

1 **Comparative evaluation of *Aspergillus niger* strains**
2 **for endogenous pectin depolymerization capacity and**
3 **suitability for D-galacturonic acid production**

4 Dominik Schäfer^{1¶} and Kevin Schmitz^{2¶}, Dirk Weuster-Botz¹, J. Philipp Benz^{2*}

5

6 ¹ Technical University of Munich, Department of Mechanical Engineering, Institute of
7 Biochemical Engineering, Boltzmannstr. 15, 85748 Garching, Germany

8 ² Technical University of Munich, Holzforschung München, Wood Bioprocesses,
9 TUM School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2
10 85354 Freising, Germany

11

12 * Corresponding Author

13 email: benz@hfm.tum.de (JPB)

14 postal: Holzforschung München – Wood-Bioprocesses
15 Prof. Dr. J. Philipp Benz
16 Hans-Carl-von-Carlowitz-Platz 2
17 85354 Freising, Germany

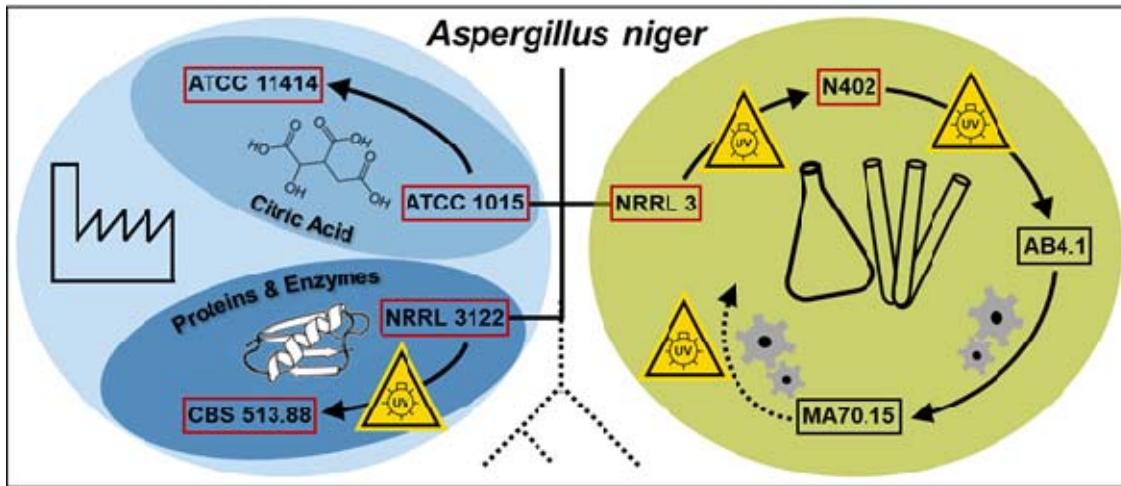
18

19 ¶These authors contributed equally to this work.

20 Abstract

21 Pectinaceous agricultural residues rich in D-galacturonic acid (D-GaLA), such as sugar
22 beet pulp, are considered as promising feedstocks for waste-to-value conversions.
23 *Aspergillus niger* is known for its strong pectinolytic activity. However, while
24 specialized strains for production of citric acid or proteins are openly available, this is
25 not the case for the production of pectinases. We therefore systematically compared
26 the pectinolytic capabilities of six *A. niger* strains (ATCC 1015, ATCC 11414, NRRL
27 3122, CBS 513.88, NRRL 3, N402) using controlled batch cultivations in stirred-tank
28 bioreactors. *A. niger* ATCC 11414 showed the highest polygalacturonase activity,
29 specific protein secretion and a suitable morphology. Furthermore, D-GaLA release
30 from sugar beet pulp was 75% higher compared to the standard lab strain *A. niger*
31 N402. Our study therefore presents a robust initial strain selection to guide future
32 process improvement of D-GaLA production from agricultural residues and identifies
33 the most suitable base strain for further genetic optimizations.

34 **Keyword:** *Aspergillus niger*; agricultural residues; sugar beet pulp; pectinase; D-
35 galacturonic acid


36 **Introduction**

37 Global academic and industrial efforts to improve the sustainability of industrial
38 processes for the modern bioeconomy have sparked interest in the utilization of
39 feedstocks that are economically viable, non-food grade and do not compete with
40 food resources [6,22,25,42,47,49,56]. As a result, agricultural waste streams have
41 gained momentum in recent years (reviewed by Amoah [3]). Notably, downstream
42 fermentation products derived from pectin-rich biomass are met with industrial
43 interest by the plastics, cosmetics, and food industry, as recently reviewed by
44 Kuivanen [27] and Schmitz [44].

45 Apart from harsh thermo-chemical pre-treatment and hydrolysis approaches [12],
46 complex enzyme broths from cultivations of natural pectin-degrading microorganisms
47 can be used for the release of the constituent saccharides, such as D-galacturonic
48 acid (D-GaLA) as the main backbone sugar of pectin. The filamentous fungus and
49 saprotroph *Aspergillus niger* (*A. niger*) is a well characterized microorganism for
50 pectin utilization and depolymerization as well as a well-established industrial
51 workhorse with multiple applications in enzyme, citric acid and other organic acid
52 production [9,30]. Pectinases from *A. niger* contribute to a global multi-billion dollar
53 market for biomass-degrading enzymes [9,30,45] with applications ranging from fruit,
54 vegetable and juice processing to textile and paper treatment [21] as well as
55 saccharification for bioethanol production [11,48,54]. However, with today's
56 perception of D-GaLA shifting from an inevitable component of complex biomass
57 feedstocks to a target product for subsequent fermentations, more versatile and
58 higher yielding host strains are needed to extend the range of commercial enzymes,
59 as outlined in a recent white paper on the current challenges of research on
60 filamentous fungi in the context of a sustainable bio-economy [30].

61 For efficient industrial-scale applications, ideal base strains need to be identified for
62 specific tasks. For *A. niger*, several lineages have been identified and adapted for
63 specific purposes. The most cited lineages of *A. niger* encompass three main clades,
64 namely: (i) strains adapted for easy handling and genetic manipulation in the
65 laboratory environment, which are based on *A. niger* NRRL 3 (CBS 120.49, ATCC
66 9029);
67 (ii) strains for improved citric acid production, based on *A. niger* ATCC 1015 (NRRL

68 328, CBS 113.46); and (iii) strains for protein production and secretion, based on *A.*
69 *niger* NRRL 3122 (CBS 115989; ATCC 22343) (Fig. 1).

70 **Fig. 1: Highly relevant lineages of the *A. niger* species and their primary applications.**
71 Schematic overview listing selected but representative members of openly available and related *A.*
72 *niger* strains based on phylogeny [53]. Depicted are commonly used lab strains (green, right) vs. the
73 industrially adapted strains (blue, left) including the citric acid producer clade (light blue) and the more
74 distantly related enzyme producers (dark blue). Yellow signs indicate instances of UV-mutagenesis,
75 grey gear wheels symbolize targeted genomic engineering steps and red boxes indicate strains used
76 in this study.

77 Ancestral strains, such as *A. niger* ATCC 1015 or *A. niger* NRRL 3122 (amongst
78 others), have been specifically isolated due to their improved citric acid production
79 characteristics or extracellular glucoamylase activity, respectively, and further
80 optimized via sub-culture isolation [38] or UV-mutagenesis [4,51]. The most
81 commonly used strain for laboratory-based genetic analysis, *A. niger* AB4.1, has also
82 emerged from multiple successive rounds of UV mutagenesis on the original wild
83 type (WT) isolate *A. niger* NRRL 3 [7]. These resulted in a short conidiophore
84 phenotype in strain *A. niger* N402 [8] and generation of the *pyrG* auxotrophic marker
85 [19,50]. However, those mutagenic treatments likely gave rise to additional
86 background mutations influencing gene regulation and impacting diverse phenotypic
87 traits. Additional targeted engineering steps on *A. niger* AB4.1 for improved
88 homologous recombination efficiency via *kusA* disruption in strain *A. niger* MA70.15
89 [31] or introduction of auxotrophic markers like *HisB*, *NicB* or others [16,34] have
90 further expanded the genetic toolbox in the laboratory. Alteration of the genomic
91 repair machinery or the introduction of auxotrophic markers may however induce

93 stress or alter intracellular regulation and hence divert these strains further from their
94 wild type physiological constitution, as e.g. reviewed for *Saccharomyces cerevisiae*
95 [40].

96 Genomic sequences are openly available for *A. niger* strains CBS 513.88 [37],
97 ATCC 1015 [4] and NRRL 3 [2] – with recent advances on its annotation [43] – as
98 well as for three additional isolates [53]. Comparison of intra-species genomic data
99 was able to reveal the cause for some of the observed phenotypic differences
100 between the strains, such as overproduction of glucoamylase in *A. niger* CBS 513.88
101 due to an additional glucoamylase gene acquired by horizontal gene transfer [4,53].
102 Transcriptional profiling however also indicated that the regulatory networks between
103 different strains are apparently already highly divergent and cannot be explained
104 purely by genomic observations [4]. Furthermore, fungal morphology in submerged
105 cultures was shown to affect fungal productivity for different purposes [10,23,52,55].

106 Accordingly, none of the current datasets provide enough information to predict
107 superiority of any available strain for the production of pectinases. Moreover, to the
108 best of our knowledge, no thorough comparison for pectinase activity between the
109 available and highly cited *A. niger* strains (listed in Fig. 1) has been conducted so far.
110 While the availability of commercial *A. niger* pectinase cocktails indicates established
111 pectinase production strains in industry, almost no information on their specific origin
112 is publically accessible. In the academic field, numerous studies on optimization of
113 fermentation conditions for pectinase production with various strains have been
114 published (e.g. [1,18,41]). However, these do not allow for direct performance
115 comparison of individual strains due to varying study designs and fermentation
116 conditions. Furthermore, thorough comparisons of different strains under
117 reproducible conditions are scarce in literature and compromised by limited
118 morphology control (due to execution in shake flasks, for example, instead of
119 controlled stirred-tank bioreactors) or poor description of strain origins (e.g. [17,24]).

120 The importance of pectin, pectinases, and pectin-derived sugars as well as the
121 predominance of *A. niger* in their production processes, however, dictate the
122 necessity for a systematic comparison of strains under controlled and highly
123 reproducible conditions to identify efficient and marker-free host strains for larger
124 scale pectinase production. Therefore, a total of six strains (red boxes in Fig. 1) were
125 selected for comparison of endogenous pectinase activity based on five key

126 prerequisites: (i) relevance to the field based on the number of publications using
127 these strains, (ii) availability of the genomic sequence (or that of a very closely
128 related strain) as a premise for successive genetic optimization, (iii) absence of
129 auxotrophic markers to avoid phenotypic differences due to mutations in central
130 metabolism, (iv) absence of any targeted engineering of elements regulating
131 pectinase expression to avoid distortion of the underlying endogenous pectinase
132 capacity, and (v) classification as biosafety level 1 to allow for universal handling.
133 By obtaining data on sporulation efficiency, total protein secretion, total and endo-
134 specific polygalacturonase (PGase) activity as well as morphology in submerged
135 culture, this study thus provides essential insights into selection of suitable base
136 strains for pectinase production. Working with controlled stirred-tank bioreactor
137 fermentations after the initial pre-selection, we thereby applied a robust and
138 reproducible methodology rarely employed in phenotypic comparisons of fungal
139 strains, resulting in the identification of a superior *A. niger* strain and potential chassis
140 for additional genetic optimization to boost D-GalA release from complex
141 pectinaceous residues.

142 **Materials and Methods**

143 **2.1 Strains, Inoculum preparation and cultivation medium**

144 *A. niger* strains ATCC 1015, ATCC 11414 and NRRL 3122 were obtained from the
145 NRRL collection, NRRL 3, N402 and CBS 513.88 were obtained from the group of
146 Mark Arentshorst at Leiden university. Fungal spores were grown on 39 g L⁻¹ potato
147 extract glucose agar (Carl Roth GmbH + Co. KG, Karlsruhe, Germany)
148 supplemented with 10 g L⁻¹ yeast extract and 1x trace elements solution, referred to
149 as rich complete medium. After 120 h at 30°C, spores were harvested using sterile
150 0.89% NaCl solution with 0.05% Tween 80.

151 All experiments involving submerged fungal cultivation were carried out in 2% (w/w)
152 pectin minimal medium containing (L⁻¹): 20.0 g pectin C, 6.0 g NaNO₃, 1.5 g KH₂PO₄,
153 0.5 g KCl, 0.5 g MgSO₄ · 7 H₂O, 1 ml trace element solution and 1 ml PPG P2000
154 (antifoam, only if cultivated in stirred tank fermenter). The trace element solution was
155 prepared as (L⁻¹) 10 g EDTA, 4.4 g ZnSO₄ · 7 H₂O, 1.01 g MnCl₂ · 4 H₂O, 0.32 g
156 CoCl₂ · 6 H₂O, 0.315 g CuSO₄ · 5 H₂O, 0.22 g (NH₄)₆Mo₇O₂₄ · 4 H₂O, 1.47 g CaCl₂ ·
157 2 H₂O and 1 g FeSO₄ · 7 H₂O [5].

158 **2.2 Cultivation conditions**

159 **Shake flask cultivation**

160 The fungi were grown in 250 ml flasks without baffles containing 25 ml of the 20 g L⁻¹
161 pectin minimal medium at 250 min⁻¹ (25 mm shaking throw) and 30°C for 96 h. The
162 initial pH was set to pH 4.5 and the cultivation was inoculated to a spore density of
163 10⁹ spores L⁻¹. Strains were grown in triplicates. Data were statistically evaluated by
164 applying an analysis of variance (one-way ANOVA) followed by a Tukey's post-hoc
165 test using the software Origin (OriginLab). Differences among the mean activity
166 measurements were calculated at a significance level of 0.05 (*p* < 0.05).

167 **Bioreactor cultivation**

168 A 7 L stirred-tank bioreactor equipped with three baffles and three six-blade Rushton
169 turbines (Labfors, Infors-HT, Bottmingen, Switzerland) was used during all
170 cultivations. All processes were performed equally under the following conditions. 3
171 liters of the 20 g L⁻¹ pectin mineral medium was inoculated to 10⁹ spores L⁻¹.

172 Temperature was kept constant at 30°C. The pH was controlled to a set-point of
173 pH 4.5 by the addition of either 1M H₂SO₄ or 3M KOH. Batch processes were
174 carried out for 86 h to 90 h. To prevent initial spore loss, the stirred-tank bioreactor
175 was not aerated and only slowly mixed at 250 min⁻¹ (~0.13 W L⁻¹ [20]) during the
176 first 6 h of batch cultivations [33]. Afterwards, the stirrer speed was set to 700 min⁻¹
177 (~1.625 W L⁻¹ [20]) and aeration to 0.2 vvm, which was also sufficient to keep the
178 dissolved oxygen concentration above 30% air saturation during all cultivations
179 conducted. Additionally, exit-gas composition (O₂, CO₂) was monitored (EasyLine,
180 ABB, Zürich, Switzerland).

181 **2.3 Biomass dry weight concentration**

182 Biomass dry weight was determined by filtering a known volume thought pre-dried
183 and pre-weighted filter paper (Whatman No. 1 & 5). The collected biomass was dried
184 at 90°C to constant weight and reweighted. The determination of the biomass dry
185 weight was performed in triplicate and pictured as mean with standard deviation of
186 the measurements.

187 **2.4 Morphological characterization**

188 Microscopic images for morphological characterization were taken with an Axioplan
189 microscope (Carl Zeiss AG, Jena, Germany) at 1.25x magnification directly after
190 sampling after 9 h, 12 h, 19 h, 36 h and 88 h of the batch cultivation. The microscope
191 was equipped with a 3.3-megapixel Axiocam ICc3 microscopy camera (Carl Zeiss
192 AG, Jena, Germany).

193 **2.5 Protein concentration of culture supernatant**

194 Protein concentration of culture supernatant was determined by Coomassie
195 (Bradford) Protein Assay Kit (Thermo Scientific) according to manufacturer's
196 specifications. Each sample was diluted with 0.1 M sodium citrate buffer pH 4.5,
197 mixed with the Bradford reagent and incubated for at least 10 min at room
198 temperature. Afterwards, the absorbance at 595 nm was measured with a multimode
199 microplate reader (Infinite M200, Tecan, Männedorf, Germany). Bovine serum
200 albumin was used as standard. The determination of the protein concentrations was
201 performed in triplicate and pictured as mean with standard deviation of the
202 measurements.

203 **2.6 Total polygalacturonase activity**

204 The pectinase activity was determined following a miniaturized version of the Fructan
205 Assay Kit protocol (Megazyme) for reducing sugars. 10 µL of the culture supernatant
206 and 10 µL of a 5 g L⁻¹ polygalacturonic acid solution (PGA, buffered in 0.1 M sodium
207 citrate, pH 4.5) were mixed and incubated for 40 min at 30°C. The released reducing
208 sugar ends were determined using a 4-hydroxybenzhydrazide solution as described
209 in the Megazyme protocol and measured at 410 nm with a multimode microplate
210 reader (Infinite M200, Tecan, Männedorf, Germany). Sample values were blanked
211 against similarly prepared but non-incubated mock samples. One unit of total
212 polygalacturonase activity equals the amount of enzyme that catalyzes the formation
213 of one µmol of D-galacturonic acid per minute under assay conditions. Assaying was
214 performed in triplicate and plotted as means with standard deviation of replicate
215 measurements.

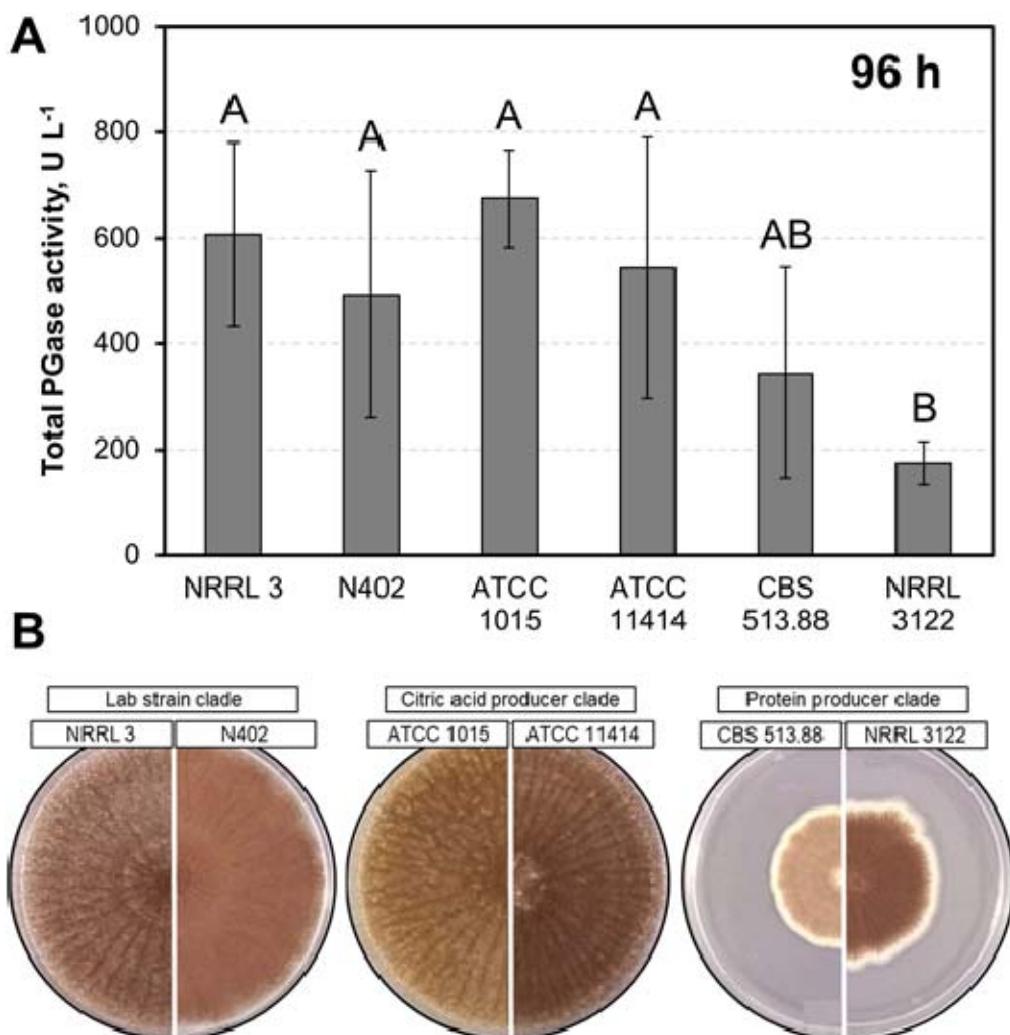
216 **2.7 Endo-polygalacturonase activity**

217 Endo-polygalacturonase activity was assessed following the protocol of Ortiz [35] 8 μ l
218 of a 5 g L⁻¹ polygalacturonic acid solution (PGA, buffered in 0.1 M sodium acetate, pH
219 4.5) and 8 μ l of *A. niger* culture supernatant were mixed and incubated for 30 min at
220 30 °C in a microtiter plate prior to adding 40 μ l of freshly prepared ruthenium red
221 working solution (Sigma Aldrich, 1.125 mg mL⁻¹ in ddH₂O) and 100 μ l of 8 mM
222 sodium hydroxide solution. Samples were spun down at 3200 g for 10 min and
223 diluted in a one to eight ratio for absorbance measurement of 200 μ l diluted sample
224 at 535 nm on a microplate reader (Infinite M200, Tecan, Männedorf, Germany).
225 Sample values were blanked against similarly prepared but non-incubated mock
226 samples. One enzyme unit was defined as the amount of enzyme required to
227 hydrolyze 1 μ g of polygalacturonic acid in smaller fragments unable to precipitate
228 with the dye per minute under the assay conditions. Assaying was performed in
229 triplicate and plotted as means with standard deviation of replicate measurements.

230 **2.8 Hydrolysis of sugar beet pulp**

231 The hydrolysis of pectin-rich residues was conducted with pre-dried (50°C) and
232 milled sugar beet press pulp provided by Südzucker AG (Mannheim, Germany). 10 g
233 of pre-sterilized pulp was mixed with 100 ml of reaction solution. The reaction
234 solution consisted of 90 ml of sterile filtered (0.22 μ m) enzyme supernatant of the
235 strains *A. niger* N402 (172.48 \pm 3.90 mg L⁻¹ Protein; 206.62 \pm 26.00 U L⁻¹ total PGase
236 activity) or *A. niger* ATCC 11414 (111.26 \pm 9.60 mg L⁻¹ Protein; 1475.69 \pm 32.28 U L⁻¹
237 total PGase activity) buffered with 10 ml of 1.0 M sodium acetate (pH 4.5).
238 Hydrolysis was carried out at 180 rpm min⁻¹ and 30°C for 138 h in sterile and closed
239 250 ml glass bottles (DWK Life Sciences GmbH, Mainz, Germany) to prevent
240 evaporation and contamination. Time series samples were taken from homogenized
241 hydrolysis mixes and stored at -80°C until further use.

242 **2.9 HPAEC-PAD analysis of the hydrolysis supernatant**


243 Free D-GalA amounts in hydrolysis samples (diluted 1:4000) were determined on a
244 Dionex ICS 3000 HPAEC-PAD instrument setup with Dionex AS Autosampler,
245 Dionex gradient mixer GM-3 (Dionex Corp., Sunnyvale, California, USA) and
246 CarboPac PA1 standard bore guard column (4 x 50 mm) plus CarboPac PA1
247 preparative IC column (4 x 250 mm, both Thermo Fisher Scientific Inc., Waltham,

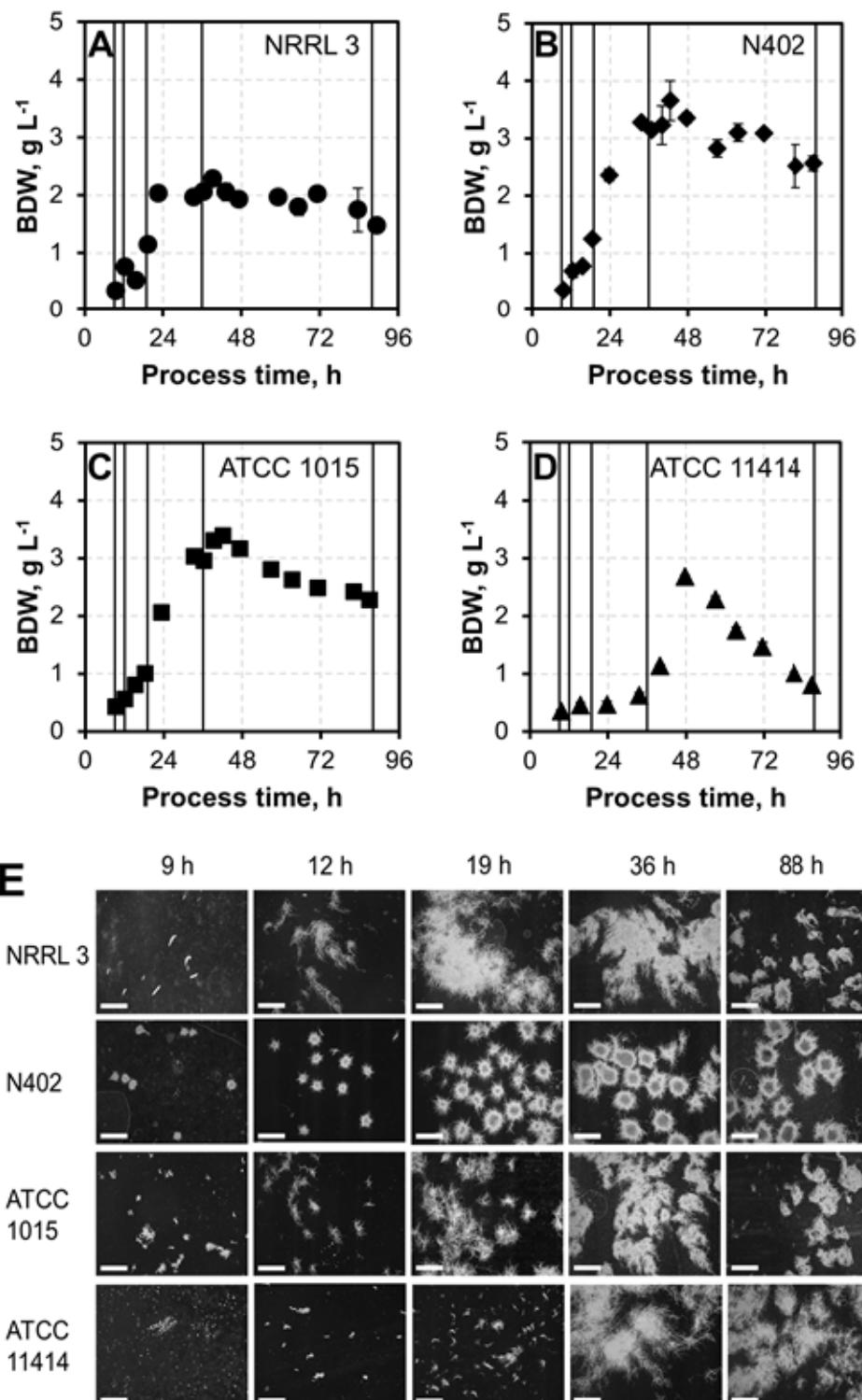
248 Massachusetts, USA) using a 12.5 min linear gradient of 100 to 250 mM sodium
249 acetate in 100 mM sodium hydroxide solution (prepared in low total organic carbon
250 deionized water) at 1 ml min⁻¹ flow rate and constant 30 °C elution temperature.

251 **Results and Discussion**

252 **3.1 Shake flask-based pre-selection of *A. niger* strains for pectinase 253 production**

254 As a first step in the identification of an ideal base strain for pectinase production
255 among the selected *A. niger* strains, an initial fast and cost-efficient experiment was
256 conducted in small-scale using shake flasks as typically applied in strain screenings
257 (e.g. [39]). Total polygalacturonase (PGase) activity was measured in supernatants of
258 *A. niger* cultures after 96 h of cultivation in minimal medium supplemented with 2%
259 (w/v) pectin C as a carbon source (Fig. 2A). Strains *A. niger* NRRL 3122 and *A. niger*
260 CBS 513.88 repeatedly revealed the lowest total PGase activities of all strains tested
261 ($174.43 \pm 41.22 \text{ U L}^{-1}$ and $344.96 \pm 199.34 \text{ U L}^{-1}$, respectively), while *A. niger* NRRL
262 3 ($606.95 \pm 173.88 \text{ U L}^{-1}$), *A. niger* N402 ($493.17 \pm 233.44 \text{ U L}^{-1}$), *A. niger* ATCC
263 1015 ($674.36 \pm 92.38 \text{ U L}^{-1}$) and *A. niger* ATCC 11414 ($543.18 \pm 245.95 \text{ U L}^{-1}$)
264 revealed superior total PGase activities. Additionally, *A. niger* NRRL 3122 and *A. niger*
265 CBS 513.88 displayed inferior spore densities on rich medium, which was rated
266 as a disadvantage for larger scale liquid culture inoculations (Fig. 2B). Based on the
267 combination of these results, strains *A. niger* NRRL 3122 and *A. niger* CBS 513.88
268 were excluded from further tests.

270 **Fig. 2: Polygalacturonase activity and sporulation density of *A. niger* screening strains.** (A) 271 Total PGase activity of *A. niger* culture supernatants of a representative shake flask batch after 96 h of 272 incubation in minimal medium + 2% (w/v) pectin C. Different capital letters indicate significant 273 differences within the displayed data groups ($p < 0.05$) using a one-way ANOVA followed by a Tukey's 274 post-hoc test. Group AB showed no significant differences either to group A and group B. (B) 275 Sporulation densities of all strains on rich complete medium after six days.


276 *A. niger* CBS 513.88 (and its ancestor *A. niger* NRRL 3122) particularly differ from *A. niger* ATCC 1015 and its closely related *A. niger* NRRL 3 lineages by additionally 277 acquired glucoamylase (*glaA*) genes from horizontal gene transfer as well as the 278 upregulation of amino acid synthases that are overrepresented in GlaA and their 279 respective tRNAs [4]. Considering their poor performance in this study however, *A. niger* CBS 513.88 and *A. niger* NRRL 3122 do not seem to have a universal 280 advantage over the other tested strains in terms of protein production and secretion 281 *per se*, but rather a limited one for GlaA expression.

284 **3.2 Comparison of pre-selected *A. niger* strains in submerged**
285 **stirred-tank bioreactor batch cultivations**

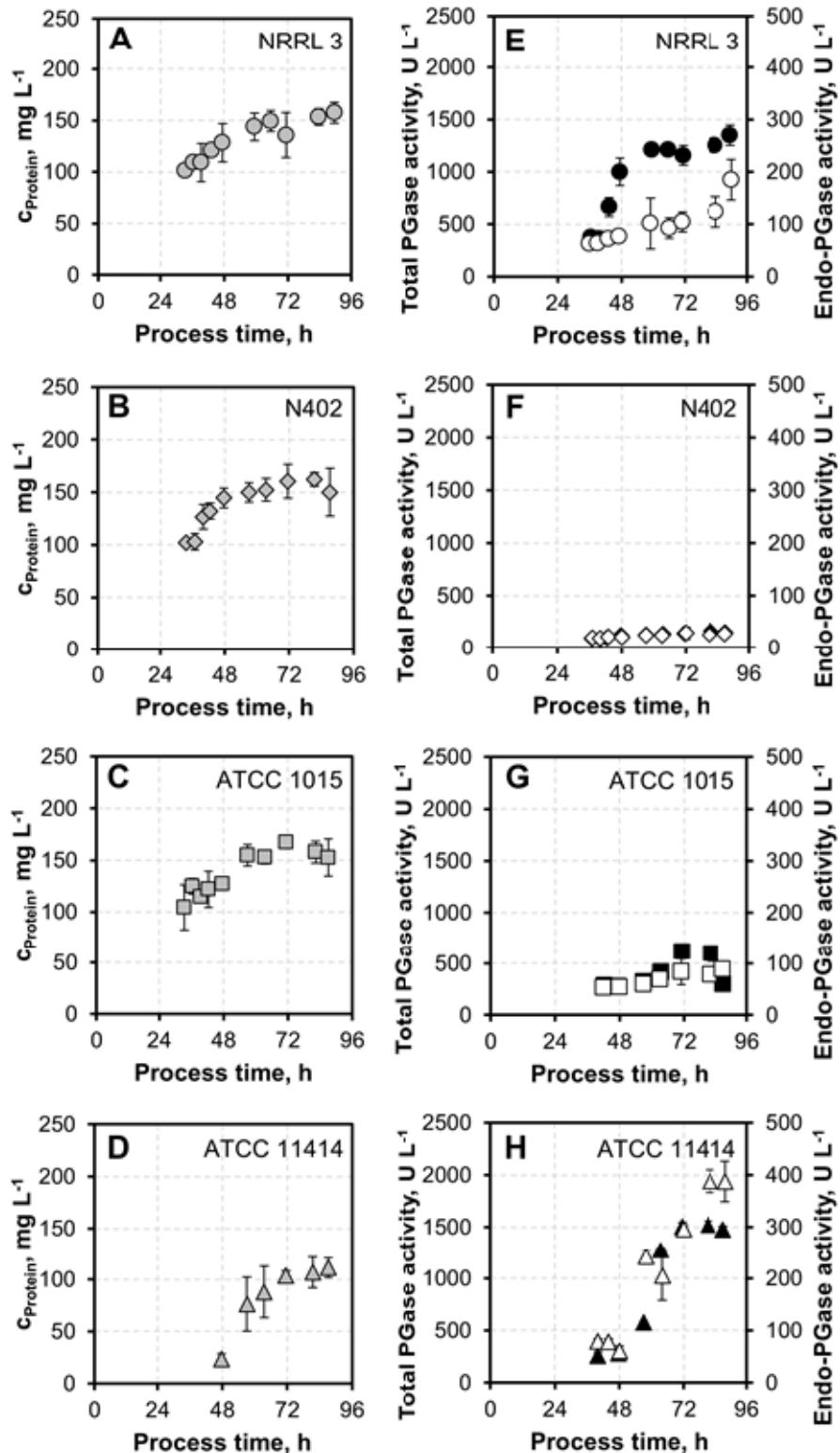
286 A high degree of control over mechanical and physicochemical parameters
287 influencing submerged culture morphology as well as enzyme activity were shown to
288 be important for achieving high pectinase activity [1,14,52]. In a next step, pectinase
289 production of all strains was therefore evaluated in batch processes on a 3 L scale in
290 controlled stirred-tank bioreactor cultivations to perform selection under robust and
291 reproducible conditions (see Figs. 3, 4). To this end, submerged batch cultivations in
292 2% (w/v) pectin minimal medium were conducted to investigate the pectinolytic
293 properties of the four best performing *A. niger* strains from the pre-selection. For
294 each batch cultivation, biomass dry weight concentration (BDW), total protein
295 concentration (C_{Protein}), total polygalacturonase and endo-polygalacturonase (PGase)
296 activity as well as fungal morphology were determined, all being highly relevant
297 variables for strain productivity in submerged cultures [28,52]. Since the level of
298 morphology control is generally higher in stirred tank bioreactors compared to shake
299 flasks, we see our bioreactor approach as advantageous for in-depth strain
300 comparison after pre-selection [14].

301 **3.2.1 Biomass dry weight concentrations and morphology**

302 In case of *A. niger* NRRL 3, BDW rose to its maximum at $2.28 \pm 0.12 \text{ g L}^{-1}$ during the
303 first 39 h and slightly decreased about 35% afterwards until the end of the cultivation
304 ($1.47 \pm 0.01 \text{ g L}^{-1}$) (Fig. 3A). The BDW of the strains *A. niger* N402 and *A. niger*
305 ATCC 1015 showed a similar behavior, increasing to $3.65 \pm 0.35 \text{ g L}^{-1}$ (*A. niger* N402)
306 and $3.38 \pm 0.07 \text{ g L}^{-1}$ (*A. niger* ATCC 1015) within 42 h before decreasing by 30%
307 until the end of the cultivation (Fig. 3B,C). A different behavior could be observed for
308 strain *A. niger* ATCC 11414. Its BDW peaked only after 48 h (at $2.68 \pm 0.03 \text{ g L}^{-1}$),
309 with a drastic decrease of 70% to $0.81 \pm 0.02 \text{ g L}^{-1}$ at the end of the observation
310 period (Fig. 3D). The loss of BDW in the cultivations is in accordance with the
311 dissolved oxygen concentration (DO) and the carbon dioxide fraction in the exit gas
312 measured online. DO increased with initiating BDW loss and the carbon dioxide
313 fraction in the exit gas decreased without change in the aeration of the process,
314 indicating a limitation of the energy source (data not shown).

315

316 **Fig. 3: Biomass dry weight concentrations (BDW) and morphology of selected *A. niger* strains.**
317 (A – D) BDW of *A. niger* NRRL 3 (A, ●), *A. niger* N402 (B, ◆), *A. niger* ATCC 1015 (C, ■) and *A. niger*
318 ATCC 11414 (D, ▲) during 90 h submerged batch cultivations in a 3 L stirred-tank bioreactor with 2%
319 pectin minimal medium. (E) Morphological changes of all four *A. niger* strains throughout the

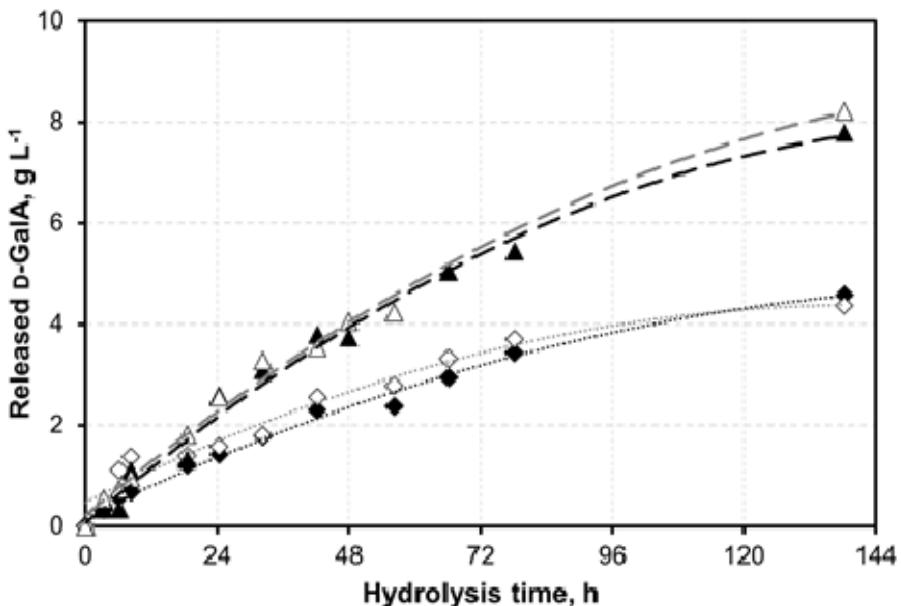

320 cultivations are shown below. White scale bars indicate 1 mm. Lines in A – D indicate morphology
321 sampling times.

322 Since the productivity of filamentous fungi in submerged cultivations was shown to be
323 highly dependent on their morphology [13,23,36,55], monitoring of this parameter
324 was conducted throughout each submerged cultivation. Fig. 3E depicts the
325 morphology of all four strains after 9 h, 12 h, 19 h, 36 h and 88 h of the cultivation.
326 After 36 h, a stable morphology was observed for all strains. *A. niger* NRRL 3 and *A.*
327 *niger* ATCC 11414 showed disperse, mycelial-like growth, *A. niger* N402 strongly
328 pellet-like growth and *A. niger* ATCC 1015 a less dense but still pelleted form of
329 growth. Towards the end of cultivation, the morphology of *A. niger* NRRL 3 shifted to
330 a more pelleted structure. Notably, strong yellow pigmentation matching the
331 description of well-known Aurasperone formation by *A. niger* [46] occurred after 34 h
332 in all culture supernatants with the exception of *A. niger* ATCC 11414, where only
333 mild pigmentation was observed after 58 h. As all four batch cultivations were run
334 under identical conditions, these results indicate severe intra-species differences in
335 physiological regulation between the selected strains that cannot be explained by
336 comparison of their genomic sequences alone [4].

337 **3.2.2 Secreted protein concentrations and PGase activities**

338 Next, the total secreted protein concentration in the supernatants (Fig. 4A-D) as well
339 as the total and endo-specific PGase activities were assessed (Fig. 4E-H). The
340 protein concentration of the cultivations with *A. niger* NRRL 3, *A. niger* N402 and *A.*
341 *niger* ATCC 1015 displayed very similar development with a mildly logarithmic-like
342 increase throughout the cultivation, peaking at $157.39 \pm 10.22 \text{ mg L}^{-1}$ (90 h), $162.34 \pm$
343 6.38 mg L^{-1} (81 h) and at $167.43 \pm 5.35 \text{ mg L}^{-1}$ (71 h), respectively. Following the
344 observed BDW decrease towards the end of cultivation, *A. niger* N402 and *A. niger*
345 ATCC 1015 also displayed a mild decrease in protein concentration. In accordance
346 with its delayed biomass generation (Fig. 3D), *A. niger* ATCC 11414 showed its
347 maximal protein titer ($111.26 \pm 9.60 \text{ mg L}^{-1}$) only after 87 h (Fig. 4D). This protein
348 concentration was 32% lower than the maximal concentration observed for the other
349 three investigated strains. In contrast to predominant observations for a variety of
350 secreted proteins expressed in *A. niger* and other filamentous fungi [28,52],
351 dispersed mycelial growth therefore did not prove to be a direct indicator for
352 increased overall protein secretion across different strain lineages of *A. niger*.

353 However, considering specific secretion rates (normalized to fungal biomass), *A.*
354 *niger* ATCC 11414 is performing *on par* with the other strains – particularly towards
355 the end of the incubation time.



356

357 **Fig. 4 Protein concentrations, total and endo-PGase activities of pre-selected *A. niger* strains in**
358 **3 L controlled stirred-tank batches.** (A – D) Total secreted protein concentrations (grey) in culture
359 supernatants of pre-selected *A. niger* strains in 2% pectin minimal medium over a time course of 90 h.
360 (E – H) Total (black) and endo-PGase activities (white) of culture supernatants throughout cultivation.
361 Intriguingly, in terms of PGase activities, the dispersely growing *A. niger* NRRL 3 and
362 *A. niger* ATCC 11414 strains showed superior performance. Total PGase activity of
363 *A. niger* NRRL 3 showed a sharp increase between 36 h and 59 h and a maximum
364 activity of $1378.87 \pm 98.39 \text{ U L}^{-1}$ (90 h). Endo-PGase activity of *A. niger* NRRL 3,
365 however, showed a rather exponential increase to a maximum of $184.55 \pm 38.82 \text{ U L}^{-1}$
366 throughout the cultivation and appeared to be decoupled from the total PGase
367 activity, indicating differences in expressional regulation of individual pectinase
368 classes. The highest total PGase activity was generated by *A. niger* ATCC 11414,
369 continuously increasing throughout the cultivation to a maximum of 1524.17 ± 34.90
370 U L^{-1} (82 h). Endo-PGase activity peaked at $388.61 \pm 21.64 \text{ U L}^{-1}$ at 82 h. *A. niger*
371 ATCC 11414 thus exceeded the maximal total PGase activity of NRRL 3 – as the
372 second strongest polygalacturonase producer - by 13% and the maximal endo-
373 PGase activity by 111%. Total secreted protein as well as biomass generation hence
374 could not be used as a proxy for pectinase activity in this study. Moreover, the
375 different maximum activities for endo- and total PGase as well as the different time
376 profiles of PGase activity for *A. niger* NRRL3 and *A. niger* ATCC 11414 throughout
377 the cultivation indicate severe differences in the regulation and expression of
378 pectinases between these two strains. Considering the lower biomass accumulations
379 and total protein production during the cultivation of *A. niger* ATCC 11414, this strain
380 moreover generated the highest specific total and endo-PGase activities compared to
381 all of the other investigated strains.
382 Assuming similar total capacities of the secretory machineries in all tested *A. niger*
383 strains, *A. niger* ATCC 11414 is therefore recognized as the most promising
384 candidate for genetic improvements towards pectinase overexpression. Less off-
385 target secondary metabolism activity (as judged by pigment formation) and highest
386 specific polygalacturonase production hold promise for additional metabolic
387 capacities which might be exploitable for enhanced pectinase expression.
388 **3.3 Comparison of hydrolytic performance of culture supernatants**
389 **for D-GalA release from complex pectinaceous substrates**

390 Based on the results presented above, *A. niger* ATCC 11414 was determined as the
391 most promising base strain for pectinase production out of six strains under the
392 tested cultivation conditions. *A. niger* ATCC 11414 not only had the highest total and
393 specific PGase activity, but also showed a disperse morphology desirable for protein
394 secretion.

395 To test whether the selection of *A. niger* ATCC 11414 based on defined substrate
396 assay conditions would translate into improved activity also on complex pectinaceous
397 biomass, D-GalA release from milled dry sugar beet press pulp (SBPP) using *A. niger*
398 ATCC 11414 culture supernatant was compared against *A. niger* N402 culture
399 supernatant as the ancestor of today's standard laboratory strains. Using a 96 h *A.*
400 *niger* ATCC 11414 buffered culture, an average of 8.8 g L⁻¹ of free D-GalA was
401 released from 9% (w/v) SBPP within 138 h, as compared to an average of 4.9 g L⁻¹
402 for *A. niger* N402 culture supernatant (Fig. 5). Taking into account the water
403 molecules incorporated during hydrolytic cleavage, this corresponded to a degraded
404 amount of 8.0 g L⁻¹ polygalacturonan and 4.5 g L⁻¹ of the provided biomass,
405 respectively. Considering a total D-GalA content in SBPP of approximately 22% (w/w)
406 ([26]), ~36.4% of the expectable D-GalA could be released using *A. niger* ATCC
407 11414 culture supernatant (vs. ~20% with *A. niger* N402 culture supernatant). In
408 other words, the same release level was realized in less than 45% of the process
409 time. In summary, thorough screening and activity-driven selection of *A. niger* strains
410 from a set of readily available and highly referenced strains resulted in a 75% higher
411 D-GalA release compared to a scenario in which the standard lab strain was used.

412

413 **Fig. 5: D-GalA release from 9% sugar beet press pulp (SBPP) using *A. niger* ATCC 11414 vs. *A.*
414 *niger* N402 culture supernatant.** Black and white triangles (\triangle , \blacktriangle) represent replicates of hydrolysis
415 using 96 h culture supernatants of *A. niger* ATCC 11414 stirred tank batch cultivations in 2% pectin
416 minimal medium, with respective dashed lines in grey and black. Black and white diamonds (\blacklozenge , \lozenge)
417 represent two replicates using supernatants of N402 with respective dotted lines in black and grey.

418 Monomeric D-GalA release from SBPP of up to 79% within 48 h has been reported in
419 highly optimized saccharification conditions using combinations of commercial
420 pectinase mixes of the *Aspergillus* genus at comparable enzyme concentrations as
421 used in this study [29], while no comparable efficiency data exist for direct application
422 of crude *Aspergillus* culture supernatants on SBPP. Furthermore, the hydrolysis
423 setup presented in this study was used as a pectinase production benchmark in
424 strain selection only and has not yet undergone optimization for ideal D-GalA release
425 conditions. Additional optimization of culture conditions for *A. niger* ATCC 11414 may
426 further improve its performance, e.g. in terms of protein secretion, for which titers of
427 up to 20 g L⁻¹ have been reported [32]. Supplementation of (hemi-)cellulosic
428 substrates and thereby induced expression of (hemi-)cellulases during pectinase
429 production could further contribute to D-GalA release from complex biomasses
430 [11,29]. Research in this field is still actively ongoing, but mostly focusing on process
431 engineering, as recently demonstrated for continuous generation of D-GalA from
432 SBPP pectin extracts in membrane enzyme reactors [15]. Via systematic screening
433 and strain performance evaluation under controlled conditions, we complemented
434 this research with an important comparison of highly cited, openly available and

435 readily applied *A. niger* strains. Endeavors to use SBPP and other complex
436 pectinaceous biomasses of interest for industrial D-GalA supply in the context of the
437 bioeconomy hence could highly benefit from this work.

438 Conclusion

439 Considering the lack of systematic screening for strong pectinase producing *A. niger*
440 strains, we have implemented a robust protocol for the discrimination of competing
441 strains in controlled stirred-tank bioreactors. Superior performance of *A. niger* ATCC
442 11414 was verified in a realistic setting using complex sugar beet press pulp. This
443 strain shows potentially untapped metabolic and secretory reservoirs that could be
444 exploited for improved pectinase production via targeted genetic engineering.
445 However, to foster transfer of research results to industrial applications, it will be
446 necessary to establish genetic tools, such as non-homologous end-joining
447 suppressors or genetic markers, in this non-standard host strain.

448 E-supplementary data of this work can be found in online version of the paper.

449 Acknowledgements

450 This work was supported by the German Federal Ministry of Education and Research
451 [grant numbers 031B0342A and 031B0342C]. We furthermore want to thank Petra
452 Arnold, Sabrina Paulus and Nadine Griesbacher (Wood Research Munich, TUM,
453 Germany), as well as Markus Amann und Norbert Werth (Institute of Biochemical
454 Engineering, TUM, Germany) for excellent technical assistance. Also, we would like
455 to acknowledge Nathalie Hafner (Institute of Biochemical Engineering, TUM,
456 Germany) for assisting with the assays and fermentations. Additionally, we want to
457 acknowledge the Südzucker AG, Mannheim, Germany for kindly providing the sugar
458 beet press pulp and Mark Arentshorst (Leiden University, Netherlands), Vera Meyer
459 and Tabea Schütze (both TU Berlin, Germany) for providing strains and lab trainings
460 for this study. The support of Dominik Schäfer and Kevin Schmitz by the TUM
461 Graduate School is acknowledged as well.

462 Declaration of Interests

463 All authors declare that they do not have any competing interests.

464 References

465 [1] Aguilar, G., Huitrón, C., 1990. Constitutive exo-pectinase produced by *Aspergillus* sp.
466 CH-Y-1043 on different carbon source. *Biotechnol. Lett.* 12 (9), 655–660.

467 [2] Aguilar-Pontes, M.V., Brandl, J., McDonnell, E., Strasser, K., Nguyen, T.T.M., Riley,
468 R., Mondo, S., Salamov, A., Nybo, J.L., Vesth, T.C., Grigoriev, I.V., Andersen, M.R.,
469 Tsang, A., Vries, R.P. de, 2018. The gold-standard genome of *Aspergillus niger*
470 NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. *Stud.
471 Mycol.* 91, 61–78.

472 [3] Amoah, J., Kahar, P., Ogino, C., Kondo, A., 2019. Bioenergy and Biorefinery:
473 Feedstock, Biotechnological Conversion, and Products. *Biotechnol. J.* 14 (6),
474 1800494.

475 [4] Andersen, M.R., Salazar, M.P., Schaap, P.J., van de Vondervoort, P.J.I., Culley, D.,
476 Thykaer, J., Frisvad, J.C., Nielsen, K.F., Albang, R., Albermann, K., Berka, R.M.,
477 Braus, G.H., Braus-Stromeyer, S.A., Corrochano, L.M., Dai, Z., van Dijck, P.W.M.,
478 Hofmann, G., Lasure, L.L., Magnuson, J.K., Menke, H., Meijer, M., Meijer, S.L.,
479 Nielsen, J.B., Nielsen, M.L., van Ooyen, A.J.J., Pel, H.J., Poulsen, L., Samson, R.A.,
480 Stam, H., Tsang, A., van den Brink, J.M., Atkins, A., Aerts, A., Shapiro, H.,
481 Pangilinan, J., Salamov, A., Lou, Y., Lindquist, E., Lucas, S., Grimwood, J., Grigoriev,
482 I.V., Kubicek, C.P., Martinez, D., van Peij, N.N.M.E., Roubos, J.A., Nielsen, J., Baker,
483 S.E., 2011. Comparative genomics of citric-acid-producing *Aspergillus niger* ATCC
484 1015 versus enzyme-producing CBS 513.88. *Genome Res.* 21 (6), 885–897.

485 [5] Arentshorst, M., Ram, A.F.J., Meyer, V., 2012. Using non-homologous end-joining-
486 deficient strains for functional gene analyses in filamentous fungi, in: Bolton M.,
487 Thomma B. (eds) *Plant Fungal Pathogens. Methods in Molecular Biology (Methods
488 and Protocols)*, vol 835. Humana Press, pp. 133–150.

489 [6] Aristidou, A., Penttilä, M., 2000. Metabolic engineering applications to renewable
490 resource utilization. *Curr. Opin. Biotechnol.* 11 (2), 187–198.

491 [7] Bos, C.J., 1986. Induced mutation and somatic recombination as tools for genetic
492 analysis and breeding of imperfect fungi. PhD, Wageningen University.

493 [8] Bos, C.J., Debets, A.J., Swart, K., Huybers, A., Kobus, G., Slakhorst, S.M., 1988.
494 Genetic analysis and the construction of master strains for assignment of genes to six
495 linkage groups in *Aspergillus niger*. *Curr. Genet.* 14 (5), 437–443.

496 [9] Cairns, T.C., Nai, C., Meyer, V., 2018. How a fungus shapes biotechnology: 100
497 years of *Aspergillus niger* research. *Fungal Biol. Biotechnol.* 5, 13.

498 [10] Cairns, T.C., Zheng, X., Zheng, P., Sun, J., Meyer, V., 2019. Moulding the mould:
499 understanding and reprogramming filamentous fungal growth and morphogenesis for
500 next generation cell factories. *Biotechnol. Biofuels* 12, 77.

501 [11] Chen, Q., Jin, Y., Zhang, G., Fang, Y., Xiao, Y., Zhao, H., 2012. Improving Production
502 of Bioethanol from Duckweed (*Landoltia punctata*) by Pectinase Pretreatment.
503 *Energies* 5 (8), 3019–3032.

504 [12] Diaz, J.V., Anthon, G.E., Barrett, D.M., 2007. Nonenzymatic degradation of citrus
505 pectin and pectate during prolonged heating: effects of pH, temperature, and degree
506 of methyl esterification. *J. Agric. Food Chem.* 55 (13), 5131–5136.

507 [13] El-Enshasy, H., Kleine, J., Rinas, U., 2006. Agitation effects on morphology and
508 protein productive fractions of filamentous and pelleted growth forms of recombinant
509 *Aspergillus niger*. *Process Biochemistry* 41 (10), 2103–2112.

510 [14] El-Enshasy, H.A., 2007. Filamentous Fungal Cultures – Process Characteristics,
511 Products, and Applications, in: Yang, S.-T. (ed.), *Bioprocessing for Value-Added*
512 *Products from Renewable Resources*. Elsevier, pp. 225–261.

513 [15] Elst, K., Babbar, N., Van Roy, S., Baldassarre, S., Dejonghe, W., Maesen, M., Sforza,
514 S., 2018. Continuous production of pectic oligosaccharides from sugar beet pulp in a
515 cross flow continuous enzyme membrane reactor. *Bioprocess Biosyst Eng.* 41 (11),
516 1717–1729.

517 [16] Fiedler, M.R.M., Gensheimer, T., Kubisch, C., Meyer, V., 2017. HisB as novel
518 selection marker for gene targeting approaches in *Aspergillus niger*. *BMC Microbiol.*
519 17 (1), 57.

520 [17] Friedrich, J., Cimerman, A., Perdih, A., 1986. Comparison of different cellulolytic fungi
521 for bioconversion of apple distillery waste. *Appl. Microbiol. Biotechnol.* 24 (5), 432–
522 434.

523 [18] Friedrich, J., Cimerman, A., Steiner, W., 1989. Submerged production of pectolytic
524 enzymes by *Aspergillus niger*: effect of different aeration/agitation regimes. *Appl.*
525 *Microbiol. Biotechnol.* 31(5-6), 490–494.

526 [19] Goosen, T., Bloemheuvel, G., Gysler, C., Bie, D.A. de, van den Broek, H.W.J., Swart,
527 K., 1987. Transformation of *Aspergillus niger* using the homologous orotidine-5'-
528 phosphate-decarboxylase gene. *Curr. Genet.* 11 (6-7), 499–503.

529 [20] Hortsch, R., Weuster-Botz, D., 2010. Power consumption and maximum energy
530 dissipation in a milliliter-scale bioreactor. *Biotechnol. Progress* 26 (2), 595–599.

531 [21] Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R., 2001. Applications of pectinases
532 in the commercial sector: a review. *Bioresour. Technol.* 77 (3), 215–227.

533 [22] Keasling, J.D., 2008. Synthetic biology for synthetic chemistry. *ACS Chem. Biol.* 3 (1),
534 64–76.

535 [23] Kelly, S., Grimm, L.H., Hengstler, J., Schultheis, E., Krull, R., Hempel, D.C., 2004.
536 Agitation effects on submerged growth and product formation of *Aspergillus niger*.
537 *Bioprocess Biosys. Eng.* 26 (5), 315–323.

538 [24] Khairnar, Y., Krishna, V.K., Boraste, A., Gupta, N., Trivedi, S., Patil, P., Gupta, G.,
539 Gupta, M., Jhadav, A., Mujapara, A., 2009. Study of pectinase production in
540 submerged fermentation using different strains of *Aspergillus niger*. *International J.*
541 *Microbiol. Res.* 1 (2), 13-17.

542 [25] Klein-Marcuschamer, D., Blanch, H.W., 2015. Renewable fuels from biomass:
543 Technical hurdles and economic assessment of biological routes. *AIChE J.* 61 (9),
544 2689–2701.

545 [26] Kühnel, S., 2011. Characterization of cell wall degrading enzymes from
546 *Chrysosporium lucknowense* C1 and their use to degrade sugar beet pulp. PhD,
547 Wageningen University.

548 [27] Kuivanen, J., Biz, A., Richard, P., 2019. Microbial hexuronate catabolism in
549 biotechnology. *AMB Express* 9 (1), 16.

550 [28] Kurt, T., Marbà-Ardébol, A.-M., Turan, Z., Neubauer, P., Junne, S., Meyer, V., 2018.
551 Rocking *Aspergillus*: morphology-controlled cultivation of *Aspergillus niger* in a wave-
552 mixed bioreactor for the production of secondary metabolites. *Microb. Cell Factories*
553 17 (1), 128.

554 [29] Leijdekkers, A.G.M., Bink, J.P.M., Geutjes, S., Schols, H.A., Gruppen, H., 2013.
555 Enzymatic saccharification of sugar beet pulp for the production of galacturonic acid
556 and arabinose; a study on the impact of the formation of recalcitrant oligosaccharides.
557 *Bioresour. Technol.* 128, 518–525.

558 [30] Meyer, V., Andersen, M.R., Brakhage, A.A., Braus, G.H., Caddick, M.X., Cairns, T.C.,
559 Vries, R.P. de, Haarmann, T., Hansen, K., Hertz-Fowler, C., Krappmann, S.,
560 Mortensen, U.H., Peñalva, M.A., Ram, A.F.J., Head, R.M., 2016. Current challenges
561 of research on filamentous fungi in relation to human welfare and a sustainable bio-
562 economy: a white paper. *Fungal Biol. Biotechnol* 3 (1), 6.

563 [31] Meyer, V., Arentshorst, M., El-Ghezal, A., Drews, A.-C., Kooistra, R., van den Hondel,
564 C.A.M.J.J., Ram, A.F.J., 2007. Highly efficient gene targeting in the *Aspergillus niger*
565 kusA mutant. *J. Biotechnol.* 128 (4), 770–775.

566 [32] Meyer, V., Fiedler, M., Nitsche, B., King, R., 2015. The Cell Factory *Aspergillus*
567 Enters the Big Data Era: Opportunities and Challenges for Optimising Product
568 Formation, in: Krull R., Bley T. (eds) *Filaments in Bioprocesses. Advances in*
569 *Biochemical Engineering/Biotechnology*, vol 149. Springer, pp. 91–132.

570 [33] Nitsche, B.M., Jørgensen, T.R., Akeroyd, M., Meyer, V., Ram, A.F.J., 2012. The
571 carbon starvation response of *Aspergillus niger* during submerged cultivation: insights
572 from the transcriptome and secretome. *BMC genomics* 13, 380.

573 [34] Niu, J., Arentshorst, M., Seelinger, F., Ram, A.F.J., Ouedraogo, J.P., 2016. A set of
574 isogenic auxotrophic strains for constructing multiple gene deletion mutants and
575 parasexual crossings in *Aspergillus niger*. *Arch. Microbiol.* 198 (9), 861–868.

576 [35] Ortiz, G. E., Guitart, M. E., Alberto, E., Fernandez Lahore, H. M., Blasco, M., 2014.
577 Microplate assay for endo-polygalacturonase activity determination based on
578 ruthenium red method. *Anal Biochem.* 454, 33-5

579 [36] Papagianni, M., Matthey, M., Kristiansen, B., 1998. Citric acid production and
580 morphology of *Aspergillus niger* as functions of the mixing intensity in a stirred tank
581 and a tubular loop bioreactor. *Biochemical Eng. J.* 2 (3), 197–205.

582 [37] Pel, H.J., Winde, J.H. de, Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J.,
583 Turner, G., Vries, R.P. de, Albang, R., Albermann, K., Andersen, M.R., Bendtsen,
584 J.D., Benen, J.A.E., van den Berg, M., Breestraat, S., Caddick, M.X., Contreras, R.,
585 Cornell, M., Coutinho, P.M., Danchin, E.G.J., Debets, A.J.M., Dekker, P., van Dijk,
586 P.W.M., van Dijk, A., Dijkhuizen, L., Driessen, A.J.M., d'Enfert, C., Geysens, S.,
587 Goosen, C., Groot, G.S.P., Groot, P.W.J. de, Guillemette, T., Henrissat, B., Herweijer,
588 M., van den Hombergh, J.P.T.W., van den Hondel, C.A.M.J.J., van der Heijden,

589 R.T.J.M., van der Kaaij, R.M., Klis, F.M., Kools, H.J., Kubicek, C.P., van Kuyk, P.A.,
590 Lauber, J., Lu, X., van der Maarel, M.J.E.C., Meulenberg, R., Menke, H., Mortimer,
591 M.A., Nielsen, J., Oliver, S.G., Olsthoorn, M., Pal, K., van Peij, N.N.M.E., Ram, A.F.J.,
592 Rinas, U., Roubos, J.A., Sagt, C.M.J., Schmoll, M., Sun, J., Ussery, D., Varga, J.,
593 Vervecken, W., van de Vondervoort, P.J.J., Wedler, H., Wösten, H.A.B., Zeng, A.-P.,
594 van Ooyen, A.J.J., Visser, J., Stam, H., 2007. Genome sequencing and analysis of
595 the versatile cell factory *Aspergillus niger* CBS 513.88. *Nat. Biotechnol.* 25 (2), 221–
596 231.

597 [38] Perlman, D., Kita, D.A., Peterson, W.H., 1946. Production of citric acid from cane
598 molasses. *Arch. Biochem* 11, 123–129.

599 [39] Posch, A.E., Herwig, C., Spadiut, O., 2013. Science-based bioprocess design for
600 filamentous fungi. *Trends Biotechnol.* 31 (1), 37–44.

601 [40] Pronk, J.T., 2002. Auxotrophic yeast strains in fundamental and applied research.
602 *Appl. Environmental Microbiol.* 68 (5), 2095–2100.

603 [41] Reginatto, C., Rossi, C., Miglioranza, B.G., Santos, M.d., Meneghel, L., Silveira,
604 M.M.d., Malvessi, E., 2017. Pectinase production by *Aspergillus niger* LB-02-SF is
605 influenced by the culture medium composition and the addition of the enzyme inducer
606 after biomass growth. *Process Biochemistry* 58, 1–8.

607 [42] Rude, M.A., Schirmer, A., 2009. New microbial fuels: a biotech perspective. *Current
608 opinion in microbiology* 12 (3), 274–281.

609 [43] Schäpe, P., Kwon, M.J., Baumann, B., Gutschmann, B., Jung, S., Lenz, S., Nitsche,
610 B., Paege, N., Schütze, T., Cairns, T.C., Meyer, V., 2019. Updating genome
611 annotation for the microbial cell factory *Aspergillus niger* using gene co-expression
612 networks. *Nucleic Acids Res.* 47 (2), 559–569.

613 [44] Schmitz, K., Protzko, R., Zhang, L., Benz, J.P., 2019. Spotlight on fungal pectin
614 utilization-from phytopathogenicity to molecular recognition and industrial
615 applications. *Appl. Microbiol. Biotechno.* 103 (6), 2507–2524.

616 [45] Srivastava, A., Srivastava, M., 2018. Enzymes Market Type (Protease,
617 Carbohydrase, Lipase, Polymerase and Nuclease, and Other Types), Source
618 (Microorganisms, Plants, and Animals), Reaction Type (Hydrolase, Oxidoreductase,
619 Transferase, Lyase, and Other Reaction Types), and Application (Food and
620 Beverages, Household Care, Bioenergy, Pharmaceutical and Biotechnology, Feed,
621 and Other Applications) - Global Opportunity Analysis and Industry Forecast, 2017-
622 2024.

623 [46] Tanaka, H., Wang, P.-L., Yamada Late, O., Tamura, T., 1966. Yellow Pigments of
624 *Aspergillus niger* and *Asp. awamori*. *Agricultural and Biological Chemistry* 30 (2),
625 107–113.

626 [47] Tao, L., Aden, A., 2009. The economics of current and future biofuels. *In Vitro Cell.
627 Dev. Biol.-Plant* 45 (3), 199–217.

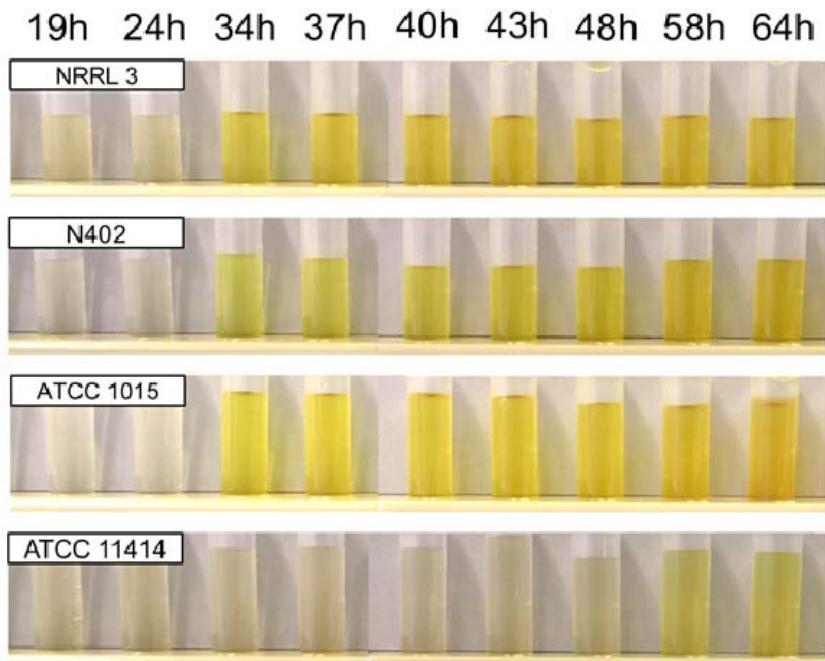
628 [48] Thite, V.S., Nerurkar, A.S., 2018. Physicochemical characterization of pectinase
629 activity from *Bacillus* spp. and their accessory role in synergism with crude xylanase
630 and commercial cellulase in enzyme cocktail mediated saccharification of agrowaste
631 biomass. *J Appl. Microbiol.* 124 (5), 1147–1163

632 [49] Tilman, D., Socolow, R., Foley, J.A., Hill, J., Larson, E., Lynd, L., Pacala, S., Reilly, J.,
633 Searchinger, T., Somerville, C., Williams, R., 2009. Energy. Beneficial biofuels--the
634 food, energy, and environment trilemma. *Science* 325 (5938), 270–271.

635 [50] van Hartingsveldt, W., Mattern, I.E., van Zeijl, C.M., Pouwels, P.H., van den Hondel,
636 C.A., 1987. Development of a homologous transformation system for *Aspergillus*
637 *niger* based on the *pyrG* gene. *Mol. Gen. Genet.* 206 (1), 71–75.

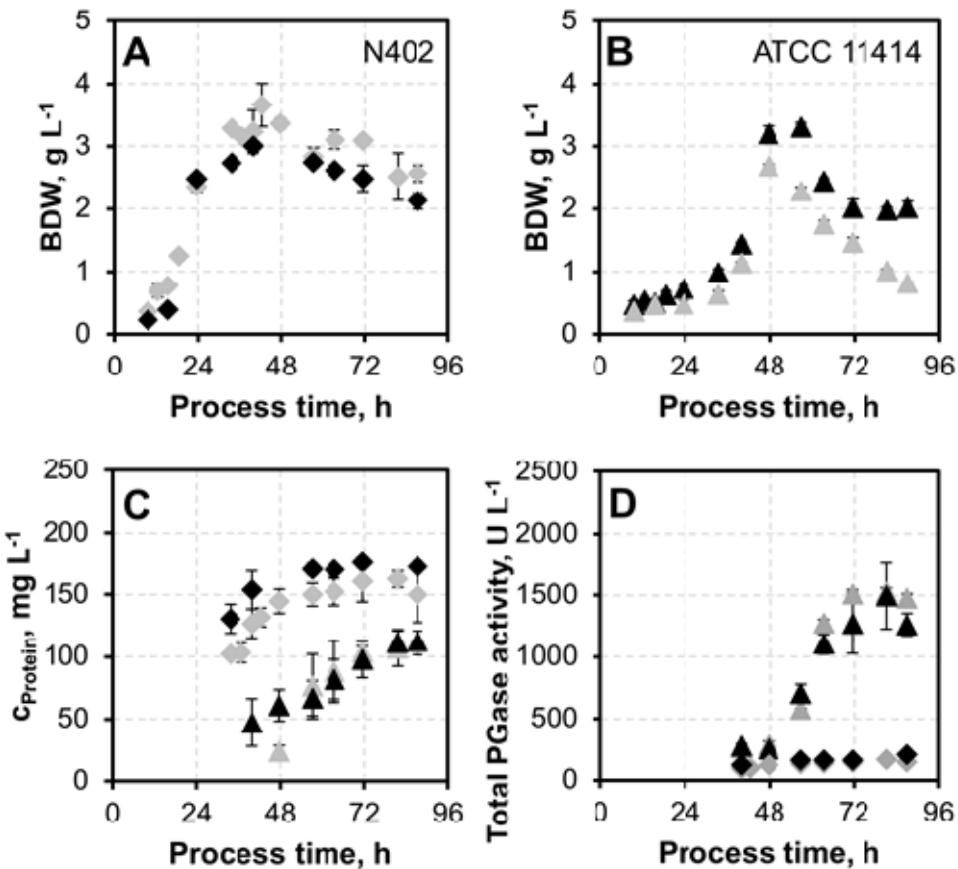
638 [51] Van Lanen, J. M., Smith, M. B., 1965. Process of producing glucamylase and an
639 alcohol product USA patent application US3418211A.

640 [52] Veiter, L., Rajamanickam, V., Herwig, C., 2018. The filamentous fungal pellet-
641 relationship between morphology and productivity. *Appl. Microbiol. Biotechnol.* 102
642 (7), 2997–3006.

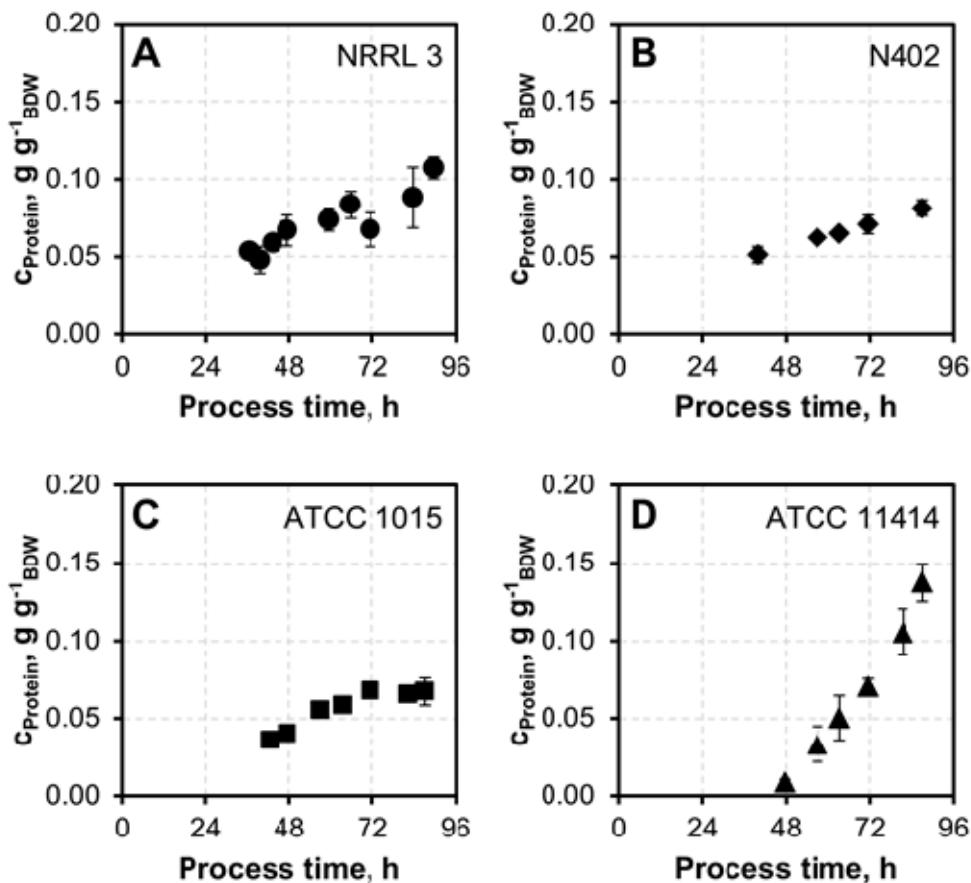

643 [53] Vesth, T.C., Nybo, J.L., Theobald, S., Frisvad, J.C., Larsen, T.O., Nielsen, K.F., Hoof,
644 J.B., Brandl, J., Salamov, A., Riley, R., Gladden, J.M., Phatale, P., Nielsen, M.T.,
645 Lyhne, E.K., Kogle, M.E., Strasser, K., McDonnell, E., Barry, K., Clum, A., Chen, C.,
646 LaButti, K., Haridas, S., Nolan, M., Sandor, L., Kuo, A., Lipzen, A., Hainaut, M., Drula,
647 E., Tsang, A., Magnuson, J.K., Henrissat, B., Wiebenga, A., Simmons, B.A., Mäkelä,
648 M.R., Vries, R.P. de, Grigoriev, I.V., Mortensen, U.H., Baker, S.E., Andersen, M.R.,
649 2018. Investigation of inter- and intraspecies variation through genome sequencing of
650 *Aspergillus* section *Nigri*. *Nat. Genet.* 50 (12), 1688–1695.

651 [54] Wang, J., Chio, C., Chen, X., Su, E., Cao, F., Jin, Y., Qin, W., 2019. Efficient
652 saccharification of agave biomass using *Aspergillus niger* produced low-cost enzyme
653 cocktail with hyperactive pectinase activity. *Bioresour. Technol.* 272, 26–33.

654 [55] Wang, L., Ridgway, D., Gu, T., Moo-Young, M., 2003. Effects of process parameters
655 on heterologous protein production in *Aspergillus niger* fermentation. *J. Chem.*
656 *Technol. Biotechnol.* 78 (12), 1259–1266.


657 [56] Willke, T., Vorlop, K., 2008. Biotransformation of glycerol into 1,3-propanediol. *Eur. J.*

658 **Supplementary Figures**


659

660 **Fig. S1: Yellow pigment formation in *A. niger* culture supernatants.** Accumulation of yellow
661 pigmentation in culture supernatants of *A. niger* NRRL3, N402, ATCC1015 and ATCC11414
662 submerged stirred tank bioreactor batch cultivations in 2% pectin minimal medium.

663

664 **Fig. S2: Reproduced submerged stirred tank batch cultivations of *A. niger* N402 and *A. niger*
665 ATCC 11414.** Biomass dry weight concentrations (A, B), total protein concentration (C) and total
666 PGase activity (D) of the reproduced cultivations of *A. niger* N402 (\blacklozenge) and *A. niger* ATCC 11414 (\blacktriangle).
667 Grey symbols display the values of the cultivations depicted in the results and discussion.

668

669 **Fig. S3: Specific protein concentrations of selected *A. niger* strains.** *A. niger* NRRL 3 (A, ●), *A.*
670 *niger* N402 (B, ◆), *A. niger* ATCC 1015 (C, ■) and *A. niger* ATCC 11414 (D, ▲) specific protein
671 concentrations normalized by BDW during 90 h submerged batch cultivations in a 3 L stirred tank
672 bioreactor in 2% pectin minimal medium.