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Abstract

The human cortex is characterized by local morphological features such as cortical
thickness, myelin content and gene expression that change along the posterior-anterior
axis. We investigated if these structural gradients are associated with a similar gradient
in a prominent feature of brain activity - namely the frequency of brain oscillations. In
resting-state MEG recordings from healthy participants (N=187), we found that the
strongest peak frequency in a brain area decreases significantly, gradually and robustly
along the posterior-anterior axis following the global hierarchy from early sensory to
higher-order areas. This spatial gradient of peak frequency was significantly
anticorrelated with the cortical thickness of corresponding areas representing a proxy of
the cortical hierarchical level. This result indicates that the intrinsic ‘resonance’ frequency
decreases systematically from early sensory to higher-order areas and establishes a new
structure-function relationship pertaining to brain oscillations as a core organizational

principle that may underlie hierarchical specialization in the brain.

Introduction

It is well established that the brain’s cortical areas differ in their cyto- and
myeloarchitectonic structure, local and long range anatomical connectivity, activity and,
by consequence, their function (Glasser et al., 2016; Huntenburg et al., 2017).
Interestingly, many structural features that distinguish individual brain areas change
gradually in an orderly manner across the cortex, leading to spatial gradients of features.
The most prominent and best established gradients are evident along the posterior-
anterior axis (Eickhoff et al., 2018; Felleman and Van Essen, 1991; Huntenburg et al.,
2018). For instance, neuron density decreases and neuronal connectivity increases from
posterior to anterior brain areas. These differences have been attributed to differences

in neurogenesis for posterior compared to anterior brain areas (Hill et al., 2010;
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Huntenburg et al., 2018). A similar posterior-anterior gradient has been observed for
myelin content, cortical thickness, and gene expression (Burt et al., 2018). Next to the
posterior-anterior gradient, other global spatial organization principles have been
proposed to explain the variation of microstructural features across the cortex. For
instance, Huntenburg et al. suggest a sensorimotor to transmodal gradient as an
important intrinsic organizing dimension of human cortex (Huntenburg et al., 2018)
reflecting gradual changes in structural features from functionally unimodal (dedicated
sensory or motor) areas to higher order, transmodal areas.

In addition to structural gradients as an organizing principle reflecting global cortical
organization, it is well acknowledged that cortical areas are structurally connected into
larger networks, which often display a hierarchical organization. Cortical hierarchies are
typically established based on the degree of microstructural differentiation of the
connected areas, and on the classification of the anatomical connections as feedforward
or feedback using histological tract-tracing. Early sensory areas with predominantly
feedforward outgoing connections are placed at the bottom of the hierarchy and higher
order association areas with mostly feedback outgoing connections are placed at the top
of the hierarchy (Felleman and Van Essen, 1991; Markov et al., 2014). A noninvasive,
but indirect index of these hierarchies is cortical thickness, a macroscopic feature of the
cortex, which can be estimated from MRI scans. It has been shown that cortical thickness
mirrors global hierarchical organization of the cortex as well as local hierarchies in visual,
auditory and somatosensory areas (Jasmin et al., 2019; Wagstyl et al., 2015), and,
therefore, could be used as a basis for understanding hierarchy-gradient relationships in
the cortex.

The presence of these anatomical gradients raises the question to what extent they are
reflected in features of brain activity and brain function. Indeed, it has been shown that
cortical areas follow a hierarchical ordering in their timescales of intrinsic fluctuations as

for example measured in the autocorrelation of spiking activity (Murray et al., 2014).
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Sensory areas show faster fluctuations while frontal areas show slower fluctuations.
Shorter timescales in sensory areas enables them to reflect dynamic changes in the
environment, whereas the longer timescales in prefrontal areas allows for integration of
information. Particularly, this gradient of ‘temporal receptive windows’ has been
demonstrated in visual (Himberger et al., 2018) and auditory processing (Jasmin et al.,
2019) and could be related to the frequency of spontaneous brain oscillations.
Oscillations are a prominent feature of brain activity, and have been suggested to play a
central role in coordinating neuronal activity (Fries, 2005; Wang, 2010). Similar to many
anatomical features described above, the spectral activity patterns seem to be
characteristic for each brain area (Keitel and Gross, 2016). This is consistent with the
view that the individual anatomical structure of a brain area shapes its rhythmic neuronal
activity, which led us to hypothesize the existence of a posterior-anterior gradient in the
frequency of spontaneous brain rhythms.

Spontaneous rhythms have been studied in the past but typically by focusing on the
power in specific frequency bands (Hillebrand et al., 2016; Keitel and Gross, 2016;
Mellem et al., 2017). Overall, these MEG studies revealed strongest cortical generators
for the dominant alpha rhythm (7-13 Hz) in occipito-parietal brain areas. The beta band
(15-30 Hz) shows strongest activity in sensorimotor areas while delta (1-3 Hz) and theta
(3-7 Hz) bands are associated with activity in wide-spread areas including frontal cortex.
Here, we adopt a different approach that is based on sophisticated identification of
spectral peaks in the power spectra of source-localized resting-state MEG data and
included modelling of the 1/f spectral background (Haller et al., 2018). This approach
offers two distinct advantages. First, focusing on spectral peaks ensures that results are
indeed based on brain oscillations. This is not necessarily the case when using the power
in a pre-defined frequency band or using band-pass filtered data. Second, by explicitly

modelling the 1/f spectral background across the entire cortex we can dissociate
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95  contributions due to aperiodic neuronal background activity from those originating from
96  oscillatory activity.

97  We used this approach to specifically test the hypothesis of a posterior-anterior gradient
98 in the frequency of spontaneous brain rhythms. We identified the frequencies of the
99 dominant brain rhythm across the cortex in source-localized resting-state MEG data of
100 187 individuals.

101 As we describe below, we found a spatial gradient of peak frequency across the cortex

102 following the cortical hierarchy.

103 Results

104  Spatial Gradients of the Dominant Peak Frequency of Oscillations

105 We analyzed publicly available resting-state MEG data from 187 participants (J.-M.
106  Schoffelen et al., 2019; J. M. Schoffelen et al., 2019), reconstructing cortical activity time
107 courses for 384 regions-of-interest (ROIs) on the cortical surface. This cortical
108  parcellation (introduced in (Schoffelen et al., 2017)) was constructed from the Conte69
109  atlas (Van Essen et al., 2012) which divides the cortical surface according to the division
110  introduced by Brodmann (Brodmann, 1909). From the estimated activity time courses,
111 we obtained the power spectrum for each ROI and individual, and identified spectral
112 peaks after fitting and subtracting the arrhythmic 1/f component (see Figure 1A and
113 method section). Subsequently, we identified for each participant and ROI the spectral
114  peak with strongest amplitude in the original power spectrum (peak frequency (PF)). We
115 used PF to test our hypothesis of a posterior-anterior frequency gradient. Figure 1B, top
116  panel, shows the distribution of PF as a function of the ROI’s location along the y-axis of
117  the coordinate system (posterior to anterior). Each point represents the trimmed mean
118  across participants of the PF for one ROI. A clear gradual decrease of PF from posterior
119  to anterior is evident and supported by a significant robust correlation (Robust Correlation

120  Toolbox) (Pernet et al., 2012) between the PF and the ROI's y-coordinate (r = -0.84, p
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121 << 0.001). This frequency gradient is also evident in the cortical maps that show the
122 trimmed mean of the PF across participants for the 384 ROls (Figure 1B, bottom panel).
123 Next, we used linear mixed effect modelling (LMEM) for statistics, in order to model the
124  spatial gradients of PF, while accounting for interindividual variability. We used PF as the
125 response variable, and the coordinates of the ROI centroids (X: left to right, Y: posterior
126  to anterior, and Z: inferior to superior) plus their two-way interactions set as fixed effects.
127 We modelled the individual slope and offset as random effects to account for variability
128  between participants. The fixed effect parameters capture mean-variation in the PF that
129  is shared by all individuals (see Methods section), while the participant-unique variance
130  of the PF is addressed by random effects. Thus, our model provides a robust and
131  comprehensive characterization of spatial changes of PF across the cortex. Figure 1C
132 displays a table of T-values for fixed-effect parameters of LMEM and the modelled PF
133 on the cortex. LMEM yielded highly significant scores for Y (t =-15.6, p << 0.001), Z (t =
134 -10.4, p << 0.001), and Y:Z (t = -32, p << 0.001) directions. Together, these results
135 support the conclusion that the peak frequency of brain oscillations decreases
136  systematically in posterior-anterior direction.

137 On the basis of the observed frequency gradient, the question may arise, whether the
138 spatial pattern of frequency across the cortex is the result of spatial leakage originating
139 from an occipital alpha and frontal theta source. If this is the case, we would not expect
140  to see significant frequency change in areas close to primary visual area (V1). To address
141  this question, we computed the geodesic distance between V1 and all areas located 0.5—
142 1.5cm away from V1, and applied linear mixed effect modelling of PF as a function of the
143 distance values. We found a significant negative correlation between PF and distance (t
144 = -18.45, p << 0.001). This demonstrates a significant frequency gradient already in
145 occipital brain areas where the spatial leakage effect of a potential frontal theta source is
146  negligible. Overall, this control analysis supports the existence of a genuine gradual

147 change of PF across the cortex.
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148

149 ======== Figure 1 about here ========

150

151  Spatial Gradients of Spectral Properties of the 1/f Signal

152 Neurophysiological signals typically consist of oscillatory signal components with distinct
153  spectral peaks, embedded in an arrhythmic 1/f signal component. Variation in the
154  properties of this 1/f component may give rise to shifts of spectral peak estimates, and
155 lead to misidentification of peak frequencies (Haller et al., 2018). To investigate this
156  issue, we examined the spatial distribution across the cortex of the estimated slope and
157  offset parameters of the arrhythmic component (see method section), using LME
158  modelling. As illustrated in figures 2A and 2B, we found significant scores for Y (slope: t
159 =-4.3,p <<0.001; offset: t = 2.8, p < 0.01), Y:Z (slope: t = 6.9, p << 0.001; offset: t =
160 13.2, p << 0.001), and X:Y (slope: t = -6.8, p << 0.001; offset: t = -5.8, p << 0.001)
161  directions. These results indicate a significant decrease of the 1/f slope, and an increase
162  of its offset along the posterior-to-anterior direction. The observed similarity between
163  spatial patterns of 1/f parameters and PF, brings up the question to what extent these
164  parameters could contribute to the observed PF gradient. To assess this, we tested to
165 what extent the spatial change of PF is independent of spatial changes of 1/f slope and
166  offset. We thus used LMEM and regressed out the linear contribution of 1/f slope and
167  offset to PF. After doing this we again used LMEM to model the residual PF values as a
168  function of spatial coordinates. The results confirmed a significant posterior-anterior
169  gradient of residual PF values (t-values: Y =-8.3, Z = 4.3, Y:Z = -16; all p << 0.001,
170  Figures 2C and 2D). We therefore conclude that the posterior-anterior PF gradient is
171  largely independent of the observed gradients of slope and offset of the 1/f component.
172

173 ======== Figure 2 about here ========

174
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175 Frequency Gradients and Cortical Hierarchies

176 ~ The visual system’s cortical hierarchy largely progresses along the posterior-anterior
177  direction, and starts in early visual areas in occipital cortex and progresses along the
178  dorsal and ventral streams to anterior areas. Since this progression of cortical
179  hierarchical level coincides with the observed gradient in PF, we tested the hypothesis
180  that the PF gradient is more closely related to cortical hierarchical level than to spatial
181 location. We used cortical thickness (CT) as a proxy for the quantification of the
182 hierarchical level of brain areas (Wagstyl et al., 2015).

183  We used Freesurfer to estimate CT as the shortest distance between corresponding
184  vertices on the white matter surface and the pial surface. To obtain a thickness value for
185  each cortical region, the individual thickness scores were averaged across vertices of
186  that region. Robust correlation demonstrated a significant change of mean CT along the
187  posterior-anterior axis (r = 0.36, p<<0.001, Figure 3A top panel). Figure 3A, the bottom
188  panel depicts CT values averaged across participants and mapped on the cortex. LMEM
189 of CT as a function of ROI coordinates showed a significant and progressive increase of
190  CT from posterior to anterior regions (t-values: Y = 49.73, Z = -29.26, Y:Z = 16.23; all p
191 << 0.001). Having established the significant posterior-anterior increase of CT, we then
192 tested for a significant relationship between CT and PF. Robust correlation (r =-0.14, p
193 < 0.001, Figure 3B) and LMEM (t = -13.8, p << 0.001) showed a significant negative
194  relationship between PF and CT. Next, we asked the question if this relationship is still
195  significant after removing from both, PF and CT, the effect of ROl coordinates (x,y,z).
196  This was done by modeling the dependencies of PF and CT respectively on ROI
197  coordinates and computing the residuals PFres and CTres. These residuals describe
198  individual spatial variations of PF and CT that cannot be explained by a linear model of
199  their spatial location. PFres and CTres are still significantly related (LMEM: t = -6.9, p <<

200 0.001, Figure 3C) indicating that they are more directly related to each other than can be
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201  explained by their individual dependency on location (x,y,z). This result suggests that
202 peak frequency is related to structural features that likely represent cortical hierarchies.
203

204 ======== Figure 3 about here ========

205

206  We further tested the relationship between PF gradients and cortical hierarchies along
207  the anatomically defined and well-established visual hierarchy. Following an approach
208 by Michalareas et al. (Michalareas et al., 2016), we selected seven cortical regions
209  showing strong homology to macaques visual areas (V1, V2, V4, MT, DP, TEO, 7A)
210  using the cortical parcellation of Glasser et al. (Glasser et al., 2016). We modelled spatial
211 changes of PF along the visual hierarchy, using LMEM (see method section for details),
212 and found a significant decrease of PF (t =-10.1, p << 0.001) and a significant increase
213 of CT (t =54.9, p << 0.001, Figure 4A).

214 Previous studies have shown that cortical regions can be contextualized in terms of eight
215 canonical resting-state networks (RSNs) comprising three sensory (‘VIS’: visual, ‘SOM’:
216  somatosensory, and ‘AUD’: auditory) and five higher-order association networks (‘FPN’:
217  frontoparietal, ‘CON’: cingulo-opercular, ‘DMN’: default mode, ‘DAN’: dorsal attention,
218 and ‘VAN’: ventral attention; Figure 4B)(Ito et al., 2017). Markers of hierarchical
219 microcircuit specialization such as the ratio of T1-weighted to T2-weighted MRI maps
220  (T1w/T2w) are significantly different between sensory and association areas (Burt et al.,
221 2018; Demirtas et al., 2019). Here, we extended this approach to our measures to test
222 for differences in PF/CT between sensory and association networks. Following Ito et al.
223 (lto et al., 2017) we assigned all areas to eight networks. We then averaged PF and CT
224 scores within ROls of each network, and applied LMEM to test the effect of the network
225 on PF and CT organization. For LMEM we defined the fixed effect as a categorical
226  variable comprising eight labels corresponding to RSNs. Next, we applied ANOVA on

227  LMEM fit and found a significant effect of RSNs for CT and PF (PF: F-stats = 264, p <<
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228 0.001; CT: F-stats = 746, p << 0.001). To test whether PF and CT variation follows the
229  sensory-association axis, we used LMEM, with networks designated to ‘sensory’ and
230  ‘association’ categories (PF: t=-11.1, p << 0.001; CT: t = 14.7, p << 0.001, Figure 4C).
231 Similar to the significant difference of T1w/T2w between sensory and association
232 networks we also see significant differences in PF and CT. As expected PF is higher in
233 sensory areas compared to association areas while an opposite effect is observed for

234 CT.

235
236 ======== Figure 4 about here ========

237

238  Characterizing Band-specific PF and Spatial Gradients

239 In the results presented so far, we defined the PF per ROI, as the most prominent band-
240  limited peak in the spectrum. Multiple ROls, however, showed more than a single spectral
241  peak. Figure 5 shows a histogram (across ROls and participants) of all detected spectral
242 peaks. This histogram of peak frequencies clearly delineates the classical frequency
243 bands that are used in the EEG and MEG literature (4-7.5 (theta), 8.5-13 (alpha), 15—
244 25 (low beta) 27.5-34 (high beta)). Defining the theta, alpha and beta frequency bands
245 based on the histogram, we determined for each ROI and participant the band-specific
246  PF (BS-PF). Next, we modelled the spatial distribution of BS-PFs across the cortex,
247  similar to the analysis shown above. Analogous to the PF analysis, we used LMEM to
248 model BS-PF as a function of the ROIs’ coordinates. We found a significant decrease of
249  alpha peak frequency (Y, t =-10, p << .0.001; =Y:Z, t = 3.2, p = 0.001, supplementary
250  figures S1A and S1B) along the posterior-to-anterior direction, whereas theta (Y, t=7.4,
251 p<<.0.001;Z,t=-7,p<<0.001;Y:Z,t=-8, p << 0.001, supplementary figures S2A and
252 S3B) and beta (Y, t = 11.5, p << 0.001; Z, t = 5.6, p << 0.001; Y:Z, t = 20, p << 0.001,
253  supplementary figures S3A and S3B) frequencies significantly increased along the same

254  direction.

10
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255
256 ======== Figure 5 about here ========

257

258 Discussion

259 This study is the first comprehensive demonstration of frequency gradients across the
260 human cortex using a large set of resting-state MEG recordings. We found that the
261  strongest peak frequency in a brain area decreases significantly, gradually and robustly
262 along the posterior-anterior axis, following the global cortical hierarchy from early sensory
263 to higher order areas. This finding establishes a frequency gradient of resting-state brain
264  rhythms that complements previous anatomical studies reporting a posterior-anterior
265  gradient in microscale and macroscale anatomical features of animal and human cortex
266  (Huntenburg et al., 2018). This gradient is consistent with a recent invasive study
267  showing a systematic decrease of peak frequency from posterior to anterior brain areas
268 in ECoG recordings of epilepsy patients (Zhang et al., 2018). Chiang et al. suggested a
269  similar frequency decrease albeit only based on 19-electrode EEG (Chiang et al., 2011).
270 A differentiating feature of our approach was that we used a large number of healthy
271 participants (N = 187), reconstructed cortical activity from noninvasive MEG recordings,
272 and considered further anatomical features (i.e. cortical thickness). Notably, estimating
273 the power spectrum in finely parcellated ROIs allowed us an accurate and robust
274 identification of peak frequencies and characterization of their spatial gradients across
275 the entire cortical surface. Importantly, we focus on peaks in the power spectrum that
276  indicate the presence of rhythmicity in the neuronal activity, instead of focusing on
277  predefined frequency bands where these rhythms might be absent. As slope and offset
278 of frequency gradient could dramatically vary across participants, averaging across
279  participants may not yield a reliable representation of PF gradient. Instead, we used
280 mixed effect modelling of PF along the cortical hierarchies, where the between-

281  participant variability was taken into account as a random effect. Our approach

11
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282  additionally revealed that cortical peak frequencies decrease systematically along the
283  inferior-superior axis. As seen in Figure 1 this seems to result from the fact that higher-
284  order frontal areas with lower PF have higher z-coordinates compared to the early
285  sensory areas with higher PF.

286  Results of our analyses showed that, just as peak frequency significantly decreased
287  along the posterior-anterior axis, CT significantly increased in the same direction, which
288  resulted in a significant anticorrelation between PF and CT. The observed correlation
289  holds after removing the effect of spatial location (x,y,z). This seems to indicate that PF
290 and CT are more closely related to each other than can be explained by spatial location
291  alone. Since cortical hierarchies do not strictly follow a single linear trajectory in space
292 (e.g. posterior-anterior) our results are consistent with the idea that both PF and CT,
293 follow cortical hierarchies. Indeed, such local spatial gradients have been reported in
294  multiple features of cortex during auditory perception (Jasmin et al., 2019) and visual
295  processing streams (Himberger et al., 2018). From a broader view, local gradients could
296  mirror complex organization of gradients in human cortex and support the approach of
297  global gradient along the sensory to transmodal areas (Huntenburg et al., 2018). On the
298  other hand, posterior-anterior gradient of PF was significant after subtracting CT scores
299  from PF values. This suggests a partial independence of both measures. Since PF is a
300 measure derived from brain activity the reported gradient could be modulated
301  dynamically depending on cognitive state or task demands. Further studies are needed
302 to investigate this in more detail.

303 We further addressed the question if our results can be explained by the linear
304  superposition of activity from an occipital alpha source and a frontal theta source. Along
305 the posterior-anterior axis differential superposition of both sources could lead to a
306 frequency gradient, due to imperfect unmixing of the signals. However, our analysis
307 revealed that a significant frequency gradient is already evident within 1.5cm of V1 where

308 the effect of a frontal theta source (which has on average a lower power compared to

12
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309 occipital alpha) is negligible. Additional supporting evidence can be drawn from
310 intracranial studies, where the data is directly recorded from cortex. Zhang et al. (Zhang
311 et al., 2018) have shown that oscillations generally propagate in a posterior-to-anterior
312 direction because they are coordinated by an overall decrease in intrinsic oscillation
313 frequency from posterior to anterior regions (see figures S6 and 7 of (Zhang et al., 2018)).
314  Overall, this indicates the existence of a gradual decrease of PF along the posterior-
315 anterior axis.

316  Whatis the potential functional role of this frequency gradient? Zhang et al. demonstrated
317 the existence of travelling waves along the frequency gradient (Zhang et al., 2018).
318 Interestingly, they found that local frequencies along the posterior-anterior direction are
319  positively correlated with waves’ propagation speed and direction consistent with a
320 proposed model of travelling waves based on weakly coupled oscillators (WCO)
321 (Ermentrout and Kleinfeld, 2001). These travelling waves might serve to drive neural
322 communication along the cortical hierarchy possibly through nested gamma oscillations
323 (Bahramisharif et al., 2013). In addition, travelling waves have been associated with
324  memory consolidation and learning (Muller et al., 2018). It is of interest to note that
325  frequency gradients have been reported previously in the entorhinal cortex (Giocomo et
326 al.,, 2011; Giocomo and Hasselmo, 2009). Here, a frequency decrease and
327  corresponding travelling waves have been observed in the dorsal-ventral direction and
328  have been related to a representational gradient of spatial scales from coarse to fine
329  (Muller et al., 2018). Indeed, converging evidence across recording methods, species
330 and cortical domains suggests that representations become more ‘integrated’ with
331 decreasing ‘resonance’ frequency of the underlying neuronal population. A prime
332 example is the auditory cortex where response latencies and complexity of processing
333 increase along the posterior-anterior axis (Jasmin et al., 2019). This is also mirrored by
334 an increase in cortical thickness and increased ratio of feedback to feedforward

335  connections along this axis. Similar observations have been made across more widely
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336  distributed cortical areas where timescales of intrinsic fluctuations in spiking activity
337  increase from posterior to anterior brain areas (Murray et al., 2014). Not surprisingly,
338  these time scales are largely determined by the time constants of synaptic transmission
339 (Duarte et al., 2017). But interestingly, in a computational model of activity in macaque
340  cortex using anatomical connectivity a gradient of time scales also emerges with short,
341  transient responses to input in sensory areas and slower, sustained responses in higher-
342 order areas (Chaudhuri et al., 2015) (see also (Kiebel et al., 2008)).

343 Our detailed analysis was based on the cortical ROIs’ spectral peak with strongest power
344  (PF). However, we identified all peaks in the power spectrum of each ROI. Since spectral
345  peaks indicate the presence of brain rhythms, this data represents a comprehensive
346  overview of these rhythms across the cortex. The histogram of spectral peaks across
347  ROls and participants provided a data-driven definition of frequency bands. Interestingly,
348 the histogram delineates the classical frequency bands with histogram peaks centering
349  at4-7.5 (theta), 8.5-13 (alpha), 15-25 (low-beta) 27.5-34 (high-beta) (see figure 5). This
350 is the first MEG study to our knowledge to identify frequency bands from peak
351 frequencies in a large data set (see (Groppe et al., 2013) for a similar approach in a
352 smaller sample of ECoG data).

353 We further analyzed these specific frequency bands for gradients and found significant
354  posterior-anterior frequency changes in the theta, alpha and beta frequency band.
355  Results in the alpha band mirrored the previous results based on the overall strongest
356  peak frequency. Interestingly, and in contrast to the alpha band, peak frequencies
357 increased along the posterior-anterior direction in the theta and beta frequency band. In
358  the model used by Zhang et al. this would correspond to travelling waves from anterior
359  to posterior brain areas (Zhang et al., 2018) that might represent frequency channels for
360 top-down effects (Michalareas et al., 2016; Wang, 2010).

361  In summary, our findings show that peak frequencies of cortical areas form a spatial

362 gradient, which follows the global posterior-anterior hierarchy as well as local anatomical
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363 hierarchies. Previous research also points to spatial gradients in multiple features of the
364 human and animal cortex. Further research might explore implications of frequency

365  gradients in different cognitive states, disease, and aging.

366 Materials and Methods

367 Experimental Design

368 In this study we used the MOUS dataset (J.-M. Schoffelen et al., 2019; J. M. Schoffelen
369  etal., 2019) which, among others, contains five minutes of resting state MEG recordings
370  collected from 197 healthy participants (age: mean = 22, range = 18-32, gender: 94
371  females). The participants were instructed to think of nothing specific while focusing on
372 the fixation cross at the center of the screen. Data was collected using a CTF 275-
373 channel radial gradiometer system, and sampled at 1200 Hz (0-300 Hz bandpass), and
374  additional 29 reference channels for noise cancellation purposes.

375  The anatomical images of the head were obtained with a SIEMENS Trio 3T scanner
376  using a T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) pulse
377  sequence, with the following parameters: volume TR = 2300 ms, TE = 3.03 ms, 8 degree
378 flip-angle, 1 slab, slice-matrix size = 256 x 256, slice thickness = 1 mm, field of view =
379 256 mm, isotropic voxel-size = 1.0 x 1.0 x 1.0 mm.

380  After removing 10 participants lacking sufficient data quality, we used 187 participants

381  for our analyses.

382  MEG Preprocessing

383 All analyses were performed using custom-written Matlab (MathWorks, Inc, Natick,
384  Massachusetts, USA) scripts and the Fieldtrip package (Oostenveld et al., 2011).
385  Gradiometer signals were converted to synthetic third-order gradients, high-pass filtered
386 at 0.5 Hz, and low-pass filtered at 140 Hz (Butterworth, 4th order). Line noise was
387 rejected using a DFT filter at 50 and 100 Hz. After downsampling the data to 300 Hz,

388 outlier channels/time segments were rejected using visual inspection of their time course,
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389  spectrum and topography. Next, we used independent component analysis (ICA) to
390 identify and remove signal components related to eye blinks/movements and cardiac
391  activity. To this end, we performed ICA, using the infomax algorithm (Bell and Sejnowski,
392 1995), on a 30-dimensional signal subspace, for computational efficiency. ICs related to
393 artifacts were identified based on their spatial topography and signal time course, and
394  the identified spatial topographies were projected out of the sensor data. This resulted in

395 3.7 components on average to be rejected (range 1-6).

396  MRI Analysis

397  From T1-weighted anatomical images of participants, brain/skull boundary and cortical
398  surfaces (white matter and pial matter) were generated using SPM (Penny et al., 2011)
399 and Freesurfer (version 5.1)(http://surfer.nmr.mgh.harvard.edu). The cortical surface
400 was coregistered to a template with a surface-based coregistration approach (Caret

401  software, http://brainvis.wustl.edu/wiki/index.php/Caret:Download), and downsampled to

402 8,196 vertices (MNE software, martinos.org/mne/stable/index.html). Using the Caret

403  software, the mid-thickness mesh was generated to be average of the white and pial
404 matter surfaces. The mid-thickness surface was parceled into 384 ROIs (192 per
405  hemisphere) according to Schoffelen et al. (Schoffelen et al., 2017).

406  The centroid of each parcel was specified as the vertex located at minimum geodesic

407  distance from all other vertices of that parcel.

408  Source Reconstruction

409  Source reconstruction was performed using the linearly constrained minimum variance
410  beamformer approach (Van Veen et al., 1997), where the lambda regularization
411  parameter was set to 5%. This approach estimates a spatial filter for each location of a
412 set of defined dipole locations (here: each of the 7,548 non-midline vertices of the mid-
413 thickness cortical mesh), based on the forward model of that location and the sensor

414  covariance matrix. The forward model was computed using the ‘singleshell’ method, with
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415  the brain/skull boundary as volume conduction model of the head. The sensor covariance

416  matrix was computed from two-second trials and averaged across trials.

417  ROI Spectrum

418  For each ROI, we concatenated the source time courses of the vertices belonging to that
419  ROI, and reduced the dimensionality, using a singular value decomposition. About 15
420 components per ROl were retained, explaining at least 95% of the initial variance.
421  Component time courses were segmented to two-second epochs. Power spectra were
422 computed using a multitapered Fast Fourier transform, using discrete prolate spheroidal
423 sequences (dpss) as windowing function, with 2 Hz spectral smoothing. To obtain a
424  single spectrum for each ROI (ROI spectrum), we pooled spectra of epochs across
425 components and computed the 10% trimmed mean across them. Averaging after leaving
426  out 10% of data from left and right tails of the spectra distribution offers a more robust

427  estimate.

428  Peak Frequency (PF) Detection

429  We estimated 1/f component of spectrum between 3 and 45 Hz using the FOOOF
430  algorithm (Haller et al., 2018). The algorithm fits a linear approximation of 1/f in log-log
431  spectrum and computes the corresponding slope and offset parameters. Next, we
432 subtracted the estimated 1/f component from the spectrum to obtain a 1/f corrected
433 spectrum per ROI. To identify spectral peaks, we used the MATLAB “findpeaks” function.
434  We extracted all peaks but most of the analysis is based on the peak frequency with the

435  strongest power in the original spectrum that includes the 1/f background.

436  Cortical Thickness (CT)

437  We used the Freesurfer package to obtain estimates of CT scores. The CT value of a
438  vertex was computed as the distance between corresponding white matter and pial
439  surface vertices. To obtain thickness values of a ROIl, we averaged CT across the

440  vertices of that ROI.
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441  Statistical Analysis

442 As described above, we computed PF values for 384 ROIs (197 ROls per hemisphere)
443  of 187 participants. In our statistical analyses, we aimed to investigate the
444  spatial/hierarchical organization of PF across the human cortex, but also control for the
445  between-participant variability. To meet this purpose, we used linear mixed effect
446  modeling (LMEM). The distinctive feature of LMEMSs is that a response variable is
447  modeled as a linear combination of 1) population characteristics that are assumed to be
448  shared by all individuals (fixed effects), and 2) participant-specific effects, that are unique
449  to a particular individual in the population (random effects).

450  To investigate the spatial organization of PFs across the cortex, we specified the PF as
451  response variable and the coordinates of ROI centroids (X: left to right, Y: posterior to
452 anterior, and Z: inferior to superior) plus their two-way interactions (XY, XZ, YX) as fixed
453  effects. The inclusion of two-way interaction as predictors allows the model to adapt well
454  to the cortex geometry. As our random structure, we nested the PFs within participants
455  as well as within hemispheres to account for the variability between participants and

456  hemispheres. Equation 1 shows the specified LMEM

457 PF =B+, +(B+S )X+ (B, +S, )Y +(B;+S,)Z+ B XY+ BXZ+[YZ+e, (1)

458  where the response variable PF for the participant j is related to baseline level via ( 3,
459 ), to ROI centroids (fixed effects) via (.i€{1,2....6}), and to error (¢, ~ N(0,6%)). To
460  address the variation of predictors for participant ;, we specified both random intercepts
461 (S,,) and slopes (,.i{1,2,3}) for random effects. For the sake of model simplicity, no

462 random effect was specified for two-way interactions. We estimated the fixed effect

463  predictions for a ROI located at centroid coordinates of (x,y,z) as follows

464 PF = B,+Bx+pB,y+Bz+pBxy+Bxz+ P yz (2)
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465 In our analysis we included only significant predictors for equation 2. We used an
466  analogous approach, to test the significance of spatial changes of CT and 1/f parameters
467  across the cortex.

468 To examine if the spatial distribution of PF across the cortex is independent of the spatial
469  changes of 1/f parameters (slope and offset), we fitted a LMEM, where we set the PF as
470  a response variable, the 1/f slope and offset scores as fixed effects, and the between-
471  participant and hemisphere as random effects. Prior to LMEM, we standardized the PF,
472 1/f slope and offset scores for each participant by subtracting mean and dividing by
473  standard deviation (z-score). Next, we estimated the coefficients for the fixed effects (1/f
474  parameters) and regressed them out to obtain the residual PF (PFres) scores, which
475  reflect a subspace of PF that cannot be explained by 1/f parameters. We again modeled
476  the obtained PFres scores as a function of ROI centroids as described above (see
477  equation 1).

478  To obtain the correlation between PF and CT scores, we initially computed 10% trimmed
479  mean across participants for each ROl and performed the robust correlation (Pernet et
480 al.,, 2012) between the trimmed mean values. To address the between-participant
481  variability, we first standardized PF and CT scores (as described above), and conducted
482  LMEM, where we specified the PF as response variable and the CT as a fixed effect
483  predictor. The random effect was set according to equation 1. Moreover, we aimed to
484  obtain a correlation value between PF and CT that is independent of spatial location. We
485  first applied LMEM separately for PF and CT, modeling each as a function of ROI
486  coordinates (see equation 1), and computed the corresponding residuals (PFres and
487  CTres) for each ROI and participant. Subsequently, we applied LMEM between PFres
488  and CTres values (analogous to PF and CT).

489  To test for the significance of PF changes along the established visual hierarchy
490  comprising seven regions (V1, V2, V4, MT, DP, TEO, 7A), chosen according to

491  Michalareas et al. (Michalareas et al., 2016), we used an LMEM. To impose the
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492 hierarchical order of those seven ROls in our LMEM, we defined a seven-element
493 hierarchy vector for each participant and hemisphere (V=[1, 2, 3, ..., 7]), whose elements
494  refer to the hierarchical level of the corresponding ROI. The random effect was specified
495  as in equation 1. PF values were standardized before LMEM analysis. This model tests
496  the significance of PF changes along the specified hierarchy. An analogous analysis was
497  applied to CT scores of those seven ROls.

498  To statistically assess the effect of eight resting-state networks on PFs, we used a
499  recently released, multi-modal parcellation of the human cortex (Glasser et al., 2016),
500 identified the PF for each cortical parcel of a participant, averaged across parcels within
501  a RSN for that participant according to Ito et al. (Ito et al., 2017), and obtained eight PF
502 values corresponding to eight RSNs for each hemisphere and participant. We specified
503 the PF as a response variable, and a categorical variable comprising eight network
504 categories (‘'VIS’, ‘AUD’, ‘SOM’, ‘DAN’, ‘FPN’, ‘VAN’, ‘'DMN’, ‘CON’) as a fixed effect, for
505 LMEM analysis. The random structure was defined as in equation 1. Next, we applied
506  ANOVA on LMEM fit and computed F-stat for the fixed effect. A similar analysis was
507  performed to test the effect of RSNs on CT scores.

508  All statistical analyses were conducted in Matlab version 9.5 (R2018b). We used the
509  “fitlme” function to perform the LMEM analysis.

510 Data availability: All data used for this study are publicly available

511 (https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_23671).
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640  Figures

641 Figure 1. Spatial gradient of peak frequency (PF) across human cortex follows the posterior-
642 anterior hierarchy. (A) Estimating the power spectrum for each cortical region, and identifying peak
643  frequencies after fitting and subtracting the arrhythmic 1/f component. (B) Top panel: correlation between
644  trimmed mean PF (187 participants, 384 ROIs) and ROI’s location along the y-axis (posterior to anterior)
645 (r =-0.84, p << 0.001). Points are colored according to their Z coordinates. Bottom panel: distribution of
646  trimmed mean PFs across 384 cortical ROIs. (C) Top panel: t-values obtained from linear mixed effect
647 modeling of PF as a function of the coordinates of the ROI centroids. Bottom panel: cortical map of the

648  corresponding fixed effect parameters (see equation 2 for details).

649  Figure 2. The spatial gradient of 1/f components (offset and slope) across human cortex. (A) Top
650  panel: t-values obtained from linear mixed effect modeling of 1/f offset as a function of the coordinates of
651 the ROI centroids. Bottom panel: cortical map of the corresponding fixed effects. (B) LMEM was applied
652  on 1/f slope, analogous to the 1/f offset. The slope and offset of 1/f component were estimated for each
653 ROI and participant, using the FOOOF package (see methods section for further details). (C) Correlation
654 between trimmed mean PFres (187 participants, 384 ROIs) and ROI’s location along the y-axis (posterior
655  to anterior) (r = -0.63, p << 0.001). The residual PF scores (PFres) were obtained after regressing out the
656  contribution of 1/f offset and slope values (fixed effect) from PF, using LMEM. (D) t-values obtained from
657 linear mixed effect modeling of PF as a function of the coordinates of the ROI centroids (LMEM,; t-values:

658 Y =-8.3,Z2=-4.3,Y:Z=-16; all p < 0.001). The cortical maps show the corresponding fixed effects.

659 Figure 3. Spatial gradient of cortical thickness and its association with corresponding PF values.
660  (A) Top panel: correlation between mean cortical thickness and ROI’s location along the y-axis (posterior
661 to anterior) (r = -0.84, p << 0.001). Bottom panel: cortical map of trimmed mean PF across 384 cortical
662 ROIs. (B) Correlation between trimmed mean PF (187 participants, 384 ROIs) and trimmed mean CT.
663 (posterior to anterior) (r = -0.84, p << 0.001). (C) Correlation between the trimmed mean PF and the

664  trimmed mean CT, after regressing out the effect of ROI coordinates.
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665 Figure 4. PF and CT variation along the cortex follows anatomical hierarchies. (A) Relationship
666  between the PF/CT gradients and the cortical hierarchies along the anatomically defined visual hierarchy
667 comprising seven regions (V1, V2, V4, MT, DP, TEO, 7A) (PF: t = -10.1, p << 0.001; CT: t = 54.9, p <<
668  0.001). (B) Cortical areas were assigned to eight functional resting-state networks comprising three
669  sensory (‘VIS', visual; ‘AUD’, auditory; and ‘SOM’, somatomotor) and five association (‘DAN’, dorsal
670  attention; ‘FPN’, frontoparietal; ‘VAN’, ventral attention; ‘DMN’, default mode; and ‘CON’, cingulo-
671 opercular) networks. (C) PF/CT values per RSN, averaged across corresponding regions (10% trimmed-
672 mean across participants). The significant effect of RSNs for CT and PF variation along the cortex specified
673 by application of ANOVA on corresponding LMEM (PF: F-stats = 264, p << 0.001; CT: F-stats = 746, p <<
674  0.001). PF values were significantly lower in association RSNs (except for DAN) than in sensory RSNs (t
675 =-11.1, p << 0.001), whereas CT values were significantly higher in association RSNs than in sensory

676 RSNs (t = 14.1, p<<0.001). Error bars indicate the SD across areas within an RSN.

677 Figure 5. Histogram of spectral peaks. Histogram of all detected spectral peaks (across ROIls and
678 participants) delineates the classical frequency bands used in the EEG and MEG literature (theta 3.5-7.5

679 Hz, alpha 8.5-13 Hz, low-beta 15-25 Hz and high-beta 27.5-34).
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SUPPLEMENTAL INFORMATION
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Figure S1. A spatial gradient of alpha-band PFs across human cortex follows the posterior-anterior

direction. (A) Top panel: correlation between the trimmed mean of alpha-band PF (187 participants, 384

ROIs) and the ROI’s location along the y-axis (posterior to anterior). Bottom panel: distribution of trimmed
mean alpha-specific PFs across 384 cortical ROIs. (B) Top panel: t-values obtained from linear mixed effect

modeling of alpha-specific PF as a function of the coordinates of the ROI centroids. Bottom panel: cortical

map of the corresponding fixed effect parameters (see equation 2 for details).
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Figure S2. A spatial gradient of theta-band PFs across human cortex largely follows the anterior-

posterior direction.
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Figure S3. A spatial gradient of low-beta band PFs across human cortex follows the anterior-posterior

direction.
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