copy number changes

Genes with a more stringent threshold of |residual| > 1.0 with respect to the improved regression
linear model (without discriminating gain or loss) were selected for each pairwise comparison
between different samples of the same model. Pairwise cases in which genes are deleted in both
samples (log>(CN ratio) < -3 ) are omitted. Recurrent frequency for each gene across all models
was calculated on a model basis such that genes with copy number between multiple pairs of the
same model was counted as once. This avoided the bias towards models with many samples of

similar copy number changes between the different pairs.

Drug response analysis using CCLE data

We developed a pipeline to evaluate gene copy number effects on drug sensitivity®**® by using
the Cancer Cell Line Encyclopedia®**® (CCLE) cell line genomic and drug response data (CTRP
v2). We downloaded the CCLE drug response data from Cancer Therapeutics Response Portal
(www.broadinstitute.org/ctrp), and CCLE gene-level CNA and gene expression data from depMap
data portal (‘public_19Q1_gene_cn.csv’ and ‘CCLE_depMap_19Q1_TPM.csV’,
https://depmap.org/portal/download/). For CCLE drug response data, we used the area-under-
concentration-response curve (AUC) sensitivity scores for each cancer cell line and each drug. In
total, we collected gene-level log2 copy number ratio data derived from the Affymetrix SNP 6.0

platform from 668 pan-cancer CCLE cell lines, with a total of 545 cancer drugs tested. With the
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CCLE gene-level CNA and AUC drug sensitivity scores, we performed gene-drug response
association analyses for genes with recurrent copy number changes. Pearson correlation p-
values between each gene’s log. (CN ratio) and each drug’s AUC score across all cell lines were
calculated, and g-values were calculated by multiple testing Bonferroni correction. Significant
gene-CNA and drug associations were kept (g-value < 0.1) to further evaluate gene-expression
and drug response associations. If a gene’s expression was also significantly correlated with AUC
drug sensitivity scores, particularly in the same direction (either positively or negatively correlated)
as the gene-CNA and drug association, that gene would be considered as significantly correlated

with drug response based on both its CNA and gene expression.

GISTIC analysis of WGS data

To obtain perfectly matching and comparable PT-PDX cohorts, for GISTIC analysis, CRC trios in
which at least one sample did not display significant CNAs were excluded from the analysis
resulting in a total of 87 triplets. The GISTIC®® algorithm (GISTIC 2 v6.15.28) was applied on the
segmented profiles using the GISTIC GenePattern module (https://cloud.genepattern.org/), with
default parameters and genome reference files Human_Hg19.mat for EuroPDX CRC data and
hg38.UCSC.add_miR.160920.refgene.mat for EuroPDX BRCA data. For each dataset, GISTIC
provides separate results (including segments, G-scores and FDR g-values) separately for
recurrent amplifications and recurrent deletions. Deletion G-scores were assigned negative
values for visualization. We observed that the G-Score range was systematically lower in PT
cohorts, which is likely the result of the dilution of CNA by normal stromal DNA. In contrast, human
stromal DNA in PDX samples were lower or negligible. To account for this difference in gene-
level G-scores, PDXs at early and late passages were scaled with respect to PT gene-level G-

score values using global linear regression, separately for amplification and deletion outputs.

Gene set enrichment analysis (GSEA) of WGS data
To assess the biological functions associated with the recurrent alterations detected by the

57,58

GISTIC analysis, we performed GSEAPreranked analysis on gene-level GISTIC G-score

profiles, for both amplifications and deletions. In particular, we applied the algorithm with 1000
permutations on various gene set collections from the Molecular Signatures Database® %
(MSigDB): H (Hallmark), C2 (Curated : CGP chemical and genetic perturbations, CP canonical
pathways), C5 (Gene Ontology: BP biological process, MF molecular function, CC cellular
component) and C6 (Oncogenic Signatures) composed of 50, 4762, 5917 and 189 gene sets

respectively. We also included gene sets with known cancer or treatment-related functions
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described in an earlier section. We noted that multiple genes with contiguous chromosomal
locations, typically in recurrent amplicons, generated spurious enrichment for gene sets which
consists of multiple genes of adjacent positions, while very few or none of them had a significant
GISTIC G-score. To avoid this confounding issue, we only considered the “leading edge genes”,
i.e. those genes with increasing Normalized Enrichment Score (NES) up to its maximum value,
that contribute to the GSEA significance for a given gene set. The leading-edge subset can be
interpreted as the core that accounts for the gene set's enrichment signal
(http://software.broadinstitute.org/gsea). We included a requirement that the leading edge genes
passing the GISTIC G-score significant thresholds based on GISTIC g-value 0.25 (Supplementary
Table 8 and Fig. 73) make up at least 20% of the gene set. This 20% threshold was chosen as
the minimal threshold at which gene sets assembled from TCGA-generated lists of genes with
recurrent CNA in CRC or BRCA were identified as significant in GSEA (see Supplementary Table
9). Finally, gene sets with a NES greater than 1.5 and a FDR g-value of less than 0.05, which
passed the leading edge criteria, were considered significantly enriched in genes affected by

recurrent CNAs.
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