

Host community assembly modifies the relationship between host and parasite richness

Running title: Host community assembly and parasite diversity

Fletcher W. Halliday^{1,2}, Robert W. Heckman^{1,3}, Peter A. Wilfahrt^{4,5}, and Charles E. Mitchell^{1,4}

¹ Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, CH

² Department of Biology, University of North Carolina, Chapel Hill, NC 27599

³ Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA 78712

⁴ Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC 27599

⁵ Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany, 95447

Correspondence: Winterthurerstrasse 190 8057 Zurich; fletcher.w.halliday@gmail.com; +41 44 635 4767

Author contributions: FWH, RWH, and PAW designed and implemented the experiment. FWH analyzed the data and wrote the first draft. All authors contributed substantially to revising the manuscript.

Keywords: diversity-disease; parasite diversity; old fields; community assembly; phylogenetic diversity

1 **Abstract**

2 Host and parasite richness are generally positively correlated, but the stability of this
3 relationship during community assembly remains untested. The composition of host
4 communities can alter parasite transmission, and the relationship between host and parasite
5 richness is sensitive to parasite transmission. Thus, changes in composition during host
6 community assembly could strengthen or weaken the relationship between host and parasite
7 richness. Host community assembly, in turn, can be driven by many processes, including
8 resource enrichment. To test the hypothesis that host community assembly can alter the
9 relationship between host and parasite richness, we experimentally crossed host diversity and
10 resource supply to hosts, then allowed communities to assemble. As previously shown, initial
11 host diversity and resource supply determined the trajectory of host community assembly,
12 altering post-assembly host species richness, richness-independent host phylogenetic
13 diversity, and colonization by exotic host species. Throughout community assembly, host
14 richness predicted parasite richness. As predicted, this effect was moderated by exotic
15 abundance: communities dominated by exotic species exhibited a stronger positive
16 relationship between post-assembly host and parasite richness. Ultimately, these results
17 suggest that, by modulating parasite transmission, community assembly can modify the
18 relationship between host and parasite richness, providing a novel mechanism to explain
19 contingencies in this relationship.

20

21

22 Introduction

23 Parasites are a major contributor to global biodiversity, yet parasite diversity remains
24 relatively underexplored, a problem that has spurred recent research into the drivers of
25 parasite diversity within host communities (Dobson *et al.* 2008; Kamiya *et al.* 2014; Johnson
26 *et al.* 2016; McDevitt-Galles *et al.* 2018). Through this research within host communities, the
27 positive relationship between host and parasite species richness has become one of the most
28 consistently documented relationships in disease ecology (Hechinger & Lafferty 2005;
29 Lafferty 2012; Kamiya *et al.* 2014; Johnson *et al.* 2016; Liu *et al.* 2016). Yet, whether this
30 relationship is robust to changes in host community structure over time remains poorly
31 understood, because few studies have quantified the relationship as host communities
32 assemble. During community assembly, the structure of host communities shifts over time in
33 response to biotic factors, such as species interactions, and abiotic factors, such as resource
34 supply to hosts (HilleRisLambers *et al.* 2011; Harpole *et al.* 2016). These shifts in host
35 community structure can alter parasite transmission (Johnson *et al.* 2013; Halliday *et al.*
36 2019), which could, in turn, alter the strength or direction of the relationship between host
37 and parasite richness. Thus, the relationship between host and parasite species richness might
38 depend on the manner in which host communities assemble (Johnson *et al.* 2016) (Fig 1).

39 Within host communities, the “host-diversity-begets-parasite-diversity hypothesis”
40 suggests that, because many parasites are specialized to infect a small number of host species,
41 increases in host species diversity should increase parasite diversity (Hechinger & Lafferty
42 2005; Poulin 2014). Empirical support for this hypothesis is widespread. For example, a 2014
43 meta-analysis found a consistent positive relationship between host and parasite richness
44 across 21 published studies (Kamiya *et al.* 2014). However, two recent studies highlight the
45 possibility for important contingencies in the nature of this relationship. Wood *et al* (2018)
46 observed that human activity decoupled the positive relationship between host and parasite

47 richness among reef fishes, attributing the contingency in the relationship between host and
48 parasite richness to a loss of parasite species with complex life-cycles. In another study,
49 Johnson et al (2016) observed that within host communities, the positive relationship between
50 host and parasite richness depended on the spatial scale of observation, attributing this
51 contingency to colonization opportunities (e.g., the propagule-pressure hypothesis; Levine
52 2000), which weaken at larger spatial scales. Colonization opportunities are fundamental to
53 metacommunity theory, suggesting that this contingency may be further understood by
54 considering parasites in that theoretical framework.

55 Metacommunity theory predicts that, all else being equal, regional richness can be
56 strongly influenced by dispersal and establishment of species among patches (Leibold *et al.*
57 2004; Holyoak *et al.* 2005; Logue *et al.* 2011). For parasites, transmission is the combination
58 of dispersal and establishment, so multiple parasite species in a host population or
59 community function as a metacommunity connected via transmission among host individuals
60 (Kuris *et al.* 1980; Sousa 1994; Mihaljevic 2012; Borer *et al.* 2016; Mihaljevic *et al.* 2018).
61 As such, metacommunity theory can be used to generate predictions about the relationship
62 between host and parasite richness. When dispersal and establishment (i.e. parasite
63 transmission) among patches (i.e., host individuals) is most limited, an “extinction vortex”
64 can occur as rare species are lost from local patches faster than they can colonize new
65 patches, leading to the eventual loss of those species in the entire metacommunity (i.e., host
66 community) (Gilpin & Soule 1986). Greater extinction rates of parasites in host communities
67 with low transmission could weaken the positive relationship between host and parasite
68 richness. In a metacommunity context, reducing dispersal limitation by increasing habitat
69 connectivity can alleviate this effect (Logue *et al.* 2011; Cornell & Harrison 2013).
70 Similarly, when parasite metacommunities are transmission-limited, an increase in parasite
71 transmission should strengthen the positive relationship between host and parasite richness

72 (Poulin 2004). Thus, the magnitude of parasite transmission among hosts could explain
73 variation in the relationship between host and parasite richness during host community
74 assembly.

75 Host community assembly involves change over time in community characteristics
76 that can alter parasite transmission, including host species richness, exotic host abundance,
77 and host phylogenetic diversity (Box 1) (Halliday *et al.* 2019). These changes in host
78 community characteristics may, in turn, be driven by a variety of biotic and abiotic conditions
79 including initial host richness and resource supply to hosts (Fig. 1). Consequently, the
80 impacts of initial biotic and abiotic conditions on host richness, parasite richness, and their
81 interaction may shift as host communities assemble.

82 This study examined whether the relationship between host and parasite richness in a
83 North Carolina old-field shifted during experimental host community assembly. Specifically,
84 we constructed experimental, native plant communities at two initial host diversity levels and
85 two levels of soil fertility, then measured how changes in post-assembly host richness, exotic
86 host abundance, and host phylogenetic diversity (together describing host community
87 assembly) influenced changes in parasite richness over three years. In previous analyses
88 using a subset of our data, we found that initial host diversity and resource supply to hosts
89 strongly influenced host community assembly, with consequences for exotic invasions,
90 disease risk, and host community trait distributions (Heckman *et al.* 2017; Halliday *et al.*
91 2019; Wilfahrt *et al.* 2019). Here, we show that, despite strong shifts in the structure of host
92 communities, host diversity begets parasite diversity during community assembly.
93 Importantly however, the magnitude of the relationship between host and parasite richness
94 depends on characteristics of the host community that are linked to parasite transmission.

95

96 **Methods**

97 We performed this study in an old-field in Duke Forest Teaching and Research
98 Laboratory (Orange County, NC, USA), dominated by perennial, herbaceous plants. To test
99 whether initial host diversity and resource supply to hosts indirectly affect parasite richness
100 via changes in host community assembly, we experimentally manipulated native plant (i.e.,
101 host) richness with multiple community compositions at each level of richness, and soil
102 nutrient supply. This yielded a study that comprised 120 1m × 1m plots (5 replicate blocks ×
103 2 resource supply levels × 2 host richness levels × 6 native community compositions).
104 Because this study aimed to examine how plant and parasite community structure changes
105 over time, we did not weed plots to maintain richness (Fargione & Tilman 2005; Heckman *et*
106 *al.* 2017). Thus, the initial species richness treatments represent initial conditions and not the
107 richness of a plot after July 2012. The full details of the experimental treatments can be found
108 in Appendix A.

109 To establish initial host diversity, we assembled 12 planted communities at two
110 richness levels from a pool of six species: six monocultures and six five-species polycultures
111 where one species was excluded from each polyculture community. Plants were propagated
112 from seed at the University of North Carolina at Chapel Hill, then seedlings were
113 transplanted into the plots, spaced 10 cm apart.

114 We began resource supply treatments, hereafter referred to as the fertilization
115 treatment, in July 2012. Each plot was either fertilized with 10 g m⁻² each of N, P, and K or
116 not fertilized. We applied slow-release forms of each nutrient each spring to alleviate nutrient
117 limitation within experimental communities during the growing season (Borer *et al.* 2014).

118 *Quantification of host community structure*

119 Each year, we visually quantified the percent cover of all plant species in each plot in
120 September using a modified Daubenmire method (Borer *et al.* 2014). We evaluated changes
121 in three components of host community structure to evaluate how experimental treatments

122 influenced host community assembly: post-assembly plant species richness, exotic plant
123 abundance, and the phylogenetic diversity of plant species. To quantify exotic plant
124 abundance, we classified species as exotic or native to eastern North America using the
125 USDA Plants Database (USDA & NRCS 2016), then assessed the relative abundance of
126 exotic species (hereafter, exotic abundance) as the ratio of the absolute exotic cover to the
127 total cover of all species within a plot. To quantify phylogenetic diversity, independent of
128 species richness, a phylogeny of all non-tree species was constructed using ‘phyloGenerator’
129 (Pearse & Purvis 2013). Plant phylogenetic diversity was calculated using the ses.mpd
130 function in R package Picante (Kembel *et al.* 2010). This function uses a null-modeling
131 approach that measures the degree to which a plot is more or less phylogenetically diverse
132 than random, given the number of host species, weighted by their relative abundance.

133

134 *Quantification of parasite richness*

135 Following Lafferty and Kuris (2002), we define a parasite as any organism that
136 spends at least one life history stage living in or on a single host individual, causing a fitness
137 loss to the host. This definition includes all microbial parasites of plants and certain insect
138 parasites of plants, such as galling and leaf-mining insects, which spend a larval life history
139 stage parasitizing a single host leaf, but are transmitted by free-living adults that can seek out
140 host plants for their offspring (Halliday *et al.* 2017a, 2019).

141 Parasites were surveyed in each plot annually for three growing seasons in September,
142 which is the period of greatest parasite abundance in this system (Halliday *et al.* 2017b). In
143 2012, parasites were only surveyed on the six planted species (these species accounted for a
144 median of 78% of total vegetative cover per plot), and were measured by haphazardly
145 surveying five leaves on five individuals of each planted species in each plot.

146 In 2013, the composition of plots was characterized by a few common host species
147 and many rare host species (Heckman *et al.* 2017). Because common host species contribute
148 more to parasite abundance (Mordecai 2011; Heckman *et al.* 2016), parasites were measured
149 by haphazardly surveying one individual of each of the six most abundant non-planted
150 species across the experiment, as well as one individual of each of the six planted species that
151 were surveyed in 2012 (together, the surveyed species accounted for a median of 78% of total
152 vegetative cover per plot).

153 By 2014, the composition of host communities had shifted considerably from the
154 originally planted compositions (Heckman *et al.* 2017; Halliday *et al.* 2019; Wilfahrt *et al.*
155 2019). To estimate parasite richness in the assembled community, we maximized the number
156 of host species surveyed in a plot and across the experiment, by haphazardly surveying
157 parasites on five leaves on one individual of the most abundant host species, and then the
158 next most abundant species, iterating until the sampled species' summed cover accounted for
159 at least 80% of the plot's total plant cover. We surveyed one additional individual of all six
160 planted host species in each plot, regardless of cover. While this sampling method reduces
161 replication at the scale of host individuals within plots, it samples across leaf ages and
162 matches similar approaches for measuring community-wide responses at the plot scale (e.g.,
163 Pérez-Harguindeguy *et al.* 2013). Visual surveys were conducted following Halliday *et al*
164 (2017a, 2019). Briefly, parasites were categorized into morphospecies using morphological
165 and genetic characteristics (Table S1).

166 The number of host species, and thus individuals, surveyed varied among plots (min =
167 2, median = 5, mean = 7.9, max = 25 host individuals). We therefore performed “site-based”
168 rarefaction on the count of parasite morphospecies (Gotelli & Colwell 2001). In each plot, we
169 randomly sampled up to five host individuals, and counted the number of parasite
170 morphospecies in that subsample. We permuted this 999 times and took the average rarefied

171 parasite richness for each plot across those 999 permutations. Although insect and microbial
172 parasites may respond differently to host richness and fertilization (Halliday *et al.* 2017a), the
173 post-assembly data on insects were not sufficient to test for differences from microbes.
174 Therefore, rarefied parasite richness was calculated across all parasites, including insects and
175 microbes.

176

177 *Data analysis*

178 **Longitudinal model of parasite richness.** We first tested whether the relationship
179 between host and parasite richness would change over time as a function of initial host
180 diversity, fertilization, and their interaction by constructing a longitudinal linear mixed model
181 using the lme function in the nlme package (Pinheiro *et al.* 2016). In order to meet
182 assumptions of homoscedasticity, we added an identity variance structure (varIdent function)
183 by host diversity treatment (Zuur *et al.* 2009; Pinheiro *et al.* 2016). Each model included the
184 fertilization treatment, the initial host diversity treatment, post-assembly host species
185 richness, year of observation, and all interactions between these four variables as fixed
186 effects, plus block as a non-interacting fixed covariate. To account for temporal
187 autocorrelation, we included an AR 1 autocorrelation structure at the plot level in each model
188 (Zuur *et al.* 2009). We included planted composition as a random effect to ascribe differences
189 to initial host diversity only when differences in a response within a richness level (i.e.,
190 polycultures or monocultures) were smaller than differences between richness levels (Schmid
191 *et al.* 2002). This analysis tests the effect of the initial host diversity treatment after
192 accounting for variation in host composition. We used the pairs function in the lsmeans
193 package (Lenth 2016) to test whether treatment means were different in a given year, and
194 used the lltrends function to test whether the slope of the relationship between post-assembly
195 host and parasite richness differed among treatments and years. However, we caution the

196 comparison of treatment means among years, as sampling methodology for parasites varied
197 between years, as detailed above. In order to facilitate comparisons among responses and
198 clarify relationships among predictors, we reduced the model by removing non-significant
199 interactions (following Crawley 2007; Zuur *et al.* 2009).

200 **Structural equation model including community assembly.** The longitudinal
201 model of parasite richness tested whether the relationship between post-assembly host and
202 parasite richness changed over time as a function of experimental treatments. To explicitly
203 test the hypothesis that the relationship between post-assembly host and parasite richness is
204 altered by shifts in host community structure during community assembly, we performed
205 confirmatory path analysis using the lavaan package (Rosseel 2010). Specifically, we fit a
206 structural equation model (SEM) that included the treatment effects and their interaction on
207 three endogenous mediators (post-assembly host species richness, exotic host abundance, and
208 host phylogenetic diversity) measuring the outcome of community assembly (following
209 Halliday *et al.* 2019), as well as the effects of those three mediators on parasite richness (Box
210 Fig. 1). We tested the hypothesis that shifts in host community structure altered the
211 relationship between post-assembly host and parasite richness by fitting a second-stage
212 moderated mediation (Hayes 2015) including pairwise interactions between exotic host
213 abundance and post-assembly host richness (Box Fig 1 path m) and between host
214 phylogenetic diversity and post-assembly host richness (Box Fig 1 path n). The first half of
215 this model (Box Fig 1 paths a-i) uses the same data and is structurally identical to the paths
216 from the 2014 group in the multigroup model presented in Halliday *et al* (2019).

217 Experimental block was treated as a stratified independent grouping variable using the
218 lavaan.survey package (Oberski 2014). In order to meet assumptions of homoscedasticity and
219 multinormality, we logit transformed exotic abundance. All endogenous variables were mean
220 centered, following transformation, to improve interpretability and to eliminate non-essential

221 collinearity (Toothaker *et al.* 1991). In order to facilitate comparisons among responses and
222 clarify relationships among predictors, we reduced the model by removing non-significant
223 interactions (following Crawley 2007; Zuur *et al.* 2009), limiting model reduction to
224 exogenous (i.e., treatment) variables only.

225

226 **Results**

227 *Longitudinal model of parasite richness*

228 We first tested the hypothesis that the relationship between host and parasite richness
229 would change over time as a function of initial biotic and abiotic conditions by constructing a
230 longitudinal mixed model of parasite richness as a function of post-assembly host species
231 richness and its interaction with initial host diversity and fertilization. Consistent with our
232 hypothesis, there was a positive relationship between host and parasite richness, which
233 changed over time as a function of initial host diversity (Appendix B; Table S1). However,
234 fertilization did not affect the relationship between host and parasite richness over time
235 (Table S2), and so these interactions were removed from the model, yielding a reduced model
236 (Table S3).

237 In the reduced model, initial host diversity altered parasite richness, and this effect
238 varied over time (year $p=0.001$; initial host diversity \times year $p<0.0001$; Table S3; Fig 2). In
239 2012, parasite richness was more than twice as high in polycultures as in monocultures
240 ($p<0.001$), providing strong evidence for the hypothesis that host diversity begets parasite
241 diversity, though that effect was reduced by 40% in experimentally fertilized communities
242 (fertilization \times initial host diversity $p=0.003$). The positive effect of initial host diversity on
243 parasite richness weakened in 2013 ($p=0.014$), and by 2014, as the communities were further
244 colonized by non-planted host species, the positive effect from previous years became a

245 negative effect, though only in fertilized communities: parasite richness was 17% lower in
246 fertilized polycultures than in fertilized monocultures.

247 In the reduced model, the positive relationship between host and parasite richness
248 depended on initial host diversity (initial host diversity \times post-assembly host richness
249 $p=0.04$), and this effect of initial host diversity changed over time (initial host diversity \times
250 post-assembly host richness \times year $p=0.01$; Fig 3; Fig S1; Table S3). In 2012, there was a
251 significantly positive relationship between post-assembly host and parasite richness in
252 polycultures ($p=0.03$). This effect became non-significant as host communities assembled
253 over time ($p_{2013}=0.42$; $p_{2014}=0.37$). In contrast, there was no significant positive relationship
254 between post-assembly host and parasite richness in monocultures in 2012 or 2013
255 ($p_{2012}=0.20$; $p_{2013}=0.87$). However, the relationship strengthened over time, such that by
256 2014, there was a significant positive relationship between post-assembly host and parasite
257 richness in monocultures ($p=0.004$). This change over time in the relationship between post-
258 assembly host and parasite richness as a function of initial host diversity suggests that initial
259 host diversity altered the trajectory of host community assembly over time, thereby altering
260 the relationship between post-assembly host and parasite richness. The nature of this altered
261 trajectory is explored in the structural equation model.

262

263 **Structural equation model including community assembly**

264 The longitudinal mixed model of parasite richness indicated that the relationship
265 between post-assembly host richness and parasite richness changed over time as a function of
266 initial host diversity. That change may have been driven by shifts in host community
267 structure (i.e. community assembly). We therefore next tested the hypothesis that initial host
268 diversity and fertilization indirectly influenced post-assembly parasite richness via their
269 impacts on post-assembly host richness, exotic abundance, phylogenetic diversity, and their

270 interactions, using a structural equation model (Box 1). The data were well fit by this model
271 (Robust χ^2 p=0.288, RMSEA p=0.618, SRMR=0.075), though initial host diversity and
272 fertilization did not interactively influence any of the response variables (p>0.05; Table S4).
273 Therefore, we removed these interactions, yielding a reduced model (Fig 4, Table S5).

274 To model host community assembly, the structural equation model included
275 structurally identical paths, and the same data as the 2014 group from the model presented in
276 Halliday et al (2019). As shown in that model and in other results from this study system,
277 initial biotic and abiotic conditions determined the trajectory of host community assembly,
278 with host communities becoming increasingly divergent over time depending on initial biotic
279 and abiotic conditions (Heckman *et al.* 2017; Halliday *et al.* 2019; Wilfahrt *et al.* 2019).
280 Specifically, increasing initial host diversity increased post-assembly host richness, reduced
281 exotic host abundance, and increased richness-independent phylogenetic diversity of host
282 species. Fertilization reduced post-assembly host richness and increased exotic host
283 abundance, but had no significant effect on phylogenetic diversity of host species (Halliday *et*
284 *al.* 2019). Having re-analyzed this previously published first stage of the structural equation
285 model to quantify the effects of experimental treatments on host community assembly, we
286 then evaluated a novel second stage of the model (Box 1 Fig. 1) to test the hypothesis that
287 shifts in host community structure drive and moderate the effect of post-assembly host
288 richness on parasite richness.

289 As predicted, post-assembly host richness increased parasite richness (p=0.001),
290 supporting the hypothesis that host diversity begets parasite diversity (Fig 4). This effect was
291 moderated by shifting exotic abundance during community assembly: communities that
292 became heavily dominated by exotic species also exhibited the strongest positive relationship
293 between post-assembly host and parasite richness (p<0.0001; Fig 5; Fig S2), even though
294 exotic abundance did not directly influence parasite richness (p = 0.16). Parasite richness was

295 also lower in communities that became more phylogenetically overdispersed ($p=0.026$),
296 consistent with previous observations that more phylogenetically overdispersed communities
297 may exhibit lower parasite transmission. However, phylogenetic diversity did not alter the
298 relationship between post-assembly host and parasite richness ($p=0.40$). Together these
299 results indicate that, while the relationship between host and parasite richness is consistent,
300 the magnitude of this relationship depends on community assembly. Consequently, these
301 results support the hypothesis that host diversity begets parasite diversity, but reveal
302 important contingencies in how this relationship manifests over time.

303

304 **Discussion**

305 In this study, the relationship between host and parasite richness changed over time as
306 the host community assembled. Specifically, higher planted host diversity led to an initial
307 increase in parasite richness that weakened as the host community assembled, and the
308 ultimate relationship between post-assembly host and parasite richness was contingent on
309 how host community structure changed during community assembly. This represents, to our
310 knowledge, the first experimental evidence that the relationship between host and parasite
311 richness can change over time in response to shifting host community structure during host
312 community assembly. This result supports two recent studies that found that the relationship
313 between host and parasite richness was contingent on characteristics of host and parasite
314 communities (Johnson *et al.* 2016; Wood *et al.* 2018). Furthermore, host community
315 assembly is linked to parasite transmission (e.g., Joseph *et al.* 2013; Johnson *et al.* 2015;
316 Halliday *et al.* 2019), and our results suggest that contingencies in the relationship between
317 host and parasite richness during host community assembly can emerge as a consequence of
318 changing parasite transmission.

319 Our hypothesis that changes in parasite transmission during host community assembly
320 would modify the relationship between host and parasite richness was grounded in
321 metacommunity theory. According to metacommunity theory, the richness of species in a
322 metacommunity often depends on habitat heterogeneity, but this effect can be highly
323 sensitive to reduced dispersal and establishment among patches (Leibold *et al.* 2004). A host
324 community is a parasite metacommunity, with the richness of host species in the community
325 representing heterogeneity of parasite habitat (Johnson *et al.* 2016), and parasite transmission
326 representing dispersal and establishment of parasites among host individuals within that
327 metacommunity (Borer *et al.* 2016). Thus, parasite richness should increase with increasing
328 host richness, but this effect may be altered by parasite transmission. Parasite transmission, in
329 turn, can be altered by shifts in host community structure that take place during community
330 assembly (Johnson *et al.* 2013; Halliday *et al.* 2019). Exotic hosts contribute the most to
331 disease in this system (Halliday *et al.* 2019; Heckman *et al.* 2019), and consequently, the
332 abundance of exotic hosts modified the relationship between host and parasite richness,
333 supporting our hypothesis.

334 The relationship between post-assembly host and parasite richness was contingent on
335 the final abundance of exotic host species that resulted from community assembly. Many of
336 the exotic hosts that dominate Southeastern US old fields were introduced by humans from
337 fertilized pastures (Fridley 2008), benefit from experimental fertilization (Heckman *et al.*
338 2016, 2017), and are sensitive to initial host diversity. Previous analyses indicate that exotic
339 hosts also contributed most to parasite abundance in communities that they dominated,
340 suggesting that exotic host species may contribute disproportionately to parasite transmission
341 (Halliday *et al.* 2019). Consequently, we suggest that increasing exotic abundance may have
342 strengthened the relationship between host and parasite richness by alleviating dispersal
343 limitation of parasites in communities dominated by exotic species. This hypothesis, that

344 exotic host species contribute disproportionately to parasite transmission, relies on the
345 assumption that native and exotic hosts can share at least some of the same parasite species.
346 Nearly half (6/13) of the parasites infecting exotic host species were also observed infecting
347 native host species, providing some support for this assumption (Table S1).

348 The effect of exotic abundance on the relationship between host and parasite richness
349 is consistent with predictions grounded in metacommunity theory (Leibold *et al.* 2004;
350 Holyoak *et al.* 2005), but could this pattern be driven by the design of this study? In this
351 system, high exotic abundance typically results from increasing abundance of a few dominant
352 species (Heckman *et al.* 2017), suggesting strong competitive asymmetry. Consequently,
353 these dominant species are capable of reducing the abundance and richness of other species
354 (MacDougall *et al.* 2009), which, in addition to increasing parasite transmission, could
355 interfere with how parasite richness was estimated. If this were occurring here, we would
356 have under-sampled parasite diversity in heavily invaded host communities. But we found no
357 difference between the percent of host species surveyed in communities that were minimally
358 invaded (at least one standard deviation below mean exotic abundance; mean \pm SD: 77 \pm
359 10%) and communities that were heavily invaded (at least one standard deviation above mean
360 exotic abundance; mean \pm SD: 83 \pm 11%). This indicates that under-sampling of parasite
361 diversity in heavily invaded host communities was unlikely to contribute to our observed
362 results. In other systems, though, high exotic abundance can arise from increasing the
363 abundance of many sub-dominant species. These exotic species typically coexist with native
364 species by occupying distinct niches (MacDougall *et al.* 2009), which should have less
365 negative effects on the abundance and richness of other species. This may lead to increased
366 diversity in invaded host communities (Fridley *et al.* 2007), which could reduce parasite
367 transmission. Future studies could resolve these potential issues by experimentally
368 manipulating exotic abundance (or other drivers of parasite transmission) and host richness

369 simultaneously (Young *et al.* 2017). Nevertheless, these results highlight the value of our
370 dynamic community assembly approach for generating new hypotheses that could be tested
371 through direct manipulations of static host communities.

372 Increasing host phylogenetic diversity reduced parasite richness, consistent with
373 previous observations that more phylogenetically overdispersed communities may exhibit
374 lower parasite transmission (e.g., Parker *et al.* 2015; Halliday *et al.* 2019). These results are
375 in contrast to predictions grounded in the phylogenetic signal in parasites' host range (Box 1),
376 which suggest that, because more distantly related hosts are less likely to share pathogens
377 than closely related host species (Gilbert & Webb 2007), communities with higher
378 phylogenetic diversity may support more parasite species (e.g. via habitat heterogeneity;
379 Johnson *et al.* 2016). Experiments that explicitly cross host taxonomic and phylogenetic
380 diversity (e.g., Cadotte 2013) would help disentangle the conditions under which taxonomic
381 and phylogenetic diversity can have opposite, but non-interacting results.

382 Our hypothesis that increasing transmission during host community assembly would
383 alleviate dispersal limitation for parasites relies on the assumption that parasite communities
384 would be dispersal limited. This assumption appears to hold for some parasites of plants
385 (Mitchell *et al.* 2002; Laine 2005; Tack *et al.* 2014; Halliday *et al.* 2017a) and animals
386 (Sousa 1994; Esch *et al.* 2001; Byers *et al.* 2008; Mihaljevic *et al.* 2018). However, even in
387 systems where parasite dispersal does not appear to be particularly limiting (e.g., Richgels *et*
388 *al.* 2013; Dallas & Presley 2014; Ekholm *et al.* 2017), increasing transmission could still alter
389 the relationship between host and parasite richness. In a metacommunity, when species
390 richness is not dispersal-limited, mass effects (Logue *et al.* 2011; Cornell & Harrison 2013)
391 can reduce regional richness by overwhelming species sorting mechanisms that occur within
392 habitat patches. Similarly, when parasite distributions are not transmission-limited, an
393 increase in parasite transmission could weaken the relationship between host and parasite

394 richness (e.g., via mass effects), particularly if host generalists replace more specialized
395 parasites (Johnson *et al.* 2016). Thus, across a wide gradient in parasite transmission rate, we
396 hypothesize the effect of transmission rate on the relationship between host and parasite
397 richness to be nonlinear: a positive/strengthening effect at low transmission rate, and a
398 negative/weakening effect at high transmission rate.

399 While our results demonstrate that the relationship between host and parasite richness
400 can be moderated by shifting host community structure, they are nonetheless consistent with
401 the well-established “host-diversity-begets-parasite-diversity” hypothesis (Hechinger &
402 Lafferty 2005; Kamiya *et al.* 2014) . Consistent with previous experiments in other systems,
403 host richness most strongly predicted parasite richness immediately following establishment
404 of experimental host communities (Rottstock *et al.* 2014; Liu *et al.* 2016). This effect
405 weakened as non-planted hosts colonized experimental communities, but a significant
406 positive effect of post-assembly host and parasite richness remained even after two years of
407 community assembly. This latter result is consistent with the “host-diversity-begets-parasite-
408 diversity” hypothesis (Hechinger & Lafferty 2005), even after accounting for the moderating
409 effect of community assembly.

410 Together, these results demonstrate that the relationship between host and parasite
411 richness can be contingent on characteristics of host community structure that shift during
412 host community assembly. Thus by leveraging host community assembly, this study adds a
413 novel mechanism to a growing body of literature revealing key contingencies in this
414 relationship (Johnson *et al.* 2016; Wood *et al.* 2018). We suggest that contingencies in the
415 relationship between host and parasite richness may occur because characteristics of host and
416 parasite communities that shift during community assembly alter parasite transmission. More
417 specifically, parasite transmission may be altered simultaneously by multiple components of
418 host community structure that during community assembly shift in concert. For example,

419 experimental fertilization both increased colonization by exotic host species and decreased
420 host species richness (Heckman *et al.* 2017; Halliday *et al.* 2019). This covariance, in turn,
421 led to an indirect effect on the relationship between host and parasite richness: communities
422 that were more heavily invaded exhibited a stronger positive relationship between host and
423 parasite richness. Consequently, fertilization indirectly strengthened the relationship between
424 host and parasite richness. This study represents an important step forward by providing an
425 ecological mechanism to explain contingencies in one of the most consistently reported
426 patterns in disease ecology – the positive relationship between host and parasite diversity.

427

428 **Acknowledgments**

429 J. Bruno, J. Wright, S. Halliday, and members of the Mitchell Lab provided helpful
430 suggestions for the design of this experiment and assistance with plant propagation,
431 fieldwork, and data analysis. We are also grateful for insightful suggestions from A-L. Laine
432 and members of the Laine Lab. FWH, RWH, and PAW were supported by UNC's Alma
433 Holland Beers Scholarship and WC Coker Fellowship. RWH and FWH were supported by
434 the UNC Graduate School Dissertation Completion Fellowship. FWH was supported by the
435 NSF Graduate Research Fellowship. This work was supported by the NSF-USDA joint
436 program in Ecology and Evolution of Infectious Diseases (NSF grant DEB-1015909 and
437 USDA-NIFA AFRI grant 2016-67013-25762).

438

439 **References**

440 Borer, E.T., Harpole, W.S., Adler, P.B., Lind, E.M., Orrock, J.L., Seabloom, E.W., *et al.*
441 (2014). Finding generality in ecology: A model for globally distributed experiments.
442 *Methods Ecol. Evol.*, 5, 65–73.
443 Borer, E.T., Laine, A.-L. & Seabloom, E.W. (2016). A multiscale approach to plant disease

444 using the metacommunity concept. *Annu. Rev. Phytopathol.*, 54, 397–418.

445 Byers, J.E., Blakeslee, A.M.H., Linder, E., Cooper, A.B. & Maguire, T.J. (2008). Controls of
446 spatial variation in the prevalence of trematode parasites infecting a marine snail.

447 *Ecology*, 89, 439–451.

448 Cadotte, M.W. (2013). Experimental evidence that evolutionarily diverse assemblages result
449 in higher productivity. *Proc. Natl. Acad. Sci. U. S. A.*, 110, 8996–9000.

450 Cornell, H. V. & Harrison, S.P. (2013). Regional effects as important determinants of local
451 diversity in both marine and terrestrial systems. *Oikos*, 122, 288–297.

452 Crawley, M.J. (2007). *The R Book*. J. Am. Stat. Assoc. John Wiley & Sons, Ltd, West Sussex,
453 England.

454 Dallas, T. & Presley, S.J. (2014). Relative importance of host environment, transmission
455 potential and host phylogeny to the structure of parasite metacommunities. *Oikos*, 123,
456 866–874.

457 Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008). Homage to
458 Linnaeus: How many parasites? How many hosts? *Proc. Natl. Acad. Sci.*, 105, 11482–
459 11489.

460 Ekholm, A., Roslin, T., Pulkkinen, P. & Tack, A.J.M. (2017). Dispersal, host genotype and
461 environment shape the spatial dynamics of a parasite in the wild. *Ecology*, 98, 2574–
462 2584.

463 Esch, G.W., Curtis, L. a & Barger, M. a. (2001). A perspective on the ecology of trematode
464 communities in snails. *Parasitology*, 123 Suppl, S57-75.

465 Fargione, J.E. & Tilman, D. (2005). Diversity decreases invasion via both sampling and
466 complementarity effects. *Ecol. Lett.*, 8, 604–611.

467 Fridley, J.D. (2008). Of Asian Forests and European Fields: Eastern U.S. Plant Invasions in a
468 Global Floristic Context. *PLoS One*, 3, e3630.

469 Fridley, J.D., Stachowicz, J.J., Naeem, S., Sax, D.F., Seabloom, E.W., Smith, M.D., *et al.*
470 (2007). The Invasion Paradox: Reconciling Pattern and Process in Species Invasions.
471 *Ecology*, 88, 3–17.

472 Gilbert, G.S. & Webb, C.O. (2007). Phylogenetic signal in plant pathogen-host range. *Proc.*
473 *Natl. Acad. Sci. U. S. A.*, 104, 4979–83.

474 Gilpin, M.E. & Soule, M.E. (1986). Minimum viable populations: processes of species
475 extinction. In: *Conservation Biology: The Science of Scarcity and Diversity* (ed. Soulé,
476 M.E.). Sinauer Associates, Sunderland, MA, pp. 13–34.

477 Gotelli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in the
478 measurement and comparison of species richness. *Ecol. Lett.*, 4, 379–391.

479 Halliday, F.W., Heckman, R.W., Wilfahrt, P.A. & Mitchell, C.E. (2017a). A multivariate test
480 of disease risk reveals conditions leading to disease amplification. *Proc. R. Soc. B Biol.*
481 *Sci.*, 284.

482 Halliday, F.W., Heckman, R.W., Wilfahrt, P.A. & Mitchell, C.E. (2019). Past is prologue:
483 host community assembly and the risk of infectious disease over time. *Ecol. Lett.*, 22,
484 138–148.

485 Halliday, F.W., Umbanhowar, J. & Mitchell, C.E. (2017b). Interactions among symbionts
486 operate across scales to influence parasite epidemics. *Ecol. Lett.*, 20, 1285–1294.

487 Han, B.A., Kerby, J.L., Searle, C.L., Storfer, A. & Blaustein, A.R. (2015). Host species
488 composition influences infection severity among amphibians in the absence of spillover
489 transmission. *Ecol. Evol.*, 5, 1432–1439.

490 Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., *et al.* (2016).
491 Addition of multiple limiting resources reduces grassland diversity. *Nature*, 537, 93–96.

492 Hayes, A.F. (2015). An Index and Test of Linear Moderated Mediation. *Multivariate Behav.*
493 *Res.*, 50, 1–22.

494 Hechinger, R.F. & Lafferty, K.D. (2005). Host diversity begets parasite diversity: bird final
495 hosts and trematodes in snail intermediate hosts. *Proc. R. Soc. B-Biological Sci.*, 272,
496 1059–1066.

497 Heckman, R.W., Halliday, F.W. & Mitchell, C.E. (2019). A growth–defense trade-off is
498 general across native and exotic grasses. *Oecologia*, 1–12.

499 Heckman, R.W., Halliday, F.W., Wilfahrt, P.A. & Mitchell, C.E. (2017). Effects of native
500 diversity, soil nutrients, and natural enemies on exotic invasion in experimental plant
501 communities. *Ecology*, 98, 1409–1418.

502 Heckman, R.W., Wright, J.P. & Mitchell, C.E. (2016). Joint effects of nutrient addition and
503 enemy exclusion on exotic plant success. *Ecology*, 97, 3337–3345.

504 Heger, T. & Jeschke, J.M. (2014). The enemy release hypothesis as a hierarchy of
505 hypotheses. *Oikos*, 123, 741–750.

506 HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. (2011).
507 Rethinking Community Assembly Through the Lens of Coexistence Theory. *Annu. Rev.*
508 *Ecol. Evol. Syst.*, 43, 120830113150004.

509 Holyoak, M., Leibold, M. a. & Holt, R.D. (2005). *Metacommunities: Spatial Dynamics and*
510 *Ecological Communities*. University of Chicago Press.

511 Huenneke, L.F., Hamburg, S.P., Koide, R., Mooney, H.A. & Vitousek, P.M. (1990). Effects
512 of Soil Resources on Plant Invasion and Community Structure in Californian Serpentine
513 Grassland. *Ecology*, 71, 478–491.

514 Johnson, P.T.J., Preston, D.L., Hoverman, J.T. & Richgels, K.L.D. (2013). Biodiversity
515 decreases disease through predictable changes in host community competence. *Nature*,
516 494, 230–3.

517 Johnson, P.T.J., de Roode, J.C. & Fenton, A. (2015). Why infectious disease research needs
518 community ecology. *Science (80-.)*, 349, 1259504.

519 Johnson, P.T.J., Wood, C.L., Joseph, M.B., Preston, D.L., Haas, S.E. & Springer, Y.P.

520 (2016). Habitat heterogeneity drives the host-diversity-begets-parasite-diversity

521 relationship: evidence from experimental and field studies. *Ecol. Lett.*, 19, 752–761.

522 Joseph, M.B., Mihaljevic, J.R., Orlofske, S.A. & Paull, S.H. (2013). Does life history mediate

523 changing disease risk when communities disassemble? *Ecol. Lett.*, 16, 1405–1412.

524 Kamiya, T., O'Dwyer, K., Nakagawa, S. & Poulin, R. (2014). Host diversity drives parasite

525 diversity: meta-analytical insights into patterns and causal mechanisms. *Ecography*

526 (Cop.), 37, 689–697.

527 Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., *et*

528 *al.* (2010). Picante: R tools for integrating phylogenies and ecology. *Bioinformatics*,

529 1463–1464.

530 Kuris, A.M., Blaustein, A.R. & Alio, J.J. (1980). Hosts as Islands. *Am. Nat.*, 116, 570–586.

531 Lafferty, K.D. (2012). Biodiversity loss decreases parasite diversity: theory and patterns.

532 *Philos. Trans. R. Soc. Lond. B. Biol. Sci.*, 367, 2814–27.

533 Lafferty, K.D. & Kuris, A.M. (2002). Trophic strategies , animal diversity and body size, 17,

534 507–513.

535 Laine, A.L. (2005). Spatial scale of local adaptation in a plant-pathogen metapopulation. *J.*

536 *Evol. Biol.*, 18, 930–938.

537 Leibold, M. a., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., *et*

538 *al.* (2004). The metacommunity concept: a framework for multi-scale community

539 ecology. *Ecol. Lett.*, 7, 601–613.

540 Lenth, R. V. (2016). Least-Squares Means: The {R} Package *{lsmeans}*. *J. Stat. Softw.*, 69,

541 1–33.

542 Levine, J.M. (2000). Species diversity and biological invasions: relating local process to

543 community pattern. *Science*, 288, 852–4.

544 Levine, J.M. & D'Antonio, C.M. (1999). Elton Revisited: A Review of Evidence Linking
545 Diversity and Invasibility. *Oikos*, 87, 15.

546 Liu, X., Lyu, S., Zhou, S. & Bradshaw, C.J.A. (2016). Warming and fertilization alter the
547 dilution effect of host diversity on disease severity. *Ecology*, 97, 1680–1689.

548 Logue, J.B., Mouquet, N., Peter, H. & Hillebrand, H. (2011). Empirical approaches to
549 metacommunities: a review and comparison with theory. *Trends Ecol. Evol.*, 26, 482–
550 91.

551 MacDougall, A.S., Gilbert, B. & Levine, J.M. (2009). Plant invasions and the niche. *J. Ecol.*,
552 97, 609–615.

553 Mayfield, M.M. & Levine, J.M. (2010). Opposing effects of competitive exclusion on the
554 phylogenetic structure of communities. *Ecol. Lett.*, 13, 1085–1093.

555 McDevitt-Galles, T., Calhoun, D.M. & Johnson, P.T.J. (2018). Parasite richness and
556 abundance within aquatic macroinvertebrates: testing the roles of host- and habitat-level
557 factors. *Ecosphere*, 9, e02188.

558 Mihaljevic, J.R. (2012). Linking metacommunity theory and symbiont evolutionary ecology.
559 *Trends Ecol. Evol. (Personal Ed.)*, 27, 323–329.

560 Mihaljevic, J.R., Hoyal, B.J. & Johnson, P.T.J. (2018). Parasite metacommunities: Evaluating
561 the roles of host community composition and environmental gradients in structuring
562 symbiont communities within amphibians. *J. Anim. Ecol.*, 87, 354–368.

563 Mitchell, C., Tilman, D. & Groth, J. (2002). Effects of grassland plant species diversity,
564 abundance, and composition on foliar fungal disease. *Ecology*, 83, 1713–1726.

565 Mitchell, C.E., Blumenthal, D., Jarošík, V., Puckett, E.E. & Pyšek, P. (2010). Controls on
566 pathogen species richness in plants' introduced and native ranges: roles of residence
567 time, range size and host traits. *Ecol. Lett.*, 13, 1525–35.

568 Mitchell, C.E. & Power, A.G. (2003). Release of invasive plants from fungal and viral

569 pathogens. *Nature*, 421, 625–7.

570 Mordecai, E.A. (2011). Pathogen impacts on plant communities: unifying theory, concepts,
571 and emirical work. *Ecol. Monogr.*, 81, 429–441.

572 Mouquet, N., Munguia, P., Kneitel, J.M. & Miller, T.E. (2003). Community assembly time
573 and the relationship between local and regional species richness. *Oikos*, 103, 618–626.

574 Oberski, D. (2014). lavaan.survey: An R Package for Complex Survey Analysis of Structural
575 Equation Models. *J. Stat. Softw.*, 57, ??–??

576 Parker, I.M., Saunders, M., Bontrager, M., Weitz, A.P., Hendricks, R., Magarey, R., *et al.*
577 (2015). Phylogenetic structure and host abundance drive disease pressure in
578 communities. *Nature*, 520, 542–544.

579 Pavoine, S. & Bonsall, M.B. (2011). Measuring biodiversity to explain community assembly:
580 a unified approach. *Biol. Rev.*, 86, 792–812.

581 Pearse, W.D. & Purvis, A. (2013). phyloGenerator: an automated phylogeny generation tool
582 for ecologists. *Methods Ecol. Evol.*, 4, 692–698.

583 Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., *et*
584 *al.* (2013). New handbook for standardised measurement of plant functional traits
585 worldwide. *Aust. J. Bot.*, 61, 167–234.

586 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. (2016). *{nlme}*: Linear and
587 Nonlinear Mixed Effects Models.

588 Poulin, R. (2004). Macroecological patterns of species richness in parasite assemblages.
589 *Basic Appl. Ecol.*, 5, 423–434.

590 Poulin, R. (2014). Parasite biodiversity revisited: Frontiers and constraints. *Int. J. Parasitol.*,
591 44, 581–589.

592 Richgels, K.L.D., Hoverman, J.T. & Johnson, P.T.J. (2013). Evaluating the role of regional
593 and local processes in structuring a larval trematode metacommunity of *Helisoma*

594 trivolvis. *Ecography (Cop.)*, 36, 854–863.

595 Rosseel, Y. (2010). lavaan: an R package for structural equation modeling and more. *R Doc.*,
596 1, 1–32.

597 Rottstock, T., Joshi, J., Kummer, V. & Fischer, M. (2014). Higher plant diversity promotes
598 higher diversity of fungal pathogens, while it decreases pathogen infection per plant.

599 *Ecology*, 95, 1907–17.

600 Schmid, B., Hector, A., Huston, M.A., Inchausti, P., Nijs, I., Leadley, P.W., *et al.* (2002). The
601 design and analysis of biodiversity experiments. In: *Biodiversity and ecosystem*
602 *functioning: synthesis and perspectives*. Oxford University Press, Oxford. pp. 61–75.

603 Sousa, W.P. (1994). Patterns and processes in communities of heirninth parasites. *Trends*
604 *Ecol. Evol.*, 9, 52–57.

605 Stricker, K.B., Harmon, P.F., Goss, E.M., Clay, K. & Luke Flory, S. (2016). Emergence and
606 accumulation of novel pathogens suppress an invasive species. *Ecol. Lett.*, 19, 469–477.

607 Tack, A.J.M., Hakala, J., Petäjä, T., Kulmala, M. & Laine, A.L. (2014). Genotype and spatial
608 structure shape pathogen dispersal and disease dynamics at small spatial scales. *Ecology*,
609 95, 703–714.

610 Toothaker, L.E., Aiken, L.S. & West, S.G. (1991). *Multiple Regression: Testing and*
611 *Interpreting Interactions*. J. Oper. Res. Soc. Sage.

612 USDA & NRCS. (2016). *The PLANTS Database*. Natl. Plant Data Team, Greensboro, NC,
613 USA. Available at: <http://plants.usda.gov>. Last accessed 1 December 2015.

614 Wilfahrt, P.A., Halliday, F.W. & Heckman, R.W. (2019). Priority effects, consumer pressure,
615 and soil resources independently alter plant diversity and resource strategies during a
616 multi-year successional field experiment. *bioRxiv*, 722264.

617 Wood, C.L., Zgliczynski, B.J., Haupt, A.J., Guerra, A.S., Micheli, F. & Sandin, S.A. (2018).
618 Human impacts decouple a fundamental ecological relationship—The positive

619 association between host diversity and parasite diversity. *Glob. Chang. Biol.*, 24, 3666–
620 3679.

621 Young, H.S., Parker, I.M., Gilbert, G.S., Sofia Guerra, A. & Nunn, C.L. (2017). Introduced
622 Species, Disease Ecology, and Biodiversity–Disease Relationships. *Trends Ecol. Evol.*,
623 32, 41–54.

624 Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009). Mixed effects
625 models and extensions in ecology with R. Gail M, Krickeberg K, Samet JM, Tsiatis A,
626 Wong W, editors. *New York, NY Spring Sci. Bus. Media*.

627

628

629

630 **Figure legends**

631 **Fig. 1** Conceptual metamodel of community assembly altering the relationship between host
632 and parasite richness. During community assembly, biotic and abiotic drivers can determine
633 the trajectory of host community composition, which may, in turn, moderate the relationship
634 between host and parasite richness.

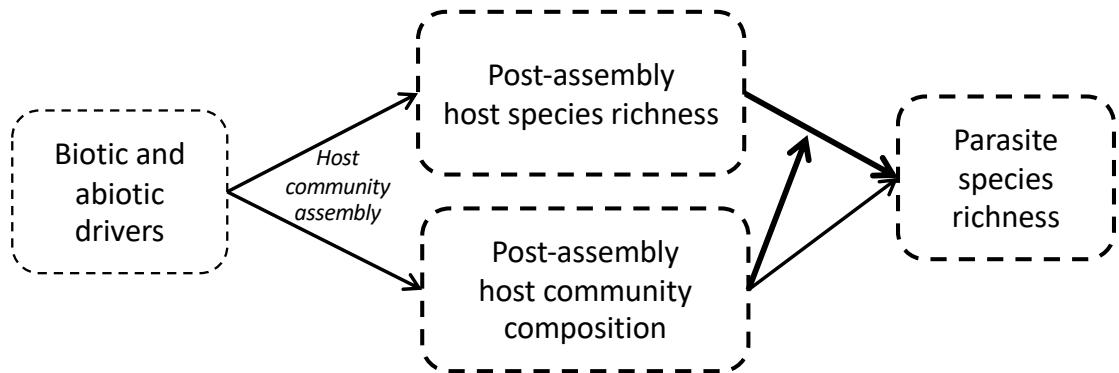
635

636 **Fig. 2** Longitudinal mixed model results showing the model-estimated effects of initial host
637 richness (monocultures orange; polycultures blue) and resource supply (unfertilized
638 communities on the left; fertilized communities on the right) on rarefied parasite richness
639 across three years. Large points represent the estimated treatment mean, error bars are 95%
640 confidence intervals, and small points show the raw data. The y-axis shows rarefied parasite
641 richness. Asterisks show significant effects ($p < 0.05$). Initial host richness increased parasite
642 richness but that effect weakened as host communities assembled, and ultimately reversed in
643 fertilized host communities.

644

645 **Fig. 3** Longitudinal mixed model results showing the model-estimated effect of post-
646 assembly host richness on rarefied parasite richness as a function of initial host diversity
647 (monocultures orange; polycultures blue) across three years. The y-axis shows the slope of
648 the relationship between post-assembly host richness and parasite richness. Points represent
649 the estimated effect of the experimental treatment on that slope (i.e., the interactive effect of
650 post-assembly host richness and initial host diversity on parasite richness). Error bars are
651 95% confidence intervals. The positive relationship between host and parasite richness that
652 was observed in polycultures in 2012 weakened over time, while the relationship between
653 host and parasite richness in monocultures strengthened over time, resulting in a positive
654 relationship in 2014.

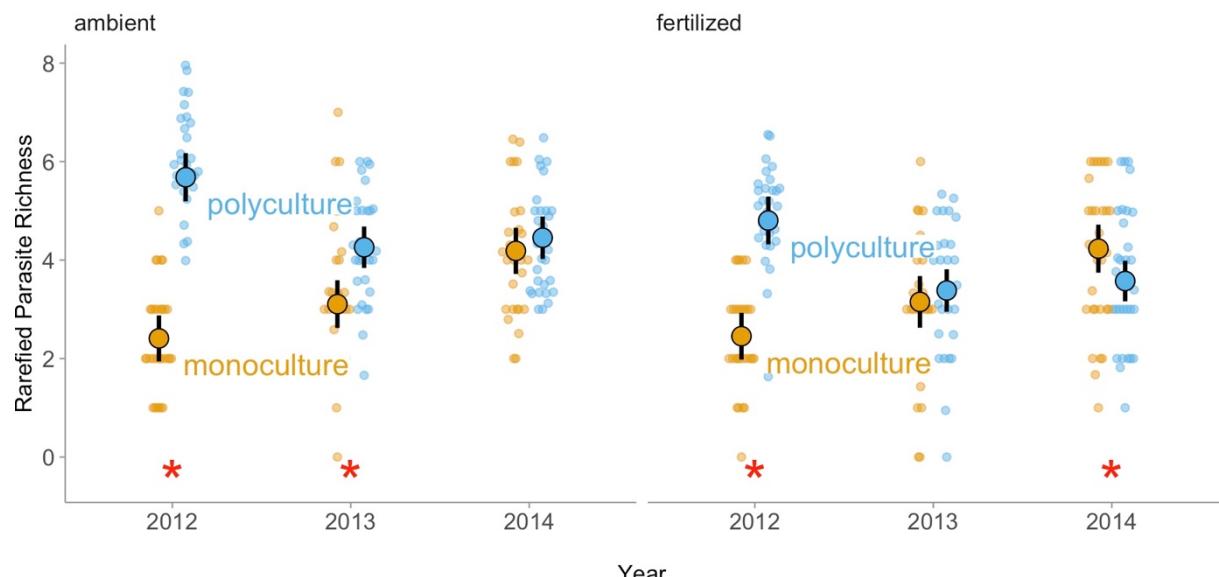
655


656 **Fig. 4** Structural equation model results for the final (reduced) model. Red lines are negative
657 effects ($p < 0.05$), blue lines are positive effects ($p < 0.05$), and dashed lines are non-
658 significant ($p > 0.05$). All coefficients are standardized. Correlations between errors are
659 denoted with double-headed arrows. Higher post-assembly host richness increased parasite
660 richness, and that effect was stronger in communities that, as a result of community
661 assembly, became more heavily dominated by exotic host species.

662

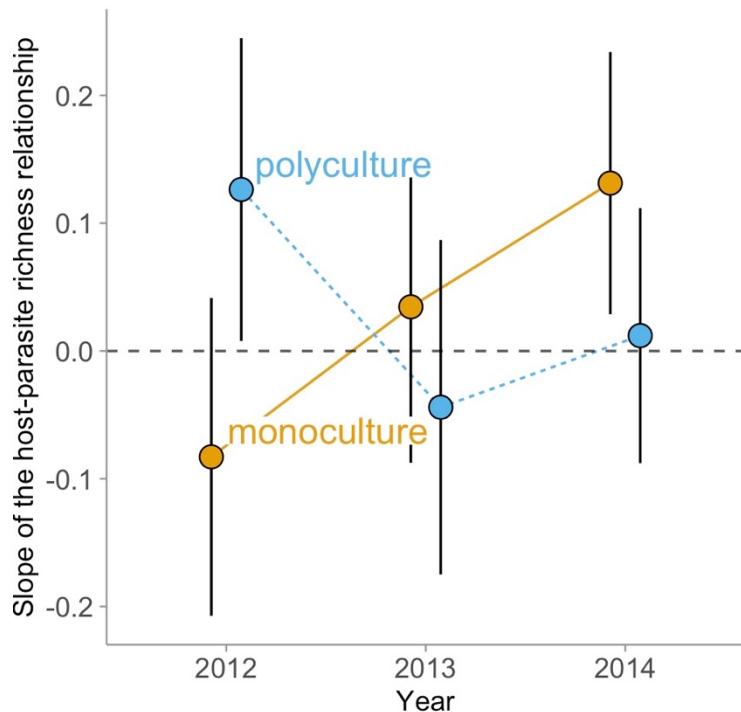
663 **Fig. 5** Effect of post-assembly host richness on parasite richness as a function of exotic host
664 abundance. Model estimated effects of standardized and centered exotic abundance on the
665 slope of the relationship between post-assembly host richness and parasite richness (i.e., the
666 interactive effect of post-assembly host richness and exotic host abundance on parasite
667 richness). The rug along the x-axis shows the distribution of the standardized and centered
668 empirical data. Communities that fall 0.5 or more standard deviations below the mean of
669 exotic host abundance show no relationship between host and parasite richness. Above that
670 level, the relationship between host and parasite richness becomes increasingly positive with
671 increasing exotic host abundance. Consequently, communities that became most dominated
672 by exotic species also exhibited the strongest positive relationship between host and parasite
673 richness.

674


675

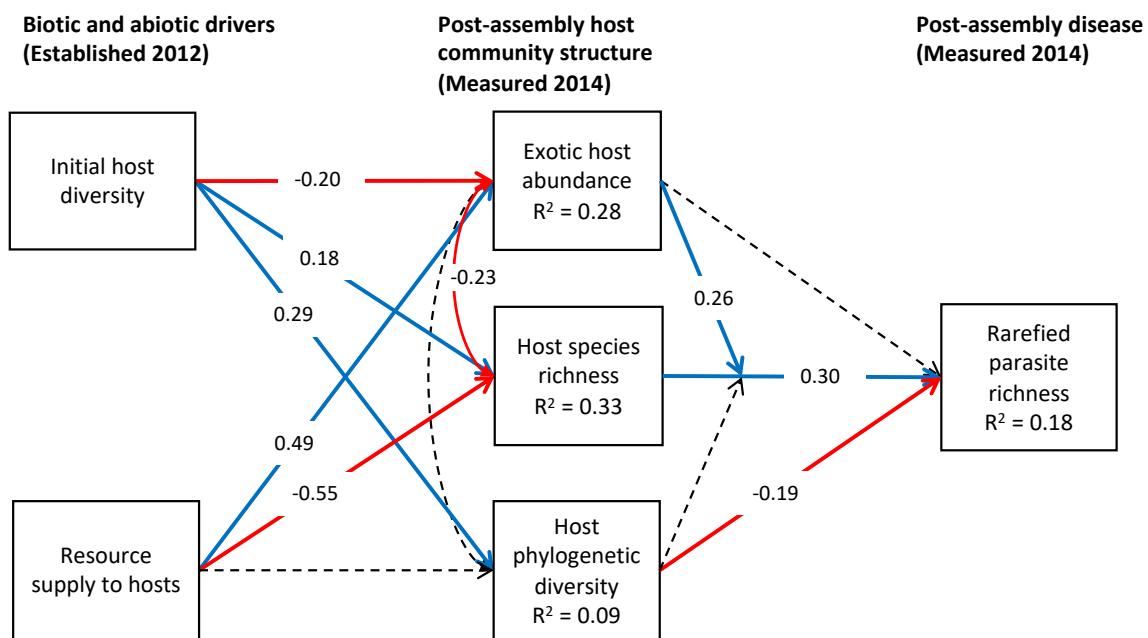
676

677 **Fig. 1**


678

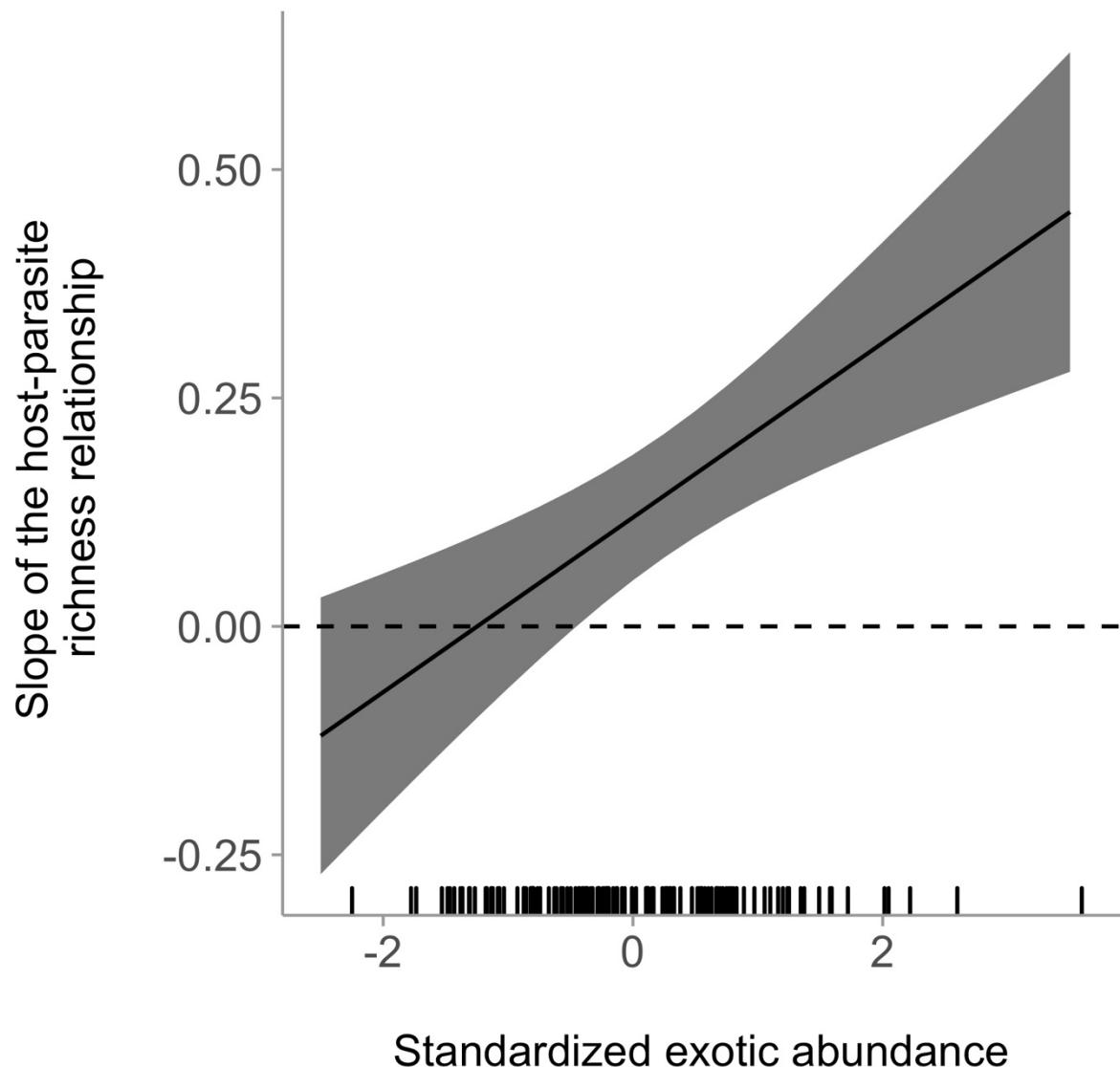
679

680 **Fig. 2**


681

682

683 **Fig. 3**


684

685

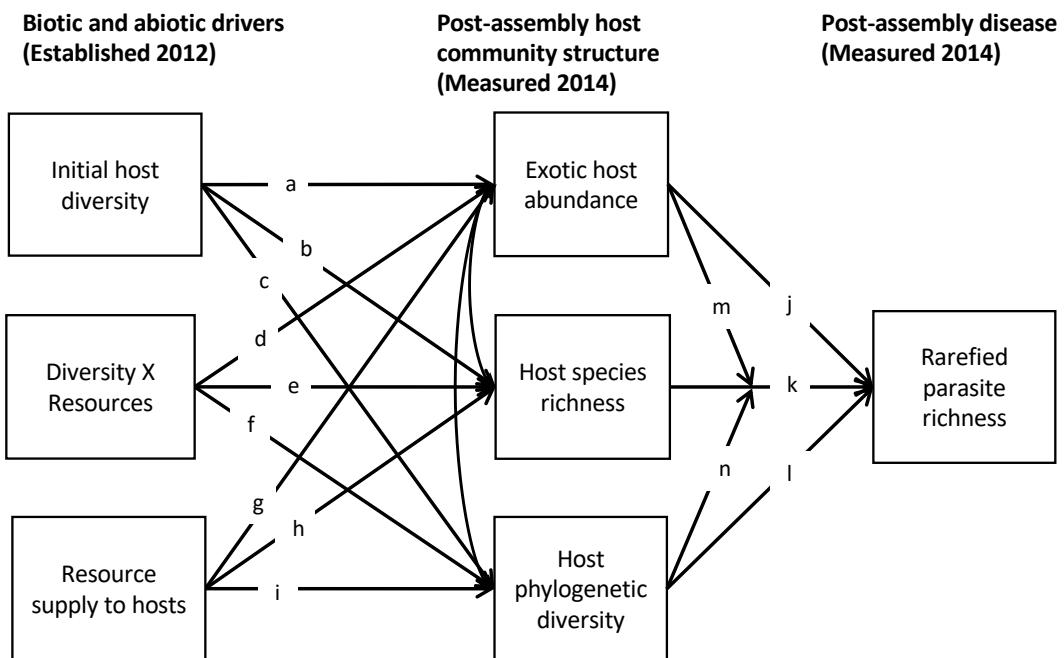
686 **Fig. 4**

687

693 **Box 1. Biotic and abiotic drivers of host community assembly can indirectly alter the**
694 **host-parasite richness relationship.**

695 Host community assembly involves change over time in community characteristics in
696 response to a variety of biotic and abiotic conditions. Here, we consider three characteristics
697 of host communities that change over time during community assembly and can alter parasite
698 transmission: host species richness, exotic host abundance, and host phylogenetic diversity.
699 We consider these changes in host community structure in response to two potential drivers:
700 initial host diversity and resource supply to hosts.

701 Increased resource supply often reduces host species richness by decreasing the
702 number of limiting resources that species compete for (Box Fig. 1, path h; Harpole *et al.*
703 2016), increases the abundance of exotic species by favoring species adapted to resource-rich
704 environments (Box Fig. 1, path g; Huenneke *et al.* 1990; Heckman *et al.* 2017), and reduces
705 phylogenetic diversity by favoring clades with specific resource uptake and allocation
706 strategies (Box Fig. 1, path i; Mayfield & Levine 2010). Furthermore, communities that
707 assemble from higher initial diversity may experience a legacy effect, with these host
708 communities maintaining higher richness during community assembly (Box Fig. 1, path b;
709 Mouquet *et al.* 2003), being more likely to resist invasion by exotic species at small and
710 intermediate spatial scales (Box Fig. 1, path a; Levine & D'Antonio 1999; Fargione &
711 Tilman 2005), and promoting colonization by species from different clades with low niche
712 overlap, resulting in increased phylogenetic overdispersion (Box Fig. 1, path c; Mayfield &
713 Levine 2010; Pavoine & Bonsall 2011). By altering parasite transmission, these concurrent
714 shifts in host community structure might alter the relationship between host and parasite
715 richness as host communities assemble.


716 Shifts in exotic host abundance during community assembly might alter the
717 relationship between host and parasite richness. Parasite richness often increases with host

718 richness, because higher host richness represents a more diverse pool of resources for
719 parasites (Box Fig. 1, path k; Kamiya *et al.* 2014). However, exotic species often initially
720 escape the parasites that infected them in their native range (Mitchell & Power 2003;
721 Mitchell *et al.* 2010; Heger & Jeschke 2014), potentially leading to lower parasite richness
722 (Box Fig. 1, path j) and weakening the relationship between host and parasite richness (Box
723 Fig. 1, path m) by reducing transmission in exotic-dominated communities. Alternatively,
724 introduced hosts can also acquire infections from closely related native hosts (Parker *et al.*
725 2015) or via repeated introductions over time (Mitchell *et al.* 2010; Stricker *et al.* 2016).
726 Successful exotic species are often more competent hosts for the parasites that can infect
727 them (Han *et al.* 2015; Young *et al.* 2017), which could increase parasite transmission in
728 exotic-dominated communities (e.g., Halliday *et al.* 2019). Thus shifts in exotic host
729 abundance could strengthen or weaken the relationship between host and parasite richness,
730 depending on characteristics of the host and parasite communities (Box Fig 1, path m).

731 Shifts in host phylogenetic diversity during community assembly might alter the
732 relationship between host and parasite richness. More distantly related hosts are less likely to
733 share pathogens (Gilbert & Webb 2007). Consequently, communities with higher host
734 phylogenetic diversity, independent of species richness, may support more parasite species
735 (Box Fig. 1, path l), potentially strengthening the relationship between host and parasite
736 richness in phylogenetically overdispersed host communities (Box Fig. 1, path n). However,
737 as host phylogenetic overdispersion increases, parasite transmission is expected to decline via
738 a phylogenetic dilution effect (Parker *et al.* 2015; Liu *et al.* 2016; Halliday *et al.* 2019),
739 which could reduce parasite species richness and weaken the relationship between host and
740 parasite richness in phylogenetically overdispersed host communities (Box Fig. 1, paths n, l).
741 Thus, drivers of community assembly that favor higher phylogenetic overdispersion could

742 either increase or reduce parasite richness, while simultaneously strengthening or weakening
743 the relationship between host and parasite richness.

744

745

746

747 **Box 1 Fig 1.** Measurement model representing the hypothesized effects of initial host
748 diversity and resource supply on parasite richness, mediated by post-assembly host
749 community structure. Paths are labeled a-n for reference in the text. Paths a - i represent the
750 effects of experimental treatments on community assembly (the model's first stage). Paths j -
751 n (the model's second stage) test the hypothesis that shifts in host community structure
752 altered the relationship between post-assembly host and parasite richness. Specifically, paths
753 j - l represent direct effects of the final plant community in 2014 on parasite richness. Paths m
754 - n represent the moderating effect of shifting community structure on the relationship
755 between host and parasite richness.

756