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Abstract

Whether generated within a lab setting or isolated from the wild, variant alleles continue to be an
important resource for decoding gene function in model organisms such as Caenorhabditis
elegans. With advances in massively parallel sequencing, multiple whole-genome sequenced
(WGS) strain collections are now available to the research community. The Million Mutation
Project (MMP) for instance, analysed 2007 N2-derived, mutagenized strains. Individually, each
strain averages ~400 single nucleotide variants amounting to ~80 protein coding variants. The
effects of these variants, however, remain largely uncharacterized and querying the breadth of
these strains for phenotypic changes requires a method amenable to rapid and sensitive high-
throughput analysis. Here we present a pooled competitive fithess approach to quantitatively
phenotype subpopulations of sequenced collections via molecular inversion probes
(PhenoMIP). We phenotyped the relative fitness of 217 mutant strains on multiple food sources
and classified these into five categories. We also demonstrate on a subset of these strains, that
their fitness defects can be genetically mapped. Overall, our results suggest that approximately
80% of MMP mutant strains may have a decreased fitness relative to the lab reference, N2. The
costs of generating this form of analysis through WGS methods would be prohibitive while
PhenoMIP analysis in this manner is accomplished at less than 1% of projected WGS costs. We
propose methods for applying PhenoMIP to a broad range of population selection experiments

in a cost-efficient manner that would be useful to the community at large.
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Introduction

The C. elegans haploid genome is compact, containing just over 100 Mb, and yet is capable of
generating a complex organism with a defined cell lineage (Sulston et al., 1983). Despite our
detailed knowledge of this organism, much of its biology remains unclear. At current, only 9,645
Wormbase genes (Wormbase web site, 2019) have phenotype descriptions reported from either
variant alleles or RNAi knockdown experiments, suggesting that the function of nearly half of C.
elegans protein coding genes remain experimentally uncharacterized. Knowledge of where and
when a gene is expressed can provide clues to function and many large data sets have
elucidated gene expression patterns across embryonic, larval and adult timepoints.
Furthermore, multiple techniques have begun to resolve tissue-specific and even cell-specific
expression profiles (Boeck et al., 2016; Cao et al., 2017; Gracida and Calarco, 2017; Kaletsky et
al., 2018; Warner et al., 2019). However, this information does not directly reveal gene function
per se.

Forward genetics screens by methods such as chemical mutagenesis, provide a means
of recovering alleles that result in a detectable phenotype of interest such as sterility, lethality, or
altered reporter expression. These alleles can then be genetically mapped, sequenced, and
functionally analysed. In this manner, a specific phenotype can be screened across hundreds of
thousands of mutated genomes, thereby querying a very large search space (Brenner, 1974; De
Stasio and Dorman, 2001; Kevin et al., 2006). The identification of causal variants across this
space can be a laborious process although a variety of methods now exist to aid in the
sequencing and mapping of mutant genomes (Doitsidou et al., 2010; Jaramillo-Lambert et al.,
2015; Minevich et al., 2012; Mok et al., 2017). In contrast, a reverse genetics screen by RNAI,
generates a smaller potential search space by querying a collection of specific gene knock-
down targets for a detectable phenotype in a limited number of genetic backgrounds (Fraser et
al., 2000; Kamath et al., 2003; Lehner et al., 2006). Consequently, the solution space is
relatively well-defined since validated hits require no genetic mapping, although such screens
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are generally confined to knocking down gene expression rather than necessarily exploring
states of altered protein function. Depending upon assay format, an RNAi screen’s throughput
can be comparatively less than a mutagenesis screen. Furthermore its effects may be
problematic, producing false negatives or weak hits due to incomplete knockdown or false
positives from the knockdown of gene families (De-Souza et al., 2019; Fraser, 2000; Parrish et
al., 2000). In both screening methods, the ability to score a detectable phenotype can be
affected by the presence of redundant paralogs or entire parallel systems that can compensate
for a reduced function (for review see (Jorgensen and Mango, 2002)).

Whether because of paralogs or other reasons, phenotypically weak alleles in both
screens are potentially missed or simply disregarded. These weak alleles might be mistaken for
stochastic variation in a cursory analysis but could provide important insights into function. For
example, such weak alleles could produce small changes in developmental timing or fecundity
that would affect population fitness (Diaz and Viney, 2014; Perez et al., 2017; Richards et al.,
2013; Schnabel et al., 1997). Subtle population-wide shifts in phenotypic fithess require
guantitative methods of analysis that go beyond low-resolution phenotype qualifiers such as
slow-growth, sterile, or lethal. In recent years, strides have been made in the quantitative
analysis of fitness (Crombie et al., 2018; Elvin et al., 2011; Ramani et al., 2012). Advances in
next generation sequencing technologies have led to a number of quantitative approaches to
population analysis of singular genetic backgrounds by comparing deeply-sequenced samples
for changes to transcription, small RNA populations, and heterochromatin (Araya et al., 2014;
Boeck et al., 2016; Daugherty et al., 2017; Warf et al., 2012). Leveraging current sequencing
paradigms to analyse population fithess would contribute to the process of assigning function to
poorly characterized genes or alleles.

To further expand our knowledge of C. elegans gene function, we sought to develop an
assay that could 1) mimic the allelic diversity of a forward genetics screen but with a smaller
solution space much like a reverse genetics screen and 2) generate quantitative data regarding
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98 population fitness to assess potential gene function. We exploited the self-fertilizing
99  hermaphroditic nature of C. elegans to grow multiple strains in pools without genetic mixing. We
100 also realized that the distinct mutations in each strain could be treated as a barcode to identify
101  and quantify the representation of the strain in the pool. To assay the mutations and thus the
102  representation of each strain in these pools, rather than use whole genome sequencing, which
103  would have been prohibitively expensive, we adapted molecular inversion probes (MIPs) to
104 identify strain-specific variants (Hiatt et al., 2013). We previously used MIPs for the genetic
105 mapping of temperature-sensitive alleles in a collection of C. elegans mutant strains (Mok et al.,
106  2017); here we analyse population growth in a multi-generational competitive fitness assay to
107 phenotype by MIPs (PhenoMIP) by quantifying the proportion of each strain in a pool. As a proof
108  of principle, we utilized the Million Mutation Project (MMP) as a source for our strains. The MMP
109 library of 2007 N2-derived mutant strains harbours a variety of coding alleles including potential
110  null alleles across 8150 protein-coding genes, and coding or splice site-altering SNVs across
111 19,666 genes (Thompson et al., 2013). The phenotypic consequences for many of these
112  variants remain unexplored; we hypothesized that some may play a role in overall fitness.
113  Therefore, we identified unique genetic markers suitable for detection by MIPs for each strain;
114  using these strain-specific MIPs, we effectively generated barcodes for composition analysis of
115  genotypes within a genetically heterogenous population — analogous to methods used in yeast
116  (Hardenbol et al.,, 2003). We analysed population composition at multiple timepoints, thus
117  determining the relative fitness for each individual strain within a pool, and thereby cataloging
118 the potentially subtle phenotypes of this collection. Our observations suggest that PhenoMIP
119 can identify strains with a range of population fithess phenotypes, including those that may
120 ordinarily be overlooked. Overall, we show that PhenoMIP is a quantitative approach that
121  combines mutagenized genomes that have been previously sequenced and assays them
122 across multiple substrate conditions in a cost-efficient and high-throughput fashion.

123  Results
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124  Molecular inversion probes reliably track multiple strains within a mixed sample

125  Previously, we demonstrated the usefulness of MIPs as a method to genetically map mutant
126  alleles (Mok et al., 2017). In that study, our empirical analysis of MIP behaviour suggested that
127  their accuracy and precision were highest when identifying smaller subpopulations of variants.
128 Based on this observation, we recognized that the MIP assay could be applied in a large-scale
129 analysis of diverse compositions of strains with complex mixtures of genomic DNA. The
130  mutagenized strains of the MMP collection presented an excellent test set. The MMP strains
131 have, on average, nearly 400 single nucleotide variants (SNVs) per strain, of which,
132 approximately 80 are protein coding changes (Thompson et al., 2013). These strains represent
133 aunique resource for analysing gene function on a large scale.

134 As a first step we designed a specific set of MIPs to track strain-specific variants (Figure
135  1a). In order to avoid targeting closely spaced variants that might influence the effectiveness of
136 individual MIP assays and because we wanted to preserve the ability to make pools from any
137  combination of MMP and wild isolate strains, we first combined variants from the 2007 mutant
138 and 40 wild isolates strains of the entire MMP project. We eliminated shared alleles, and then
139 chose SNVs separated by a minimum distance of 300 bp. From this list of unique candidate
140 sites, we generated candidate MIP sequences (Mok et al., 2017) and for each strain we
141  identified the highest scoring MIP sequence on each linkage group. From these top six MIPs,
142  we assigned four representative MIPs specific to each strain (Figure 1b, and Supplemental
143  Data SD1) with the purposes of tracking chromosomal representation in the event of cross-
144  progeny contamination while maintaining minimal reagent costs.

145 To ascertain the representation of each strain in a pool, the four MIPs representing each
146  target strain within a desired composition of strains were combined into a single pool (Figure
147 1c) and used in the generation of MIP sequencing libraries. The libraries were sequenced,
148  demultiplexed and individual annealing events tracked by the unique molecular identifier (UMI)
149  present on each oligo (Figure 1d, e). Probe sets were then combined to determine mean
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150 relative abundance for each target strain within a pooled set of genomes (Figure 1f). To
151  successfully analyse mixed populations in an efficient high-throughput manner the PhenoMIP
152  approach would require 1) a relatively balanced distribution of reads for each probe; 2) a low
153  false positive rate to determine a reasonable lower bound on probe accuracy; and 3) precision
154  between strain-specific targets to ensure that subpopulation analysis was consistent.

155 To test the above parameters, we generated a pool of 192 MIPs designed to target SNV
156  sites for 48 MMP strains (Supplemental Data SD2). We generated five different sets of
157 genomic DNA mixtures composed of subsets of 46 of the 48 MMP target strains in different
158  proportions (two strains failed to yield adequate amounts of DNA) and used these as template
159  samples for the generation of MIP sequencing libraries (Supplemental Data SD2). From these
160 libraries we observed the expected composition and proportion of genotypes for the original
161 genomic templates, suggesting that overall cross-MIP interference from multiplexing was
162  negligible (Supplemental Figure Sla) and that the variant information from sequencing was
163  correct. We analysed the total number of UMIs for each MIP to gauge the efficiency of each
164  probe. We observed eleven MIP targets that, across all libraries, consistently produced UMI
165 counts below 20% of the mean number of UMIs per MIP in an individual library; these were
166  removed from further analyses (Supplemental Figure S1b). To investigate the read distribution
167  of this adjusted dataset, we normalized the UMI counts for each MIP against the minimum read
168  number within its sequencing set. The normalized distribution of reads spanned across a ~9-fold
169 range with an inter-quartile range of 2-fold to 6-fold suggesting that our distribution was
170 relatively unimodal and ranged within a single order of magnitude (Supplemental Figure S2a
171  and S2b).

172 Next, for each sequenced library, we analysed the MIP reads from target strains that
173  were excluded from the genomic template, calculating a total false positive rate of 1.6x10*
174  across five MiSeq-generated data sets for which the mean UMI count per MIP was 1630 with
175  1.2x10° unique capture events across the total set. We also compared two sequencing runs of
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176  the same PhenoMIP library with false positive rates of 1.49x10* at 3.9x10° total capture events
177  versus 1.18x10* at 5.14x10° total capture events. Combining all data sets we confirmed a total
178  false positive rate of 1.25x10* across all MIPs. We estimated the mean false positive rate per
179  individual MIP to be 1.29x10* + 1.38x10*, which compares well with our prior observations
180 (Mok etal., 2017).

181 When initially planning experimental design, we chose to work with pools of
182  approximately 50 strains per set, resulting in an expected average initial population abundance
183  of 2x102. With such a low starting abundance it was important to assess the precision between
184  each set of strain-specific MIPs to ensure that the variation between these probes was low
185 enough to consider their mean value a consistent assessment of strain abundance. We
186  observed the mean standard deviation across all strain-specific MIP sets was 2.33x10° +
187  6.88x103. Confirming prior observations, the absolute variance between strain-specific MIPs
188  was dependent upon relative abundance within the sample. Subsetting the data, target strains
189  above 5x102 abundance had a combined standard deviation between strain-specific MIPs of
190  1.62x102. Samples with abundance below 2x1072, however, had a combined standard deviation
191  between MIPs of 2.12x10*%, which is similar in magnitude to our false positive rate. These
192  findings were in line with our expectations from prior modeling of MIP behaviour (Mok et al.,
193  2017) (Supplemental Figure S2c).

194 From our analyses, we concluded that relatively consistent and balanced pools of MIPs
195 could be generated for future analysis on complex populations; that our false positive rates
196 remained in line with previous observations; and that overall variance among MIPs for a specific
197  target strain was low, especially in the lower ranges of abundance. In combination with our MIP-
198 MAP data (Mok et al., 2017), our analysis conservatively suggests that MIPs can accurately
199  detect variant abundances as low as five standard deviations above the estimated false positive
200 rate. We determined that relative abundances as low as 8.2x10* would have a high probability
201  of being true signal as our largest false-positive value from the dataset was 7.4x10*“. For
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202  simplicity, we designated 1x102° as the minimum abundance required to be considered as
203  biologically present within a given pooled population. Practically speaking, based on an average
204  pooled experiment of 50 strains, this translates to detecting a 20-fold decrease from the
205 expected initial abundance for a target strain. The cut-off value of 1x10° was the foundation for
206 later analysis of our data sets with these and other MIP pools (Methods).

207  MIPs identify strain fitness defects over multiple generations

208  Confident of the estimation capabilities of the MIPs, we selected sets of MMP strains to pool for
209  growth analysis. Each pool was made up of 45-60 different MMP strains and 8-10 independent
210  replicates were grown for multiple generations to look for differences in fithess between the
211  strains (Table 1). In addition, to investigate the effects of different propagation methods, three
212 food sources (E. coli strains HT115, NA22 or OP50) were used in different experiments and in
213  one experiment two different methods of transfer were used (see below). The proportion of each
214  strain in the pool was assayed at the start, terminal and various intermediate points. To ensure
215 that a similar number of animals was present at the start and in each of the replicates (and
216  different conditions in experiments where more than one condition was assayed), we hand-
217  picked 20 animals from each strain at either the L1 (pool M1, M3, M5) or L4 (pool M7, M8, M10,
218  M11) stages to duplicate E. coli seeded plates. We grew these “starter” pools to starvation and
219  combined uncontaminated plates for an estimated 300-700K animals. This population was
220 collected and aliquots containing 5-10K animals were used to inoculate replicate cultures under
221  their specific conditions. Cultures were grown to starvation (72-96 hours at 20-22°C; about a
222  generation) and aliquots transferred to fresh plates. For all pools except M11, animals were
223 transferred by chunking, while M11 replicates were split into two groups with transfer either by
224 chunking or by washing (Table 1, Methods). This inoculation-to-starvation cycle was repeated
225  4-9 times, depending on the experiment. At each cycle a fraction of the population was saved

226  for later DNA analysis. (Figure 2).
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227 In toto, we used 217 MMP strains across seven experimental pools (Table 1,
228  Supplemental Data SD3) to assay their relative fitness. To check the reproducibility of the data
229 and observe overall trends we applied principal component analysis to the datasets. For
230 example, with the M11 dataset, replicate samples with the same food source and transfer
231  method tended to cluster tightly, but with clusters from different generations separating well after
232 the first generation, particularly along the axis of the first principal component (Figure 3a, b and
233  Supplemental Figure S3). Samples also separated by the methods of transfer. PCA analysis
234 on all the M11 samples at a single timepoint shows the effect of food source as well as method
235  of transfer (Figure 3c and Supplemental Figure S4). The OP50 replicates were not as well-
236  correlated, and it was observed that these populations starved more quickly than other food
237  sources. Our observations suggest that under a given experimental condition, population
238  composition was changing with each generation in a consistent manner that was detectable by
239  PhenoMIP analysis.

240 Confident that the assay was behaving well overall, we next assessed each strain
241  separately for relative changes in its abundance over multiple generations across multiple
242  replicates. For each replicate condition within a pooling experiment, this effectively created a
243  growth profile for each strain consisting of the total fold-change and the mean fold-change rate
244  (FCR) per generation. For example, Figure 4a plots the relative abundance of strain VC20019
245  in the M11 pools under various conditions. The log-fold change is modest, with the mean across
246  all conditions almost zero, indicating that this strain is of average fitness. Closer inspection
247  suggests that some of the variation is due to the different growth conditions used in M11, with
248  replicates grown on NA22 and transferred by washing showing better than average growth,
249  whereas growth on HT115 and chunk transfer grew less well. In agreement with the overall
250 PCA analysis, growth on OP50 resulted in the most variable log-fold change. We combined
251  results across replicates for all strains to analyse FCR as a distribution across conditions
252 (Figure 4b and Supplemental Figure S5). We identified 15 strains that failed to thrive (class 0)
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253 in the initial pool expansion steps (initial abundance < 2.5x107%) suggesting they harboured
254  potentially strong deficits to population fitness (Supplemental Table S1). We classified the
255  remaining 202 strains using 393 sequencing libraries across seven competitive fithess pooling
256  experiments on 95 replicate conditions to generate profiles for 170 strains grown on the bacteria
257  HT115, 149 strains grown on NA22, and 105 strains grown on OP50 (Supplemental Figure
258  S6a). While we observed more subtle differences within some strains for growth on different
259 bacteria and even for methods of transfer (Supplemental Figure S6b,c), we observed
260  pronounced differences in growth profiles between strains and focused further analysis on this
261 feature. We observed strains that exhibited poor growth with steep population decline
262  suggesting fitness defects as well as strains with enhanced growth when compared to our
263 reference strain VC20019. Based on these observations, we classified each strain into one of
264  four classes as determined by its mean FCR across all experimental replicates (Table 2,
265 Supplemental Data SD3). Classes were designated using a simple 10-generation growth
266  model to calculate a final abundance (Ai0) based on the log.-transformed mean fold-change rate
267  (FCR) such that

268 Aigr = A+ 2R

269  From our initial modeling of MIP behaviour, we determined a lower limit of 1x102 on abundance
270  within a pooled sample; we, therefore, used Ao cut-offs of 1x103, 1x102, 1x10? as boundaries
271  for determining classes 1 through 4 (Supplemental Figure S5). In particular, we observed that
272 the MMP strain VC20019, which we had previously observed as having a rate of growth similar
273 to the lab reference strain N2, fell into class 3 with a FCR of 0.135 or growth multiplier (2F¢R) of
274  1.10 per generation (Figure 4b). Subdividing VC20019 data by experimental pool, however,
275  suggested there was potential for pool-specific variation on a larger scale (Supplement Figure
276  S7). The higher FCR for pool M8 is likely a result of over-representation in the seeding

277  population by double as VC20019 was also conspicuously absent from the M7 seeding
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278  population, which was pooled in parallel to M8. Our analysis of the FCR across all strains
279  suggests a wide range of fithess phenotypes across the MMP collection (Figure 4c).

280 Thereduced fitness phenotypes of MMP strains were mapped to candidate mutations

281  Based on the results of our growth analysis, we hypothesized that underlying mutations within
282  some strains could account for the observed growth rates. We proceeded to genetically map a
283  subset of class 0 and class 1 strains as they exhibited the greatest reduced fitness in
284  comparison to our control strain VC20019. We used our MIP-MAP protocol (Mok et al., 2017) to
285  competitively select against the reduced fitness phenotype and identify a small genomic region
286  containing the associated causal variant. Briefly, mutant strains were crossed with males of the
287  mapping strain VC20019 and the population was grown until starvation. A small portion of the
288  population was then transferred to OP50-seeded 10cm NGM plates. This transfer was
289  completed approximately once per generation for up to 6 generations. Samples were taken at
290 each transfer step and used to prepare genomic DNA for MIP-MAP libraries and sequencing.
291 We chose five class 0 and two class 1 strains to map, and successfully identified a
292  single locus linked to a reduced population fithess for six strains (Table 3 and Supplemental
293  Figure S8); a seventh strain appeared to have two loci. After phenotyping individual strains for
294  possible causes of fithess defects, we were able to assign candidate alleles based on genes
295  with shared phenotypes. In particular, we verified the mapping results of strain VC40788 by
296 following a partially penetrant maternal-effect embryonic lethal phenotype (Figure 4d). From
297 VC40788 and VC20019 cross progeny, we individually cultured 100 F2 animals and observed
298 F3 and F4 progeny to specifically identify recombinant populations that failed to produce dead
299 embryos or those that starved at the same rate as VC20019 controls. Positively identified
300 populations were combined for MIP-MAP analysis (Methods). The primary candidate mutation
301 for VC40788 is a G405R mutation in the mitochondrial protein B0O303.3, which is predicted to
302 have multiple functions including an acetyl-CoA C-acyltransferase activity. B0303.3 has no
303 reported hypomorphic or null mutant alleles but is reported to have an embryonic lethal
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304 phenotype by RNAi (Gonczy et al., 2000; Soénnichsen et al., 2005) and its human ortholog
305 HADHB is implicated in trifunctional protein deficiency phenotype (Purevsuren et al., 2009;
306  Spiekerkoetter et al., 2003). The identification of a maternal hypomorphic allele of B0303.3
307 provides a means with which to study this disease and its phenotypes in a nematode model.

308 Discussion

309 With advances in sequencing, genome-editing, and imaging, one remaining bottleneck in
310 the characterization of the C. elegans genome is our ability to identify the phenotypes
311  associated with gene function (Granier and Vile, 2014; Houle et al., 2010). The ability to quantify
312 population fithess along a spectrum provides a window into gene functions that may otherwise
313  be overlooked under current experimental paradigms. Dissecting the contribution of weaker
314  alleles will help to generate new gene networks and build upon our understanding of worm
315  development, reproduction, and overall fithess. With PhenoMIP, we analysed strains from the
316  Million Mutation Project, which offers a unigue library of mutagenized genomes with coding and
317 non-coding elements that remain largely unexplored. We efficiently identified phenotypic traits
318 related to population fitness in a high-throughput manner by pooling multiple MMP strains in a
319 multi-generational experiment and sequencing these populations with molecular inversion
320 probes.

321 To use MIPs as a means of barcoding strains for population analysis, we designed a
322  series of probes for the 2007 MMP strains and tested a subset on the MMP collection. We
323  observed that we could accurately gauge a strain’s relative abundance within a sample. By
324  sequencing multiple genomic mixtures, we confirmed a low false positive rate, suggesting we
325 could use MIPs to accurately identify subpopulations with abundance as low as 8x10* which
326  translates to better than 1 in 1000 genomes per sample.

327 As a demonstration of this method, we pooled MMP strains into groups and dissected
328 population composition over multiple generations. Our observations suggest that this form of
329 population barcoding is indeed capable of identifying specific Million Mutation Project strains
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330 with differing levels of relative fitness. Our analysis shows that PhenoMIP identifies reproducible
331 condition-dependent population stratification among populations that have been separated for
332  multiple generations. Based on the strains tested thus far, we estimate upwards of 82% of MMP
333  strains may harbour alleles contributing to fithess phenotypes in the range of class 0 to class 2.
334  Given the mutagenized and inbred nature of the MMP strains (Thompson et al., 2013), it is not
335  surprising to find such an array of fithess phenotypes. These strains, however, represent a
336 valuable resource to study fitness as the causative alleles of these effects may be in putative
337 essential genes, poorly characterized genes with only small effects on fitness, or even
338  regulatory regions of the genome.

339 The observed population-level phenotypes presented in this work are a readout of
340 relative fitness in a multi-strain competitive environment. Depending on selection and pooling
341 method, weaker changes to relative fithess may be attributed to the population mixture rather
342  than the selection variable itself. For instance, in our series of experiments, pools were initially
343  generated by combining small numbers of larval animals as a seeding parental population that
344  was expanded before aliquoting out to replicate experiments. During the initial expansion of the
345 seed population, the stochastic loss of even a single parental animal could impact the
346  abundance of a strain in the initial stages of the experiment. Conversely, we saw in our analysis
347 of pool M8, that the doubling of VC20019 animals in the initial pooling also affected the
348 population structure and mean fold-change rate of VC20019 itself. A potential solution to
349 mitigate “seeding” variation would be to bleach synchronize (Stiernagle, 2006) all of the target
350 strains to the L1 larval stage and then combine them in equal portions into a single population
351 before aliquoting to replicate experiments. Another influence on population structure is the
352  group of Class 4 strains identified in our study. Their rapid growth and expansion can lead to
353  drastic population stratification and the premature loss of subpopulations. In these cases, the
354  quantitative phenotyping of less fit strains may be hindered, less informative, or potentially less
355 accurate when analysing a multi-generational experiment. Therefore, depending on the nature
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356  of the experiment, it may be more advantageous to consider pooling strains of a similar fithess
357 based on prior phenotype data. Our observations also suggest that food source can alter
358  population growth with food scarcity contributing to greater variation between replicates. For
359 example, our OP50 replicates may have experienced premature starvation or uneven food
360 distribution amongst populations, leading to lower population sizes and possibly affecting the
361 consistency of the OP50-grown replicates. For an auxotrophic food source such as OP50, it
362  would be best to highly concentrate cultures in order to generate a thicker lawn for nematode
363  populations to consume. Lastly, the method and timing of population transfer is a potential
364  source of selective influence. Our data suggested that chunking versus washing populations to
365 propagate them did introduce technical variation with some strains. A method of population
366 transfer that was not addressed in this work is the bleach synchronization method (Stiernagle,
367  2006), which would add the benefit of removing sporadic contamination while indirectly assaying
368 developmental timing and fecundity. Some strains may also be differentially sensitive to
369 bleaching, starvation or recovery from starvation (Baugh, 2013; Webster et al., 2019). Over
370  many generations, the above technical variation can amplify within the population, potentially
371  skewing the changes observed. Therefore, when applying specific selective pressures to a
372 population (temperature, food source, RNAI, etc.), the proper use of control conditions and
373  replicates can help to reduce the effects of technical variation with minimal impact to the
374  sequencing burden of the experiment.

375 Looking to the future, given the wide range of sequenced strains available from the
376  Million Mutation Project and Caenorhabditis elegans Natural Diversity Resource (Cook et al.,
377  2017), a more extensive competitive fithess assessment by PhenoMIP would set the stage for
378 generating balanced pools of strains based on similar growth rates. From similarly profiled
379 strains, balanced pools could be generated randomly or based on parameters such as
380 geographic distribution or specific genotypes or haplotypes of interest. These pools could be
381 used to screen for phenotypic differences among any number of conditions from temperature or
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382 food source (Dirksen et al., 2016; Zhang et al., 2017) to resource limitation, small molecule
383  exposure, or pathogen infection. Recently, Webster et al., utilized RAD-seq techniques to
384  assess starvation resistance on a multiplexed pool of 96 wild isolate strains (Webster et al.,
385  2019). This form of competitive fithess selection is an ideal experimental context for PhenoMIP
386 to increase potential throughput by addressing additional parameters or variables related to
387  starvation response. Furthermore, the process of pooled competition facilitates screening on
388  multiple strains in scenarios where the substrates or reagents to test have limited availability. In
389  combination with GWAS and genetic mapping, PhenoMIP could prove useful in assembling a
390 greater understanding of the many unexplored gene and regulatory sequence functions within
391 the C. elegans genome.

392 To our knowledge these experiments are the first to use molecular inversion probes to
393 analyse C. elegans populations for relative fithess. With PhenoMIP, we analysed 217 MMP
394  strains across 95 replicate conditions and 29 timepoints for a total of 393 genomic samples. A
395 similar analysis of our experimental data via whole genome sequencing across 393 genomic
396 samples would be prohibitively expensive. In contrast, our data can be generated on the
397 equivalent of a single lllumina NextSeq run. Targeted sequencing by PhenoMIP permits
398  experimentation at a scale well beyond what is reasonably accomplished by standard WGS.
399 PhenoMIP, however, is not without its caveats as the data generated is limited to assessing
400 relative abundance and the variants assessed are limited to the population of strains in the
401  experiment. We believe, however, that the initial processing steps and costs as well as the
402  “limited” variant diversity of the data are outweighed by the increase in experimental throughput.
403 PhenoMIP has the potential to be applied beyond the MMP and wild isolate strains to the
404  quantitative analyse of genomic variants in many contexts. Coupled with genome-level editing
405 techniques, PhenoMIP could be useful in studying allelic series or mutants of entire pathways
406  for subtle phenotypic effects. The assay format could be converted to look at selection of
407  phenotypes occurring within a single event or generation, as in a bulk taxis assay or as a
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408 method for targeted genome monitoring under selective conditions. The fundamental leverage
409  of this method is the use of MIPs to reduce the sequencing burden while maintaining informative
410 parity with WGS formats in identifying subpopulation frequency. In doing so, the throughput of

411  experimentation can be increased without raising experimental sequencing costs.
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412  Methods

413  MIP site selection and design

414  MIP sites were selected in two rounds. Initially the entire MMP SNV data set was used to select
415  for sites that were spaced a minimum of 300 bp apart to avoid potential collisions with
416  neighbouring probes. Site selection and rejection was completed in a linear manner based on
417  the first available SNV on each linkage group within the data set. Locations were not filtered or
418  optimized to reduce the occurrence of neighbouring SNVs within the 300 bp window. The initial
419  set of MMP mutant strain MIP sites was then used to remove candidate sites from the MMP wild
420 isolate data set. Any wild isolate sites within a 350 bp window of mutant candidate sites was
421  removed from selection. Of the remaining wild isolate SNV sites, a 350 bp selection window was
422  used to identify potential MIP sites. The list of candidate MIP sites were used to design and
423  score MIPs based on previously published criteria (Mok et al., 2017). The list of designed MIPS
424  was subdivided into each individual strain where the highest-scoring MIP for each linkage group
425  was identified. Of the six MIPs designed for each strain, four were randomly selected for use in
426  population analysis (Supplemental Data SD1)

427  MIP library pooling, preparation and sequencing

428  MIPs were pooled based on worm pools being tested and generated as previously published
429  (Mok et al, 2017). Individual MIPs were normalized to a concentration of 100 uM and pooled to
430 a maximum volume of 85 ul. 10 ul of 10X Polynucleotide Kinase (PNK) Buffer and 5 ul of PNK
431 were added to a volume of 85 ul pooled MIPs before incubating for 45 minutes at 37°C and 20
432  minutes at 80°C. This pool was then diluted to a working concentration of 330 nM. MIP libraries
433  were generated with 500 ng genomic DNA and appropriate MIP pools as previously described
434  in Mok et al., 2017. Libraries were sequenced on lllumina MiSeq or NextSeq systems. Libraries
435  across pools ranged between 8.3x10° and 32.7x10° total reads with an average 1507 reads per
436  probe.

437  Worm maintenance and pooling
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438  Worms were maintained on standard nematode growth media (NGM) seeded with OP50. Worm
439  pools were generated from well-fed source plates using exclusively twenty L1 or L4 animals for
440  each strain. Starting pools were grown on 15cm NGM made with 8X peptone and seeded with
441  NAZ22 or HT115. Pools were grown at 20°C to starvation as mostly L1 animals (96-120 hours)
442  before washing off with 10-15 mL M9. Worms were pelleted and aspirated to 5-6 mL before
443  population density was assessed. 50-100 ul of pellet was frozen as a representative sample of
444  the initial pooled population. Pools were then redistributed in equal-sized populations between
445 5000 and 10000 animals on 15 cm NGM plates that were prepared based on experimental
446  conditions and grown for 4 days before being transferred to replicate condition plates either by
447  chunking or washing again. Any remaining animals were washed from plates with double-
448  distilled water, pelleted, and frozen as samples for later analysis. Each cycle of transfer
449  approximately followed a single generation and pooling experiments were propagated for 6-10
450 generations. Heavily contaminated plates/conditions were terminated from propagation and
451  removed from analysis.

452  Mapping of mutant strains

453  Mutant strains were mapped using either the VC20019 mapping strain or DM7448 (VC20019;
454  Ex[pmyo-3::YFP)). Briefly, mapping strain males were crossed with mutant hermaphrodites. 15-
455 20 cross progeny L4 hermaphrodites were selected to a single 10 cm OP50-seeded NGM plate
456  and grown to starvation before propagating a subpopulation to a replicate 10 cm plate. Slow
457  growth mutants were mapped on 10 cm NGM plates seeded with OP50 and grown at 20°C.
458  Mapping populations were propagated under selection for four to seven generations.
459  Representative samples were chosen to extract genomic DNA as template for MIP-MAP
460 libraries and then sequenced on lllumina MiSeq or NextSeq instruments. MIP-MAP analysis
461  was completed as previously described (Mok et al., 2017).

462  Competitive Fitness MIP library data analysis

Mok et al., PhenoMIP unpublished manuscript pp20


https://doi.org/10.1101/857854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/857854; this version posted November 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

463  For each specific MIP pool, reads were initially analysed as previously described (Mok et al.,
464  2017) with the exclusion of the normalization step for each MIP. After abundance of each MIP
465 was calculated, an average abundance was calculated for each strain as well as a standard
466  deviation across this average. These values were used in downstream analysis of population
467  structure across multiple timepoints.

468 Population structure and fold-change analysis was calculated across each experiment
469  using the amalgamated data from above. Strains with a starting abundance value below 2.5x10
470 3 were eliminated from downstream population analysis. Remaining data were further
471  transformed with any values below 1.0x10° being converted to this value to accommodate log
472  growth analysis. Total fold-change and mean fold change are calculated based on starting and
473  end-point changes in abundance versus total generations (one generation per expansion). In
474  samples with negative trajectories, however, the final generation of growth was calculated as
475  the first instance of abundance at or below the lower limit of 1.0x103. Mean fold-change rate
476  was calculated based on the total fold-change abundance in the final generation of growth
477  divided by the expected number of generations passed.

478  Data Availability

479  File SD1 contains molecular inversion probe sequences and data for all 2007 MMP strains and
480 40 wild isolates of the Million Mutation Project. Four candidate probes for each strain were
481  designed and listed in this file. File SD2 contains all information used in the false positive and
482  precision analysis of PhenoMIP. File SD3 contains all mean FCR data for each strain on each
483  replicate in each experimental pool. Custom scripts used to analyse sequencing data are
484  available upon request. Raw sequence files for each pool are available upon request.
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633  Figure 1. Molecular inversion probes as a system of barcoding C. elegans strains. MIP
634  sequences include two annealing arms complementary to target sites (red), a unique molecular
635 identifier (UMI, blue) and a common backbone used for library amplification and barcoding
636  (grey). MIP sites were selected for each of 2047 MMP strains across each chromosome by
637  excluding shared variants from all strains and then choosing sites (regardless of strain) across
638 the genome that were separated by a minimum of 300-350bp. (a) For each strain, MIP
639  candidate sequences were scored (solid and hatched variants). (b) The highest-scoring MIP on
640 each chromosome (solid green) was identified. (¢) Four of the six MIPs were then selected to
641 identify a target strain amongst a pool of strain-specific MIPs. The MIPs would therefore have
642 two identifiable states from the gap-fill segment of a sequencing read (d); either the strain-
643  specific single nucleotide variant (SNV, green), or a sequence identical to the reference genome
644  (purple). (e) After sequencing, each sample was demultiplexed by MIP target and further by the
645 UMI to count the total number of unique annealing events specific to the SNV or reference
646  sequences. (f) Values were compared to estimate the percentage of SNV events versus the
647  total annealing events.
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648 Figure 2. Workflow of PhenoMIP multigeneration competitive fithess assay. (a) MMP
649  strains were selected and grown as separate populations in relative synchronization before 20
650 animals of each strain at the L1 (pools M1, M3, M5) or L4 stage (M7, M8, M10, M11) are
651 transferred (b) to a communal NGM plate seeded with a bacterial lawn. The communal plates
652 are grown in duplicate until the population has starved. (c) Uncontaminated plates are then
653 washed and combined into a single starting population and counted for population density
654  before being redistributed (d) onto multiple 150 mm NGM plates of varying conditions. Every 72-
655 96 hours, the plates reach starvation and a subpopulation of animals is transferred to a new
656 plate of the same experimental condition. (e) The remaining animals are collected for extraction
657  of genomic DNA to generate MIP libraries for sequencing (f) and data analysis (g) of strain
658 abundance and relative fitness.
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660 Figure 3. Principal component analysis of PhenoMIP data suggests consistent
661  population stratification related to growth conditions. (a) PCA of M11 HT115 population
662  replicates propagated by chunking and (b) M11 HT115 population replicates propagated by
663  washing are projected along principal component 1 and 2 with samples coloured by generation.
664  PCA of all M11 replicates from generation 5 projected along principal component 1 and 2 with
665  samples coloured by combined food source and transfer method.
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668  Figure 4. Relative fithess can be quantified by PhenoMIP and classified into subgroups.
669  (a) Line graph of VC20019 growth rate from pool M11 with y-axis showing fold-change (log>) in
670  abundance relative to initial abundance at generation 0 (starting population) across multiple

671  generations (x-axis). Replicates are coloured by experimental food source and transfer method:
672  HT115 chunk (black squares), HT115 wash (orange circles), NA22 chunk (blue triangles), NA22
673  wash (green cross), OP50 chunk (pink X) and mean (mean fold change abundance across all
674  replicates, red square). (b) Violin plots of mean fold-change per generation for a representative
675  panel of strains. Each point represents the mean fold-change rate calculated from multiple

676  timepoints for an experimental replicate across one or more pooling experiments. Dots are

677  colour-coded by experimental condition for growth on either HT115 (black squares), NA22 (red
678  circles), OP50 (blue triangles) E. coli as a food source with overall mean fold change rate (FCR,
679  purple cross). Coloured dotted lines represent category boundaries using an FCR of -0.4315
680  (red), -0.0.985 (yellow), and 0.2327 (green). VC20019 (bold) is provided as a reference for

681  comparison to growth rates shown in (a). (c) 202 strains were assigned a mean FCR and

682  subdivided into one of four growth classes with kernel density plots for each class. (d) Mapping
683 data for VC40788, a strain observed to have poor growth rate, identified an interval of interest at
684  111:7.6-10.8 Mb. Mapping was accomplished using two replicates by competitive fitness for wild
685  type growth (orange circle and blue diamond) as well as by identifying F2 homozygous wild-type
686  F2 recombinants in a bulk segregant assay (purple triangle). X-axis units are in megabases

687  across each chromosome.

688
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691 Supplemental Figure S1. MIPs provide sufficient read depth to specific subpopulations of strain abundance in complex compositions of genomic DNA. (a) Strains from non-overlapping sets of mixed genomic samples are identified using a multiplexed
692  pool of MIPs. Strain abundance for each set is indicated by the heatmap legend. (b) A heatmap of total reads per MIP per set broken down by specific strain with black arrows indicating probes with total reads below 20% of the mean read depth across the set.
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695  Supplemental Figure S2. MIP pooling across multiple targets remains balanced and

696  precise. (a) Boxplot of sequencing libraries for the same set of probes across 5 separate

697  genomic templates overlaid with the fold-change for each probe based on the probe with the
698 fewest reads in each set. (b) a kernel density plot of each dataset based on the fold-change in
699 read depth of each probe (MS = MiSeq-generated data; NS = NextSeq-generated data). (c) A
700  scatterplot of abundance for all strains within each sequenced set versus the standard deviation
701  of the 3 to 4 probes used to calculate that abundance.
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702

703  Supplemental Figure S3. Principal component analysis of M11 samples suggest

704  consistent changes to population structure at each generation. PCA of M11 datasets

705  separated by combined food source and transfer method into (a) NA22 replicates propagated by
706  chunking, (b) NA22 replicates propagated by washing and (c) OP50 replicates propagated by
707  chunking. PCA of M11 HT115 replicate (d) and NA22 replicate (e) data projected along principal
708 components 1 and 2 with samples identified by combination of transfer method (chunking or

709  washing) and sample generation (1, 3, 5, or 7).
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a M11 generation 1 replicate data b M11 generation 3 replicate data c M11 generation 7 replicate data
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Supplemental Figure S4. Principal component analysis of M1l samples suggest
condition-dependent population structure. PCA of M11 replicate datasets separated into (a)
generation 1, (b) generation 3, and (c) generation 7. Samples are projected along principal
components 1 and 2 for each individual data set and identified by combination of food source
and transfer method.
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728  Supplemental figure S6. MMP strains were tested across atrio of food sources. (a) Venn
729  diagram of each food source used in the PhenoMIP assays and the number of strains tested
730  with HT115 (pink), NA22 (purple) and OP50 (green). 105 strains were tested on all three food
731  conditions. (b) VC20128 data from the same pool (M10) suggests specific fithess differences
732 between growth on NA22 versus growth on HT115 and OP50. (c) VC20407 data from the same
733  pool (M11) suggests significant changes to growth when comparing samples transferred by

734 chunking versus washing — regardless of food source. Coloured dotted lines represent category
735  boundaries using an FCR of -0.4315 (red), -0.0.985 (yellow), and 0.2327 (green). * p < 0.05; **
736  p <0.01; ** p < 0.001 by Kruskal-Wallis with p-values adjusted for multiple testing by

737  Benjamini-Hochberg method
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738

739  Supplemental Figure S8. Violin plots of VC20019 mean FCR for all replicates grouped by
740  pool. Violin plots for VC20019 replicates in each pool were generated with M11 represented by
741  combining datasets based on food source (HT115 = HT115 chunk + HT115 wash; NA22 =
742  NA22 chunk + NA22 wash). M8 replicate data is significantly different compared to M3, M5,
743  M10 and M11 which are not significantly different from each other. Each violin plot discriminates
744  between food sources HT115 (black squares), Na22 (red circles) and OP50 (blue triangles) and
745 mean FCR (purple cross). Coloured dotted lines represent category boundaries using an FCR
746  of -0.4315 (red), -0.0.985 (yellow), and 0.2327 (green). *** p < 0.001 by Kruskal-Wallis with p-
747  values adjusted for multiple testing by Benjamini-Hochberg method.

Mok et al., PhenoMIP unpublished manuscript pp37


https://doi.org/10.1101/857854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/857854; this version posted November 29, 2019. The copyright holder for this preprint (which was

748

749
750
751
752
753
754
755

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

a d
| n " v v X I n m v v X
100% 100%
g
e 28 4 s
. .

g 80% Z ¥ F g a0% S
3 \ food g L e
o 5 \ [ A 17} o mp ®
s ARG VI e g Y L gt ah AN
: A e : oo
» (2]
2 10% .—\{V\‘ Dogyt o 2 0% /%"wa
> 20% Lo > 20%
® =

0% 5 10 5 10 15 5 10 5 10 15 5 10 15 20 5 10 15 0% 5 10 5 10 15 5 10 5 10 15 5 10 15 20 10 1
—+—V/C30079Rep 01 F2 o+~ \V/C30078Rep 01 F7 ——V/C40296 Rep 01 F4 o \/C40296 Rep 01 F6
--e--\/C30079 Rep 02F2 ----\V/C30079 Rep 02 F6

b e
I mn v v X I I m v v X
120% 100%
@ [
§100% ey 2 80% o 200
o / g SN
@ * [ o L)
£ 509 oot - 2 sge xf"
© 3 mqg ©
L4 e Pt "’%’ * @ B0% og%ee . uﬁ.« oy o 2
¢ g0% ¢ g M Afekp
2 %M'-g A{j\ W Wﬁy 2 0% i
S 0% eeew v 8 i
[} (6]
Z 20% z 0%

0% 5 10 5 10 15 5 10 5 10 15 5 10 15 20 5 10 15 0% 5 10 5 10 15 5 10 5 10 15 5 10 15 20 5 10 15
—+—\V/C30183Rep 01 F2 o~ VC30188Rep 01F5 —+ VC40545 Rep 01F2 o VC40545 Rep 01 F7
—-e--V/C30188 Rep 02 F2 ---:V/C30188 Rep 02 F6 4. VCA40545 Rep 02F2 -+ VC40545Rep02F6

c f
n " v v X I I m v v X
100% 100%
o &R o
2 0% M °° g 0% i »)"‘w,
g f s 8 ] o 8
% % O "oy ° ‘,” 24 .8 104 P8 " Baght
o 60% g 008 £2 =i T B0% W e SR BT S M‘ %
v (&r’\ v eew AP, ok
o § ‘“.J? Jeonst, ¢ “"" W‘ g o MY e N PN LS P %}‘
2 oy e r 3 2 4% ° y e b
8 v m&%% C" 8 ’ 4 /8
) .
3] ) A
> 20% > 20% 8%
® =
0% . L . = T - 1 0% . d . - A - 1
5 10 5 10 15 5 10 5 10 15 5 10 15 20 5 10 15 5 10 5 10 15 5 10 5 10 15 5 10 15 20 5 10 15
—e— VC40196 Rep 01 F2 o VC40196Rep 01 F6 —+— VC406711Rep01 F2 o \/C40611Rep 01 F7
—-o-- VVC40196 Rep 02 F2 —e- VC40196 Rep 02 F4 ~-0--VC40611Rep02 F2 - VC40611 Rep 02 F7

Supplemental Figure S9. MIP-MAP data for 6 strains categorized as class 0 or class 1 by
mean FCR. Strains were mapped using VC20019 with the y-axis representing the proportion of
VC20019 present versus all reads for a MIP target at each locus across the genome. Strains
were mapped in replicate (solid versus dotted lines) and sequenced at two timepoints each (ie.
F2 vs F4). The strains mapped in this fashion were (a) VC30079, (b) VC30188, (c) VC40196,
(d) VC40296, (e) VC40545, and (f) VC40611. X-axis units are in megabases across each
chromosome.
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756  Table 1. Summary of pooled strains

757
Final
Pool sequenced HT115 NA22 OP50 Combined
name Strains generation replicates replicates replicates replicates
M1 56 7 0 8 0 8
M3 57 9 0 10 0 10
M5 45 4 10 0 0 10
M7 41 4 9 0 0 9
M8 42 4 10 0 0 10
M10 60 7 10 8 6 24
M11 59 7 10 (5+5)* 8 (4+4)* 6 24
Unigue Timepoints Total Total Total Total
Combined strains Sequenced HT115 NA22 OP50 Replicates
Total 217 29 49 34 12 95
758  * Two different methods of transfer were used for replicates
759  Table 2. Mean fold-change rate summary
760
Class Lower bound FCR Upper bound FCR Total strains % of strains
0 NA NA 15 6.9
1 -8.64 <-0.4315 96 44.2
2 >-0.4315 < -0.0985 68 31.3
3 >-0.0985 < 0.2327 29 134
4 = 0.2327 9 4.1
761
762  Table 3. Mapping data summary
763
Mean Mapping Coding Likely
Strain Pools FCR Class Interval alleles Candidate
VC20019 All  but 0.136 3 - - -
M1
VC30079 M5, M6 -0.740 1 [1:7.49-11.5 Mb 3 hpo-35
[11:5.8-7.6 Mb 3 dig-1
VvC30188 M5, M6 -1.038 1 [1:6.2-12.1 Mb 1 mel-11
VC40196 M1, M3 -- 0 IV:8.4-13.9 Mb 13 -
VC40296 M5, M6 -- 0 IV:4.2-6.4 Mb 2 rme-2
VC40545 M1, M3 -- 0 11:4.4-8.1 Mb 12 tsn-1
VC40611 M1, M3 -- 0 [1:6.3-8.1 Mb 7 -
VC40788 M1, M3 -- 0 111:7.6-10.8 Mb 2 B0303.3
764
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765  Supplemental Table S1. Class 0 mutants, not analysed due to low abundance at
766  experimental start

767
Strain Pool(s) Initial abundance
VC20190 M5 0.00180/ 0.00077
VC20245 M1/ M3 0.00027 / 0.00026
VC20262 M5 0.00074 / 0.00128
VC20315 M1/ M3 0.00000 / 0.00059
VC20328 M1/ M3 0.00136 / 0.00216
VC20338 M5 0.00166 / 0.00209
VC40291 M1/ M3 0.00114 / 0.00000
VC40296 M5 0.00118/0.00017
VC40545 M1/ M3 0.00064 / 0.00017
VC40611 M1/ M3 0.00000 / 0.00034
VC40697 M1/ M3 0.00176/ 0.00219
VC40745 M5 0.00098/0.00118
VC40747 M1/ M3 0.00151/0.00147
VC40788 M1/ M3 0.00038 / 0.00029
VC40804 M1/ M3 0.00054 / 0.00036

768
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