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Abstract

Hypoxia-activated prodrugs (HAPs) present a conceptually elegant approach to not only
overcome, but better yet, exploit intra-tumoural hypoxia. Despite being successful in vitro
and in vivo, HAPs are yet to achieve successful results in clinical settings. It has been hypoth-
esised that this lack of clinical success can, in part, be explained by the insufficiently stringent
clinical screening selection of determining which tumours are suitable for HAP treatments [I].

We here demonstrate that both the intra-tumoural oxygen landscape and treatment
scheduling of HAP-radiation combination therapies influence treatment responses in silico.
Our in silico framework is based on an on-lattice, hybrid, multiscale cellular automaton
spanning three spatial dimensions. The mathematical model for tumour spheroid growth is
parameterised by multicellular tumour spheroid (MCTS) data.
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1 Introduction

Oxygen concentrations vary across solid tumours and, although tumours present with high di-
versity across patients [2], hypoxic regions are prevalent tumour features [3, [4] 5] 6, [7, 8, 9] 10}, [11]
commonly provoked by inadequate oxygen supply and high tumour growth rates [12]. Hypoxia
significantly impacts tumour dynamics, treatment responses and, by extension, clinical outcomes
[13, 6, 9]. Hypoxia may alter cellular expressions of genomes, proteins and epigenetic traits [12],
and such hypoxia-induced alterations may cause hypoxic cancer cells to be more resistant to
apoptosis [I4]. Hypoxia may also alter the metabolism of cells [I4], promote angiogenesis by
activating associated genes [15] and upregulate efflux systems [16]. Thus hypoxia both protects
and progresses solid tumours [14], [13]. Accordingly, severe tumour hypoxia is associated with
tumours that are difficult to treat and, by extension, poor prognoses for patients [12, [7]. It is well
established that hypoxic regions in solid tumours express reduced sensitivity to radiotherapy and
a plethora of chemotherapeutic drugs [12], 15, [17) 14} 6] [7, 18], [8, @, 19, [IT]. Hypoxic cancer cells
in a solid tumour are naturally located far away from active oxygen sources, i.e. blood vessels [7],
and therefore drug molecules that are of large size or tightly bound to cell components may not
reach hypoxic tumour cells at all [I5]. Moreover, genes associated with chemo-resistance may be
upregulated by hypoxia [I]. Hypoxia is also regarded to be one of the main factors contributing
to radiotherapy failure [15]. Radiation-induced DNA damage, especially in the form of double
strand breaks, is more easily self-repaired by the cell under hypoxic conditions [20].

Due to their severe impact on conventional anticancer therapies, such as chemotherapy and
radiotherapy, hypoxic cancer cells, and their central mediators [I2], have for the last decades
been considered to be important treatment-targets [15, 2]. In treatment scenarios in which rapid
tumour re-oxygenation does not occur, hypoxic tumour regions can, instead, be more directly
targeted. Multiple ways to handle tumour hypoxia have been explored. One approach to combat
intratumoural hypoxia is to increase the tumour oxygenation as part of a neoadjuvant treatment
[1]. A second approach to overcome hypoxia is to selectively target hypoxic cancer cells only
for treatment-sensitising or eradication [4]. A third and conceptually elegant approach to not
only overcome, but better yet, exploit intratumoural hypoxia is realised by hypoxia-activated
prodrugs (HAPs) [15]. HAPs are bioreductive prodrugs that reduce, and thus convert, into
cytotoxic agents upon reaching hypoxic (tumour) regions [14, [19]. Theoretically, they act as
Trojan horses, ideally being essentially harmless until they are converted into warheads in tar-
get regions, i.e. hypoxic (tumour) cells. The tumour-targeting ability of HAPs is based on the
premise that oxygen concentrations in hypoxic tumour regions reach exceptionally low levels,
and that such low oxygen levels are much more prevalent in tumours, than in the body tissue
that locally surrounds the tumours [14]. Indeed physoxia, that is the term commonly used to
describe oxygen levels found in several types of normal tissue, ranges between 10 and 80 mmHg,
and a cancer cell is commonly classified as hypoxic if it has a partial pressure of oxygen (pO3)
value of 10 mmHg or less [5]. Solid tumours commonly display regions that are even more
hypoxic, where pOy values may drop below 5 mmHg [5]. Consequently, HAPs theoretically
constitute a means to effectively target hypoxic tumour cells. This also means that toxic drug
effects can be localised to tumours, and that the remaining host system can in great part be
spared from harmful toxicity causing unwanted side effects.
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HAPs transform into activated drugs (AHAPs) via reductive metabolism [I5], 3] in suffi-
ciently hypoxic environments, and the AHAPs can achieve cytotoxic effects in cells [21]. Freely
available molecular oxygen may inhibit this bioreduction, and thus HAPs remain (for the most
part) more intact, and by extension less toxic, in well-oxygenated environments [I4]. Once acti-
vated, certain AHAPs may diffuse into their local surroundings. Thus, via bystander effects, for
certain HAP drugs, AHAPs may infer damage to cells in which the HAP-to-AHAP bioreduction
did not occur. However, a few recent studies dispute the impact of these bystander effects on
the overall treatment outcome [22]. In the mathematical model described in this study, the
dispersion of HAPs and AHAPs obey mechanistic diffusion equations, and the reach of AHAPs
can easily be modified by altering coefficients in the AHAP diffusion equation. Thus the influ-
ence of bystander effects on the treatment outcome is allowed to range from negligable to highly
influential in our mathematical model.

Multiple HAPs have been evaluated for their clinical potential, both as monotherapies and as
part of combination therapies [12]8]. Class I HAPs are activated in moderately hypoxic environ-
ments whilst Class IT HAPs require more severe hypoxia to undergo the HAP to AHAP bioreduc-
tion [23]. One such Class IT HAP is evofosfamide, or TH-302, which has been tested in clinical
Phase I-I1T trials [12) I]. TH-302 bioreduces to its activated form, bromo-isophosphoramide
mustard (Br-IPM), in hypoxic tumour regions, and Br-IPM is a DNA-crosslinking agent [22].
Multiple in vitro and in vivo studies have validated this drug’s preclincal success and, by exten-
sion, its clinical feasibility [13| 24, 25] 26} [6l, [7, 18, 27, O 21} 10, 28]. Multimodality treatment
strategies combining HAPs, particularly Class II HAPs, with ionising radiation (IR) may be
particularly promising [29] 8, O, 27, 28] as the two therapies conceptually complement each
other: HAPs target hypoxic tumour regions whilst radiotherapy is most effective against well
oxygenated tumour regions. Thus, in principal, HAP-IR combination treatments have the abil-
ity to produce multifaceted attacks on tumours.

Despite HAPs being conceptually promising and successful in laboratories, this success has
not yet been mirrored in clinical trials [12} 2, 1]. It is hypothesised that this unsuccessful Bench-
to-Bedside translation is partly due to an insufficiently stringent clinical screening practice of
selecting tumours that are suitable for HAP treatments [I]. It is likely that some of the tumours
enrolled in clinical trials have been insufficiently hypoxic to benefit from treatment plans involv-
ing HAPs [2]. To investigate this hypothesis, we here propose a mathematical modelling angle
to simulate how spatio-temporal tumour features may impact HAP efficacy and how scheduling
influences the outcome of multimodality HAP-IR treatments.

Today, mathematical modelling constitutes an indispensable complement to traditional can-
cer research. Models provide an opportunity to study biological phenomena in silico that may
not be empirically observable and, moreover, in silico experiments are fast and cheap to run, easy
to reproduce and not directly associated with any ethical concerns. Previous mathematical stud-
ies have already contributed to the overall understanding of HAPs, quantified key mechanisms
associated to them and illustrated their clinical feasibility. Foehrenbacher et al. [30] have de-
ployed a Green’s function method, in customised form, and pharmacokinetic/pharmacodynamic
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(PK/PD) modelling to quantify anticancer bystander effects elicited by the HAP PR-104 in a
simulated, three-dimensional tumour comprising a microvascular network. Another concurrent
article used similar mathematical concepts to compare Class I HAPs to Class II HAPs and,
furthermore, to determine optimal properties for Class II HAPs [23]. Lindsay et al. [31] de-
veloped a stochastic model to study monotherapies and combination therapies involving HAPs,
specifically TH-302, and erlotinib. Amongst other findings, they concluded that a combination
therapy of the two drugs impedes the uprising of drug resistance. Since HAPs bioreduce to
activated form under hypoxic conditions it follows that AHAP activity increases with intratu-
moural hypoxia. Accordingly, a previous study by Wojtkowiak et al. [32] conceptually validated
the strategy of amplifying TH-302 activity by deliberately exacerbating intratumoural hypoxia
using exogenous pyruvate. Their study combined mathematical modelling with metabolic pro-
filing and EPR (electron paramagnetic resonance) imaging. HAP dynamics were modelled using
reaction-diffusion/convection equations coupled with fluid-structure interactions. In line with
these previous mathematical studies, the aim of this in silico study is to contribute HAP-related
insights gained by mathematical modelling, according to a Blackboard-to-Bedside [33] approach.

In clinical settings, the intratumoural oxygenation status can be assessed in multiple ways.
By inserting oxygen electrodes into tumours, pOs values can directly be measured, but this
measuring technique is invasive and does not distinguish between hypoxic and necrotic tumour
regions [1]. Alternatively, less invasive imaging techniques, such as positron emission (PET-
scans) and oxygen-enhanced magnetic resonance (MRIs), can be used to evaluate oxygen levels
in tumours [12), [I]. Moreover, there now exist several hypoxia gene expression signatures that
may be used to characterise hypoxia-related tumour features, and some of these signatures
have been conferred with poor clinical prognoses [1]. Avoiding a tumour biopsy, by measuring
hypoxia secreted markers in the blood, would, furthermore, constitute a more expeditious way
to assess tumour hypoxia [I]. Without further discussing the advantages and disadvantages of
various hypoxia assessment methods, the above discussion illustrates that it is, indeed, feasible
to invoke stricter selection regimes when deciding whether or not to pair tumours with HAP
treatments in clinical trials [1]. A recent publication, by Spiegelberg et al. [1], claims that the
(lack of) clinical progress with HAP-treatments can, in great part, be attributed to the omission
of hypoxia-based patient selection in phase III trials. In this study, we demonstrate that the
efficacy of HAP monotherapies and HAP-IR combination therapies in silico is, indeed, highly
dependent on tumour-specific oxygen features.

2 Model

An on-lattice, hybrid, multiscale cellular automaton (CA) is here used to model solid tumours
subjected to HAP and IR monotherapies, as well as HAP-IR combination therapies. Tumour
growth and HAP responses are parameterised by published data from an in witro study per-
formed by Voissiere et al. [34], in which multicellular tumour spheroids (MCTSs) where grown
and exposed to HAPs. Specifically, we use their data for human chondrosarcoma HEMC-SS
cells exposed to the hypoxia activated prodrug TH-302. Our mathematical model is thereafter
extended to simulate in vivo drug dynamics in order to investigate scheduling aspects of HAP-IR
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combination therapies. The parameters used in this paper can be modified in order to simulate
specific cell-lines and drugs, and model rules can be altered in order to simulate both in vitro and
in vivo cancer cell populations, MCTSs or tumours. Thus, with the availability of appropriate
data, various tumour scenarios and treatment schedules and doses can be investigated in silico.
Hence the mathematical model presented here constitutes a valuable and versatile complement
to both in wvitro and in vivo experiments. The model used in this study is an extension of a
previous, well-established model presented by Powathil et al. [35]. All parameters used in the
model are motivated from experiments and literature, as described throughout this section, and
are summarised in Section Table

2.1 Mathematical Framework: A Cellular Automaton (CA)

The CA used in this model allows for spatio-temporal dynamics and intratumoural heterogeneity
including variations in cell-cycle progression, oxygen levels, drug concentrations and treatment
responses amongst cancer cells [35, [36 33, B7]. The model is multiscale and integrates both
intracellular and extracellular regulations. In vitro experiments have demonstrated that MCT'Ss
are more HAP-sensitive than are monolayers. This increase in sensitivity has been attributed
to the microenvironment correlated to multilayer cultures [18]. Aspiring to achieve an in silico
model that is as clinically relevant as possible, we here let the CA lattice extend in three spatial
dimensions. The lattice is specifically a square lattice containing 100 lattice points, simulating
a physical environment of (2mm)3. Thus each voxel in the lattice spans a volume of (20um)>
and each lattice point may be occupied by either one cancer cell or extracellular matrix. These
dimensions agree with previous mathematical studies [35], and cell population density in the
MCTSs that are used to calibrate the model [34]. The time step used to model the temporal
progression of the CA is At = 10~* hours, by appropriate non-dimensionalisation of oxygen
dynamics [35].

2.2 Cell-Cycle Progression

On an intracellular scale, sub-cellular mechanisms are modelled individually for each cell in order
to allow for variations amongst cancer cells. Cell-cycle progression is one such intracellular pro-
cess, it is governed by an intrinsic cell-cycle clock attributed to each individual cell. In order to
account for cell-cycle asynchronicity amongst cells, each cell i is assigned an individual, stochas-
tic doubling-time 7; which corresponds to the time it takes for a cell to complete one cell-cycle,
and double by producing a daughter cell, in well-oxygenated conditions. Here, 7; is picked from
a normal distribution [36] with a mean value p and a standard deviation o, which are picked
to match cell population growth-rates reported from Voissiere et al. [34]. as demonstrated in

Figure

Each cell in the model follows a cell-cycle typical to that of eukaryotic cells. In particular,
a cell is defined to be in the gap 1 (G1), synthesis (S), gap 2 (G2) or mitosis (M) phase of the
cell-cycle. As sensitivity to radiotherapy is cell-cycle dependent [20], it is important to track
cell-cycle phase progression in the model. Each cell that is placed on the lattice commences its
first cell-cycle in the G1 phase. Under well-oxygenated conditions, the fraction of time spent in
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Figure 1: Cell count over time for tumour spheroids. The in silico data is based on 10 simulations
runs, the mean (black line) is shown. In vitro data (red error bars) are gathered from Voissiere
et al. [34].

each of the four distinct cell-cycle phases are Og1, Og, Oge and Oj; for the cell-cycle phases
G1, S, G2, M respectively, where the ©-fractions sum up to one so that

Oc1 +Og+BOge +0 = 1. (1)

The four theta values are picked from literature in order to match typical cell cycle phase
lengths of rapidly cycling human cells with a doubling time of roughly 24 hours [38]. Specifically,
we set the G1, S, G2 and M phase to respectively occupy 11/24:ths, 8/24:ths, 4/24:ths and
1/24:th of a cell’s individual cell-cycle, in terms of time. These values can be amended upon
availability of cell-line specific data. Thus the time spent in each of the four distinct cell-cycles,
for a well-oxygenated cell ¢ with a cell-cycle length 7;, is here Og17;, Og7;, Ogor; and Oy,7; for
the cell-cycle phases G1, S, G2 and M respectively so that

Oc17; + Os7; + Oqor; + O = T (2)

However, low cellular oxygen levels have been shown to delay cell-cycle progression by induc-
ing arrest in particularly the G1 phase of the cell cycle [39]. Mathematically, the cell-cycle can
be modelled in various ways. For example, in mechanistic cell-cycle models derived by Tyson
and Novak, the cell-cycle is governed by a regulatory molecular network that can be described
by a system of ordinary differential equations [40]. By incorporating hypoxia-induced factors
in the system of equations, the G1 phase can be inherently elongated under hypoxic conditions
[35]. In this study, however, cell-cycle progression is merely modelled using a phenomenological
clock, instead of a more detailed Tyson-Novak type of model. As a result of this, there is no
mechanistic functionality driving Gl-arrest under hypoxic conditions in our model. To remedy
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Figure 2: The G1 Delay Factor (G1DF) is incorporated in the model to achieve oxygen-
dependent G1 arrest. The G1DF (dark line) is extrapolated from in wvitro data (red crosses)
from a previous mathematical study by Alarcon et al. [39].

this fact, we here introduce an additional function to achieve an oxygen-dependent length (in
units of time) of the G1-phase. We name this function the G1 Delay Factor (G1DF') such that,

a1 + a3+aT2(m,t) if p02 < 10.5 mmHg (l’,t), (3)

1 otherwise,

G1DF (K (z,t)) = {

where K (x,t) denotes the oxygenation (in units of mmHg) of cell in point 2 at time ¢. The
G1DF, which is illustrated in Figure [2| is an approximation for how much the G1 phase is
expanded in time as a function of oxygen pressure, here measured in units of mmHg. The G1DF
is matched to fit data points extracted from a previous mathematical study by Alarcon et al.
[39], in which a Tyson-Novak cell-cycle model is extended to incorporate the action of p27, a
protein that is upregulated under hypoxia and delays cell-cycle progression. Thus the time spent
in the G phase, 71, is given by

Ta1 = G1DF(K (z,t)) - Oc17i, (4)

where G1DF (K (z,t)) = 1 for normoxic cells (K (x,t) > 10 mmHg). The lengths of other
cell-cycle phases are approximated as non-oxygen dependent in the model.
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2.3 Tumour Growth

In the model, a tumour is grown from one seeding cancer cell which divides and gives rise to
a heterogeneous MCTS. Once a viable, i.e. undamaged, cell has completed the mitosis (M)
phase of the cell-cycle, a secondary cell, namely a daughter cell, is produced and placed in the
neighbourhood its mother cell. In the model, this cell-division occurs provided that free space
is available on the lattice in the vth order neighbourhood of the mother cell, where the value
for v is here fitted form experimental data [34]. This replicates a scenario in which tumour
growth may be inhibited by lack of resources such as space or nutrients, as might for example
occur in vitro. (By setting v = oo, the model can be adapted to disregard these cell-division
constraints [36]). If this is not the case, no daughter cell is produced, and instead the mother cell
assumes a state in which they progress through the cell-cycle very slowly (simulating an in vitro
spheroid case, in which inner cancer cells experimentally have shown a reduced proliferation
rate [34]), or not at all (simulating an in wvivo case in which cells may enter a quiescent GO
phase [35]). Should neighbourhood space be made available again, as a result of cells getting
removed from the lattice due to anticancer treatments, such cells may re-assume an actively
cycling state. Each daughter cell is placed on a random lattice point in the neighbourhood of
the mother cell, where up to v spherical neighbourhoods are regarded. In order to agree with the
MCTS data [34] used to calibrate the model, we here pick v = 3, as illustrated in Figure [3| and
thus a daughter cell may be placed up to three neighbourhoods away from its mother cell. To
accomplish spherical-like tumour growth the model stochastically alternates between deploying
Moore and von Neumann neighbourhoods [35]. In the work presented by this paper, neither
necrotic nor apoptotic tumour cells are included in the pre-treatment tumour growth model,
and instead we make the simplifying modelling assumption that the density of viable cells is
constant (one cancer cell per lattice point) within the simulated MCTSs before any treatment
is given. However, CA are easily adaptable and, if appropriate and desired, modelling rules
concerning necrotic and/or apoptotic cells can be included in the mathematical framework. The
in vitro experiment produced and reported by Voissiere et al. [34] does detect apoptotic cells in
the MCTSs, these are primarily located towards the center of the spheroids.

2.4 Oxygen Distribution and Hypoxia

Oxygen is assumed to be readily available in the extracellular matrix and, accordingly, extracel-
lular lattice points are oxygen source points. On the other hand, viable (i.e. non-damaged) cells
are modelled as oxygen sinks as they consume oxygen in order to function. The distribution
of oxygen across the lattice is modelled by a mechanistic partial differential equation (PDE),
specifically a reaction-diffusion equation such that

0K (z,t)

ot
coupled with no-flux boundary conditions. Here K (x,t) denotes the oxygen level in lattice point
x at time t. Dg(x,t) is the diffusion coefficient, which is higher in lattice points occupied by cells
compared to unoccupied lattice points, so that oxygen diffuses slower over cancer cells than in
extracellular material in the model [35]. The binary function cell(z, t) is equal to one if the lattice
point is occupied by a cancer cell, and zero otherwise. Similarly, the binary function m(z,t)

=V . (Dg(z,t)VK(z,t)) +rgm(z,t) — o K(z, t)cell(z, 1), (5)
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Figure 3: Top: Images from in vitro experiments performed by Voissiere et al. [34], in which cell
nuclei are stained blue and furthermore proliferative cells are stained green by the proliferation
marker Ki-67. Bottom: Images from in silico experiments performed in this study, where pro-
liferative (cycling) cells are coloured green and inner, slow or non-proliferative cells are coloured
blue.
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Figure 4: Top: Images from in vitro experiments performed by Voissiere et al. [34], in which
hypoxic cells are stained green by pimonidazole and normoxic cells are stained blue. Bottom:
Images from in silico experiments performed in this study, where hypoxic cells (pO2 < 10 mmHg)
are coloured green and normoxic cells (pO2 > 10 mmHg) are coloured blue.

is one if the lattice point is outside the tumour, and zero otherwise. The oxygen production
rate is denoted by rx and the cellular oxygen consumption rate is ¢x. Thus the first term in
the Equation [5| describes oxygen diffusion, the second term describes oxygen production and
the final term describes cellular oxygen consumption. In the model, the diffusion coefficient for
oxygen is gathered from literature but the production and consumption rates are calibrated in
silico to match in vitro data from Voissiere et al. [34], specifically to achieve appropriate oxygen
gradients. Note that the no-flux boundary condition causes the total amount of oxygen on the
lattice to increase over time. To express oxygenation levels on the lattice in scaled form, a scaled
oxygen variable K (x,t) is introduced which is obtained by

. K(z,t)

R(z,t) = b, (6)

maz, K(n,t)

where max,, K (n,t) denotes the maximal K (z,t)-value (of all n lattice points) at time ¢ [41].
The scaling-factor, h, (with unit mmHg), is incorporated in order to calibrate the model to fit
the MCTS data, as illustrated in Figure dl A cell is defined to be hypoxic if it has a scaled
oxygen value such that K(z,t) < 10 mmHg [35]. In the model, the K (z,t)-value influences
Gl-arrest (Figure [2), radio-sensitivity (Figure [7) and HAP-AHAP bioreduction rates (Figure

5.

10
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Figure 5: The bioreduction factor, BRF', expresses the fraction of HAP compound that reduces
to AHAP compound within one hour as a function of oxygenation (measured in mmHg)

2.5 Hypoxia Activated Prodrugs

Anticancer prodrugs constitute relatively harmless compounds in their inactivated form with
the potential to bioreduce, or transform, into cytotoxic species [21]. Specifically for HAPs, this
bioreduction occurs in hypoxic conditions and thus HAPs are able to selectively target hypoxic
tumour regions [2I]. The oxygen dependent bioreduction is here modelled by the function

A~

faap—amap(K(x,t)), where

faap—anap(z,t) =b- BRF(K (x,t)), (7)
where b is a time-scaling factor with and BRF' is a bioreduction factor as illustrated in Figure
Bl and
[pO2]s50

BRF(K (z,t)) (8)

- [pOQ]g,o + K(x, t) '

Here [pOs]50 denotes the oxygen value yielding 50% bioreduction (in one hour), chosen to be
0.2 mmHg, for evofosfamide, as is done in a previous mathematical model by Hong et al. [42].
As illustrated in Figure |5, the BRF value rapidly decreases for pO, values (i.e. K(z,t) values)
between 0 and 10 mmHg.

The mechanistic reaction-diffusion equations governing the distribution of HAPs and AHAPs
across the lattice are respectively given by [43]

11
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ALLNED — 9 - (Dygrar(ar, ) VIHAPY,0) + rigrar (2, e,
— fuap—anap(x,t)[HAP|(z,t) — npap)[HAP](z,1),
)
AAIAPNED) _ G (Dpasar(o, OVIAH AP, 1)

+ faap—sanap(z,t)[HAP|(2,t) — napap [AHAP|(2,1),

(10)

where [HAP](x,t) denotes the concentration of HAPs and [AH AP](z,t) denotes the concen-
tration of AHAPs in point x at time t. Diyap)(z,t) and Diggap)(z,t) denote the respective
diffusion coeflicients, 7 Ap] (z,t) denotes the HAP production rate, naap) and nagap) denote
the corresponding decay rates. AHAPs are harmful agents which are here assumed to inflict
damage that is cell-cycle non-specific. Consequently, cells that are in any cell-cycle phase (G1,
S, G2, M), including cells that are in a slow or non-cycling state in the centre of the MCTS, are
susceptible to AHAP-inflicted damage in the model. A cell in point x at time ¢ is damaged by
the cytotoxic AHAPs if [AHAP](z,t) > ¥, where ¥ is the lethal AHAP concentration thresh-
old. ¥ and the production coefficient in Equation [J] are calibrated in silico to make it so that
HAPs and IR yield the same effect (in terms of number of cells killed) for a large tumour (see
the Large Tumour in Figure . When a cell dies, it reduces to a membrane-enclosed cell-corpse
which is (in vivo) digested by macrophages [44]. In the model, the time it takes for a cell to
receive lethal damage until it is removed from the lattice, to give space to other cells, is denoted
Tr—gr (L for lethal, R for removal). Three cases for this time T _,p are investigated in this
study: (i) the first extreme case in which a dead cell in never removed from the lattice (sim-
ulating an in vitro environment), (ii) the other extreme case in which a cell is instantaneously
removed from the lattice upon receiving lethal damage, and (ii7) a mid-way case in which a cell
is removed from the lattice after a time-period corresponding to its doubling time has passed,
ie. Trr; = 7;- Results using the first case are included in the main text, results for cases
(74) and (4i7) are provided in the Supplementary Material in which we demonstrate that, within
the scope of the performed in silico experiments, this choice of T _,r value does not affect our
qualitative findings.

2.5.1 Parameters

In our mathematical model, HAPs are produced on the source points (i.e. extracellular lattice
points outside the tumour) and are quickly distributed across the lattice. Drug transporta-
tion of HAPs from source points to cells is mediated only by the diffusion terms in Equation
[0 and and similarly AHAP transportation is mediated only by the diffusion term in Equation
Consequently, the drug diffusion coefficients Dz 4p) and Djgg4p) represent all biophys-
ical drug transportation across the lattice in silico. HAPs must possess certain appropriate
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attributes in order to produce desired effects [I8]. Specifically, HAPs should be able to travel
relatively long distances without being metabolised, specifically distances longer than that of
which oxygen travels, in order to reach hypoxic tumour regions. As oxygen is consumed by
the cells, whilst HAPs require certain micro-environmental conditions to be met in order to
metabolise, HAPs may reach regions located relatively far away from blood vessels, that oxy-
gen can not reach. It has, indeed, been demonstrated in vivo that TH-302 has the ability to
reach hypoxic regions, where it is activated [45]. Conversely, AHAPs should travel relatively
short distances in order to localise AHAP activity to tumour regions only, and thus to minimise
unwanted extratumoural toxicity. The diffusion length of oxygen is reported in literature to be
approximately 100 pum [35] however, to our knowledge, no diffusion length of neither TH-302
nor Br-IPM has been explicitly reported. However, the diffusion length of the HAP/AHAP
pair AQ4N/AQ4 has been shown to be reach roughly 1.5 times that of oxygen (or 150um) in
xenografts [46]. With this motivation, we here approximate the diffusion coefficient of TH-302
to be twice that of oxygen. ( According to the relationship L = \/D/®, where L is the diffu-
ston length scale and ® is the compound uptake, the diffusion coefficient of a certain compound,
D, is proportional to L?, neglecting details of compound uptake [35]. Thus here we make the
simplified approzimation that Ligap)(7,t) = V2 - Dg(x,t). ) Similar to previous procedure,
the diffusion length of AHAPSs is approximated to be half that of oxygen from which it follows
that Diagap)(x,t) = (1/4) - Di(x,t). These parameter estimations suffice to conceptually, and
qualitatively, describe the nature of HAPs and AHAPs, but can be amended upon the availabil-
ity of new data. By adjusting the diffusion coefficients D sp) and Diggap), the influence of
bystander effects are allowed to range from negligible to highly influential in our mathematical
framework.

The half-life times of TH-302 and Br-IPM have been reported to be 0.81h and 0.70h re-
spectively in a clinical trial [I1], these values are used to determine the decay rates Naap] and
namAp]- This half-life time of TH-302 is in accordance with preclinical predictions obtained from
allometric scaling [26]. Note that the drug decay coefficients, naap) and nagap) in Equation
and Equation [10| respectively, simulate all drug clearance from the system, i.e. both metabolic
clearance and excretion.

2.6 Radiotherapy

Cellular responses to radiotherapy are dependent on oxygenation status [4], cell-cycle phase
[47, 48], and cell-line characteristics. Cellular radiotherapy responses are here modelled using
an appropriate CA adaptation of the widely accepted Linear-Quadratic (LQ) model. In the
traditional LQ model, the survival fraction of a cell population is given by S(d) = e—nd(atpd)
where d is the radiation dosage, n is the number of administered radiation fractions and « and
B are cell-line specific sensitivity parameters [49]. To include cell-cycle sensitivity, o and 3 are
here cell-cycle dependent and the oxygen modification factor (OMF) is incorporated to include
oxygen sensitivity [50], such that

OER(K (z,1))

OMF = == Fop (11)
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Figure 6: The Oxygen Enhancement Ratio (OER) and the Oxygen Modification Factor (OMF)
are incorporated in the mathematical model to quantify the influence of oxygen on radiotherapy
responses. Cells are the most least radiosensitive for low pOg values. The OER and OMF curves
have steep gradients between the oxygen values 0 and 10 mmHg, after which they respectively
asymptote to the values 3 and 1 for higher oxygen values.

where

OER(R (x, 1)) — OERm K@ 0) + K (12)
K(z,t)+ K,
where OER,, = 3 is the maximum value under well-oxygenated conditions and K,, = 3
mmHg is the pOy value achieving half maximum ratio [4I]. The OER and OMF functions are
illustrated in Figure [6]
The survival probability of a cell in point x at time ¢ is here given by

S(z,t) = e*d([OMF]a(:v,t)+d[OMF]26(:E,t))7 (13)

where the cell-cycle phase specific & and g values are gathered from a previous study by
Kempf et al. [51], and are listed in Table |1} Cellular responses to a 2Gy IR dose for a generic
cancer cell-line, as a function of oxygenation and cell-cycle phase details, are illustrated in Figure

ik
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Figure 7: The probability that a cell, in the mathematical model, exposed to a radiotherapy
dose of 2 Gy survives. The survival probability S(z,t) is function of its cell-cycle phase and
oxygenation value. Cells are the least radiosensitive when hypoxic.
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0 otherwise
1 if (z,t) outside MCTS
m(x,t) =

0 otherwise

Section, Equation [ Parameter Value
Cellular Automaton
M N/A Az = Az = Azxs (spacing) 20 pm
At 0.001 hours
Cell-cycle and proliferation
2.2 N/A W, o 40 hours, 4 hours
2 1 9G17 957 €G27 0M %a %a %7 i
2.2 |4 ai,az,as 0.9209, 0.8200, -0.2389
2.3, N/A v 3
Oxygen
Dgk /1.5 if cell i t
2.4, |5 Dic(a,t) = § Dre/15 i cellin (@, 1) D = 2.5 % 1077 cm?s~!
Dk otherwise
1 ifcell i t
cell(z,t) = if cell in (z,1)

Duap, Danap
NHAP , NTAHAP

L [6 h 0.5 mmHg

6] [11] OERm 3

2.0, [12 Ko 3 mmHg
Drugs

Nl b (hour) T

[pO2]50 0.2 mmHg

2 x D (z,t),  x D (z,t)
picked from half-life times:

t1/2,14p=0.81 hours,
t1/2,A5Ap=0.70 hours

@ Tr—r (for the no removal in vitro case) Infinity

Radiotherapy

a(G1), B(G1) 0.351, 0.04
a(S), B(S) 0.1235, 0.04
a(G2), B(G2) 0.793, 0
a(M), B(M) 0.793, 0
a(G0), B(GO) a(G1)/1.5, B(G1)/(1.5%)

Table 1: A summary of model parameters used in the mathematical framework.

2.7 Parameters

In this study we attempt to replicate the nature of generic eukaryotic cell-lines, the HAP evo-
fosfamide (TH-302) and its corresponding AHAP, Br-IPM. The parameters, which are listed in
Table |1} are chosen accordingly but can be adapted to represent other specific cell-lines or drugs
upon data becoming readily available.

2.8 Implementation and in silico Framework

The mathematical model is implemented in an in-house computational framework written in
C++ deploying high-performance computing techniques. The PDEs describing oxygen and
drug distribution across the lattice are solved using explicit finite difference methods with no-
flux boundary conditions. Maps of cancer cells and the microenvironment are visualised in

16


https://doi.org/10.1101/856443
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856443; this version posted November 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

ParaView [52]. Using this computational framework, various experimental in vitro and in vivo
scenarios are formulated and simulated in silico. In order to grow an in silico MCTS, one
seeding cancer cell is placed on the lattice and this cell divides and gives rise to a MCTS that is
heterogeneous in nature, as in-built model stochasticity creates cell-cycle asyncronosity amongst
tumour cells [53], and oxygen levels vary across the MCTS. Such virtual spheroids are thereafter
subjected to various treatment combinations comprising HAPs and IR. Treatment commence
when MCTSs consist of, in the order of, 100,000 cancer cells or ‘agents’ in our agent-based
model. Due to the high number of agents, and the fact that the intrinsic model stochasticity
only involves a few events during the simulated treatment time (specifically 0-3 cell divisions and
potentially one response to radiotherapy) the quantitative results do not differ much between in
silico runs. Performing the same in silico experiment 10 times yields a standard deviation that
can be regarded as negligible (less than 0.5%), and thus we argue that basing our results from
means from 10 simulation runs per experiment is enough to mitigate intrinsic model stochasticity
to a level that is sufficient for this qualitative study.

3 Results and Discussion

In Sections through to we compare treatment responses in two different in silico tumour
spheroids, specifically a ‘Large’ and more hypoxic MCTS and a ‘Small’; less hypoxic MCTS.
The ‘Small’ tumour corresponds to the 20 day-old MCTS in Figures [3] and (4] that is calibrated
by in vitro data from Voissiere et al. [34]. The ‘Large’ MCTS is extrapolated by letting the
‘Small” MCTS grow for yet another 10 days in silico, until it reaches an age of 30 days. The
‘Small” and ‘Large’ MCTSs are illustrated in Figure

The simulated IR dose is chosen to be 2 Gy, and to allow for intuitive comparisons between
the two different monotherapies, the HAP dose (Doseg4p) is here qualitatively chosen, and
calibrated to yield the a similar in silico response as the 2 Gy IR dose (in terms of cell survival)
in the ‘Large’ MCTS. Quantitative doses can be specified and implemented upon the availability
of data.

3.1 HAP and IR monotherapies attack tumours in different ways

In this initial in silico experiment, a MCTS is subjected to a monotherapy of either one dose
of HAPs or one dose of IR. Our in silico results demonstrate that HAP and IR monothera-
pies attack the MCTS in different ways. This can be understood by regarding the treatment
responses in Figure [9] and Figure Figure [0] shows cell-cycle phase specific survival data, in
terms of cell count over time, when the ‘Small’ or ‘Large’ MCTS is subjected to a HAP or IR
monotherapy. Similarly, Figure shows the composition of cells, in terms of their cell-cycle
phase, in response to a HAP or IR monotherapy dose. Our results demonstrate that for the
‘Small’, well-oxygenated MCTS, HAPs have negligible effect on the cell count (see Figure @
and, by extension, on the cell-cycle phase composition (see Figure . This shows that, by
design, HAP treatments have little effect on tumours that are not hypoxic enough to cause
significant HAP-to-AHAP bioreduction. For the ‘Large’ MCTS, however, HAPs successfully
eliminate cells, particularly the inner cells of the MCTS, labeled ‘Slow/non-proliferative’ (see
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Figure 8: The ‘Small’ (20 day old) MCTS and the ‘Large’ (30 day old) MCTS are used in
Sections to allow for comparisons in treatment responses between tumours with
different oxygenation levels. Top: Simulation snapshots of the MCTSs at the time point Ty
when treatments commence (Al: Small MCTS, Bl: Large MCTS). Hypoxic cells (pO2 < 10
mmHg) are green whilst normoxic cells are blue. Middle: Oxygen histograms at time Tp, in
which hypoxic cell counts are shown in green and normoxic cell counts are shown in blue (A2:
Small MCTS, B2: Large MCTS). Bottom: Cell-cycle phase histograms at time Ty (A3: Small
MCTS, B3: Large MCTS). The slow/non-proliferative, inner cancer cells are labeled S/N-P.

Figure @ This causes an alteration in the cell-cycle phase composition in favour of the prolif-
erative cells in the outer shell of the MCTS (see Figure [10). Our results further show that, for
both the ‘Small’ and the ‘Large’ MCTSs, IR eliminates cells of all cell-cycle states (see Figure
@, but alters the cell-cycle phase composition in favour of the inner, hypoxic cells as these are
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Figure 9: Treatment responses for HAPs (left) and IR (right) monotherapies for the ‘Small’
(top) and ‘Large’ (bottom) MCTS. The monotherapy is given at 0 hours. Graphs demonstrate
cell-cycle specific cell count (i.e. number of viable, undamaged cells) over time. The slow/non-
proliferative, inner cancer cells are labeled S/N-P. Solid lines show mean values, and ‘+’ markers
show standard deviations for 10 in silico runs.

less sensitive to radiotherapy (see Figure . These opposing effects on the cell-cycle phase
composition achieved by HAPs and IR in the ‘Large’ MCTS indicate that, for tumours that are
hypoxic enough for HAPs to have an effect, HAP-IR combination treatments have the potential
of producing multifaceted attacks on tumours.

Since radiation responses are enhanced by the presence of molecular oxygen, we investigated
which monotherapy (i.e. HAP or IR) best eliminates hypoxic cells and reoxygenates MCTSs
after one single treatment dose. To demonstrate the overall alteration of oxygenation levels in the
MCTSs as a result of the monotherapies, Figure [L1| provides histograms for cellular oxygenation
levels at time T (the time of therapy administration) and at time Ty + 4 hours. From this
figure we can see that for the ‘Small’ MCTS, HAPs do not alter the overall intra-tumoural
oxygenation but IR does, since HAPs are not efferctive but IR is. For the ‘Large’ MCTS, on
the other hand, both HAPs and IR alter the overall intra-tumoural oxygenation but only HAPs
manage to eliminate the most hypoxic cells, and thus shift the oxygen histogram away from the
most severe levels of hypoxia. This indicates that administering HAPs as a neoadjuvant therapy
prior to radiotherapy may enhance the effect of radiotherapy in tumours that are sufficiently
hypoxic for HAPs to be effective.
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Figure 10: Treatment responses for HAPs (left) and IR (right) monotherapies for the ‘Small’
(top) and ‘Large’ (bottom) MCTS. The monotherapy is given at 0 hours. Graphs demon-
strate cell-cycle specific composition (of viable, undamaged cells) over time. The slow/non-
proliferative, inner cancer cells are labeled S/N-P. Solid lines show mean values for 10 in silico
runs (standard deviations are negligible hence not shown).
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Figure 11: Treatment responses for HAPs (left) and IR (right) monotherapies for the ‘Small’
(top) and ‘Large’ (bottom) MCTS. Histograms over cellular oxygenation levels at time Tj
(monotherappy administration time) and 4 hours later are shown. Results are based on mean
values from 10 in silico runs.
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Figure 12: Treatment responses (in terms of cell count) for HAP-IR combination therapies in
the ‘Small’ MCTS (left) and the ‘Large’ MCTS (right). One dose of HAPs and one dose of
IR are administered at various schedules. Solid and dashed lines show mean values, and ‘+’
markers show standard deviations for 10 in silico runs.

3.2 HAP-IR treatment scheduling impacts HAP efficacy in sufficiently hy-
poxic tumours

In order to study the optimal treatment scheduling of HAP-IR combination therapies, simulated
MCTSs are here given one dose of HAPs and one dose of IR, using different schedules. Figure
[I2] shows the cell count over time when one dose of HAPs and one dose of IR are administered
with various schedules. Specifically, either HAPs is given at 0 hours (followed by IR at 0, 12,
24 or 48 hours) or IR is given at 0 hours (followed by HAPs at 0, 12, 24 or 48 hours). The
results in Figure demonstrate that for the ‘Small’ MCTS, scheduling does not impact the
overall treatment outcome, as HAPs are not effective. For the ‘Large’ MCTS however, it is more
effective to give HAPs before IR, than to give IR before HAPs. This indicates that, in tumours
that are hypoxic enough for HAPs to be effective, the HAP-IR treatment scheduling impacts
the efficacy of the combination treatment.

3.3 HAPs enhance radiotherapy effects in sufficiently hypoxic tumours

To investigate if and when HAPs enhance the effect of radiotherapy, simulated MCTSs are sub-
jected to either IR monotherapies or HAP-IR combination therapies. In the combination therapy
case, HAPs are administered at time 7 and IR is administered at time Ty + 48 hours. In the
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Figure 13: Treatment responses of radiotherapy in various MCTSs when either (1) an IR
monotherapy dose is administered at Tp+48 hours or (2) IR is given at Tp+48 hours follow-
ing a prior HAP dose at time 7. Note that only explicit IR responses (not HAP responses)
are shown. The oxygen-levels of the ‘Small’ (left) and ‘Large’ (right) tumours are scaled by
a factor of 1 (least hypoxic), 1/2 or 1/4 (most hypoxic). The value calibrated from in vitro
experiments [34] correspond to the scaling with factor 1. Orange + blue bars show number of
viable cells (instantaneously) before IR administration, blue bars show the number of viable
cells (instantaneously) post IR. Red bars show how many cells (as a fraction) survived the IR
attack.

monotherapy case, radiotherapy is administered at time Ty + 48 hours. For a thorough investi-
gation, the oxygen-levels of the ‘Large’ and ‘Small’ tumours are further scaled by multiplication
with a factor 1, 1/2 or 1/4 so that we have 6 different tumours on which to test if neoadju-
vant HAPs enhances radiotherapy efficacy. Figure [13]| shows IR treatment responses in form of
survival data (both in terms of number of surviving cells and fraction of surviving cells). From
these plots we see that for very hypoxic MCTSs, the administration of neoadjuvant HAPs does
increase the effect of radiotherapy. However, for well-oxygenated MCTS, neoadjuvant HAPs do
not increase the effect of radiotherapy.

3.4 The intratumoural oxygen landscape impacts HAP efficacy

In Sections [3:2] 3:3] we have demonstrated various ways that the intra-tumoural oxygena-
tion level impacts HAP and IR monotherapies and combination therapies. Further, in order
to investigate if the spatio-temporal intumoural oxygen landscape impacts HAP efficacy, two
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A: Simulation (MCTS A) B: Simulation (MCTS B)

HYPOXIC HYPOXIC

Figure 14: MCTS A and B prior to treatment commencing. The MCTSs are visualised in
both opaque and transparent formats. Hypoxic activator cells are shown in green and normoxic
bystander cells counts are shown in blue. Activator and bystander cells are manually set so that
MCTSs A and B contain the same number of activator and bystander cells.

MCTSs with different oxygen landscapes are here compared. Omitting details of oxygen dy-
namics and vessel structure, hypoxic regions are here manually assigned in the MCTSs so that
every cancer cell is set to be either severely hypoxic (ppo2 = 0 mmHg) or very well-oxygenated
(po2 = 100 mmHg). Both MCTSs, named MCTS A and MCTS B, are assigned the same
number of severely hypoxic and well-oxygenated cancer cells at the time-point when treatment
commences. In MCTS A, the hypoxic region is made up of one concentric sphere in the core of
the MCTS, whilst in MCTS B, the hypoxic regions consist of multiple spheres, evenly spread
out across the MCTS. MCTS A and MCTS B are illustrated in Figure[I4] The severely hypoxic
cancer cells are here called activator cells, as the prodrug bioreduction (or activation) is maxi-
mal in severly hypoxic environments. The well-oxygenated cells are here referred to as bystander
cells, as the bioreduction is minimal in well-oxygenated environments. Thus any lethal AHAP
concentration occurring in a bystander cell is a result of HAP-to-AHAP bioreduction occurring
outside the bystander cells.

From Figure [15]it is clear that the bystander effects are higher in MCTS B than in MCTS A,
although all activator cells are eliminated in both MCTSs. When the activator cells are spread
out across the spheroid, as in MCTS B, there are more interfaces in which bystander cells
experience significant bystander effects. Although the oxygen landscape in MCTS B is highly
synthetic, this in silico experiment shows that the intratumoural oxygen landscape impacts the
efficacy of HAPs.
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o5 }105 Influence of Oxygen Landscape on HAP Efficacy
——MCTS A: Bystanders
——MCTS B: Bystanders
-+ -MCTS A: Activators
-+ -MCTS B: Activators

Cell count

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (hours)

Figure 15: Treatment responses in MCTS A and MCTS B when HAPs are administered at 0
hours. The number of viable (undamaged) cells are plotted over time for MCTS A and MCTS
B tumour. Activator cells (pO2 = 0 mmHg) are shown in dashed lines and bystander (pOg2 =
100 mmHg) cells shown in solid lines. Results show mean values for 10 in silico runs and ‘+’

markers show standard deviations.
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4 Conclusion

Previous in vitro and in vivo studies have validated the successfulness of HAPs in laboratory set-
tings, however, this preclinical success has not yet been reflected in clinical trials. In an attempt
to elucidate the unsatisfactory results from clinical HAP trials, we in this study investigate how
oxygen-related tumour features and treatment administration plans impact the efficacy of HAP
monotherapies and HAP-IR combination therapies in silico. To this end we have developed a
mathematical model capturing the spatio-temporal dynamics of tumours subjected to multi-
modality treatments comprising HAPs and IR. A set of results (i to iv) relating to HAP efficacy
in silico have here been demonstrated.

i HAPs and IR attack tumours in different, complementary, fashions. Whilst IR provides
a highly effective way to kill cancer cells in tumours, hypoxic and resting cells are signif-
icantly more resistant to IR than are well-oxygenated and actively cycling cells. HAPs,
however, are alkylating agents which bioreduce in (primarily) hypoxic areas, hence HAPs
primarily inflict damage in hypoxic tumour regions, which are especially susceptible to
HAP damage. Consequently, HAP-IR combination treatments have the potential of pro-
duce a multifaceted attack on tumours.

ii In sufficiently hypoxic tumours, the HAP-IR treatment schedule influences treatment effi-
cacy. However, in well oxygenated tumours the schedule is not important.

iii In sufficiently hypoxic tumours, HAP functions as a treatment intensifier, however, in well
oxygenated tumours it does not.

iv Not only the overall intra-tumoural oxygenation levels, but also the intratumoural oxygen
landscape, impacts HAP efficacy.

In a recent publication, Spiegelberg et al. [I], claim that the (lack of) clinical progress
with HAP-treatments can, in great part, be attributed to the omission of hypoxia-based pa-
tient selection. This in silico demonstrates that whilst HAPs are effective treatment intensifiers
for sufficiently hypoxic tumours, they have negligible effect on more well-oxygenated tumours.
In simple terms: some tumours are suitable to be paired with treatment plans involving HAPs
whilst others are not. In line with Spiegelberg et al.’s claims [I], our in silico results indicate that
a personalised medicine approach is preferable if treatments involving HAPs (that are similar to
TH-302) are to achieve their maximum potential in clinical settings. In this study, we qualita-
tively studies various aspects of HAP-IR treatment schedules using a multiscale mathematical
framework. Upon the availability of in vitro and in vivo data, this mathematical framework can
be calibrated in order to serve as an in silico testbed for predicting HAP-IR treatment scenarios.
As a result of interdisciplinary collaborations, the mathematical framework used in this study
has previously been validated in vitro and in vivo for applications other than HAP-IR combi-
nation treatments [54], 36]. The multiscale nature of the framework enables integration of data
from various scales, be it from the subcellular scale, the cellular scale or the tissue scale. As an
example of useful data, the multi cellular tumour spheroid data previously produced by Voissiere
et al. [34] provided our framework with calibration data for tumour growth and spatio-temporal
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oxygen dynamics. Using existing experimental data to create data-driven mathematical models
is a resourceful step involved in the advancement of mathematical oncology [55].
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5 Supplementary Material

5.1 Complement to Figure

Figures [16] and [17] show that the Scheduling-Experiment, performed in Section and with
results provided in Figure [I2] are qualitatively the same if a damaged cell is instantly removed
from the lattice (Figure or if a damaged cell is moved from the lattice after a time period
corresponding to its doubling time (Figure .

15 }104 Small MCTS %10 5 Large MCTS

Cell count
Cell count
I

——Control —— Control
——HAP: 0h, IR: Oh ——HAP: 0h, IR: Oh
HAP: Oh, IR: 12h HAP: 0h, IR: 12h
HAP: Oh, IR: 24h HAP: 0h, IR: 24h
———HAP: 0h, IR: 48h ——HAP: 0h, IR: 48h
IR: Oh, HAP: 12h IR: Oh, HAP: 12h
= = IR: Oh, HAP: 24h = = IR: Oh, HAP: 24h
= = IR: Oh, HAP: 48h = = IR: Oh, HAP: 48h
0 I I I I N | 0 I I I I N |
12 24 36 48 60 72 12 24 36 48 60 72
Time (hours) Time (hours)

Figure 16: Scheduling of HAP-IR combination treatments, Complement to Figure Cells are
removed from the lattice instantaneously after the lethal event occurred.

5.2 Complement to Figure

Figures I8 and [19] show that the experiment that investigates if HAPs act as radiotherapy
enhancers, discussed in Section [3.3] and with results provided in Figure are qualitatively the
same if a damaged cell is instantly removed from the lattice (Figure or if a damaged cell is
moved from the lattice after a time period corresponding to its doubling time (Figure .
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Figure 17: Scheduling of HAP-IR combination treatments, Complement to Figure Cells are
removed from the lattice after a time corresponding to their doubling time (7;) post the lethal
event occurred.
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Figure 18: Treatment responses of radiotherapy in various MCTSs when either (1) an IR
monotherapy dose is administered at Tp+48 hours or (2) IR is given at Tp+48 hours follow-
ing a prior HAP dose at time Ty. Complement to Figure Cells are removed from the lattice
instantaneously after the lethal event occurred.
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Figure 19: Treatment responses of radiotherapy in various MCTSs when either (1) an IR
monotherapy dose is administered at Tp+48 hours or (2) IR is given at T+48 hours follow-
ing a prior HAP dose at time Ty. Complement to Figure Cells are removed from the lattice
after a time corresponding to their doubling time (7;) post the lethal event occurred.
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