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Abstract  

Abstract (109 words) 

Vitamin D deficiency is a candidate risk factor for a range of adverse health outcomes. In a genome-wide 

association study of 25 hydroxyvitamin D (25OHD) concentration in 417,580 Europeans we identified 

143 independent loci in 112 1-Mb regions providing new insights into the physiology of vitamin D and 

implicating genes involved in (a) lipid and lipoprotein metabolism, (b) dermal tissue properties, and (c) 

the sulphonation and glucuronidation of 25OHD. Mendelian randomization models found no robust 

evidence that 25OHD concentration had causal effects on candidate phenotypes (e.g. BMI, psychiatric 

disorders), but many phenotypes had (direct or indirect) causal effects on 25OHD concentration, 

clarifying the relationship between 25OHD status and health.  

 

Keywords 

25 hydroxyvitamin D, genome-wide association study, Mendelian randomization, heritability, season, 

gene-by-environment, vQTL   
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 Introduction 

In recent decades there has been considerable interest in the links between vitamin D levels and general 

health. While classically linked to bone disorders, there is growing evidence to suggest that suboptimal 

vitamin D status may be a risk factor for a much wider range of adverse health outcomes1. Vitamin D, 

the ‘sunshine hormone’, is the precursor of a seco-steroid transcription regulator that operates via a 

nuclear receptor, and like other steroid hormones, exerts transcriptional control over many regions of 

the genome across many different tissues. In environments with access to adequate sunshine, 

ultraviolet radiation on the skin converts a precursor of cholesterol to vitamin D3. This is then further 

converted to 25 hydroxyvitamin D3 (25OHD; used in assays of general vitamin D status), and then to the 

active hormone 1,25 dihydroxyvitamin D3 (1,25OHD) in a variety of tissues. Some foods and vitamin D 

supplements also contribute to vitamin D levels. Definitions of vitamin D deficiency (e.g. < 25 nmol/L of 

25OHD) are predominantly based on bone health2 – according to these definitions, vitamin D deficiency 

is common in many countries, regardless of latitude and economic status3. 

Environmental factors such as season of testing and latitude contribute substantially to the serum 

concentration of 25OHD (lower in winter/spring; lower at higher latitudes)4,5. With respect to the 

genetic architecture of 25OHD, twin and family studies have reported a wide range of heritability 

estimates (from 0%6 to 90%7). A recent multivariate twin study demonstrated that approximately half of 

the total additive genetic variation in 25OHD may reflect genetic variation in skin colour and sun 

exposure behaviour8. Genome-wide association studies (GWAS) have identified common single 

nucleotide polymorphisms (SNPs) located in biologically plausible genes9. The largest GWAS to date (N = 

79,366) reported six significant loci, which include GC (the vitamin D binding protein gene), the 

DHCR7/NADSYN1 region (DHCR7 is involved in a conversion of a 25OHD precursor molecule to 

cholesterol) and CYP2R1 and CYP24A1 genes (which encode enzymes involved in 25OHD metabolism10). 

In total, common SNPs explain 7.5% (standard error (s.e.) 1.9%) of the variance of 25OHD10. 

Here, we conduct a GWAS of 25OHD based on the large UK Biobank (UKB) sample11 and conduct a suite 

of post-GWAS analyses to aid interpretation of the results (Figure 1). We present models that explore 

the genetic/causal relationship between body mass index (BMI) and 25OHD (high BMI is associated with 

lower 25OHD concentration in observational studies)12. Because we have an interest in the association 

between 25OHD and mental disorders13, we use Mendelian randomization methods to investigate the 
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bidirectional association between 25OHD and psychiatric disorders, as well as with a wider range of 

traits and diseases. Additionally, we present a GWAS to identify loci associated with variance in 25OHD 

(i.e., variance quantitative trait locus (vQTL) analysis) which can identify putative genotype environment 

interactions without prior identification of the environmental effect14. 

Results 

417,580 European UKB participants had both measures of vitamin D 25OHD and genome-wide 

genotypes (Methods). The distribution of 25OHD concentration, in keeping with expectation, is right 

skewed (Supplementary Figure 1a), and showed the expected seasonal fluctuation (Supplementary 

Figures 1b and 1e), with median, mean and interquartile range of 47.9, 49.6, 33.5 – 63.2 nmol/L 

(Supplementary Table 1). Covariates of age, BMI, genotyping batch, assessment centre, month of 

testing, supplement intake and the first four ancestry principal components (PCs), but not sex, were all 

significantly associated with 25OHD (Supplementary Table 1). Month of testing accounts for 14% of the 

variance of 25OHD. Subsequent analyses use 25OHD after rank-based inverse-normal transformation 

(RINT) unless otherwise stated. 

Heritability and SNP-based heritability 

Our UKB sample included a set of 58,738 individuals related with coefficient of relationship (r) > 0.2 to at 

least one other person in the set (“all relatives”), from whom we estimate the heritability of 25OHD to 

be 0.32 (s.e. = 0.01) with little evidence for inflation from shared family environment (Figure 2, 

Supplementary Figure 2, Supplementary Table 2). The SNP-based heritability estimate (ℎ�𝑆𝑆𝑆𝑆𝑆𝑆2 ), which 

captures the genetic contribution from common (minor allele frequency or MAF > 0.01) variants, was 

0.13 (s.e. = 0.01) (see Supplementary Figure 2, Supplementary Table 2 for a comparison of ℎ�𝑆𝑆𝑆𝑆𝑆𝑆2  

estimated from various methods). ℎ�𝑆𝑆𝑆𝑆𝑆𝑆2  was significantly higher (P = 1.5 x 10-3) when estimated only 

from individuals measured for 25OHD in summer months (June to October) compared to those 

measured in winter months (December to April) (0.19, s.e. = 0.02 vs. 0.10, s.e. = 0.02) (Figure 2), as 

found for estimates of twin heritability8. The genetic correlation between the seasons was 0.80 (s.e. = 

0.11), not significantly different from 1. The proportion of SNPs estimated to have an effect on the trait 

(polygenicity parameter) using the SBayesS method15 was 0.8% or 9,000 SNPs of the ~1.1 million 

HapMap3 panel16 common SNPs (Supplementary Table 3), much lower than estimates for most complex 

traits15. The SBayesS S parameter, which describes the effect size-MAF relationship, was estimated as -
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0.78 (s.e. = 0.04; Supplementary Table 4), consistent with a model of negative selection on the genetic 

variants associated with 25OHD levels (the magnitude of S is higher than those of most complex traits 

studied15). Estimation of ℎ�𝑆𝑆𝑆𝑆𝑆𝑆2  partitioned into 10 components based on five MAF bins (each median-

split by linkage disequilibrium score) did not provide strong evidence for an increased role for less 

common variants, given the s.e. of estimates (Supplementary Figure 3). Despite a strong phenotypic 

association between 25OHD and BMI of -0.76 nmol/L/BMI unit (-0.036 RINT(25OHD) standard deviation 

(SD) units/BMI unit, P < 2.2 x 10-16) and a phenotypic correlation of -0.17 (Supplementary Table 1), the 

estimates of heritability (both family and SNP-based) were hardly impacted when BMI was included as a 

covariate (Supplementary Figure 2).  

Genome-wide association study (GWAS) analysis 

Given the potential for collider bias from using a heritable trait as a covariate17, we conducted GWAS for 

25OHD with and without BMI as a covariate. We also used mtCOJO18 to estimate the 25OHD SNP effects 

conditioning on those estimated for BMI from UKB data19, a summary-data-based conditional-analysis 

approach that was shown in simulations to be robust to collider bias when conditioning on a correlated 

trait18. Results were comparable across the three levels of BMI adjustment (Supplementary Table 5), so 

we report those with no correction for BMI, using results from all three analyses when this aids 

interpretation of results. 

A total of 8,806,780 SNPs with MAF > 0.01 were tested in the GWAS analysis. Of these, 18,864 were 

genome-wide significant (GWS; P < 5 x 10-8). To identify independently associated loci, we applied the 

GCTA-COJO method20 to the GWAS summary statistics using LD between SNPs estimated from a UKB 

subset (Methods), and identified 143 independent loci (including one on chromosome X) (Figure 3; 

Supplementary Table 6) in 112 1-Mb regions. Of these, 15 loci were low frequency variants (MAF < 

0.05), and 106 regions had no previously identified associations. All six loci reported in previous vitamin 

D GWAS10,21,22 were replicated in our study. While recognising that the COJO method cannot distinguish 

between SNPs in perfect LD, we note that within the 143 COJO independent variants: (a) 14 were non-

synonymous variants that alter protein coding (NRIP1, DSG1, TM6SF2, PLA2G3, GCKR, APOE, PCSK9, 

SEC23A, FLG, NPHS1, SDR42E1, CPS1, ADH1B, UGT1A5), and (b) 9 were annotated to include small 

insertion/deletions. A summary of results is provided in Figure 4, but are discussed later. 
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Summary statistics from the SUNLIGHT consortium10 were available for 2,579,297 SNPs and the genetic 

correlation estimate with UKB results was not significantly different from 1 (𝑟̂𝑟𝑔𝑔 = 0.92, s.e. = 0.06). Meta-

analysis with our UKB GWAS results after imputation23,24 of the SUNLIGHT summary statistics 

(Supplementary Methods) (6,912,294 overlapping SNPs) identified 15,154 GWS variants, 150 GCTA-

COJO independent SNPs (Supplementary Methods, Supplementary Table 5). Given that the meta-

analysis only increased the number of significant loci by seven, and given our preference not to include 

BMI as a covariate, we continued with the UKB-only results for our downstream analyses.     It is notable, 

that random draws of ~80K people from the UKB, the same size approximately as from the SUNLIGHT 

consortium meta-analysis, identified ~20 independent COJO GWS loci (Supplementary Figure 4a), a 36% 

increase compared to 14 COJO SUNLIGHT consortium loci, demonstrating the power gained for equal 

sample size from having a single cohort study, as previously shown for height and BMI25. Here, we find 

an approximately linear relationship between sample size and GWS discovery of 3.7 loci/10K people 

(Supplementary Figure 4b). 

Replication and out-of-sample genetic risk prediction 

To get an unbiased estimate of the phenotypic variability explained by the independent SNPs in our 

GWAS, we conducted a GREML analysis in the independent QIMR dataset8 (N = 6,233, N = 1,632 

unrelated). UKB genome-wide significant COJO SNPs explained 13% of the variance in RINT(25OHD) 

residuals (i.e. after accounting for covariates) when fitted jointly. Polygenic prediction into the QIMR 

sample using SNP effects estimated in the UKB and the standard P-value thresholding method explained 

a maximum of 7.3% of the variance in RINT(25OHD)( Figure 2; Supplementary Table 7) (P = 9.3 x 10-89, at 

P-value threshold of P < 1 x 10-5). As expected, when the PRS were derived from SNP weights from COJO 

or Bayesian methods applied to the GWAS summary statistics15,26 the prediction variance was higher, to 

a maximum of 10% (Figure 2; Supplementary Table 7). 

Functional mapping and annotation of GWAS 

To annotate the 25OHD GWAS, we first used the FUMA online pipeline27. Gene-set analyses showed that 

the top four pathways were related to glucuronidation, ascorbate and aldarate metabolism, and uronic 

acid metabolism (Supplementary Tables 8 and 9). Keratinization was the top Gene Ontology (GO) 

biological processes identified. Based on 53 tissue types from GTEx v628 the top tissues for differentially 

expressed genes identified in the GWAS were liver, brain and skin (sun exposed, and non-sun exposed; 
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Supplementary Table 10). Partitioned SNP-based heritability analysis29 using cell-type-specific 

annotations identified five cell types (hepatocytes, two types of liver cells, skin cells and blood cells) at 

the nominal significance level of 0.05 (Supplementary Table 11), but none remained significant after 

correction for multiple testing (P < 2.4 x 10-4). In partitioned SNP-based heritability analysis using SNP 

annotation to 53 functional categories29, 11 passed multiple testing significance threshold (P < 9.4 x 10-4; 

Supplementary Table 12) with a mix of annotations including transcription factor binding sites and 

transcription start sites (notable because vitamin D operates via a nuclear receptor, which binds to 

vitamin D response elements), as well as a role for repressed sites, conserved regions, enhancer and 

coding regions, and histone modification marks.  

To identify 25OHD SNP associations with statistical evidence consistent with a causal/pleiotropic 

association via gene expression, we used summary-data-based Mendelian randomization (SMR)30 using 

the 15,504 gene probes with significant cis-eQTLs identified from whole blood eQTLGen data31. After 

Bonferroni correction, we found 112 significantly-associated gene expression probes (PSMR < 3.2 x10-6, 

i.e., 0.05 / 𝑚𝑚, with 𝑚𝑚 = 15,504, being the total number of probes tested in SMR analysis; Supplementary 

Table 13, Supplementary Figure 5; Supplementary Data). These results are discussed in detail in the 

Supplementary Note and add weight to the hypothesis that the SMR identified eQTL variants may be 

causally related to 25OHD concentrations. 

Genetic correlations and putative causal relationships with other traits 

First, we investigated the relationship between 25OHD and BMI. The LDSC32 genetic correlation 

estimated from 25OHD and BMI GWAS summary statistics was -0.17 (s.e. = 0.03) (Supplementary Figure 

2, Supplementary Table 14). Bidirectional Mendelian randomisation18 analysis provided strong support 

for the hypothesis that high BMI is causal for low 25OHD (bBMI.25OHD = -0.130; s.e. = 0.005; P = 4.7 x 10-162; 

based on 1,020 BMI-associated SNP instruments), with no support for a causal effect of vitamin D on 

BMI (b25OHD.BMI = 0.008; s.e. = 0.006; P = 0.20; based on 210 vitamin D-associated SNPs) (these results 

were confirmed by other MR methods33; Supplementary Table 15). Notably, the HEIDI-outlier test in the 

GSMR analyses excluded 70 BMI and 67 25OHD SNP instruments, whose combination of SNP effect sizes 

likely reflects a pleiotropic relationship or confounding. Using the SNPs excluded by the HEIDI-outlier 

test, the estimates were bBMI.25OHD = 0.17 (s.e. = 0.0182; P = 1.2 x 10-20) and b25OHD.BMI = -0.15 (s.e. = 0.017, 

P = 2.7 x 10-18). Hence, despite the clear evidence for a causal relationship between high BMI and low 

25OHD, the biological relationship between these traits is more complex. 
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Next, we estimated genetic correlations (rg) between 25OHD and 746 traits with GWAS summary 

statistics available in LD Hub34, and we used LDSC to estimate rg between 25OHD and 18 traits (including 

six psychiatric disorders) with GWAS summary statistics that are more recent than those included in LD 

Hub. Although many of the traits are highly correlated, we use a Bonferroni correction for 764 tests as 

the threshold for discussion of rg. We found significant associations between 25OHD and a range of 

brain-related phenotypes (including autism spectrum disorder, intelligence, major depressive disorder, 

bipolar disorder and schizophrenia; Supplementary Figure 6). Notably, the most significant rg were with 

cognitive-associated traits — for example, a negative correlation (𝑟̂𝑟𝑔𝑔 = -0.24, s.e. = 0.03, P = 1.6 x 10-14) 

with intelligence. There was also a significant negative rg with hours spent using a computer (𝑟̂𝑟𝑔𝑔 = -0.22, 

s.e. = 0.03, P = 5.1 x10-15). These findings may be mediated by an association between higher intelligence 

and behaviour associated with less exposure to bright sunshine (and thus, lower 25OHD). Of note, 

behaviours associated with outdoor activity (duration of walks, duration of vigorous activity) were 

positively associated with 25OHD, while phenotypes related to chronic disability were negatively 

associated with 25OHD. 

Next, we investigated if some of the significant genetic correlations could be explained by causal 

relationships using bidirectional GSMR models – here a more complex pattern of association emerged 

(Figure 5, Supplementary Table 16). We found no evidence for putative causal effects between 25OHD 

and other traits; GSMR analyses without the HEIDI-outlier filtering step (Figure 5a) suggest strong 

pleiotropy for some traits like dyslipidemia, coronary artery disease, intelligence and educational 

attainment. Finally, we examined the reciprocal relationship – if variants associated with a range of 

traits were directionally associated with 25OHD. Regardless of the use of HEIDI filtering, and often 

regardless of adjustments for BMI, we found evidence consistent with increased risk of several traits or 

disorders being causal (directly or indirectly) with lower 25OHD concentrations. This was the case for 

intelligence, dyslipidemia, major depression, bipolar disorder, type 2 diabetes and schizophrenia. The 

findings might suggest these traits or disorder are associated with behaviours that lead to reduced 

production of 25OHD (e.g. less outdoor activity and physical activities). The GSMR findings were also 

checked with the portfolio of MR methods implemented in the 2-sample MR (2SMR) software33 

(Supplementary Table 17).  

Proxy-environment vQTL, season analysis and gene by environment interaction 
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We conducted a genome-wide vQTL analysis, as implemented in OSCA14 to identify SNPs associated with 

variance in 25OHD (not RINT transformed). Such associations can reflect genotype-by-environment 

interaction in the absence of measurement, or indeed knowledge, of the interacting environmental risk 

factor. Using data from 318,851 unrelated individuals of European ancestry, we tested 6,098,063 

variants with MAF > 0.05, and identified 4,008 GWS vQTLs, of which 25 were independent (LD r2 < 0.01, 

5-MB window), and several were in well-characterized genes (e.g. GC, UGT2B7, SEC23A, SULT2A1, 

KLK10, NADSYN1). Of the 25 independent vQTLs, 23 were also QTLs (identified as genome-wide 

significant in the GWAS analysis) while the two non-QTL loci were still associated at PGWAS < 10-5 

(Supplementary Table 18). One was in the POR gene, which encodes a cytochrome p450 oxidoreductase 

that donates electrons from NADPH to cytochrome P450 enzymes (encoded by CYP450 genes), which 

are involved in vitamin D metabolism35. Variants in POR have previously been associated with coffee 

intake36. The other exclusive vQTL (rs1030431) is 12,126 bp upstream from UBXN2B; the SNP is 

significantly associated with gall bladder diseases and lipid metabolism traits in the UKB37. 

An environmental factor with known association with 25OHD is the season of testing. To investigate if 

the associations between the vQTLs and the phenotypic variance of 25OHD reflected gene-environment 

(GxE) interactions with season of blood draw, we performed a GxE analysis with season (winter vs. 

summer). Of 6,098,063 variants tested (MAF > 0.05), 1,127 had a GWS (P < 5 x 10-8) interaction with 

season, and 1,120 (99%) were also GWS in the vQTL analysis. From the 1,127 GWS interactions, five 

were independent (LD r2 < 0.01, window 5 Mb) and were located in regions that have well-known 

vitamin D related genes in chromosomes 7, 11, and 14 (Supplementary Table 19). Notably, of the 20 

vQTL loci without significant GxE with season, at least half showed no evidence at all for GxE with season 

(Supplementary Figure 7), so these variants are candidates for GxE with other environmental factors.  
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Discussion 

We have identified 143 loci associated with 25OHD concentration. Recognising that only six associated 

loci had been reported to date these discoveries provide important new insights into previously 

unknown or poorly understood vitamin D-related pathways and substantially increase our knowledge of 

the genetic correlates of 25OHD compared to previous studies9 (Figure 4). First, the three most 

associated loci, all identified in previous studies10, are noteworthy (chr4:rs1352846, chr11:rs116970203 

and chr11:rs12794714, all P < 1.0 x 10-400, all with their minor allele reducing 25OHD). rs1352846 (MAF = 

0.29 (G)) is in the GC locus10,22, which encodes a protein synthesized in the liver that binds to, and 

transports vitamin D and its metabolites. rs116970203 is a low frequency variant (MAF = 0.03 (A)) 

located in intron 11 of the PDE3B gene. It is also a perfect proxy for rs117913124 (LD r2 = 1), a low 

frequency synonymous coding variant in CYP2R1, which was previously reported to associate with 

25OHD21. Another CYP2R1 synonymous variant was also identified (rs12794714; MAF = 0.42 (A)). 

CYP2R1 encodes a crucial hepatic enzyme involved in the hydroxylation of vitamin D to 25OHD. Given 

the complexity of the association pattern observed in chromosome 11, we confirmed the independence 

of the COJO identified variants using individual-level data (Supplementary Table 20). In line with 

previous findings38, the two-way conditional analysis showed that the effect of the low frequency SNP 

(rs116970203 or rs117913124) and common SNP (rs12794714 or rs10741657), were largely 

independent. 

Our findings provide convergent evidence that genes related to lipid- and lipoprotein-related pathways 

influence 25OHD concentration. In particular, we confirm a unidirectional relationship between SNP 

instruments that influence higher BMI and lower 25OHD concentration, but not the reciprocal 

relationship. This relationship exists against a background of a highly intercorrelated pattern of 

relationships between genes that influence both 25OHD and a wide range of lipid-related metabolic 

phenotypes. There were variants within genes with well-described functions related to lipid and 

lipoprotein related pathways39 (e.g. PCSK9, DOCK7, CELSR2, GALNT2, ABCA1, DGAT2, CETP, APOE, 

APOC1, PLA2G3). In addition, several inter-genic loci had ‘closest’ upstream or downstream genes of 

interest to lipid and lipoprotein pathways (AKR1A, APOB, CETP, LIPG, LDLR). Variants in these genes 

influence overall lipid concentrations, including the concentration of 7-dehydrocholesterol in the skin. 

We identified a locus (chr11:rs12803256) in an uncharacterized RNA gene (FLJ42102) 11,057 base pairs 

upstream from DHCR7. This region has been identified in previous GWAS studies, and DHCR7 is a strong 
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candidate gene because of its known role in the conversion of 7-dehydrocholesterol in the skin to pre-

vitamin D3. We note that the broad region on Chr 11 containing DHCR7 and NADSYN1 included several 

loci of interest according to both GCTA-COJO and SMR analyses – this complex area warrants additional 

research.  

 The GWAS uncovered a range of novel findings indicating that properties of the skin not related to 

pigmentation are associated with 25OHD concentration. While it is well known that individuals with 

darker skin tend to have lower 25OHD (related to the melanin content in the skin blocking UVB)1,8, 

our findings provide evidence that SNPs associated with genes that influence dermal development 

(e.g. PADI)40 and integrity (e.g. FLG; FLG-AS1, POU2F3, KLK10, DSG1)41-44 are also associated with 

25OHD status. It has been suggested that variants in the FLG gene may have evolved in order to 

optimize 25OHD production at high latitude45,46. HAL (histidine ammonia-lyase) codes for an enzyme 

that deaminates L-histidine to trans-uronic acid. The top SNP in this region (rs10859995) is within an 

intron of this gene. The gene is expressed in the skin, and is upregulated during keratinocyte 

differentiation47. It has been demonstrated that trans-urocanic acid in the stratum corneum can absorb 

UVB48 and can reduce the production 25OHD49. The MAGMA gene-set analysis27 also showed that 

variants associated the uronic acid pathways were significantly over-represented in our findings 

(Supplementary Table 9). The concentration of trans-uronic acid varies widely between individuals49,50 

but is not related to skin colour/pigmentation50. It is important to note that our sample was restricted to 

Europeans and analyses included ancestry PCs as covariates, four of which were strongly associated with 

25OHD (Supplementary Table 1). If these PCs capture variants related to skin colour within Europeans, 

these variants are less likely to be identified in our analyses. FUMA analyses did not identify an over-

representation of variants known to be related to skin colour in our GWAS.  

Our study expands the range of enzymes implicated in the synthesis and breakdown of vitamin D related 

molecules. These include genes from the hydroxysteroid 17-beta dehydrogenase family (HSD17B1, 

HSD3B1), a family of short-chain dehydrogenases/reductases, which are involved in steroidogenesis and 

steroid metabolism51. CYP2R1 is a key regulator of 25OHD status, via hepatic conversion of vitamin D to 

25OHD — two loci were found within this gene. Other members of this large family of enzymes 

associated with 25OHD concentrations include CYP7A1, CYP26A1, and CYP24A1.  

We identified many variants within genes related to the modification of lipophilic molecules (including 

seco-steroids such as 25OHD and related species). Associated regions on chromosomes 2 and 4 include 
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enzymes in the UDP-glucuronosyltransferase family, which are critical in the glucuronidation pathways. 

The involvement of these genes in the degradation and potential conjugate recycling of 25OHD has 

recently been described52,53. We identified variants in the SULT21A gene, which encodes the enzyme 

responsible for the sulphonation of 25OHD53,54. Our findings provide support for the hypothesis that 

these mechanisms influence 25OHD concentration. We identified variants in the SLCO1B1 gene, which 

encodes a transmembrane receptor that mediates the sodium-independent uptake of numerous 

endogenous compounds, including sulphated steroid molecules55. It is not known if this mechanism is 

involved in the uptake of the sulphated 25OHD, but metabolic studies have identified associations 

between variants in the SLCO1B1 gene and a wide range of small molecules56. It has been proposed that 

vitamin D may undergo conjugate cycling (e.g. bidirectional conversion between 25OHD and 25OHD-

sulphate)57. A proportion of total 25OHD may exist in the sulphated form, which could act as circulating 

reservoir for later de-sulphation in peripheral tissues. In addition, conjugated versions of 25OHD with 

glucuronide52 and sulfate53 have both been detected in bile, which suggests enterohepatic mechanisms 

may provide another reservoir that buffers total 25OHD reserves. The findings also have implications for 

how to assay total 25OHD reserves. Current extraction and assay techniques used to quantitate 25OHD 

are not optimized for sulphonated or glucuronidated species of 25OHD58, thus total 25OHD status may 

not accurately reflect the contribution of these conjugated species. In addition, these mechanisms 

would contribute to the functional half-life of 25OHD, and thus influence vitamin D status during periods 

of reduced exposure to bright sunshine (e.g. during winter). Finally, variants in a range of novel 

enzymatic pathways were also associated with 25OHD concentration (e.g. short-chain 

dehydrogenase/reductase, aldehyde dehydrogenase, alcohol dehydrogenase). 

The large sample size afforded by the UKB sample, provides for the first time a description of the genetic 

architecture of 25OHD. The 143 loci explain 13% of the variance in an independent sample8, when fitted 

jointly (equalling the SNP-based heritability) and 10% of variance using a polygenic score predictor using 

SNP effect sizes estimated in the UKB. Since the latter is achieved from considering only genome-wide 

significant loci it means that a large part of the common variant signal is already well-captured and 

estimated by our sample size. In total, all genotyped/imputed variants with MAF > 0.01 explain about 

41% of the heritability estimated from close relatives (heritability 0.32, SNP-based heritability 0.13, 

Figure 2). We estimate that about 9,000 common SNPs affect variation in 25OHD, and report evidence 

of negative selection through the SBayesS S parameter of -0.78 (which represents the relationship 

between MAF and effect size, and which is zero under a neutral model). The 143 loci represent only 112 
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1-Mb regions, with six of the 1-Mb regions harbouring four loci each. The final set of 143 loci was 

achieved by applying the COJO (conditional and joint) algorithm onto the GWAS summary statistics using 

the linkage disequilibrium structure to account for the correlation structure between SNPs. Two regions 

on chromosome 11 are particularly complex with the maximum change in significance observed for SNP 

rs61883501 (P = 0.749, PCOJO 4.0x10-9 and with a change in direction of effect, Supplementary Table 6). 

An increase in out-of-sample prediction from 7.3% from the standard P-value thresholding method to 

10.5% when using COJO SNP effect estimates provides independent support for the validity of the 

approach.  

We also identified 25 independent SNPs associated with variance in 25OHD — these are putative GxE 

loci. While 5 of these have strong evidence of interacting with season of measurement, at least 10 are 

GxE candidates with yet-to-be-identified environmental risk factors, and search of published GWAS 

results for association with these SNPs (i.e., PheWAS37) may help with this prioritization 

(Supplementary Table 18). In summer months the mean 25OHD concentrations are higher and a 

larger proportion of the variance could be attributed to genetic factors in summer compared to 

winter (SNP-based heritability of 0.19, s.e. = 0.02, vs 0.10, s.e. = 0.02, Pdifferent=1.5 x 10-3). Five loci 

were identified as significant in GxE analysis with season, and for two the direction of effect was 

reversed (Supplementary Table 19). The vitamin D phenotype is an interesting one to explore from 

the perspective of GxE as seasonal fluctuations provide a natural experiment to dissect components 

of the genetic architecture that influence synthesis (i.e. inflow) and excretion (i.e. outflow) of 

25OHD-related pathways.  

In the UKB participants, high BMI is associated with reduced 25OHD concentration, in keeping with a 

large body of observational epidemiology59. However, we did not find statistical evidence in support 

of a causal role for 25OHD level on BMI. In contrast, there was evidence for pleiotropic effects of 

SNPs on the two traits as well as for high BMI being causal (directly or indirectly) for low 25OHD. 

Genetic correlations were significant between 25OHD concentration and a range of phenotypes 

(Figure 5). However, in robust directional models, we found no evidence in support of a causal role 

for 25OHD concentration on these traits. Of interest, we found evidence that higher intelligence and 

an increased risk of several psychiatric disorders may cause reduced 25OHD concentrations. With 

respect to intelligence, this would be consistent with previous links between intelligence and years of 

education leading to working indoors, and subsequent lower concentrations of 25OHD60,61. One of 

our motivations for undertaking this study was to investigate the hypothesis of a causality 
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relationship between 25OHD and psychiatric disorders62. The Mendelian randomization analyses 

conducted here do not support a causal role for 25OHD levels and these disorders, and hence the 

reported epidemiological associations could reflect confounding and/or reverse causation. Vitamin D 

deficiency is common in those with established psychiatric disorders, as a consequence of reduced 

outdoor behaviour63,64. It is feasible that the observed association between 25OHD concentration in 

blood spot samples taken at birth with later-life increased risk of schizophrenia13,65 could be 

confounded by outdoor behaviour of mothers, which may be correlated with the mother’s genetic 

liability to schizophrenia. While we find no evidence to support the hypotheses that variants 

associated with low 25OHD concentrations were associated with any of the selected phenotypes, we 

note that there is a linearity assumption in our Mendelian randomization analyses. In other words, if 

only very low concentrations of 25OHD are associated with adverse outcomes, then this non-linear 

exposure-risk association may not be confidently detected. 

Conclusions 

We have identified 143 loci associated with 25OHD concentration, and have provided new directions for 

vitamin D research. In particular, our findings suggest that pathways related to sulphonation and 

glucuronidation warrant closer scrutiny – for example, there may be a case to measure these modified 

species of 25OHD and related molecules in order to better understand vitamin D status. Our studies 

based on Mendelian randomization do not support hypotheses that vitamin D concentration is 

associated with a broad range of candidate phenotypes, in particular, psychiatric disorders. The findings 

provide new insights into the physiology of vitamin D and the relationship between 25OHD status and 

health.  
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Methods 

The UK Biobank sample 

The UK Biobank (UKB) is a large population cohort with phenotype, genotype and clinical information on 

more than 502,000 individuals (age range from 40 to 69 years old). Participants were registered with the 

National Health Service, and lived approximately 25 miles from one of the 22 recruitment centres across 

the United Kingdom (UK)11. Participants were recruited between 2006 and 2010. Informed consent was 

obtained by UK Biobank from all participants, and the study was approved by the North West 

Multicentre Research Ethnics Service Committee. The participants of the study were not representative 

of the original sampling frame, with evidence of a ‘healthy volunteer’ bias66.  

Genotype data were quality controlled and imputed to the Haplotype Reference Consortium (HRC)67 and 

UK10K68 reference panels by the UKB group69. We extracted variants with minor allele count (MAC) > 5 

and imputation score > 0.3 for all individuals, and converted genotype probabilities to hard-call 

genotypes using PLINK2 (--hard-call 0.1)70. Then, we excluded variants with genotype missingness > 0.05, 

Hardy-Weinberg equilibrium test P > 1 x 10-5, and minor allele frequency (MAF) < 0.01. In total 8,806,780 

variants (hereafter SNPs, but could include small insertion/deletions (INDELS)), including 260,713 SNPs 

in the X chromosome, were available for analysis. 

Individuals of European ancestry were identified by projecting the UKB sample to the first two principal 

components (PCs) of the 1000 Genome Project (1KGP71), using Hap Map 3 (HM3) SNPs with MAF > 0.01 

in both datasets. European ancestry was assigned based on > 0.9 posterior-probability of belonging to 

the 1KGP European reference cluster. 

Assessment of 25 hydroxyvitamin D concentration 

Vitamin D 25OHD levels were measured in blood samples collected at two instances: the initial 

assessment visit, conducted between 2006 and 2010, and a repeat assessment visit, conducted between 

2012 and 2013. The Diasorin Liason®, a chemiluminescent immunoassay (CLIA) was used for the 

quantitative determination of 25OHD. The assay measures total 25OHD concentration (i.e. 25OHD3 and 

25OHD2). Participants with 25OHD concentrations below or above the validated range for the assay (10 - 
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375 nmol/L) were excluded. The average within-laboratory coefficient of variation (CV) (and standard 

deviation) ranged from 5.04 (4.73) to 6.14 (2.21)72. 

Of 502,536 UKB participants, 449,978 (90%) had vitamin D 25OHD levels (data field 30890) measured, 

mostly from the initial assessment visit (448,376, 99.6%). Our analyses were limited to the 417,580 

individuals of European ancestry with 25OHD concentrations available, of whom 318,851 are unrelated 

(gcta --rel-cut-off 0.05). 

Genome-wide association study (GWAS) analysis 

Figure 1 provides a graphical summary of the GWAS and post-GWAS analyses detailed below. To identify 

genetic variants associated with 25OHD levels, we performed a GWAS with fastGWA73. fastGWA is a tool 

implemented in GCTA74 for mixed linear model (MLM)-based GWAS. It uses a sparse genomic 

relationship matrix (GRM) to account for genetic structure within the cohort, making it a resource-

efficient method for the analysis of large datasets like the UK Biobank73. The sparse GRM was generated 

for UKB individuals of European ancestry using HapMap3 SNPs.  

We applied a rank-based inverse-normal transformation (RINT) to the phenotype (vitamin D 25OHD 

levels) and fit age at time of assessment, sex, assessment month, assessment centre, supplement intake 

information, genotyping batch and the first 40 ancestry PCs as covariates in the model (see 

Supplementary Methods for more details). 

To identify independent associations, we a conducted a conditional and joint (COJO; gcta --cojo-slct) 

analysis20 of the GWAS results, accounting for the correlation structure between SNPs within a 10-Mb 

window and using a random subset of 20,000 unrelated Europeans from the UKB as linkage 

disequilibrium (LD) reference. For comparison, we used PLINK1.9 (--clump)75 to identify regional lead 

SNPs for genome-wide significant index variants (--clump-p1 5e-8) and variants were clumped with this 

lead SNP if they were located less than 10,000 Kb (--clump-kb 10000) away from, and with r2 > 0.01 (--

clump-r2 0.01) with the index variant. To identify novel associations, we a conducted a COJO analysis 

that conditioned (gcta --cojo-cond) on the six loci previously reported as genome-wide significant 

(rs2282679, rs10741657, rs12785878, rs10745742, rs8018720, rs6013897)10,22,76. 

Meta-analysis 
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The largest GWAS for 25OHD to date, from the SUNLIGHT consortium10, used BMI as a covariate, hence 

we also generated UKB results including BMI in the model and used those for meta-analysis. In addition, 

the UKB GWAS results used for meta-analysis differed from the reported GWAS results in that 25OHD 

levels were natural-log transformed and supplement intake was not included as a covariate. Before 

meta-analysis, we imputed the SUNLIGHT summary statistics (2,579,297 SNPs) with ImpG24. After data 

management, we used a sample size-based approach77 to perform the meta-analysis (Supplementary 

Methods) on 6,912,294 SNPs that were shared between the data sets. 

Relationship between vitamin D and Body Mass Index traits 

High BMI is associated with lower concentrations of 25OHD12. For this reason, previous GWAS of 25OHD 

have included BMI as covariate in their analyses10. However, given that BMI is a highly heritable trait, 

covariate adjustment can induce collider bias17 and affect downstream analyses. To better understand 

the relationship between 25OHD and BMI we estimated the phenotypic and genetic correlation 

between them and used generalised summary-data-based Mendelian randomisation (GSMR)18 to test 

for statistical evidence for putative causal effects between the two traits. SNP instruments were 

selected with the default settings of the built-in GSMR clumping step. In addition, we conducted a multi-

trait conditional and joint (mtCOJO) analysis18 to condition the 25OHD GWAS results on BMI GWAS 

summary statistics generated with the UKB19, an approach that was shown in simulations to be robust to 

induced collider bias when conditioning on a correlated trait18. A random subset of 20,000 unrelated 

individuals of European ancestry from the UKB was used as LD reference in the mtCOJO analysis.  

Heritability and SNP-based heritability 

Our UKB sample included a set of 58,738 individuals who were related with coefficient of relationship (r) 

> 0.2 to at least one other person in the set (“all relatives”). Among these, there was a set including all 

pairs with 0.4 < r < 0.6 (1st degree), and set a including all pairs with 0.2 < r < 0.3 (2nd degree). We used 

these sets to estimate heritability of RINT(25OHD) levels (gcta --reml). To estimate SNP-based 

heritability we drew a random subset (N ~ 50,000), selected so that no pair of individuals had r > 0.05. 

We used a model that fits a single random genetic effect with a single genomic relationship matrix 

(GRM) constructed from all SNPs78 and also a GREML-LDMS model79 that fits 10 random genetic effects 

and hence 10 GRM (gcta --reml --mgrm). The 10 GRM were constructed from SNPs annotated to 5 MAF 

(0.01-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5) bins each divided into two by median LD score of the SNPs 
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within the bin. The LD score of a SNP is a measure of the common genetic variation tagged by a SNP. The 

sum of the estimates for each MAF-LD bin is an estimate of the total SNP-based heritability. Under a 

neutral model each of the 5 MAF bins is expected to explain 20% of the variance. Analyses were 

conducted with and without BMI as a covariate, and genetic correlation between 25OHD and BMI was 

estimated in a bivariate GREML analysis (gcta --reml-bivar). In addition, we estimated the genetic 

correlation and the genetic variance explained by 25OHD levels assessed in summer and winter (see 

definitions in ‘vQTL and seasonal analysis’ section below), using bivariate GREML. Heritability and SNP-

based heritability estimated as part of the GWAS analysis using fastGWA are also reported. Finally, we 

estimated SNP-based heritability by LD score regression32 (software default settings for European 

ancestry samples), SBayesR15 and SBayesS15 from GWAS summary statistics. From SBayesS we also 

estimate the polygenicity and selection parameters. 

Replication and out-of-sample genetic risk prediction 

We used the Brisbane-based twin and family sample (N = 6,223)8 for replication analyses. Samples were 

collected between May 1992 and January 2014, mostly from South-East Queensland (latitude 27° S). At 

this latitude, there is sufficient UVR to allow for vitamin D synthesis throughout the year80. Legal 

guardians gave written, informed consent prior to inclusion and testing. Studies were approved by the 

Human Research Ethics Committee of the QIMR Berghofer Medical Research Institute. Additional details 

of this study are provided elsewhere (25OHD assay methods8 and genotyping on HumanCoreExome-

12v1-0_C or IlluminaHuman610W-Quad bead chip and quality control81). Genotypes were imputed to 

phase 3 version 5 of the 1000 Genomes Build37 (hg19)23. The phenotype analysed was RINT(25OHD) 

pre-regressed on sex, age, month of collection, 10 ancestry PCs and imputation batch. We selected a set 

of 1,632 unrelated individuals from the Brisbane cohort and estimated the proportion of variance 

explained by the UKB genome-wide significant SNPs (or their proxies) when fitted jointly by using only 

these SNPs to construct a GRM and conducting a GREML analysis in GCTA. Next, using the sample we 

conducted polygenic risk score (PRS) analyses. Using only SNPs present in the Brisbane cohort we 

selected independently associated SNPs from the UKB cohort in order to conduct standard P-value 

thresholding PRS analysis, choosing a range of P-value thresholds (P < 5 x 10-8, P < 1 x 10-5, P < 0.001, P < 

0.01, P < 0.05, P < 0.1, P < 0.5, P < 1) and calculating PRS for each individual in the Brisbane cohort. We 

also calculated PRS from SNP weights estimated by COJO82, SBayesR26 and SBayesS15. The Bayesian 

methods better account for the complex relationship between strength of association of, and 
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correlation between, SNP effect sizes. For each set of PRS we estimated the proportion of variance 

explained by the PRS in the Brisbane cohort using GCTA GREML to account for the family structure.  

Functional mapping and annotation of GWAS 

We conducted a number of analyses to annotate the 25OHD GWAS results. First, we used the FUMA 

online pipeline27 to obtain gene-based, gene-set and tissue-specific annotations. Second, we used 

functional annotations provided in the LDSC software to partition SNP-based heritability into 53 

functional categories29. Annotations included elements such as UCSC, UTRs, promoter and intronic 

regions, conserved regions and functional genomic annotations constructed using ENCODE83 and 

Roadmap Epigenomics Consortium data84. Third, we assessed the SNP-based heritability enrichment 

associated with different cell-types. Specifically, we applied LDSC analysis to the GWAS summary 

statistics using scores associated with cell-type-specific expression (as provided in the LDSC software)85. 

To help prioritize putative causal genes with expression underlying 25OHD levels, we used the summary 

data-based Mendelian randomization method (SMR)30. SMR integrates GWAS and eQTL (expression 

quantitative trait loci, SNPs associated with gene expression) results with the aim of identifying 

pleiotropic or causal associations between a trait of interest and gene expression. We used eQTLs 

derived by the eQTLGen consortium from gene expression in whole blood31, using the largest sample, to 

date, for blood eQTLs (N = 31,684), identifying 15,504 genome-wide significant eQTLs. In general, SNPs 

controlling variation in one tissue are found to control variation in other tissues86, hence using the 

largest eQTL data set is the most powerful. Moreover, blood is a relevant tissue for vitamin D-related 

gene transcription87. Other relevant tissues are liver, skin and, given our hypotheses about the 

relationship between 25OHD and psychiatric disorders, the brain. To capture tissue-specific eQTLs in 

these tissues we used GTEX eQTL data sets, despite the fact that these data sets are much smaller than 

the eQTLGen sample (sun-exposed skin N = 369; non-sun-exposed skin N = 335; liver N = 153; sixteen 

brain regions N between 80 – 154). In addition, we used eQTLs identified in pre-frontal cortex (N = 

1,866) from the PsychENCODE project88, and foetal brain samples (N = 120) from O’Brien et al.89 SMR 

significant results were declared at P < 0.05 / M per tissue, where M is the number SMR tests performed 

(i.e. the number of gene probes tested for the tissue, Supplementary Table 13). While significant SMR 

test results implicate a role for the eQTL gene, SNPs passing the conservative SMR heterogeneity in 

dependent instruments (HEIDI) test (PHEIDI > 0 .05) have robust support for the direct causal or 

pleiotropic relationships of the trait-associated SNPs influencing gene expression. 
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Genetic correlations and putative causal relationships with other traits 

Published epidemiological studies have provided an extensive set of hypotheses about causal 

relationships between vitamin D and a range of phenotypes90, including psychiatric and brain-related 

disorders91. To characterize the relationship between vitamin D and psychiatric traits, we conducted two 

sets of analyses. First, we used bivariate LD score regression32 to estimate the genetic correlation 

between vitamin D and psychiatric traits using the GWAS summary statistics generated with the UKB 

dataset and GWAS summary statistics that were publicly available for attention deficit/hyperactivity 

disorder (ADHD)92, Alzheimer’s disease (AD)93, major depressive disorder (MDD)94, schizophrenia (SCZ)95, 

bipolar disorder (BIP)96 and autism spectrum disorder (ASD)97. In addition, we obtained genetic 

correlation estimates between vitamin D and 746 traits available through the LD Hub database34. 

Second, we conducted generalized summary Mendelian randomization (GSMR) analyses18 to assess if 

there was any statistical evidence that observed correlations could be explained by a causal relationship 

for seventeen traits (Figure 5). GSMR analyses were conducted as described above (see BMI section), 

with significance declared at 0.05/18=0.003. For any significant associations observed with GSMR we 

confirmed our conclusions using the 2-sample MR (2SMR) method33, which implements a range of MR 

models that can adjust for the potential influence of pleiotropy (MR Egger, weighted mean, inverse 

variance weighted, simple mode, and weighted mode). 

Proxy-environment vQTL and seasonal analysis 

25OHD concentration is known to be affected by season of measurement, but other environmental 

factors may impact 25OHD measures. We conducted a genome-wide vQTL analysis14, an approach to 

detect presence of genotype-by-environment interaction in the absence of measurement or knowledge 

of the interacting environmental risk factor, to identify SNPs associated with variance in 25OHD. 

Specifically, we used the Levene’s median test implemented in OSCA98. Following the guidelines of Wang 

et al., we (1) adjusted 25OHD levels for selected covariates (see below), (2) removed outliers more than 

5 SD from the mean, and (3) standardised the residuals to have mean 0 and variance 1. Each step was 

performed within one of eight groups defined based on sex (male vs. female) and supplement intake 

(none, other, vitamin D, or missing). This approach removed both the mean effect of covariates and the 

mean and variance differences between gender and supplement-intake groups, while retaining other 

distributional properties of the measure. Covariates included in the phenotype pre-regression were age 

at assessment, assessment month, assessment centre, genotyping batch and the first 40 PCs. To avoid 
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spurious associations due to coincidence of low-frequency variants with phenotype outliers14, this 

analysis was restricted to SNPs with MAF > 0.05. To identify near-independent vQTLs, we clumped the 

vQTL GWAS results with PLINK1.9 (--clump) as above.  

To assess if significant vQTL associations reflected a GxE with season of testing, we conducted season-

stratified GWAS using PLINK1.970(--gxe) and compared the results with the vQTL GWAS results. 

Specifically, we stratified the UKB cohort into two groups after visual inspection of the mean 25OHD 

concentrations per month (Supplementary Figure 1b). We defined two discrete time periods in order to 

retain the maximum sample size but optimize comparisons between months with higher and lower 

mean 25OHD concentrations: (a) “Winter” - individuals assessed Dec-Apr (N = 162,591), and (b) 

“Summer” - individuals assessed Jun-Oct (N = 177,082). Individuals with vitamin D levels assessed in the 

months of May and November were not included in these analyses. 

Data availability 

Genome-wide association summary statistics generated with the three levels of BMI correction (i.e. with 

and without BMI as covariate, and conditioned on BMI) are available for download from 

http://cnsgenomics.com/data.html. Results for the UKB GWAS of BMI used for conditional analysis are 

also available from the same website.  

Author Contributions  

 

JAR, JJMcG and NRW conceived the study and designed the analyses. JAR, TL, JQ, and BM conducted the 

analyses, KEK, and JS performed the initial preparation and quality control of the UK Biobank data. 

AX,YH,ZZ,JZ,HW,AAEV,GZ provided support in analysis implementation. JF,DE,THJB helped with 

interpretation of identified loci. NGM provided the QIMR cohort, and BM and GZ conducted the 

analyses based on this sample. PMV and JY provided advice on analyses and interpretation of results. 

JAR, JJMcG and NRW wrote the manuscript with the participation of all authors. All authors reviewed 

and approved the final manuscript 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/860767doi: bioRxiv preprint 

http://cnsgenomics.com/data.html
https://doi.org/10.1101/860767
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

REFERENCES 
 

1 Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266-281 (2007). 
2 Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D.  (National 

Academies Press, 2010). 
3 Lips, P. Worldwide status of vitamin D nutrition. J. Steroid Biochem. Mol. Biol. 121, 297-300 

(2010). 
4 Holick, M. F. Environmental factors that influence the cutaneous production of vitamin D. Am. J. 

Clin. Nutr. 61, 638S-645S (1995). 
5 Holick, M. F. & Chen, T. C. Vitamin D deficiency: a worldwide problem with health 

consequences. Am. J. Clin. Nutr. 87, 1080S-1086S (2008). 
6 Karohl, C. et al. Heritability and seasonal variability of vitamin D concentrations in male twins. 

Am. J. Clin. Nutr. 92, 1393-1398 (2010). 
7 Mills, N. T. et al. Heritability of Transforming Growth Factor-beta1 and Tumor Necrosis Factor-

Receptor Type 1 Expression and Vitamin D Levels in Healthy Adolescent Twins. Twin Res Hum 
Genet 18, 28-35 (2015). 

8 Mitchell, B. L. et al. Half the Genetic Variance in Vitamin D Concentration is Shared with Skin 
Colour and Sun Exposure Genes. Behav. Genet. (2019). 

9 Jiang, X., Kiel, D. P. & Kraft, P. The genetics of vitamin D. Bone (2018). 
10 Jiang, X. et al. Genome-wide association study in 79,366 European-ancestry individuals informs 

the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun 9, 260 (2018). 
11 Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range 

of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015). 
12 Hypponen, E. & Power, C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort 

study of dietary and lifestyle predictors. Am. J. Clin. Nutr. 85, 860-868 (2007). 
13 Eyles, D. W. et al. The association between neonatal vitamin D status and risk of schizophrenia. 

Sci. Rep. 8, 17692 (2018). 
14 Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on 

phenotypic variability in the UK Biobank. Sci Adv 5, eaaw3538 (2019). 
15 Zeng, J. et al. Bayesian analysis of GWAS summary data reveals differential signatures of natural 

selection across human complex traits and functional genomic categories. bioRxiv, 752527 
(2019). 

16 International HapMapConsortium et al. Integrating common and rare genetic variation in 
diverse human populations. Nature 467, 52-58 (2010). 

17 Day, F. R., Loh, P. R., Scott, R. A., Ong, K. K. & Perry, J. R. A Robust Example of Collider Bias in a 
Genetic Association Study. Am. J. Hum. Genet. 98, 392-393 (2016). 

18 Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS 
summary data. Nat Commun 9, 224 (2018). 

19 Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative 
regulatory mechanisms for type 2 diabetes. Nat Commun 9, 2941 (2018). 

20 Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 
additional variants influencing complex traits. Nat. Genet. 44, 369-375, S361-363 (2012). 

21 Manousaki, D. et al. Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects 
on Vitamin D Levels and Risk of Multiple Sclerosis. Am. J. Hum. Genet. 101, 227-238 (2017). 

22 Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide 
association study. Lancet 376, 180-188 (2010). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/860767doi: bioRxiv preprint 

https://doi.org/10.1101/860767
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

23 Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68-74 
(2015). 

24 Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of 
functional enrichment. Bioinformatics 30, 2906-2914 (2014). 

25 Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass 
index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641-
3649 (2018). 

26 Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on 
summary statistics. Nat Commun 10, 5086 (2019). 

27 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and 
annotation of genetic associations with FUMA. Nat Commun 8, 1826 (2017). 

28 GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204 
(2017). 

29 Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat. Genet. 47, 1228-1235 (2015). 

30 Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait 
gene targets. Nat. Genet. 48, 481-487 (2016). 

31 Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL 
metaanalysis. bioRxiv, 447367 (2018). 

32 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. 
Genet. 47, 1236-1241 (2015). 

33 Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human 
phenome. Elife 7 (2018). 

34 Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression 
that maximizes the potential of summary level GWAS data for SNP heritability and genetic 
correlation analysis. Bioinformatics 33, 272-279 (2017). 

35 Tomalik-Scharte, D. et al. Impaired hepatic drug and steroid metabolism in congenital adrenal 
hyperplasia due to P450 oxidoreductase deficiency. Eur. J. Endocrinol. 163, 919-924 (2010). 

36 Caffeine Genetics Consortium et al. Genome-wide meta-analysis identifies six novel loci 
associated with habitual coffee consumption. Mol. Psychiatry 20, 647-656 (2015). 

37 Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. 
Genet. 50, 1593-1599 (2018). 

38 Manousaki, D. et al. Low-frequency synonymous coding variation in CYP2R1 has large effects on 
vitamin D levels and risk of multiple sclerosis. The American Journal of Human Genetics 101, 
227-238 (2017). 

39 Kuchenbaecker, K. et al. The transferability of lipid loci across African, Asian and European 
cohorts. Nat Commun 10, 4330 (2019). 

40 Mechin, M. C. et al. The peptidylarginine deiminases expressed in human epidermis differ in 
their substrate specificities and subcellular locations. Cell. Mol. Life Sci. 62, 1984-1995 (2005). 

41 Baurecht, H. et al. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives 
insight into opposing genetic mechanisms. Am. J. Hum. Genet. 96, 104-120 (2015). 

42 Marenholz, I. et al. Meta-analysis identifies seven susceptibility loci involved in the atopic 
march. Nat Commun 6, 8804 (2015). 

43 Morizane, S. The Role of Kallikrein-Related Peptidases in Atopic Dermatitis. Acta Med. Okayama 
73, 1-6 (2019). 

44 Prassas, I., Eissa, A., Poda, G. & Diamandis, E. P. Unleashing the therapeutic potential of human 
kallikrein-related serine proteases. Nat Rev Drug Discov 14, 183-202 (2015). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/860767doi: bioRxiv preprint 

https://doi.org/10.1101/860767
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

45 Thyssen, J. P., Bikle, D. D. & Elias, P. M. Evidence That Loss-of-Function Filaggrin Gene Mutations 
Evolved in Northern Europeans to Favor Intracutaneous Vitamin D3 Production. Evol. Biol. 41, 
388-396 (2014). 

46 Thyssen, J. P. et al. Skin barrier abnormality caused by filaggrin (FLG) mutations is associated 
with increased serum 25-hydroxyvitamin D concentrations. J. Allergy Clin. Immunol. 130, 1204-
1207 e1202 (2012). 

47 Eckhart, L. et al. Histidase expression in human epidermal keratinocytes: regulation by 
differentiation status and all-trans retinoic acid. J. Dermatol. Sci. 50, 209-215 (2008). 

48 Welsh, M. M. et al. A role for ultraviolet radiation immunosuppression in non-melanoma skin 
cancer as evidenced by gene-environment interactions. Carcinogenesis 29, 1950-1954 (2008). 

49 Landeck, L. et al. The effect of epidermal levels of urocanic acid on 25-hydroxyvitamin D 
synthesis and inflammatory mediators upon narrowband UVB irradiation. Photodermatol. 
Photoimmunol. Photomed. 32, 214-223 (2016). 

50 de Fine Olivarius, F. et al. Urocanic acid isomers: relation to body site, pigmentation, stratum 
corneum thickness and photosensitivity. Arch. Dermatol. Res. 289, 501-505 (1997). 

51 Moeller, G. & Adamski, J. Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol. Cell. 
Endocrinol. 301, 7-19 (2009). 

52 Wang, Z. et al. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite 
structure, kinetics, inducibility, and interindividual variability. Endocrinology 155, 2052-2063 
(2014). 

53 Wong, T. et al. Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-
Hydroxyvitamin D3-3-O-Sulfate, a Major Circulating Vitamin D Metabolite in Humans. Drug 
Metab. Dispos. 46, 367-379 (2018). 

54 Kurogi, K., Sakakibara, Y., Suiko, M. & Liu, M. C. Sulfation of vitamin D3 -related compounds-
identification and characterization of the responsible human cytosolic sulfotransferases. FEBS 
Lett. 591, 2417-2425 (2017). 

55 Nozawa, T. et al. Genetic polymorphisms of human organic anion transporters OATP-C 
(SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional 
analysis. J. Pharmacol. Exp. Ther. 302, 804-813 (2002). 

56 Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543-
550 (2014). 

57 Mueller, J. W., Gilligan, L. C., Idkowiak, J., Arlt, W. & Foster, P. A. The Regulation of Steroid 
Action by Sulfation and Desulfation. Endocr. Rev. 36, 526-563 (2015). 

58 Gomes, F. P., Shaw, P. N. & Hewavitharana, A. K. Determination of four sulfated vitamin D 
compounds in human biological fluids by liquid chromatography-tandem mass spectrometry. J. 
Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1009-1010, 80-86 (2016). 

59 Hypponen, E. & Boucher, B. J. Adiposity, vitamin D requirements, and clinical implications for 
obesity-related metabolic abnormalities. Nutr. Rev. 76, 678-692 (2018). 

60 Daly, R. M. et al. Prevalence of vitamin D deficiency and its determinants in Australian adults 
aged 25 years and older: a national, population-based study. Clin. Endocrinol. (Oxf.) 77, 26-35 
(2012). 

61 Lee, M. J. et al. Vitamin D deficiency in northern Taiwan: a community-based cohort study. BMC 
Public Health 19, 337 (2019). 

62 Eyles, D. W., Burne, T. H. J. & McGrath, J. J. Vitamin D, effects on brain development, adult brain 
function and the links between low levels of vitamin D and neuropsychiatric disease. Front. 
Neuroendocrinol. 34, 47-64 (2013). 

63 Adamson, J. et al. Correlates of vitamin D in psychotic disorders: A comprehensive systematic 
review. Psychiatry Res. 249, 78-85 (2017). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/860767doi: bioRxiv preprint 

https://doi.org/10.1101/860767
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

64 Parker, G. B., Brotchie, H. & Graham, R. K. Vitamin D and depression. J. Affect. Disord. 208, 56-61 
(2017). 

65 McGrath, J. J. et al. Neonatal vitamin D status and risk of schizophrenia: a population-based 
case-control study. Arch. Gen. Psychiatry 67, 889-894 (2010). 

66 Fry, A. et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank 
Participants With Those of the General Population. Am. J. Epidemiol. 186, 1026-1034 (2017). 

67 McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 
48, 1279-1283 (2016). 

68 UK Consortium et al. The UK10K project identifies rare variants in health and disease. Nature 
526, 82-90 (2015). 

69 Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 
562, 203-209 (2018). 

70 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience 4, 7 (2015). 

71 Genomes Project, C. et al. A map of human genome variation from population-scale sequencing. 
Nature 467, 1061-1073 (2010). 

72 Fry, D., Almond, R., Moffat, S., Gordon, M. & Singh, P. B. UK Biobank Biomarker Project. 
Companion Document to Accompany Serum Biomarker Data.  (2019). 
<biobank.ndph.ox.ac.uk/crystal/docs/serum_biochemistry.pdf>. 

73 Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. 
bioRxiv, 598110 (2019). 

74 Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. Genome-wide complex trait analysis (GCTA): 
methods, data analyses, and interpretations. Methods Mol. Biol. 1019, 215-236 (2013). 

75 Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am. J. Hum. Genet. 81, 559-575 (2007). 

76 Ahn, J. et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 
(2010). 

77 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics 26, 2190-2191 (2010). 

78 Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy 
between complex diseases using single-nucleotide polymorphism-derived genomic relationships 
and restricted maximum likelihood. Bioinformatics 28, 2540-2542 (2012). 

79 Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing 
heritability for human height and body mass index. Nat. Genet. 47, 1114-1120 (2015). 

80 Kimlin, M. G. et al. The contributions of solar ultraviolet radiation exposure and other 
determinants to serum 25-hydroxyvitamin D concentrations in Australian adults: the AusD 
Study. Am. J. Epidemiol. 179, 864-874 (2014). 

81 Medland, S. E. et al. Common variants in the trichohyalin gene are associated with straight hair 
in Europeans. Am. J. Hum. Genet. 85, 750-755 (2009). 

82 Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait 
analysis. Am. J. Hum. Genet. 88, 76-82 (2011). 

83 Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 
489, 57-74 (2012). 

84 Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 
1045-1048 (2010). 

85 Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-
relevant tissues and cell types. Nat. Genet. 50, 621-629 (2018). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/860767doi: bioRxiv preprint 

https://doi.org/10.1101/860767
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

86 Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic 
data from blood. Nat Commun 9, 2282 (2018). 

87 Neme, A. et al. In vivo transcriptome changes of human white blood cells in response to vitamin 
D. J. Steroid Biochem. Mol. Biol. 188, 71-76 (2019). 

88 Wang, D. et al. Comprehensive functional genomic resource and integrative model for the 
human brain. Science 362 (2018). 

89 O’Brien, H. E. et al. Expression quantitative trait loci in the developing human brain and their 
enrichment in neuropsychiatric disorders. Genome Biol. 19, 194 (2018). 

90 Theodoratou, E., Tzoulaki, I., Zgaga, L. & Ioannidis, J. P. Vitamin D and multiple health outcomes: 
umbrella review of systematic reviews and meta-analyses of observational studies and 
randomised trials. BMJ 348, g2035 (2014). 

91 Groves, N. J., McGrath, J. J. & Burne, T. H. Vitamin D as a neurosteroid affecting the developing 
and adult brain. Annu. Rev. Nutr. 34, 117-141 (2014). 

92 Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention 
deficit/hyperactivity disorder. Nat. Genet. 51, 63-75 (2019). 

93 Marioni, R. E. et al. GWAS on family history of Alzheimer's disease. Transl Psychiatry 8, 99 
(2018). 

94 Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent 
variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343-
352 (2019). 

95 Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes 
and in regions under strong background selection. Nat. Genet. 50, 381-389 (2018). 

96 Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar 
disorder. Nat. Genet. 51, 793-803 (2019). 

97 Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. 
Genet. 51, 431-444 (2019). 

98 Zhang, F. et al. OSCA: a tool for omic-data-based complex trait analysis. Genome Biol. 20, 107 
(2019). 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/860767doi: bioRxiv preprint 

https://doi.org/10.1101/860767
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURES FOR MAIN MANUSCRIPT 

 

Figure 1: Outline of key analytic steps described in this study 

 

Abbreviations: BMI, body mass index; eQTL, expression quantitative trait locus; FUMA, functional 
mapping and annotation27; GREML79,  genomic relationship restricted maximum likelihood78; GSMR, 
generalized summary-based MR; GWAS, genome-wide association study; GxE, genotype by 
environment interaction; LDSC, linkage disequilibrium score regression; MR, Mendelian 
Randomisation; SMR, summary-based MR30; QC, quality control; UKB, UK Biobank; vQTL, variance 
quantitative trait locus14.  
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Figure 2. Heritability and SNP-based heritability estimates and variance explained in out-of-sample 
prediction 

 

GCTA-GREML was used to estimate heritability (N=58,738 relatives) and SNP-based heritabilities 
labelled GREML (GREML), summer, winter for samples of ~50K randomly drawn from the UKB. The 
SBayesR SNP-based heritability is estimate from the GWAS summary statistics (N=417,580). The 
GWS estimate used only genome-wide significant COJO loci identified from the UKB GWAS in a 
GCTA-GREML analysis using the QIMR sample (N = 1,632). In out-of-sample prediction into the QIMR 
sample, polygenic scores calculated by the standard P-value threshold method was outperformed by 
calculating the score from COJO identified GWS SNPs, and by using SNP effect estimates calculated 
from GWAS summary statistics using the SBayesR or SBayesS methods. Abbreviations: COJO, 
conditional and joint; GWS, genome-wide significant; rg, genetic correlation; s.e., standard error. 
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Figure 3: Manhattan plot of the 25OHD GWAS in the UK Biobank.  

 

 

Manhattan plot showing the -log10 P-values from association of 25 hydroxyvitamin D (25OHD). Red 
dots represent independent variants identified as genome-wide significant with conditional and joint 
analysis (COJO)20 applied to the GWAS summary statisitics. The horizontal axis shows each 
chromosome, with 23 representing the X chromosome. The vertical axis is restricted to -log10 P-
values < 150. Five COJO SNPs with P < 1x10150 (four on chromosome 11 and one on chromosome 4; 
Supplementary Table 6) with approximate locations represented by three red triangles at the top 
edge of the plot. 
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Figure 4: Summary of selected variants associated with 25 hydroxyvitamin D in the UK Biobank 

 
 

 

 
 

Top panel shows loci associated with skin integrity, lipid and lipoprotein pathways, and CYP450 and 
steroid associated enzymes.  Lower panel shows selected variants and putative mechanisms related 
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to 25 hydroxyvitamin D concentration. For selected inter-genic loci, the nearest (upstream or 
downstream) gene is shown in brackets. The distance between the loci and the nearest gene is 
shown in base pairs. *CYP24A1 was also the closest gene for an additional three inter-genic loci with 
distances between 32,865-55,282 base pairs. Abbreviations: ns, non-synonymous variant; x2 or x3, 
two or three loci found within the gene.  
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Figure 5:  Bidirectional Generalized Summary data level Mendelian Randomization (GSMR) between 25 hydroxyvitamin D concentrations and selected 
phenotypes, by three types of adjustments for body mass index (BMI) and with/without HEIDI filtering of pleiotropic loci.  
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Panel (a) shows the estimate of the causal effect (dots), and 95% confidence intervals (bars), of 25 hydroxyvitamin D concentration (25OHD) on selected 
phenotypes.  Negative GSMR effect sizes indicate that variants associated with increased 25OHD concentration were associated with a smaller 
value/reduced risk for the phenotypes of interest. Panel (b) shows the estimate of the causal effect (and 95% confidence intervals) of the same selected 
phenotypes on 25OHD concentration. Results are presented with (upper half) and without (lower half) filtering pleiotropic associations with the 
heterogeneity in dependent instruments (HEIDI) test, respectively. The numbers above each effect size indicate the number of SNP instruments used in 
each analysis. For each set of analyses, we show GWAS results (i) without adjustment for body mass index (BMI), (ii) with BMI included as a covariate, and 
(iii) conditioned on BMI using mtCOJO18. The GMSR estimates and 95% confidence intervals are shown in three colours according to the P-value thresholds.  
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