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Abstract

Abstract (109 words)

Vitamin D deficiency is a candidate risk factor for a range of adverse health outcomes. In a genome-wide
association study of 25 hydroxyvitamin D (250HD) concentration in 417,580 Europeans we identified
143 independent loci in 112 1-Mb regions providing new insights into the physiology of vitamin D and
implicating genes involved in (a) lipid and lipoprotein metabolism, (b) dermal tissue properties, and (c)
the sulphonation and glucuronidation of 250HD. Mendelian randomization models found no robust
evidence that 250HD concentration had causal effects on candidate phenotypes (e.g. BMI, psychiatric
disorders), but many phenotypes had (direct or indirect) causal effects on 250HD concentration,

clarifying the relationship between 250HD status and health.
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Introduction

In recent decades there has been considerable interest in the links between vitamin D levels and general
health. While classically linked to bone disorders, there is growing evidence to suggest that suboptimal
vitamin D status may be a risk factor for a much wider range of adverse health outcomes?. Vitamin D,
the ‘sunshine hormone’, is the precursor of a seco-steroid transcription regulator that operates via a
nuclear receptor, and like other steroid hormones, exerts transcriptional control over many regions of
the genome across many different tissues. In environments with access to adequate sunshine,
ultraviolet radiation on the skin converts a precursor of cholesterol to vitamin D3 This is then further
converted to 25 hydroxyvitamin D3 (250HD; used in assays of general vitamin D status), and then to the
active hormone 1,25 dihydroxyvitamin D3 (1,250HD) in a variety of tissues. Some foods and vitamin D
supplements also contribute to vitamin D levels. Definitions of vitamin D deficiency (e.g. < 25 nmol/L of
250HD) are predominantly based on bone health? — according to these definitions, vitamin D deficiency

is common in many countries, regardless of latitude and economic status®.

Environmental factors such as season of testing and latitude contribute substantially to the serum
concentration of 250HD (lower in winter/spring; lower at higher latitudes)*°. With respect to the
genetic architecture of 250HD, twin and family studies have reported a wide range of heritability
estimates (from 0%° to 90%’). A recent multivariate twin study demonstrated that approximately half of
the total additive genetic variation in 250HD may reflect genetic variation in skin colour and sun
exposure behaviour®. Genome-wide association studies (GWAS) have identified common single
nucleotide polymorphisms (SNPs) located in biologically plausible genes®. The largest GWAS to date (N =
79,366) reported six significant loci, which include GC (the vitamin D binding protein gene), the
DHCR7/NADSYN1 region (DHCR?7 is involved in a conversion of a 250HD precursor molecule to
cholesterol) and CYP2R1 and CYP24A1 genes (Which encode enzymes involved in 250HD metabolism?°).

In total, common SNPs explain 7.5% (standard error (s.e.) 1.9%) of the variance of 250HD?,

Here, we conduct a GWAS of 250HD based on the large UK Biobank (UKB) sample!! and conduct a suite
of post-GWAS analyses to aid interpretation of the results (Figure 1). We present models that explore
the genetic/causal relationship between body mass index (BMI) and 250HD (high BMI is associated with
lower 250HD concentration in observational studies)'?. Because we have an interest in the association

between 250HD and mental disorders'?, we use Mendelian randomization methods to investigate the
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bidirectional association between 250HD and psychiatric disorders, as well as with a wider range of
traits and diseases. Additionally, we present a GWAS to identify loci associated with variance in 250HD
(i.e., variance quantitative trait locus (vQTL) analysis) which can identify putative genotype environment

interactions without prior identification of the environmental effect!®.

Results

417,580 European UKB participants had both measures of vitamin D 250HD and genome-wide
genotypes (Methods). The distribution of 250HD concentration, in keeping with expectation, is right
skewed (Supplementary Figure 1a), and showed the expected seasonal fluctuation (Supplementary
Figures 1b and 1e), with median, mean and interquartile range of 47.9, 49.6, 33.5 — 63.2 nmol/L
(Supplementary Table 1). Covariates of age, BMI, genotyping batch, assessment centre, month of
testing, supplement intake and the first four ancestry principal components (PCs), but not sex, were all
significantly associated with 250HD (Supplementary Table 1). Month of testing accounts for 14% of the
variance of 250HD. Subsequent analyses use 250HD after rank-based inverse-normal transformation

(RINT) unless otherwise stated.

Heritability and SNP-based heritability

Our UKB sample included a set of 58,738 individuals related with coefficient of relationship (r) > 0.2 to at
least one other person in the set (“all relatives”), from whom we estimate the heritability of 250HD to
be 0.32 (s.e. = 0.01) with little evidence for inflation from shared family environment (Figure 2,
Supplementary Figure 2, Supplementary Table 2). The SNP-based heritability estimate (EﬁNP), which
captures the genetic contribution from common (minor allele frequency or MAF > 0.01) variants, was
0.13 (s.e. = 0.01) (see Supplementary Figure 2, Supplementary Table 2 for a comparison of E§NP
estimated from various methods). H§NP was significantly higher (P = 1.5 x 103) when estimated only
from individuals measured for 250HD in summer months (June to October) compared to those
measured in winter months (December to April) (0.19, s.e. =0.02 vs. 0.10, s.e. = 0.02) (Figure 2), as
found for estimates of twin heritability®. The genetic correlation between the seasons was 0.80 (s.e. =
0.11), not significantly different from 1. The proportion of SNPs estimated to have an effect on the trait
(polygenicity parameter) using the SBayesS method*® was 0.8% or 9,000 SNPs of the ~1.1 million
HapMap3 panel*® common SNPs (Supplementary Table 3), much lower than estimates for most complex

traits’. The SBayesS S parameter, which describes the effect size-MAF relationship, was estimated as -
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0.78 (s.e. = 0.04; Supplementary Table 4), consistent with a model of negative selection on the genetic
variants associated with 250HD levels (the magnitude of S is higher than those of most complex traits
studied™). Estimation of hZyp partitioned into 10 components based on five MAF bins (each median-
split by linkage disequilibrium score) did not provide strong evidence for an increased role for less
common variants, given the s.e. of estimates (Supplementary Figure 3). Despite a strong phenotypic
association between 250HD and BMI of -0.76 nmol/L/BMI unit (-0.036 RINT(250HD) standard deviation
(SD) units/BMI unit, P < 2.2 x 10°%) and a phenotypic correlation of -0.17 (Supplementary Table 1), the
estimates of heritability (both family and SNP-based) were hardly impacted when BMI was included as a

covariate (Supplementary Figure 2).
Genome-wide association study (GWAS) analysis

Given the potential for collider bias from using a heritable trait as a covariate!’, we conducted GWAS for
250HD with and without BMI as a covariate. We also used mtCOJO*® to estimate the 250HD SNP effects
conditioning on those estimated for BMI from UKB data'®, a summary-data-based conditional-analysis
approach that was shown in simulations to be robust to collider bias when conditioning on a correlated
trait'®. Results were comparable across the three levels of BMI adjustment (Supplementary Table 5), so
we report those with no correction for BMI, using results from all three analyses when this aids

interpretation of results.

A total of 8,806,780 SNPs with MAF > 0.01 were tested in the GWAS analysis. Of these, 18,864 were
genome-wide significant (GWS; P < 5 x 10®). To identify independently associated loci, we applied the
GCTA-COJO method? to the GWAS summary statistics using LD between SNPs estimated from a UKB
subset (Methods), and identified 143 independent loci (including one on chromosome X) (Figure 3;
Supplementary Table 6) in 112 1-Mb regions. Of these, 15 loci were low frequency variants (MAF <
0.05), and 106 regions had no previously identified associations. All six loci reported in previous vitamin
D GWAS!%21.22 were replicated in our study. While recognising that the COJO method cannot distinguish
between SNPs in perfect LD, we note that within the 143 COJO independent variants: (a) 14 were non-
synonymous variants that alter protein coding (NRIP1, DSG1, TM6SF2, PLA2G3, GCKR, APOE, PCSK9,
SEC23A, FLG, NPHS1, SDR42E1, CPS1, ADH1B, UGT1A5), and (b) 9 were annotated to include small

insertion/deletions. A summary of results is provided in Figure 4, but are discussed later.
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Summary statistics from the SUNLIGHT consortium® were available for 2,579,297 SNPs and the genetic
correlation estimate with UKB results was not significantly different from 1 (f; = 0.92, s.e. = 0.06). Meta-
analysis with our UKB GWAS results after imputation?2* of the SUNLIGHT summary statistics
(Supplementary Methods) (6,912,294 overlapping SNPs) identified 15,154 GWS variants, 150 GCTA-
COJO independent SNPs (Supplementary Methods, Supplementary Table 5). Given that the meta-
analysis only increased the number of significant loci by seven, and given our preference not to include
BMI as a covariate, we continued with the UKB-only results for our downstream analyses. It is notable,
that random draws of ~80K people from the UKB, the same size approximately as from the SUNLIGHT
consortium meta-analysis, identified ~20 independent COJO GWS loci (Supplementary Figure 4a), a 36%
increase compared to 14 COJO SUNLIGHT consortium loci, demonstrating the power gained for equal
sample size from having a single cohort study, as previously shown for height and BMI?. Here, we find
an approximately linear relationship between sample size and GWS discovery of 3.7 loci/10K people

(Supplementary Figure 4b).
Replication and out-of-sample genetic risk prediction

To get an unbiased estimate of the phenotypic variability explained by the independent SNPs in our
GWAS, we conducted a GREML analysis in the independent QIMR dataset® (N = 6,233, N = 1,632
unrelated). UKB genome-wide significant COJO SNPs explained 13% of the variance in RINT(250HD)
residuals (i.e. after accounting for covariates) when fitted jointly. Polygenic prediction into the QIMR
sample using SNP effects estimated in the UKB and the standard P-value thresholding method explained
a maximum of 7.3% of the variance in RINT(250HD)( Figure 2; Supplementary Table 7) (P =9.3 x 10%, at
P-value threshold of P < 1 x 10°). As expected, when the PRS were derived from SNP weights from COJO
or Bayesian methods applied to the GWAS summary statistics*>?® the prediction variance was higher, to

a maximum of 10% (Figure 2; Supplementary Table 7).
Functional mapping and annotation of GWAS

To annotate the 250HD GWAS, we first used the FUMA online pipeline?’. Gene-set analyses showed that
the top four pathways were related to glucuronidation, ascorbate and aldarate metabolism, and uronic
acid metabolism (Supplementary Tables 8 and 9). Keratinization was the top Gene Ontology (GO)
biological processes identified. Based on 53 tissue types from GTEx v6% the top tissues for differentially

expressed genes identified in the GWAS were liver, brain and skin (sun exposed, and non-sun exposed;
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Supplementary Table 10). Partitioned SNP-based heritability analysis?® using cell-type-specific
annotations identified five cell types (hepatocytes, two types of liver cells, skin cells and blood cells) at
the nominal significance level of 0.05 (Supplementary Table 11), but none remained significant after
correction for multiple testing (P < 2.4 x 10%). In partitioned SNP-based heritability analysis using SNP
annotation to 53 functional categories?, 11 passed multiple testing significance threshold (P < 9.4 x 10%;
Supplementary Table 12) with a mix of annotations including transcription factor binding sites and
transcription start sites (notable because vitamin D operates via a nuclear receptor, which binds to
vitamin D response elements), as well as a role for repressed sites, conserved regions, enhancer and

coding regions, and histone modification marks.

To identify 250HD SNP associations with statistical evidence consistent with a causal/pleiotropic
association via gene expression, we used summary-data-based Mendelian randomization (SMR)3 using
the 15,504 gene probes with significant cis-eQTLs identified from whole blood eQTLGen data®!. After
Bonferroni correction, we found 112 significantly-associated gene expression probes (Pswr < 3.2 x10°6,
i.e., 0.05 / m, with m = 15,504, being the total number of probes tested in SMR analysis; Supplementary

Table 13, Supplementary Figure 5; Supplementary Data). These results are discussed in detail in the

Supplementary Note and add weight to the hypothesis that the SMR identified eQTL variants may be

causally related to 250HD concentrations.

Genetic correlations and putative causal relationships with other traits

First, we investigated the relationship between 250HD and BMI. The LDSC3? genetic correlation
estimated from 250HD and BMI GWAS summary statistics was -0.17 (s.e. = 0.03) (Supplementary Figure
2, Supplementary Table 14). Bidirectional Mendelian randomisation®® analysis provided strong support
for the hypothesis that high BMI is causal for low 250HD (bgwmi.2sorp = -0.130; s.e. = 0.005; P = 4.7 x 10°1%%;
based on 1,020 BMI-associated SNP instruments), with no support for a causal effect of vitamin D on
BMI (b2sonp.smi = 0.008; s.e. = 0.006; P = 0.20; based on 210 vitamin D-associated SNPs) (these results
were confirmed by other MR methods®3; Supplementary Table 15). Notably, the HEIDI-outlier test in the
GSMR analyses excluded 70 BMI and 67 250HD SNP instruments, whose combination of SNP effect sizes
likely reflects a pleiotropic relationship or confounding. Using the SNPs excluded by the HEIDI-outlier
test, the estimates were bgwi2sonp = 0.17 (s.e. = 0.0182; P = 1.2 x 102°) and basonp.smi = -0.15 (s.e. = 0.017,
P =2.7 x 10%8). Hence, despite the clear evidence for a causal relationship between high BMI and low

250HD, the biological relationship between these traits is more complex.
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Next, we estimated genetic correlations (rg) between 250HD and 746 traits with GWAS summary
statistics available in LD Hub3, and we used LDSC to estimate ry between 250HD and 18 traits (including
six psychiatric disorders) with GWAS summary statistics that are more recent than those included in LD
Hub. Although many of the traits are highly correlated, we use a Bonferroni correction for 764 tests as
the threshold for discussion of ry. We found significant associations between 250HD and a range of
brain-related phenotypes (including autism spectrum disorder, intelligence, major depressive disorder,
bipolar disorder and schizophrenia; Supplementary Figure 6). Notably, the most significant ry were with
cognitive-associated traits — for example, a negative correlation (7, =-0.24, s.e.=0.03, P=1.6 x 1014
with intelligence. There was also a significant negative ry with hours spent using a computer (7, =-0.22,
s.e. =0.03, P =5.1 x10'%). These findings may be mediated by an association between higher intelligence
and behaviour associated with less exposure to bright sunshine (and thus, lower 250HD). Of note,
behaviours associated with outdoor activity (duration of walks, duration of vigorous activity) were
positively associated with 250HD, while phenotypes related to chronic disability were negatively

associated with 250HD.

Next, we investigated if some of the significant genetic correlations could be explained by causal
relationships using bidirectional GSMR models — here a more complex pattern of association emerged
(Figure 5, Supplementary Table 16). We found no evidence for putative causal effects between 250HD
and other traits; GSMR analyses without the HEIDI-outlier filtering step (Figure 5a) suggest strong
pleiotropy for some traits like dyslipidemia, coronary artery disease, intelligence and educational
attainment. Finally, we examined the reciprocal relationship — if variants associated with a range of
traits were directionally associated with 250HD. Regardless of the use of HEIDI filtering, and often
regardless of adjustments for BMI, we found evidence consistent with increased risk of several traits or
disorders being causal (directly or indirectly) with lower 250HD concentrations. This was the case for
intelligence, dyslipidemia, major depression, bipolar disorder, type 2 diabetes and schizophrenia. The
findings might suggest these traits or disorder are associated with behaviours that lead to reduced
production of 250HD (e.g. less outdoor activity and physical activities). The GSMR findings were also
checked with the portfolio of MR methods implemented in the 2-sample MR (2SMR) software33

(Supplementary Table 17).

Proxy-environment vQTL, season analysis and gene by environment interaction

10
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We conducted a genome-wide vQTL analysis, as implemented in OSCA* to identify SNPs associated with
variance in 250HD (not RINT transformed). Such associations can reflect genotype-by-environment
interaction in the absence of measurement, or indeed knowledge, of the interacting environmental risk
factor. Using data from 318,851 unrelated individuals of European ancestry, we tested 6,098,063
variants with MAF > 0.05, and identified 4,008 GWS vQTLs, of which 25 were independent (LD r* < 0.01,
5-MB window), and several were in well-characterized genes (e.g. GC, UGT2B7, SEC23A, SULT2A1,
KLK10, NADSYN1). Of the 25 independent vQTLs, 23 were also QTLs (identified as genome-wide
significant in the GWAS analysis) while the two non-QTL loci were still associated at Pewas < 10
(Supplementary Table 18). One was in the POR gene, which encodes a cytochrome p450 oxidoreductase
that donates electrons from NADPH to cytochrome P450 enzymes (encoded by CYP450 genes), which
are involved in vitamin D metabolism®. Variants in POR have previously been associated with coffee
intake3®. The other exclusive vQTL (rs1030431) is 12,126 bp upstream from UBXN2B; the SNP is

significantly associated with gall bladder diseases and lipid metabolism traits in the UKB*’.

An environmental factor with known association with 250HD is the season of testing. To investigate if
the associations between the vQTLs and the phenotypic variance of 250HD reflected gene-environment
(GXE) interactions with season of blood draw, we performed a GxE analysis with season (winter vs.
summer). Of 6,098,063 variants tested (MAF > 0.05), 1,127 had a GWS (P < 5 x 108) interaction with
season, and 1,120 (99%) were also GWS in the vQTL analysis. From the 1,127 GWS interactions, five
were independent (LD r? < 0.01, window 5 Mb) and were located in regions that have well-known
vitamin D related genes in chromosomes 7, 11, and 14 (Supplementary Table 19). Notably, of the 20
vQTL loci without significant GXE with season, at least half showed no evidence at all for GXE with season

(Supplementary Figure 7), so these variants are candidates for GXE with other environmental factors.
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Discussion

We have identified 143 loci associated with 250HD concentration. Recognising that only six associated
loci had been reported to date these discoveries provide important new insights into previously
unknown or poorly understood vitamin D-related pathways and substantially increase our knowledge of
the genetic correlates of 250HD compared to previous studies® (Figure 4). First, the three most
associated loci, all identified in previous studies, are noteworthy (chr4:rs1352846, chr11:rs116970203
and chr11:rs12794714, all P < 1.0 x 10*%, all with their minor allele reducing 250HD). rs1352846 (MAF =
0.29 (G)) is in the GC locus'®?2, which encodes a protein synthesized in the liver that binds to, and
transports vitamin D and its metabolites. rs116970203 is a low frequency variant (MAF = 0.03 (A))
located in intron 11 of the PDE3B gene. It is also a perfect proxy for rs117913124 (LD r?=1), a low
frequency synonymous coding variant in CYP2R1, which was previously reported to associate with
250HD?. Another CYP2R1 synonymous variant was also identified (rs12794714; MAF = 0.42 (A)).
CYP2R1 encodes a crucial hepatic enzyme involved in the hydroxylation of vitamin D to 250HD. Given
the complexity of the association pattern observed in chromosome 11, we confirmed the independence
of the COJO identified variants using individual-level data (Supplementary Table 20). In line with
previous findings3®, the two-way conditional analysis showed that the effect of the low frequency SNP
(rs116970203 or rs117913124) and common SNP (rs12794714 or rs10741657), were largely

independent.

Our findings provide convergent evidence that genes related to lipid- and lipoprotein-related pathways
influence 250HD concentration. In particular, we confirm a unidirectional relationship between SNP
instruments that influence higher BMI and lower 250HD concentration, but not the reciprocal
relationship. This relationship exists against a background of a highly intercorrelated pattern of
relationships between genes that influence both 250HD and a wide range of lipid-related metabolic
phenotypes. There were variants within genes with well-described functions related to lipid and
lipoprotein related pathways® (e.g. PCSK9, DOCK7, CELSR2, GALNT2, ABCA1, DGAT2, CETP, APOE,
APOC1, PLA2G3). In addition, several inter-genic loci had ‘closest’ upstream or downstream genes of
interest to lipid and lipoprotein pathways (AKR1A, APOB, CETP, LIPG, LDLR). Variants in these genes
influence overall lipid concentrations, including the concentration of 7-dehydrocholesterol in the skin.
We identified a locus (chr11:rs12803256) in an uncharacterized RNA gene (FLJ42102) 11,057 base pairs

upstream from DHCR?7. This region has been identified in previous GWAS studies, and DHCR7 is a strong
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candidate gene because of its known role in the conversion of 7-dehydrocholesterol in the skin to pre-
vitamin D3, We note that the broad region on Chr 11 containing DHCR7 and NADSYN1 included several
loci of interest according to both GCTA-COJO and SMR analyses — this complex area warrants additional

research.

The GWAS uncovered a range of novel findings indicating that properties of the skin not related to
pigmentation are associated with 250HD concentration. While it is well known that individuals with
darker skin tend to have lower 250HD (related to the melanin content in the skin blocking UVB)*#,
our findings provide evidence that SNPs associated with genes that influence dermal development
(e.g. PADI)* and integrity (e.g. FLG; FLG-AS1, POU2F3, KLK10, DSG1)*** are also associated with
250HD status. It has been suggested that variants in the FLG gene may have evolved in order to
optimize 250HD production at high latitude®*®, HAL (histidine ammonia-lyase) codes for an enzyme
that deaminates L-histidine to trans-uronic acid. The top SNP in this region (rs10859995) is within an
intron of this gene. The gene is expressed in the skin, and is upregulated during keratinocyte
differentiation®’. It has been demonstrated that trans-urocanic acid in the stratum corneum can absorb
UVB*® and can reduce the production 250HD*. The MAGMA gene-set analysis?’ also showed that
variants associated the uronic acid pathways were significantly over-represented in our findings
(Supplementary Table 9). The concentration of trans-uronic acid varies widely between individuals*®>°
but is not related to skin colour/pigmentation®. It is important to note that our sample was restricted to
Europeans and analyses included ancestry PCs as covariates, four of which were strongly associated with
250HD (Supplementary Table 1). If these PCs capture variants related to skin colour within Europeans,
these variants are less likely to be identified in our analyses. FUMA analyses did not identify an over-

representation of variants known to be related to skin colour in our GWAS.

Our study expands the range of enzymes implicated in the synthesis and breakdown of vitamin D related
molecules. These include genes from the hydroxysteroid 17-beta dehydrogenase family (HSD17B1,
HSD3B1), a family of short-chain dehydrogenases/reductases, which are involved in steroidogenesis and
steroid metabolism®l. CYP2R1 is a key regulator of 250HD status, via hepatic conversion of vitamin D to
250HD — two loci were found within this gene. Other members of this large family of enzymes

associated with 250HD concentrations include CYP7A1, CYP26A1, and CYP24A1.

We identified many variants within genes related to the modification of lipophilic molecules (including

seco-steroids such as 250HD and related species). Associated regions on chromosomes 2 and 4 include
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enzymes in the UDP-glucuronosyltransferase family, which are critical in the glucuronidation pathways.
The involvement of these genes in the degradation and potential conjugate recycling of 250HD has
recently been described®?°3. We identified variants in the SULT21A gene, which encodes the enzyme
responsible for the sulphonation of 250HD%*>*, Our findings provide support for the hypothesis that
these mechanisms influence 250HD concentration. We identified variants in the SLCO1B1 gene, which
encodes a transmembrane receptor that mediates the sodium-independent uptake of numerous
endogenous compounds, including sulphated steroid molecules®. It is not known if this mechanism is
involved in the uptake of the sulphated 250HD, but metabolic studies have identified associations
between variants in the SLCO1B1 gene and a wide range of small molecules®. It has been proposed that
vitamin D may undergo conjugate cycling (e.g. bidirectional conversion between 250HD and 250HD-

sulphate)®’

. A proportion of total 250HD may exist in the sulphated form, which could act as circulating
reservoir for later de-sulphation in peripheral tissues. In addition, conjugated versions of 250HD with
glucuronide® and sulfate® have both been detected in bile, which suggests enterohepatic mechanisms
may provide another reservoir that buffers total 250HD reserves. The findings also have implications for
how to assay total 250HD reserves. Current extraction and assay techniques used to quantitate 250HD
are not optimized for sulphonated or glucuronidated species of 250HD8, thus total 250HD status may
not accurately reflect the contribution of these conjugated species. In addition, these mechanisms
would contribute to the functional half-life of 250HD, and thus influence vitamin D status during periods
of reduced exposure to bright sunshine (e.g. during winter). Finally, variants in a range of novel

enzymatic pathways were also associated with 250HD concentration (e.g. short-chain

dehydrogenase/reductase, aldehyde dehydrogenase, alcohol dehydrogenase).

The large sample size afforded by the UKB sample, provides for the first time a description of the genetic
architecture of 250HD. The 143 loci explain 13% of the variance in an independent sample®, when fitted
jointly (equalling the SNP-based heritability) and 10% of variance using a polygenic score predictor using
SNP effect sizes estimated in the UKB. Since the latter is achieved from considering only genome-wide
significant loci it means that a large part of the common variant signal is already well-captured and
estimated by our sample size. In total, all genotyped/imputed variants with MAF > 0.01 explain about
41% of the heritability estimated from close relatives (heritability 0.32, SNP-based heritability 0.13,
Figure 2). We estimate that about 9,000 common SNPs affect variation in 250HD, and report evidence
of negative selection through the SBayesS S parameter of -0.78 (which represents the relationship

between MAF and effect size, and which is zero under a neutral model). The 143 loci represent only 112
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1-Mb regions, with six of the 1-Mb regions harbouring four loci each. The final set of 143 loci was
achieved by applying the COJO (conditional and joint) algorithm onto the GWAS summary statistics using
the linkage disequilibrium structure to account for the correlation structure between SNPs. Two regions
on chromosome 11 are particularly complex with the maximum change in significance observed for SNP
rs61883501 (P = 0.749, Pcoio 4.0x10° and with a change in direction of effect, Supplementary Table 6).
An increase in out-of-sample prediction from 7.3% from the standard P-value thresholding method to
10.5% when using COJO SNP effect estimates provides independent support for the validity of the

approach.

We also identified 25 independent SNPs associated with variance in 250HD — these are putative GxE
loci. While 5 of these have strong evidence of interacting with season of measurement, at least 10 are
GxE candidates with yet-to-be-identified environmental risk factors, and search of published GWAS
results for association with these SNPs (i.e., PheWAS?’) may help with this prioritization
(Supplementary Table 18). In summer months the mean 250HD concentrations are higher and a
larger proportion of the variance could be attributed to genetic factors in summer compared to
winter (SNP-based heritability of 0.19, s.e. = 0.02, vs 0.10, s.e. = 0.02, Pgirerent=1.5 x 1073). Five loci
were identified as significant in GXE analysis with season, and for two the direction of effect was
reversed (Supplementary Table 19). The vitamin D phenotype is an interesting one to explore from
the perspective of GxE as seasonal fluctuations provide a natural experiment to dissect components
of the genetic architecture that influence synthesis (i.e. inflow) and excretion (i.e. outflow) of

250HD-related pathways.

In the UKB participants, high BMI is associated with reduced 250HD concentration, in keeping with a
large body of observational epidemiology®°. However, we did not find statistical evidence in support
of a causal role for 250HD level on BMI. In contrast, there was evidence for pleiotropic effects of
SNPs on the two traits as well as for high BMI being causal (directly or indirectly) for low 250HD.
Genetic correlations were significant between 250HD concentration and a range of phenotypes
(Figure 5). However, in robust directional models, we found no evidence in support of a causal role
for 250HD concentration on these traits. Of interest, we found evidence that higher intelligence and
an increased risk of several psychiatric disorders may cause reduced 250HD concentrations. With
respect to intelligence, this would be consistent with previous links between intelligence and years of
education leading to working indoors, and subsequent lower concentrations of 250HD®%%?, One of

our motivations for undertaking this study was to investigate the hypothesis of a causality
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relationship between 250HD and psychiatric disorders®?. The Mendelian randomization analyses
conducted here do not support a causal role for 250HD levels and these disorders, and hence the
reported epidemiological associations could reflect confounding and/or reverse causation. Vitamin D
deficiency is common in those with established psychiatric disorders, as a consequence of reduced
outdoor behaviour®®%4, It is feasible that the observed association between 250HD concentration in
blood spot samples taken at birth with later-life increased risk of schizophrenia®*®> could be
confounded by outdoor behaviour of mothers, which may be correlated with the mother’s genetic
liability to schizophrenia. While we find no evidence to support the hypotheses that variants
associated with low 250HD concentrations were associated with any of the selected phenotypes, we
note that there is a linearity assumption in our Mendelian randomization analyses. In other words, if
only very low concentrations of 250HD are associated with adverse outcomes, then this non-linear

exposure-risk association may not be confidently detected.

Conclusions

We have identified 143 loci associated with 250HD concentration, and have provided new directions for
vitamin D research. In particular, our findings suggest that pathways related to sulphonation and
glucuronidation warrant closer scrutiny — for example, there may be a case to measure these modified
species of 250HD and related molecules in order to better understand vitamin D status. Our studies
based on Mendelian randomization do not support hypotheses that vitamin D concentration is
associated with a broad range of candidate phenotypes, in particular, psychiatric disorders. The findings
provide new insights into the physiology of vitamin D and the relationship between 250HD status and

health.
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Methods

The UK Biobank sample

The UK Biobank (UKB) is a large population cohort with phenotype, genotype and clinical information on
more than 502,000 individuals (age range from 40 to 69 years old). Participants were registered with the
National Health Service, and lived approximately 25 miles from one of the 22 recruitment centres across
the United Kingdom (UK)L. Participants were recruited between 2006 and 2010. Informed consent was
obtained by UK Biobank from all participants, and the study was approved by the North West
Multicentre Research Ethnics Service Committee. The participants of the study were not representative

of the original sampling frame, with evidence of a ‘healthy volunteer’ bias®®.

Genotype data were quality controlled and imputed to the Haplotype Reference Consortium (HRC)®” and
UK10K®® reference panels by the UKB group®. We extracted variants with minor allele count (MAC) > 5
and imputation score > 0.3 for all individuals, and converted genotype probabilities to hard-call

)7°. Then, we excluded variants with genotype missingness > 0.05,

genotypes using PLINK2 (--hard-call 0.1
Hardy-Weinberg equilibrium test P > 1 x 10, and minor allele frequency (MAF) < 0.01. In total 8,806,780
variants (hereafter SNPs, but could include small insertion/deletions (INDELS)), including 260,713 SNPs

in the X chromosome, were available for analysis.

Individuals of European ancestry were identified by projecting the UKB sample to the first two principal
components (PCs) of the 1000 Genome Project (1KGP?), using Hap Map 3 (HM3) SNPs with MAF > 0.01
in both datasets. European ancestry was assigned based on > 0.9 posterior-probability of belonging to

the 1KGP European reference cluster.

Assessment of 25 hydroxyvitamin D concentration

Vitamin D 250HD levels were measured in blood samples collected at two instances: the initial
assessment visit, conducted between 2006 and 2010, and a repeat assessment visit, conducted between
2012 and 2013. The Diasorin Liason®, a chemiluminescent immunoassay (CLIA) was used for the
guantitative determination of 250HD. The assay measures total 250HD concentration (i.e. 250HD3 and

250HD;). Participants with 250HD concentrations below or above the validated range for the assay (10 -
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375 nmol/L) were excluded. The average within-laboratory coefficient of variation (CV) (and standard

deviation) ranged from 5.04 (4.73) to 6.14 (2.21)"2.

Of 502,536 UKB participants, 449,978 (90%) had vitamin D 250HD levels (data field 30890) measured,
mostly from the initial assessment visit (448,376, 99.6%). Our analyses were limited to the 417,580
individuals of European ancestry with 250HD concentrations available, of whom 318,851 are unrelated

(gcta --rel-cut-off 0.05).

Genome-wide association study (GWAS) analysis

Figure 1 provides a graphical summary of the GWAS and post-GWAS analyses detailed below. To identify
genetic variants associated with 250HD levels, we performed a GWAS with fastGWA?3, fastGWA is a tool
implemented in GCTA”* for mixed linear model (MLM)-based GWAS. It uses a sparse genomic
relationship matrix (GRM) to account for genetic structure within the cohort, making it a resource-
efficient method for the analysis of large datasets like the UK Biobank’3. The sparse GRM was generated

for UKB individuals of European ancestry using HapMap3 SNPs.

We applied a rank-based inverse-normal transformation (RINT) to the phenotype (vitamin D 250HD
levels) and fit age at time of assessment, sex, assessment month, assessment centre, supplement intake
information, genotyping batch and the first 40 ancestry PCs as covariates in the model (see

Supplementary Methods for more details).

To identify independent associations, we a conducted a conditional and joint (COJO; gcta --cojo-slct)
analysis?® of the GWAS results, accounting for the correlation structure between SNPs within a 10-Mb
window and using a random subset of 20,000 unrelated Europeans from the UKB as linkage
disequilibrium (LD) reference. For comparison, we used PLINK1.9 (--clump)® to identify regional lead
SNPs for genome-wide significant index variants (--clump-p1 5e-8) and variants were clumped with this
lead SNP if they were located less than 10,000 Kb (--clump-kb 10000) away from, and with r?> > 0.01 (--
clump-r2 0.01) with the index variant. To identify novel associations, we a conducted a COJO analysis
that conditioned (gcta --cojo-cond) on the six loci previously reported as genome-wide significant

(rs2282679, rs10741657, rs12785878, rs10745742, rs8018720, rs6013897)'0227¢,

Meta-analysis
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The largest GWAS for 250HD to date, from the SUNLIGHT consortium’, used BMI as a covariate, hence
we also generated UKB results including BMI in the model and used those for meta-analysis. In addition,
the UKB GWAS results used for meta-analysis differed from the reported GWAS results in that 250HD
levels were natural-log transformed and supplement intake was not included as a covariate. Before
meta-analysis, we imputed the SUNLIGHT summary statistics (2,579,297 SNPs) with ImpG?*. After data
management, we used a sample size-based approach’’ to perform the meta-analysis (Supplementary

Methods) on 6,912,294 SNPs that were shared between the data sets.

Relationship between vitamin D and Body Mass Index traits

High BMI is associated with lower concentrations of 250HD?2. For this reason, previous GWAS of 250HD
have included BMI as covariate in their analyses'®. However, given that BMI is a highly heritable trait,
covariate adjustment can induce collider bias!’” and affect downstream analyses. To better understand
the relationship between 250HD and BMI we estimated the phenotypic and genetic correlation
between them and used generalised summary-data-based Mendelian randomisation (GSMR)? to test
for statistical evidence for putative causal effects between the two traits. SNP instruments were
selected with the default settings of the built-in GSMR clumping step. In addition, we conducted a multi-
trait conditional and joint (mtCOJO) analysis®® to condition the 250HD GWAS results on BMI GWAS
summary statistics generated with the UKB?®, an approach that was shown in simulations to be robust to
induced collider bias when conditioning on a correlated trait!®. A random subset of 20,000 unrelated

individuals of European ancestry from the UKB was used as LD reference in the mtCOJO analysis.

Heritability and SNP-based heritability

Our UKB sample included a set of 58,738 individuals who were related with coefficient of relationship (r)
> 0.2 to at least one other person in the set (“all relatives”). Among these, there was a set including all
pairs with 0.4 < r < 0.6 (1** degree), and set a including all pairs with 0.2 < r< 0.3 (2™ degree). We used
these sets to estimate heritability of RINT(250HD) levels (gcta --reml). To estimate SNP-based
heritability we drew a random subset (N ~ 50,000), selected so that no pair of individuals had r > 0.05.
We used a model that fits a single random genetic effect with a single genomic relationship matrix
(GRM) constructed from all SNPs’® and also a GREML-LDMS model” that fits 10 random genetic effects
and hence 10 GRM (gcta --reml --mgrm). The 10 GRM were constructed from SNPs annotated to 5 MAF
(0.01-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5) bins each divided into two by median LD score of the SNPs
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within the bin. The LD score of a SNP is a measure of the common genetic variation tagged by a SNP. The
sum of the estimates for each MAF-LD bin is an estimate of the total SNP-based heritability. Under a
neutral model each of the 5 MAF bins is expected to explain 20% of the variance. Analyses were
conducted with and without BMI as a covariate, and genetic correlation between 250HD and BMI was
estimated in a bivariate GREML analysis (gcta --reml-bivar). In addition, we estimated the genetic
correlation and the genetic variance explained by 250HD levels assessed in summer and winter (see
definitions in ‘vQTL and seasonal analysis’ section below), using bivariate GREML. Heritability and SNP-
based heritability estimated as part of the GWAS analysis using fastGWA are also reported. Finally, we
estimated SNP-based heritability by LD score regression3? (software default settings for European
ancestry samples), SBayesR™ and SBayesS®® from GWAS summary statistics. From SBayesS we also

estimate the polygenicity and selection parameters.

Replication and out-of-sample genetic risk prediction

We used the Brisbane-based twin and family sample (N = 6,223)2 for replication analyses. Samples were
collected between May 1992 and January 2014, mostly from South-East Queensland (latitude 27° S). At
this latitude, there is sufficient UVR to allow for vitamin D synthesis throughout the year®. Legal
guardians gave written, informed consent prior to inclusion and testing. Studies were approved by the
Human Research Ethics Committee of the QIMR Berghofer Medical Research Institute. Additional details
of this study are provided elsewhere (250HD assay methods® and genotyping on HumanCoreExome-
12v1-0_C or llluminaHuman610W-Quad bead chip and quality control?!). Genotypes were imputed to
phase 3 version 5 of the 1000 Genomes Build37 (hg19)?. The phenotype analysed was RINT(250HD)
pre-regressed on sex, age, month of collection, 10 ancestry PCs and imputation batch. We selected a set
of 1,632 unrelated individuals from the Brisbane cohort and estimated the proportion of variance
explained by the UKB genome-wide significant SNPs (or their proxies) when fitted jointly by using only
these SNPs to construct a GRM and conducting a GREML analysis in GCTA. Next, using the sample we
conducted polygenic risk score (PRS) analyses. Using only SNPs present in the Brisbane cohort we
selected independently associated SNPs from the UKB cohort in order to conduct standard P-value
thresholding PRS analysis, choosing a range of P-value thresholds (P <5 x 108 P<1x 10>, P<0.001, P <
0.01,P<0.05,P<0.1, P<0.5, P<1)and calculating PRS for each individual in the Brisbane cohort. We
also calculated PRS from SNP weights estimated by COJO®, SBayesR?® and SBayesS*®. The Bayesian

methods better account for the complex relationship between strength of association of, and
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correlation between, SNP effect sizes. For each set of PRS we estimated the proportion of variance

explained by the PRS in the Brisbane cohort using GCTA GREML to account for the family structure.

Functional mapping and annotation of GWAS

We conducted a number of analyses to annotate the 250HD GWAS results. First, we used the FUMA
online pipeline?” to obtain gene-based, gene-set and tissue-specific annotations. Second, we used
functional annotations provided in the LDSC software to partition SNP-based heritability into 53
functional categories?. Annotations included elements such as UCSC, UTRs, promoter and intronic
regions, conserved regions and functional genomic annotations constructed using ENCODE®? and
Roadmap Epigenomics Consortium data®. Third, we assessed the SNP-based heritability enrichment
associated with different cell-types. Specifically, we applied LDSC analysis to the GWAS summary

statistics using scores associated with cell-type-specific expression (as provided in the LDSC software)®.

To help prioritize putative causal genes with expression underlying 250HD levels, we used the summary
data-based Mendelian randomization method (SMR)*’. SMR integrates GWAS and eQTL (expression
guantitative trait loci, SNPs associated with gene expression) results with the aim of identifying
pleiotropic or causal associations between a trait of interest and gene expression. We used eQTLs
derived by the eQTLGen consortium from gene expression in whole blood??, using the largest sample, to
date, for blood eQTLs (N = 31,684), identifying 15,504 genome-wide significant eQTLs. In general, SNPs
controlling variation in one tissue are found to control variation in other tissues®, hence using the
largest eQTL data set is the most powerful. Moreover, blood is a relevant tissue for vitamin D-related
gene transcription®’. Other relevant tissues are liver, skin and, given our hypotheses about the
relationship between 250HD and psychiatric disorders, the brain. To capture tissue-specific eQTLs in
these tissues we used GTEX eQTL data sets, despite the fact that these data sets are much smaller than
the eQTLGen sample (sun-exposed skin N = 369; non-sun-exposed skin N = 335; liver N = 153; sixteen
brain regions N between 80 — 154). In addition, we used eQTLs identified in pre-frontal cortex (N =
1,866) from the PsychENCODE project®, and foetal brain samples (N = 120) from O’Brien et al.®* SMR
significant results were declared at P < 0.05 / M per tissue, where M is the number SMR tests performed
(i.e. the number of gene probes tested for the tissue, Supplementary Table 13). While significant SMR
test results implicate a role for the eQTL gene, SNPs passing the conservative SMR heterogeneity in
dependent instruments (HEIDI) test (Pueipi > 0 .05) have robust support for the direct causal or

pleiotropic relationships of the trait-associated SNPs influencing gene expression.

22


https://doi.org/10.1101/860767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/860767; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Genetic correlations and putative causal relationships with other traits

Published epidemiological studies have provided an extensive set of hypotheses about causal
relationships between vitamin D and a range of phenotypes®, including psychiatric and brain-related
disorders®. To characterize the relationship between vitamin D and psychiatric traits, we conducted two
sets of analyses. First, we used bivariate LD score regression®? to estimate the genetic correlation
between vitamin D and psychiatric traits using the GWAS summary statistics generated with the UKB
dataset and GWAS summary statistics that were publicly available for attention deficit/hyperactivity
disorder (ADHD)%, Alzheimer’s disease (AD)%, major depressive disorder (MDD)**, schizophrenia (SCZ)%,
bipolar disorder (BIP)%® and autism spectrum disorder (ASD)*’. In addition, we obtained genetic
correlation estimates between vitamin D and 746 traits available through the LD Hub database3“.
Second, we conducted generalized summary Mendelian randomization (GSMR) analyses?® to assess if
there was any statistical evidence that observed correlations could be explained by a causal relationship
for seventeen traits (Figure 5). GSMR analyses were conducted as described above (see BMI section),
with significance declared at 0.05/18=0.003. For any significant associations observed with GSMR we
confirmed our conclusions using the 2-sample MR (2SMR) method?33, which implements a range of MR
models that can adjust for the potential influence of pleiotropy (MR Egger, weighted mean, inverse

variance weighted, simple mode, and weighted mode).

Proxy-environment vQTL and seasonal analysis

250HD concentration is known to be affected by season of measurement, but other environmental
factors may impact 250HD measures. We conducted a genome-wide vQTL analysis'4, an approach to
detect presence of genotype-by-environment interaction in the absence of measurement or knowledge
of the interacting environmental risk factor, to identify SNPs associated with variance in 250HD.
Specifically, we used the Levene’s median test implemented in OSCA%, Following the guidelines of Wang
et al., we (1) adjusted 250HD levels for selected covariates (see below), (2) removed outliers more than
5 SD from the mean, and (3) standardised the residuals to have mean 0 and variance 1. Each step was
performed within one of eight groups defined based on sex (male vs. female) and supplement intake
(none, other, vitamin D, or missing). This approach removed both the mean effect of covariates and the
mean and variance differences between gender and supplement-intake groups, while retaining other
distributional properties of the measure. Covariates included in the phenotype pre-regression were age

at assessment, assessment month, assessment centre, genotyping batch and the first 40 PCs. To avoid
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spurious associations due to coincidence of low-frequency variants with phenotype outliers, this
analysis was restricted to SNPs with MAF > 0.05. To identify near-independent vQTLs, we clumped the
vQTL GWAS results with PLINK1.9 (--clump) as above.

To assess if significant vQTL associations reflected a GxE with season of testing, we conducted season-
stratified GWAS using PLINK1.97%(--gxe) and compared the results with the vQTL GWAS results.
Specifically, we stratified the UKB cohort into two groups after visual inspection of the mean 250HD
concentrations per month (Supplementary Figure 1b). We defined two discrete time periods in order to
retain the maximum sample size but optimize comparisons between months with higher and lower
mean 250HD concentrations: (a) “Winter” - individuals assessed Dec-Apr (N = 162,591), and (b)
“Summer” - individuals assessed Jun-Oct (N = 177,082). Individuals with vitamin D levels assessed in the

months of May and November were not included in these analyses.

Data availability

Genome-wide association summary statistics generated with the three levels of BMI correction (i.e. with
and without BMI as covariate, and conditioned on BMI) are available for download from

http://cnsgenomics.com/data.html. Results for the UKB GWAS of BMI used for conditional analysis are

also available from the same website.
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Figure 1: Outline of key analytic steps described in this study

Analyses using individual-level data

Phenotype descriptive analysis Genotypes

= Extract vitamin D from UK Biobank (data field 30890) * Genotype data QC

* Assess phenotype distribution and seasonal fluctuations * GWAS (with and without BMI adjustment)

» Apply rank-based inverse-normal transformation * Season-stratified GWAS

e Assess covariate effects » Conditional and joint (COJO) analysis

« Assess relationship with BMI » Meta-analysis with SUNLIGHT consortium GWAS results
* vQTL GWAS
» GxE analysis with season

* Heritability — 58K UKB have family member 2 2™ degree
GREML SNP-based heritability

» Qut-of-sample prediction

Analyses using GWAS summary statistics

SNP-based Heritability Cross-trait analysis

SBayesR * FUMA

SBayesS * SMR « Mendelian Randomisation analyses
LDSC ~eQTLs from blood, skin, liver & brain —GSMR

— Partitioned by functional annotation (enhancer, promoter, etc) — 2-sample MR for significant MR
— Partitioned by cell-type annotation results

= Genetic correlations

Abbreviations: BMI, body mass index; eQTL, expression quantitative trait locus; FUMA, functional
mapping and annotation?’; GREML’®, genomic relationship restricted maximum likelihood’®; GSMR,
generalized summary-based MR; GWAS, genome-wide association study; GxE, genotype by
environment interaction; LDSC, linkage disequilibrium score regression; MR, Mendelian

Randomisation; SMR, summary-based MR3; QC, quality control; UKB, UK Biobank; vQTL, variance
quantitative trait locus.
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GCTA-GREML was used to estimate heritability (N=58,738 relatives) and SNP-based heritabilities
labelled GREML (GREML), summer, winter for samples of ~50K randomly drawn from the UKB. The
SBayesR SNP-based heritability is estimate from the GWAS summary statistics (N=417,580). The
GWS estimate used only genome-wide significant COJO loci identified from the UKB GWAS in a
GCTA-GREML analysis using the QIMR sample (N = 1,632). In out-of-sample prediction into the QIMR
sample, polygenic scores calculated by the standard P-value threshold method was outperformed by
calculating the score from COJO identified GWS SNPs, and by using SNP effect estimates calculated
from GWAS summary statistics using the SBayesR or SBayesS methods. Abbreviations: COJO,
conditional and joint; GWS, genome-wide significant; rg, genetic correlation; s.e., standard error.
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Figure 3: Manhattan plot of the Y86HIY GWASTN PH UTeBRIBAHKCense:
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Manhattan plot showing the -logio P-values from association of 25 hydroxyvitamin D (250HD). Red
dots represent independent variants identified as genome-wide significant with conditional and joint
analysis (COJO)? applied to the GWAS summary statisitics. The horizontal axis shows each
chromosome, with 23 representing the X chromosome. The vertical axis is restricted to -logio P-
values < 150. Five COJO SNPs with P < 1x10*° (four on chromosome 11 and one on chromosome 4;
Supplementary Table 6) with approximate locations represented by three red triangles at the top
edge of the plot.
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Figure 4: Summary of selected vaFffheC5s85dI5tHE With' I8 HYU 85 Wtamin D in the UK Biobank
(a) Skin properties
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(b) Lipid and lipoprotein pathways (c) CYP450 and steroid-related
enzymes
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PCSK9™, DOCK7, CELSR2, LIPC, GALNT2, ABCA1,
DGAT2, CETP, APOE™, APOC1, PLA2G3"™,
(AKRJAB?pr)' (APOBZBOBObp)I (CETP1234hp)'

(LIPGZABpr)’ (LDLRQSMbp)

HSD17B1, CYPZR1*2, (CYP7A1%464r),
(CYP26A1207759), (HSD3B18358bP), (CYP24A12740)*

Selected loci of interest and putative mechanism related to Vitamin D pathways

*  NRIP™: nuclear protein that interacts with nuclear receptors such as the
vitamin D receptor

e SEC23A"s: vesicle formation in endoplasmic reticulum.
*  EXOC4: exocyst formation required for docking on plasma membrane

*  SDR42E1"s: short-chain dehydrogenase/reductase involved in the
; metabolism of steroids
b~y iy <~ *  ALDH1A2*: aldehyde dehydrogenase enzyme
* ADHIA, ADH1B": members of alcohol dehydrogenase family —
metabolizes hydroxysteroids

e NPHS1"s: ultrafilter associated with exclusion of albumin and plasma
macromolecules from urinary excretion. This may influence the excretion
f of the vitamin D binding protein, which will impact on the functional half-
life of 25 hydroxyvitamin D.

*  GC?: vitamin D binding protein — a highly polymorphic binding/transport
protein that extends the functional half-life of 25 hydroxyvitamin D

*  SULT21A: conjugates sulphur containing molecule to 25 hydroxyvitamin D
(to produce 25-hydroxyvitamin D-3-sulfate)which can lead to excretion
@ and/or recycling
* UGTI1A4, UGT1A5™, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10,
(UGT2B29P3077bp): conjugates glucuronide molecule to 25
hydroxyvitamin D which can lead to excretion and/or recycling

Top panel shows loci associated with skin integrity, lipid and lipoprotein pathways, and CYP450 and
steroid associated enzymes. Lower panel shows selected variants and putative mechanisms related
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to 25 hydroxyvitamin D concentr4Bi5h 2B et ¥ Y 1t BB EHTEIbEE M e nearest (upstream or
downstream) gene is shown in brackets. The distance between the loci and the nearest gene is
shown in base pairs. *CYP24A1 was also the closest gene for an additional three inter-genic loci with
distances between 32,865-55,282 base pairs. Abbreviations: ns, non-synonymous variant; x2 or x3,
two or three loci found within the gene.
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Figure 5: Bidirectional Generalized Summary data level Mendelian Randomization (GSMR) between 25 hydroxyvitamin D concentrations and selected

phenotypes, by three types of adjustments for body mass index (BMI) and with/without HEIDI filtering of pleiotropic loci.
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Panel (a) shows the estimate of the causal effect (dots), and 95% confidence intervals (bars), of 25 hydroxyvitamin D concentration (250HD) on selected
phenotypes. Negative GSMR effect sizes indicate that variants associated with increased 250HD concentration were associated with a smaller
value/reduced risk for the phenotypes of interest. Panel (b) shows the estimate of the causal effect (and 95% confidence intervals) of the same selected
phenotypes on 250HD concentration. Results are presented with (upper half) and without (lower half) filtering pleiotropic associations with the
heterogeneity in dependent instruments (HEIDI) test, respectively. The numbers above each effect size indicate the number of SNP instruments used in
each analysis. For each set of analyses, we show GWAS results (i) without adjustment for body mass index (BMI), (ii) with BMI included as a covariate, and
(iii) conditioned on BMI using mtCOJO®. The GMSR estimates and 95% confidence intervals are shown in three colours according to the P-value thresholds.
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