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Abstract 17 

The human cortex is characterized by local morphological features such as cortical 18 

thickness, myelin content and gene expression that change along the posterior-anterior 19 

axis. We investigated if these structural gradients are associated with a similar gradient 20 

in a prominent feature of brain activity - namely the frequency of brain oscillations. In 21 

resting-state MEG recordings from healthy participants (N=187), we found that the 22 

strongest peak frequency in a brain area decreases significantly, gradually and robustly 23 

along the posterior-anterior axis following the global hierarchy from early sensory to 24 

higher-order areas. This spatial gradient of peak frequency was significantly 25 

anticorrelated with the cortical thickness of corresponding areas representing a proxy of 26 

the cortical hierarchical level. This result indicates that the intrinsic ‘resonance’ frequency 27 

decreases systematically from early sensory to higher-order areas and establishes a new 28 

structure-function relationship pertaining to brain oscillations as a core organizational 29 

principle that may underlie hierarchical specialization in the brain. 30 

Introduction 31 

It is well established that the brain’s cortical areas differ in their cyto- and 32 

myeloarchitectonic structure, local and long range anatomical connectivity, activity and, 33 

by consequence, their function (Glasser et al., 2016; Huntenburg et al., 2017). 34 

Interestingly, many structural features that distinguish individual brain areas change 35 

gradually in an orderly manner across the cortex, leading to spatial gradients of features. 36 

The most prominent and best established gradients are evident along the posterior-37 

anterior axis (Eickhoff et al., 2018; Felleman and Van Essen, 1991; Huntenburg et al., 38 

2018). For instance, neuron density decreases and neuronal connectivity increases from 39 

posterior to anterior brain areas. These differences have been attributed to differences 40 

in neurogenesis for posterior compared to anterior brain areas (Hill et al., 2010; 41 
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Huntenburg et al., 2018). A similar posterior-anterior gradient has been observed for 42 

myelin content, cortical thickness, and gene expression (Burt et al., 2018). Next to the 43 

posterior-anterior gradient, other global spatial organization principles have been 44 

proposed to explain the variation of microstructural features across the cortex. For 45 

instance, Huntenburg et al. suggest a sensorimotor to transmodal gradient as an 46 

important intrinsic organizing dimension of human cortex (Huntenburg et al., 2018) 47 

reflecting gradual changes in structural features from functionally unimodal (dedicated 48 

sensory or motor) areas to higher order, transmodal areas. 49 

In addition to structural gradients as an organizing principle reflecting global cortical 50 

organization, it is well acknowledged that cortical areas are structurally connected into 51 

larger networks, which often display a hierarchical organization. Cortical hierarchies are 52 

typically established based on the degree of microstructural differentiation of the 53 

connected areas, and on the classification of the anatomical connections as feedforward 54 

or feedback using histological tract-tracing. Early sensory areas with predominantly 55 

feedforward outgoing connections are placed at the bottom of the hierarchy and higher 56 

order association areas with mostly feedback outgoing connections are placed at the top 57 

of the hierarchy (Felleman and Van Essen, 1991; Markov et al., 2014). A noninvasive, 58 

but indirect index of these hierarchies is cortical thickness, a macroscopic feature of the 59 

cortex, which can be estimated from MRI scans. It has been shown that cortical thickness 60 

mirrors global hierarchical organization of the cortex as well as local hierarchies in visual, 61 

auditory and somatosensory areas (Jasmin et al., 2019; Wagstyl et al., 2015), and, 62 

therefore, could be used as a basis for understanding hierarchy-gradient relationships in 63 

the cortex.  64 

The presence of these anatomical gradients raises the question to what extent they are 65 

reflected in features of brain activity and brain function. Indeed, it has been shown that 66 

cortical areas follow a hierarchical ordering in their timescales of intrinsic fluctuations as 67 

for example measured in the autocorrelation of spiking activity (Murray et al., 2014). 68 
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Sensory areas show faster fluctuations while frontal areas show slower fluctuations. 69 

Shorter timescales in sensory areas enables them to reflect dynamic changes in the 70 

environment, whereas the longer timescales in prefrontal areas allows for integration of 71 

information. Particularly, this gradient of ‘temporal receptive windows’ has been 72 

demonstrated in visual (Himberger et al., 2018) and auditory processing (Jasmin et al., 73 

2019) and could be related to the frequency of spontaneous brain oscillations. 74 

Oscillations are a prominent feature of brain activity, and have been suggested to play a 75 

central role in coordinating neuronal activity (Fries, 2005; Wang, 2010). Similar to many 76 

anatomical features described above, the spectral activity patterns seem to be 77 

characteristic for each brain area (Keitel and Gross, 2016). This is consistent with the 78 

view that the individual anatomical structure of a brain area shapes its rhythmic neuronal 79 

activity, which led us to hypothesize the existence of a posterior-anterior gradient in the 80 

frequency of spontaneous brain rhythms.  81 

Spontaneous rhythms have been studied in the past but typically by focusing on the 82 

power in specific frequency bands (Hillebrand et al., 2016; Keitel and Gross, 2016; 83 

Mellem et al., 2017). Overall, these MEG studies revealed strongest cortical generators 84 

for the dominant alpha rhythm (7-13 Hz) in occipito-parietal brain areas. The beta band 85 

(15-30 Hz) shows strongest activity in sensorimotor areas while delta (1-3 Hz) and theta 86 

(3-7 Hz) bands are associated with activity in wide-spread areas including frontal cortex. 87 

Here, we adopt a different approach that is based on sophisticated identification of 88 

spectral peaks in the power spectra of source-localized resting-state MEG data and 89 

included modelling of the 1/f spectral background (Haller et al., 2018). This approach 90 

offers two distinct advantages. First, focusing on spectral peaks ensures that results are 91 

indeed based on brain oscillations. This is not necessarily the case when using the power 92 

in a pre-defined frequency band or using band-pass filtered data. Second, by explicitly 93 

modelling the 1/f spectral background across the entire cortex we can dissociate 94 
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contributions due to aperiodic neuronal background activity from those originating from 95 

oscillatory activity.  96 

We used this approach to specifically test the hypothesis of a posterior-anterior gradient 97 

in the frequency of spontaneous brain rhythms. We identified the frequencies of the 98 

dominant brain rhythm across the cortex in source-localized resting-state MEG data of 99 

187 individuals.  100 

As we describe below, we found a spatial gradient of peak frequency across the cortex 101 

following the cortical hierarchy. 102 

Results  103 

Spatial Gradients of the Dominant Peak Frequency of Oscillations 104 

We analyzed publicly available resting-state MEG data from 187 participants (J.-M. 105 

Schoffelen et al., 2019; J. M. Schoffelen et al., 2019), reconstructing cortical activity time 106 

courses for 384 regions-of-interest (ROIs) on the cortical surface. This cortical 107 

parcellation (introduced in (Schoffelen et al., 2017)) was constructed from the Conte69 108 

atlas (Van Essen et al., 2012) which divides the cortical surface according to the division 109 

introduced by Brodmann (Brodmann, 1909). From the estimated activity time courses, 110 

we obtained the power spectrum for each ROI and individual, and identified spectral 111 

peaks after fitting and subtracting the arrhythmic 1/f component (see Figure 1A and 112 

method section). Subsequently, we identified for each participant and ROI the spectral 113 

peak with strongest amplitude in the original power spectrum (peak frequency (PF)). We 114 

used PF to test our hypothesis of a posterior-anterior frequency gradient. Figure 1B, top 115 

panel, shows the distribution of PF as a function of the ROI’s location along the y-axis of 116 

the coordinate system (posterior to anterior). Each point represents the trimmed mean 117 

across participants of the PF for one ROI. A clear gradual decrease of PF from posterior 118 

to anterior is evident and supported by a significant robust correlation (Robust Correlation 119 

Toolbox) (Pernet et al., 2012) between the PF and the ROI’s y-coordinate (r = -0.84, p 120 
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<< 0.001). This frequency gradient is also evident in the cortical maps that show the 121 

trimmed mean of the PF across participants for the 384 ROIs (Figure 1B, bottom panel). 122 

Next, we used linear mixed effect modelling (LMEM) for statistics, in order to model the 123 

spatial gradients of PF, while accounting for interindividual variability. We used PF as the 124 

response variable, and the coordinates of the ROI centroids (X: left to right, Y: posterior 125 

to anterior, and Z: inferior to superior) plus their two-way interactions set as fixed effects. 126 

We modelled the individual slope and offset as random effects to account for variability 127 

between participants. The fixed effect parameters capture mean-variation in the PF that 128 

is shared by all individuals (see Methods section), while the participant-unique variance 129 

of the PF is addressed by random effects. Thus, our model provides a robust and 130 

comprehensive characterization of spatial changes of PF across the cortex. Figure 1C 131 

displays a table of T-values for fixed-effect parameters of LMEM and the modelled PF 132 

on the cortex. LMEM yielded highly significant scores for Y (t = -15.6, p << 0.001), Z (t = 133 

-10.4, p << 0.001), and Y:Z (t = -32, p << 0.001) directions. Together, these results 134 

support the conclusion that the peak frequency of brain oscillations decreases 135 

systematically in posterior-anterior direction. 136 

On the basis of the observed frequency gradient, the question may arise, whether the 137 

spatial pattern of frequency across the cortex is the result of spatial leakage originating 138 

from an occipital alpha and frontal theta source. If this is the case, we would not expect 139 

to see significant frequency change in areas close to primary visual area (V1). To address 140 

this question, we computed the geodesic distance between V1 and all areas located 0.5–141 

1.5cm away from V1, and applied linear mixed effect modelling of PF as a function of the 142 

distance values. We found a significant negative correlation between PF and distance (t 143 

= -18.45, p << 0.001). This demonstrates a significant frequency gradient already in 144 

occipital brain areas where the spatial leakage effect of a potential frontal theta source is 145 

negligible. Overall, this control analysis supports the existence of a genuine gradual 146 

change of PF across the cortex. 147 
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 148 

======== Figure 1 about here ======== 149 

 150 

Spatial Gradients of Spectral Properties of the 1/f Signal 151 

Neurophysiological signals typically consist of oscillatory signal components with distinct 152 

spectral peaks, embedded in an arrhythmic 1/f signal component. Variation in the 153 

properties of this 1/f component may give rise to shifts of spectral peak estimates, and 154 

lead to misidentification of peak frequencies (Haller et al., 2018). To investigate this 155 

issue, we examined the spatial distribution across the cortex of the estimated slope and 156 

offset parameters of the arrhythmic component (see method section), using LME 157 

modelling. As illustrated in figures 2A and 2B, we found significant scores for Y (slope: t 158 

= -4.3 , p << 0.001; offset: t = 2.8, p < 0.01) , Y:Z (slope: t = 6.9, p << 0.001; offset: t = 159 

13.2, p << 0.001), and X:Y (slope: t = -6.8, p << 0.001; offset: t = -5.8, p << 0.001) 160 

directions. These results indicate a significant decrease of the 1/f slope, and an increase 161 

of its offset along the posterior-to-anterior direction. The observed similarity between 162 

spatial patterns of 1/f parameters and PF, brings up the question to what extent these 163 

parameters could contribute to the observed PF gradient. To assess this, we tested to 164 

what extent the spatial change of PF is independent of spatial changes of 1/f slope and 165 

offset. We thus used LMEM and regressed out the linear contribution of 1/f slope and 166 

offset to PF. After doing this we again used LMEM to model the residual PF values as a 167 

function of spatial coordinates. The results confirmed a significant posterior-anterior 168 

gradient of residual PF values (t-values: Y = -8.3, Z = -4.3, Y:Z = -16; all p << 0.001, 169 

Figures 2C and 2D). We therefore conclude that the posterior-anterior PF gradient is 170 

largely independent of the observed gradients of slope and offset of the 1/f component. 171 

 172 

======== Figure 2 about here ======== 173 

 174 
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Frequency Gradients and Cortical Hierarchies 175 

The visual system’s cortical hierarchy largely progresses along the posterior-anterior 176 

direction, and starts in early visual areas in occipital cortex and progresses along the 177 

dorsal and ventral streams to anterior areas. Since this progression of cortical 178 

hierarchical level coincides with the observed gradient in PF, we tested the hypothesis 179 

that the PF gradient is more closely related to cortical hierarchical level than to spatial 180 

location. We used cortical thickness (CT) as a proxy for the quantification of the 181 

hierarchical level of brain areas (Wagstyl et al., 2015). 182 

We used Freesurfer to estimate CT as the shortest distance between corresponding 183 

vertices on the white matter surface and the pial surface. To obtain a thickness value for 184 

each cortical region, the individual thickness scores were averaged across vertices of 185 

that region. Robust correlation demonstrated a significant change of mean CT along the 186 

posterior-anterior axis (r = 0.36, p<<0.001, Figure 3A top panel). Figure 3A, the bottom 187 

panel depicts CT values averaged across participants and mapped on the cortex. LMEM 188 

of CT as a function of ROI coordinates showed a significant and progressive increase of 189 

CT from posterior to anterior regions (t-values: Y = 49.73, Z = -29.26, Y:Z = 16.23; all p 190 

<< 0.001). Having established the significant posterior-anterior increase of CT, we then 191 

tested for a significant relationship between CT and PF. Robust correlation (r = -0.14, p 192 

< 0.001, Figure 3B) and LMEM (t = -13.8, p << 0.001) showed a significant negative 193 

relationship between PF and CT. Next, we asked the question if this relationship is still 194 

significant after removing from both, PF and CT, the effect of ROI coordinates (x,y,z). 195 

This was done by modeling the dependencies of PF and CT respectively on ROI 196 

coordinates and computing the residuals PFres and CTres. These residuals describe 197 

individual spatial variations of PF and CT that cannot be explained by a linear model of 198 

their spatial location. PFres and CTres are still significantly related (LMEM: t = -6.9, p << 199 

0.001, Figure 3C) indicating that they are more directly related to each other than can be 200 
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explained by their individual dependency on location (x,y,z). This result suggests that 201 

peak frequency is related to structural features that likely represent cortical hierarchies. 202 

 203 

======== Figure 3 about here ======== 204 

 205 

We further tested the relationship between PF gradients and cortical hierarchies along 206 

the anatomically defined and well-established visual hierarchy. Following an approach 207 

by Michalareas et al. (Michalareas et al., 2016), we selected seven cortical regions 208 

showing strong homology to macaques visual areas (V1, V2, V4, MT, DP, TEO, 7A) 209 

using the cortical parcellation of Glasser et al. (Glasser et al., 2016). We modelled spatial 210 

changes of PF along the visual hierarchy, using LMEM (see method section for details), 211 

and found a significant decrease of PF (t = -10.1, p << 0.001) and a significant increase 212 

of CT (t = 54.9, p << 0.001, Figure 4A). 213 

Previous studies have shown that cortical regions can be contextualized in terms of eight 214 

canonical resting-state networks (RSNs) comprising three sensory (‘VIS’: visual, ‘SOM’: 215 

somatosensory, and ‘AUD’: auditory) and five higher-order association networks (‘FPN’: 216 

frontoparietal, ‘CON’: cingulo-opercular, ‘DMN’: default mode, ‘DAN’: dorsal attention, 217 

and ‘VAN’: ventral attention; Figure 4B)(Ito et al., 2017). Markers of hierarchical 218 

microcircuit specialization such as the ratio of T1-weighted to T2-weighted MRI maps 219 

(T1w/T2w) are significantly different between sensory and association areas (Burt et al., 220 

2018; Demirtaş et al., 2019). Here, we extended this approach to our measures to test 221 

for differences in PF/CT between sensory and association networks. Following Ito et al. 222 

(Ito et al., 2017) we assigned all areas to eight networks. We then averaged PF and CT 223 

scores within ROIs of each network, and applied LMEM to test the effect of the network 224 

on PF and CT organization. For LMEM we defined the fixed effect as a categorical 225 

variable comprising eight labels corresponding to RSNs. Next, we applied ANOVA on 226 

LMEM fit and found a significant effect of RSNs for CT and PF (PF: F-stats = 264, p << 227 
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0.001; CT: F-stats = 746, p << 0.001). To test whether PF and CT variation follows the 228 

sensory-association axis, we used LMEM, with networks designated to ‘sensory’ and 229 

‘association’ categories (PF: t = -11.1, p << 0.001; CT: t = 14.7, p << 0.001, Figure 4C). 230 

Similar to the significant difference of T1w/T2w between sensory and association 231 

networks we also see significant differences in PF and CT. As expected PF is higher in 232 

sensory areas compared to association areas while an opposite effect is observed for 233 

CT. 234 

 235 

======== Figure 4 about here ======== 236 

 237 

Characterizing Band-specific PF and Spatial Gradients 238 

In the results presented so far, we defined the PF per ROI, as the most prominent band-239 

limited peak in the spectrum. Multiple ROIs, however, showed more than a single spectral 240 

peak. Figure 5 shows a histogram (across ROIs and participants) of all detected spectral 241 

peaks. This histogram of peak frequencies clearly delineates the classical frequency 242 

bands that are used in the EEG and MEG literature (4–7.5 (theta), 8.5–13 (alpha), 15–243 

25 (low beta) 27.5–34 (high beta)). Defining the theta, alpha and beta frequency bands 244 

based on the histogram, we determined for each ROI and participant the band-specific 245 

PF (BS-PF). Next, we modelled the spatial distribution of BS-PFs across the cortex, 246 

similar to the analysis shown above. Analogous to the PF analysis, we used LMEM to 247 

model BS-PF as a function of the ROIs’ coordinates. We found a significant decrease of 248 

alpha peak frequency (Y, t = -10, p << .0.001; = Y:Z, t = 3.2, p = 0.001, supplementary 249 

figures S1A and S1B) along the posterior-to-anterior direction, whereas theta (Y, t = 7.4, 250 

p << .0.001; Z, t = -7, p << 0.001; Y:Z, t = -8, p << 0.001, supplementary figures S2A and 251 

S3B) and beta (Y, t = 11.5, p << 0.001; Z, t = 5.6, p << 0.001; Y:Z, t = 20, p << 0.001, 252 

supplementary figures S3A and S3B) frequencies significantly increased along the same 253 

direction. 254 
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 255 

======== Figure 5 about here ======== 256 

 257 

Discussion  258 

This study is the first comprehensive demonstration of frequency gradients across the 259 

human cortex using a large set of resting-state MEG recordings. We found that the 260 

strongest peak frequency in a brain area decreases significantly, gradually and robustly 261 

along the posterior-anterior axis, following the global cortical hierarchy from early sensory 262 

to higher order areas. This finding establishes a frequency gradient of resting-state brain 263 

rhythms that complements previous anatomical studies reporting a posterior-anterior 264 

gradient in microscale and macroscale anatomical features of animal and human cortex 265 

(Huntenburg et al., 2018). This gradient is consistent with a recent invasive study 266 

showing a systematic decrease of peak frequency from posterior to anterior brain areas 267 

in ECoG recordings of epilepsy patients (Zhang et al., 2018). Chiang et al. suggested a 268 

similar frequency decrease albeit only based on 19-electrode EEG (Chiang et al., 2011). 269 

A differentiating feature of our approach was that we used a large number of healthy 270 

participants (N = 187), reconstructed cortical activity from noninvasive MEG recordings, 271 

and considered further anatomical features (i.e. cortical thickness). Notably, estimating 272 

the power spectrum in finely parcellated ROIs allowed us an accurate and robust 273 

identification of peak frequencies and characterization of their spatial gradients across 274 

the entire cortical surface. Importantly, we focus on peaks in the power spectrum that 275 

indicate the presence of rhythmicity in the neuronal activity, instead of focusing on 276 

predefined frequency bands where these rhythms might be absent. As slope and offset 277 

of frequency gradient could dramatically vary across participants, averaging across 278 

participants may not yield a reliable representation of PF gradient. Instead, we used 279 

mixed effect modelling of PF along the cortical hierarchies, where the between-280 

participant variability was taken into account as a random effect. Our approach 281 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2019. ; https://doi.org/10.1101/857656doi: bioRxiv preprint 

https://doi.org/10.1101/857656
http://creativecommons.org/licenses/by/4.0/


 12 

additionally revealed that cortical peak frequencies decrease systematically along the 282 

inferior-superior axis. As seen in Figure 1 this seems to result from the fact that higher-283 

order frontal areas with lower PF have higher z-coordinates compared to the early 284 

sensory areas with higher PF. 285 

Results of our analyses showed that, just as peak frequency significantly decreased 286 

along the posterior-anterior axis, CT significantly increased in the same direction, which 287 

resulted in a significant anticorrelation between PF and CT. The observed correlation 288 

holds after removing the effect of spatial location (x,y,z). This seems to indicate that PF 289 

and CT are more closely related to each other than can be explained by spatial location 290 

alone. Since cortical hierarchies do not strictly follow a single linear trajectory in space 291 

(e.g. posterior-anterior) our results are consistent with the idea that both PF and CT, 292 

follow cortical hierarchies. Indeed, such local spatial gradients have been reported in 293 

multiple features of cortex during auditory perception (Jasmin et al., 2019) and visual 294 

processing streams (Himberger et al., 2018). From a broader view, local gradients could 295 

mirror complex organization of gradients in human cortex and support the approach of 296 

global gradient along the sensory to transmodal areas (Huntenburg et al., 2018). On the 297 

other hand, posterior-anterior gradient of PF was significant after subtracting CT scores 298 

from PF values. This suggests a partial independence of both measures. Since PF is a 299 

measure derived from brain activity the reported gradient could be modulated 300 

dynamically depending on cognitive state or task demands. Further studies are needed 301 

to investigate this in more detail.  302 

We further addressed the question if our results can be explained by the linear 303 

superposition of activity from an occipital alpha source and a frontal theta source. Along 304 

the posterior-anterior axis differential superposition of both sources could lead to a 305 

frequency gradient, due to imperfect unmixing of the signals. However, our analysis 306 

revealed that a significant frequency gradient is already evident within 1.5cm of V1 where 307 

the effect of a frontal theta source (which has on average a lower power compared to 308 
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occipital alpha) is negligible. Additional supporting evidence can be drawn from 309 

intracranial studies, where the data is directly recorded from cortex. Zhang et al. (Zhang 310 

et al., 2018) have shown that oscillations generally propagate in a posterior-to-anterior 311 

direction because they are coordinated by an overall decrease in intrinsic oscillation 312 

frequency from posterior to anterior regions (see figures S6 and 7 of (Zhang et al., 2018)). 313 

Overall, this indicates the existence of a gradual decrease of PF along the posterior-314 

anterior axis. 315 

What is the potential functional role of this frequency gradient? Zhang et al. demonstrated 316 

the existence of travelling waves along the frequency gradient (Zhang et al., 2018). 317 

Interestingly, they found that local frequencies along the posterior-anterior direction are 318 

positively correlated with waves’ propagation speed and direction consistent with a 319 

proposed model of travelling waves based on weakly coupled oscillators (WCO) 320 

(Ermentrout and Kleinfeld, 2001). These travelling waves might serve to drive neural 321 

communication along the cortical hierarchy possibly through nested gamma oscillations 322 

(Bahramisharif et al., 2013). In addition, travelling waves have been associated with 323 

memory consolidation and learning (Muller et al., 2018). It is of interest to note that 324 

frequency gradients have been reported previously in the entorhinal cortex (Giocomo et 325 

al., 2011; Giocomo and Hasselmo, 2009). Here, a frequency decrease and 326 

corresponding travelling waves have been observed in the dorsal-ventral direction and 327 

have been related to a representational gradient of spatial scales from coarse to fine 328 

(Muller et al., 2018). Indeed, converging evidence across recording methods, species 329 

and cortical domains suggests that representations become more ‘integrated’ with 330 

decreasing ‘resonance’ frequency of the underlying neuronal population. A prime 331 

example is the auditory cortex where response latencies and complexity of processing 332 

increase along the posterior-anterior axis (Jasmin et al., 2019). This is also mirrored by 333 

an increase in cortical thickness and increased ratio of feedback to feedforward 334 

connections along this axis. Similar observations have been made across more widely 335 
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distributed cortical areas where timescales of intrinsic fluctuations in spiking activity 336 

increase from posterior to anterior brain areas (Murray et al., 2014). Not surprisingly, 337 

these time scales are largely determined by the time constants of synaptic transmission 338 

(Duarte et al., 2017). But interestingly, in a computational model of activity in macaque 339 

cortex using anatomical connectivity a gradient of time scales also emerges with short, 340 

transient responses to input in sensory areas and slower, sustained responses in higher-341 

order areas (Chaudhuri et al., 2015) (see also (Kiebel et al., 2008)). 342 

Our detailed analysis was based on the cortical ROIs’ spectral peak with strongest power 343 

(PF). However, we identified all peaks in the power spectrum of each ROI. Since spectral 344 

peaks indicate the presence of brain rhythms, this data represents a comprehensive 345 

overview of these rhythms across the cortex. The histogram of spectral peaks across 346 

ROIs and participants provided a data-driven definition of frequency bands. Interestingly, 347 

the histogram delineates the classical frequency bands with histogram peaks centering 348 

at 4–7.5 (theta), 8.5–13 (alpha), 15–25 (low-beta) 27.5–34 (high-beta) (see figure 5). This 349 

is the first MEG study to our knowledge to identify frequency bands from peak 350 

frequencies in a large data set (see (Groppe et al., 2013) for a similar approach in a 351 

smaller sample of ECoG data). 352 

We further analyzed these specific frequency bands for gradients and found significant 353 

posterior-anterior frequency changes in the theta, alpha and beta frequency band. 354 

Results in the alpha band mirrored the previous results based on the overall strongest 355 

peak frequency. Interestingly, and in contrast to the alpha band, peak frequencies 356 

increased along the posterior-anterior direction in the theta and beta frequency band. In 357 

the model used by Zhang et al. this would correspond to travelling waves from anterior 358 

to posterior brain areas (Zhang et al., 2018) that might represent frequency channels for 359 

top-down effects (Michalareas et al., 2016; Wang, 2010). 360 

In summary, our findings show that peak frequencies of cortical areas form a spatial 361 

gradient, which follows the global posterior-anterior hierarchy as well as local anatomical 362 
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hierarchies. Previous research also points to spatial gradients in multiple features of the 363 

human and animal cortex. Further research might explore implications of frequency 364 

gradients in different cognitive states, disease, and aging. 365 

Materials and Methods 366 

Experimental Design 367 

In this study we used the MOUS dataset (J.-M. Schoffelen et al., 2019; J. M. Schoffelen 368 

et al., 2019) which, among others, contains five minutes of resting state MEG recordings 369 

collected from 197 healthy participants (age: mean = 22, range = 18–32, gender: 94 370 

females). The participants were instructed to think of nothing specific while focusing on 371 

the fixation cross at the center of the screen. Data was collected using a CTF 275-372 

channel radial gradiometer system, and sampled at 1200 Hz (0-300 Hz bandpass), and 373 

additional 29 reference channels for noise cancellation purposes. 374 

The anatomical images of the head were obtained with a SIEMENS Trio 3T scanner 375 

using a T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) pulse 376 

sequence, with the following parameters: volume TR = 2300 ms, TE = 3.03 ms, 8 degree 377 

flip-angle, 1 slab, slice-matrix size = 256 × 256, slice thickness = 1 mm, field of view = 378 

256 mm, isotropic voxel-size = 1.0 × 1.0 × 1.0 mm. 379 

After removing 10 participants lacking sufficient data quality, we used 187 participants 380 

for our analyses. 381 

MEG Preprocessing 382 

All analyses were performed using custom-written Matlab (MathWorks, Inc, Natick, 383 

Massachusetts, USA) scripts and the Fieldtrip package (Oostenveld et al., 2011). 384 

Gradiometer signals were converted to synthetic third-order gradients, high-pass filtered 385 

at 0.5 Hz, and low-pass filtered at 140 Hz (Butterworth, 4th order). Line noise was 386 

rejected using a DFT filter at 50 and 100 Hz. After downsampling the data to 300 Hz, 387 

outlier channels/time segments were rejected using visual inspection of their time course, 388 
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spectrum and topography. Next, we used independent component analysis (ICA) to 389 

identify and remove signal components related to eye blinks/movements and cardiac 390 

activity. To this end, we performed ICA, using the infomax algorithm (Bell and Sejnowski, 391 

1995), on a 30-dimensional signal subspace, for computational efficiency. ICs related to 392 

artifacts were identified based on their spatial topography and signal time course, and 393 

the identified spatial topographies were projected out of the sensor data. This resulted in 394 

3.7 components on average to be rejected (range 1–6). 395 

MRI Analysis 396 

From T1-weighted anatomical images of participants, brain/skull boundary and cortical 397 

surfaces (white matter and pial matter) were generated using SPM (Penny et al., 2011) 398 

and Freesurfer (version 5.1)(http://surfer.nmr.mgh.harvard.edu). The cortical surface 399 

was coregistered to a template with a surface-based coregistration approach (Caret 400 

software, http://brainvis.wustl.edu/wiki/index.php/Caret:Download), and downsampled to 401 

8,196 vertices (MNE software, martinos.org/mne/stable/index.html). Using the Caret 402 

software, the mid-thickness mesh was generated to be average of the white and pial 403 

matter surfaces. The mid-thickness surface was parceled into 384 ROIs (192 per 404 

hemisphere) according to Schoffelen et al. (Schoffelen et al., 2017).  405 

The centroid of each parcel was specified as the vertex located at minimum geodesic 406 

distance from all other vertices of that parcel. 407 

Source Reconstruction 408 

Source reconstruction was performed using the linearly constrained minimum variance 409 

beamformer approach (Van Veen et al., 1997), where the lambda regularization 410 

parameter was set to 5%. This approach estimates a spatial filter for each location of a 411 

set of defined dipole locations (here: each of the 7,548 non-midline vertices of the mid-412 

thickness cortical mesh), based on the forward model of that location and the sensor 413 

covariance matrix. The forward model was computed using the ‘singleshell’ method, with 414 
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the brain/skull boundary as volume conduction model of the head. The sensor covariance 415 

matrix was computed from two-second trials and averaged across trials. 416 

ROI Spectrum 417 

For each ROI, we concatenated the source time courses of the vertices belonging to that 418 

ROI, and reduced the dimensionality, using a singular value decomposition. About 15 419 

components per ROI were retained, explaining at least 95% of the initial variance. 420 

Component time courses were segmented to two-second epochs. Power spectra were 421 

computed using a multitapered Fast Fourier transform, using discrete prolate spheroidal 422 

sequences (dpss) as windowing function, with 2 Hz spectral smoothing. To obtain a 423 

single spectrum for each ROI (ROI spectrum), we pooled spectra of epochs across 424 

components and computed the 10% trimmed mean across them. Averaging after leaving 425 

out 10% of data from left and right tails of the spectra distribution offers a more robust 426 

estimate. 427 

Peak Frequency (PF) Detection 428 

We estimated 1/f component of spectrum between 3 and 45 Hz using the FOOOF 429 

algorithm (Haller et al., 2018). The algorithm fits a linear approximation of 1/f in log-log 430 

spectrum and computes the corresponding slope and offset parameters. Next, we 431 

subtracted the estimated 1/f component from the spectrum to obtain a 1/f corrected 432 

spectrum per ROI. To identify spectral peaks, we used the MATLAB “findpeaks” function. 433 

We extracted all peaks but most of the analysis is based on the peak frequency with the 434 

strongest power in the original spectrum that includes the 1/f background. 435 

Cortical Thickness (CT) 436 

We used the Freesurfer package to obtain estimates of CT scores. The CT value of a 437 

vertex was computed as the distance between corresponding white matter and pial 438 

surface vertices. To obtain thickness values of a ROI, we averaged CT across the 439 

vertices of that ROI. 440 
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Statistical Analysis 441 

As described above, we computed PF values for 384 ROIs (197 ROIs per hemisphere) 442 

of 187 participants. In our statistical analyses, we aimed to investigate the 443 

spatial/hierarchical organization of PF across the human cortex, but also control for the 444 

between-participant variability. To meet this purpose, we used linear mixed effect 445 

modeling (LMEM). The distinctive feature of LMEMs is that a response variable is 446 

modeled as a linear combination of 1) population characteristics that are assumed to be 447 

shared by all individuals (fixed effects), and 2) participant-specific effects, that are unique 448 

to a particular individual in the population (random effects). 449 

To investigate the spatial organization of PFs across the cortex, we specified the PF as 450 

response variable and the coordinates of ROI centroids (X: left to right, Y: posterior to 451 

anterior, and Z: inferior to superior) plus their two-way interactions (XY, XZ, YX) as fixed 452 

effects. The inclusion of two-way interaction as predictors allows the model to adapt well 453 

to the cortex geometry. As our random structure, we nested the PFs within participants 454 

as well as within hemispheres to account for the variability between participants and 455 

hemispheres. Equation 1 shows the specified LMEM 456 

       (1) 457 

where the response variable PF for the participant  is related to baseline level via (458 

), to ROI centroids (fixed effects) via ( ), and to error ( ). To 459 

address the variation of predictors for participant , we specified both random intercepts 460 

( ) and slopes ( ) for random effects. For the sake of model simplicity, no 461 

random effect was specified for two-way interactions. We estimated the fixed effect 462 

predictions for a ROI located at centroid coordinates of ( ) as follows 463 

                                   (2) 464 

PFj = β0 + S0 j + (β1 + S1 j )X + (β2 + S2 j )Y + (β3 + S3 j )Z + β4XY + β5XZ + β6YZ + ej

j β0

βi ,i∈ 1,2,...,6{ } ej ∼ N (0,σ
2 )

j

S0 j Sij ,i∈ 1,2,3{ }

x, y, z

PFxyz = β0 + β1x + β2 y + β3z + β4xy + β5xz + β6 yz
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In our analysis we included only significant predictors for equation 2. We used an 465 

analogous approach, to test the significance of spatial changes of CT and 1/f parameters 466 

across the cortex. 467 

To examine if the spatial distribution of PF across the cortex is independent of the spatial 468 

changes of 1/f parameters (slope and offset), we fitted a LMEM, where we set the PF as 469 

a response variable, the 1/f slope and offset scores as fixed effects, and the between- 470 

participant and hemisphere as random effects. Prior to LMEM, we standardized the PF, 471 

1/f slope and offset scores for each participant by subtracting mean and dividing by 472 

standard deviation (z-score). Next, we estimated the coefficients for the fixed effects (1/f 473 

parameters) and regressed them out to obtain the residual PF (PFres) scores, which 474 

reflect a subspace of PF that cannot be explained by 1/f parameters. We again modeled 475 

the obtained PFres scores as a function of ROI centroids as described above (see 476 

equation 1).  477 

To obtain the correlation between PF and CT scores, we initially computed 10% trimmed 478 

mean across participants for each ROI and performed the robust correlation (Pernet et 479 

al., 2012) between the trimmed mean values. To address the between-participant 480 

variability, we first standardized PF and CT scores (as described above), and conducted 481 

LMEM, where we specified the PF as response variable and the CT as a fixed effect 482 

predictor. The random effect was set according to equation 1. Moreover, we aimed to 483 

obtain a correlation value between PF and CT that is independent of spatial location. We 484 

first applied LMEM separately for PF and CT, modeling each as a function of ROI 485 

coordinates (see equation 1), and computed the corresponding residuals (PFres and 486 

CTres) for each ROI and participant. Subsequently, we applied LMEM between PFres 487 

and CTres values (analogous to PF and CT). 488 

To test for the significance of PF changes along the established visual hierarchy 489 

comprising seven regions (V1, V2, V4, MT, DP, TEO, 7A), chosen according to 490 

Michalareas et al. (Michalareas et al., 2016), we used an LMEM. To impose the 491 
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hierarchical order of those seven ROIs in our LMEM, we defined a seven-element 492 

hierarchy vector for each participant and hemisphere (V= [1, 2, 3, …, 7]), whose elements 493 

refer to the hierarchical level of the corresponding ROI. The random effect was specified 494 

as in equation 1. PF values were standardized before LMEM analysis. This model tests 495 

the significance of PF changes along the specified hierarchy. An analogous analysis was 496 

applied to CT scores of those seven ROIs. 497 

To statistically assess the effect of eight resting-state networks on PFs, we used a 498 

recently released, multi-modal parcellation of the human cortex (Glasser et al., 2016), 499 

identified the PF for each cortical parcel of a participant, averaged across parcels within 500 

a RSN for that participant according to Ito et al. (Ito et al., 2017), and obtained eight PF 501 

values corresponding to eight RSNs for each hemisphere and participant. We specified 502 

the PF as a response variable, and a categorical variable comprising eight network 503 

categories (‘VIS’, ‘AUD’, ‘SOM’, ‘DAN’, ‘FPN’, ‘VAN’, ‘DMN’, ‘CON’) as a fixed effect, for 504 

LMEM analysis. The random structure was defined as in equation 1. Next, we applied 505 

ANOVA on LMEM fit and computed F-stat for the fixed effect. A similar analysis was 506 

performed to test the effect of RSNs on CT scores. 507 

All statistical analyses were conducted in Matlab version 9.5 (R2018b). We used the 508 

“fitlme” function to perform the LMEM analysis.  509 

Data availability: All data used for this study are publicly available 510 

(https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?1).  511 
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 Figures 640 

Figure 1. Spatial gradient of peak frequency (PF) across human cortex follows the posterior-641 

anterior hierarchy. (A) Estimating the power spectrum for each cortical region, and identifying peak 642 

frequencies after fitting and subtracting the arrhythmic 1/f component. (B) Top panel: correlation between 643 

trimmed mean PF (187 participants, 384 ROIs) and ROI’s location along the y-axis (posterior to anterior) 644 

(r = -0.84, p << 0.001). Points are colored according to their Z coordinates. Bottom panel: distribution of 645 

trimmed mean PFs across 384 cortical ROIs. (C) Top panel: t-values obtained from linear mixed effect 646 

modeling of PF as a function of the coordinates of the ROI centroids. Bottom panel: cortical map of the 647 

corresponding fixed effect parameters (see equation 2 for details). 648 

Figure 2. The spatial gradient of 1/f components (offset and slope) across human cortex. (A) Top 649 

panel: t-values obtained from linear mixed effect modeling of 1/f offset as a function of the coordinates of 650 

the ROI centroids. Bottom panel: cortical map of the corresponding fixed effects. (B) LMEM was applied 651 

on 1/f slope, analogous to the 1/f offset. The slope and offset of 1/f component were estimated for each 652 

ROI and participant, using the FOOOF package (see methods section for further details). (C) Correlation 653 

between trimmed mean PFres (187 participants, 384 ROIs) and ROI’s location along the y-axis (posterior 654 

to anterior) (r = -0.63, p << 0.001). The residual PF scores (PFres) were obtained after regressing out the 655 

contribution of 1/f offset and slope values (fixed effect) from PF, using LMEM. (D) t-values obtained from 656 

linear mixed effect modeling of PF as a function of the coordinates of the ROI centroids (LMEM; t-values: 657 

Y = -8.3, Z = -4.3, Y:Z = -16; all p < 0.001). The cortical maps show the corresponding fixed effects. 658 

Figure 3. Spatial gradient of cortical thickness and its association with corresponding PF values. 659 

(A) Top panel: correlation between mean cortical thickness and ROI’s location along the y-axis (posterior 660 

to anterior) (r = -0.84, p << 0.001). Bottom panel: cortical map of trimmed mean PF across 384 cortical 661 

ROIs. (B) Correlation between trimmed mean PF (187 participants, 384 ROIs) and trimmed mean CT. 662 

(posterior to anterior) (r = -0.84, p << 0.001). (C) Correlation between the trimmed mean PF and the 663 

trimmed mean CT, after regressing out the effect of ROI coordinates. 664 
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Figure 4. PF and CT variation along the cortex follows anatomical hierarchies. (A) Relationship 665 

between the PF/CT gradients and the cortical hierarchies along the anatomically defined visual hierarchy 666 

comprising seven regions (V1, V2, V4, MT, DP, TEO, 7A) (PF: t = -10.1, p << 0.001; CT: t = 54.9, p << 667 

0.001). (B) Cortical areas were assigned to eight functional resting-state networks comprising three 668 

sensory (‘VIS’, visual; ‘AUD’, auditory; and ‘SOM’, somatomotor) and five association (‘DAN’, dorsal 669 

attention; ‘FPN’, frontoparietal; ‘VAN’, ventral attention; ‘DMN’, default mode; and ‘CON’, cingulo-670 

opercular) networks. (C) PF/CT values per RSN, averaged across corresponding regions (10% trimmed-671 

mean across participants). The significant effect of RSNs for CT and PF variation along the cortex specified 672 

by application of ANOVA on corresponding LMEM (PF: F-stats = 264, p << 0.001; CT: F-stats = 746, p << 673 

0.001). PF values were significantly lower in association RSNs (except for DAN) than in sensory RSNs (t 674 

= -11.1, p << 0.001), whereas CT values were significantly higher in association RSNs than in sensory 675 

RSNs (t = 14.1, p<<0.001). Error bars indicate the SD across areas within an RSN. 676 

Figure 5. Histogram of spectral peaks. Histogram of all detected spectral peaks (across ROIs and 677 

participants) delineates the classical frequency bands used in the EEG and MEG literature (theta 3.5–7.5 678 

Hz, alpha 8.5–13 Hz, low-beta 15–25 Hz and high-beta 27.5–34). 679 
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SUPPLEMENTAL INFORMATION 

 

Figure S1. A spatial gradient of alpha-band PFs across human cortex follows the posterior-anterior 

direction. (A) Top panel: correlation between the trimmed mean of alpha-band PF (187 participants, 384 

ROIs) and the ROI’s location along the y-axis (posterior to anterior). Bottom panel: distribution of trimmed 

mean alpha-specific PFs across 384 cortical ROIs. (B) Top panel: t-values obtained from linear mixed effect 

modeling of alpha-specific PF as a function of the coordinates of the ROI centroids. Bottom panel: cortical 

map of the corresponding fixed effect parameters (see equation 2 for details). 
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Figure S2. A spatial gradient of theta-band PFs across human cortex largely follows the anterior-

posterior direction. 

 

 

Figure S3. A spatial gradient of low-beta band PFs across human cortex follows the anterior-posterior 

direction. 
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