

1 **Pyocin S5 import into *Pseudomonas aeruginosa* reveals a generic mode**
2 **of bacteriocin transport**

3

4 Hannah M. Behrens¹, Edward D. Lowe¹, Joseph Gault², Nicholas G. Housden¹, Renata
5 Kaminska¹, T. Moritz Weber³, Catriona M A Thompson⁴, Gaëtan L. A. Mislin⁵, Isabelle J.
6 Schalk⁵, Daniel Walker⁴, Carol V. Robinson² & Colin Kleanthous^{1*}

7

8 ¹Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
9 UK

10 ²Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1
11 3TA, UK

12 ³Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf,
13 Forschungszentrum Jülich, 52426 Jülich, Germany

14 ⁴Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life
15 Sciences, University of Glasgow, G12 8QQ Glasgow, UK

16 ⁵UMR 7242, Biotechnologie et Signalisation Cellulaire, ESBS, 300, Bd Sébastien Brant,
17 CS 10413, F67412 Illkirch Cedex, France

18

19 *Address for correspondence: Prof Colin Kleanthous, Department of Biochemistry,
20 University of Oxford, South Parks Road, Oxford OX1 3QU, UK. Email:
21 colin.kleanthous@bioch.ox.ac.uk. Tel: +44-1865-613370

22

23

24

25

Abstract

26 Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen *P.*
27 *aeruginosa* in animal infection models, but its import mechanism is poorly understood. Here,
28 using crystallography, biophysical and biochemical analysis and live-cell imaging, we define
29 the entry process of PyoS5 and reveal links to the transport mechanisms of other
30 bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises
31 two novel tandemly repeated kinked three helix bundle domains that structure-based
32 alignments identify as key import domains in other pyocins. The central domain binds the
33 lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell
34 surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its
35 associated disordered region binds the inner membrane protein TonB1, which together drive
36 import of the bacteriocin across the outer membrane. Finally, we identify the minimal
37 requirements for sensitizing *Escherichia coli* towards PyoS5, as well as other pyocins, and
38 suggest that a generic pathway likely underpins the import of all TonB-dependent
39 bacteriocins across the outer membrane of Gram-negative bacteria.

40

41 Word count, 170

42

43

Introduction

44 Bacteria living within communities do so through cooperation and antagonism. Forms of
45 antagonism involving one bacterium killing another are important for maintaining the stable
46 co-existence of bacteria within microbiomes deployed by pathogens and commensals alike
47 to kill competitors (Granato *et al*, 2019). Antagonism occurs via several routes, the most
48 common being bacteriocins, contact-dependent inhibition or type VI secretion. Of these,
49 only the release of bacteriocins does not rely on physical contact between bacterial cells.
50 Bacteriocin production generally occurs following a stress signal, such as DNA damage,
51 inducing expression and release of the bacteriocin from auto-lysed cells (Kleanthous, 2010).
52 The bacteriocin then diffuses through the medium to kill a neighbouring cell. Bacteriocins
53 range in size, from small peptides to large proteins with both types currently being
54 evaluated/developed as antimicrobials against multidrug resistant bacteria (Rios *et al*, 2016;
55 Behrens *et al*, 2017). In many instances, however, developments are hindered by a lack of
56 understanding as to how these molecules work. In the case of protein bacteriocins,
57 extensive sequence diversification and homologous recombination further hamper efforts to
58 find generic mechanisms of uptake. Here, we focus on the uptake mechanism of PyoS5, a
59 protein bacteriocin that specifically targets the opportunistic human pathogen *P. aeruginosa*
60 and shown recently in animal models to be more effective at clearing lung infections than
61 tobramycin, the antibiotic generally used to treat *P. aeruginosa* in cystic fibrosis patients
62 (McCaughay *et al*, 2016b). Through a structure-led approach, we deconstruct the energised
63 uptake pathway of PyoS5 and show that its transport across the outer membrane likely
64 represents the default pathway for all TonB-dependent bacteriocins.

65 There is a pressing need for new antibiotics against Gram-negative bacteria but in
66 particular *P. aeruginosa* which has been designated a priority pathogen (WHO, 2017). The
67 intrinsic low permeability of its outer membrane renders *P. aeruginosa* insensitive to many
68 classes of antibiotics. Many strains also express multiple drug efflux pumps and

69 carbapenemases making *P. aeruginosa* one of the major causes of nosocomial infections
70 in the developed and developing world. One class of molecule that readily translocate
71 across the impervious outer membrane of *P. aeruginosa* to deliver a cytotoxin are S-type
72 pyocins, which are 40-90 kDa protein bacteriocins made by *P. aeruginosa*. Indeed, a recent
73 survey showed that >85% of *P. aeruginosa* strains encode nuclease-type pyocins within
74 their genomes (Sharp *et al*, 2017) hinting at the importance of these protein antibiotics to
75 inter-strain competition.

76 PyoS5 delivers a pore-forming domain across the outer membrane to depolarize the
77 cell while PyoS5-producing cells are protected against the action of the toxin by ImS5, a
78 small membrane localized immunity protein (Ling *et al*, 2010). Previous work has shown
79 that PyoS5 binds the lipopolysaccharide (LPS)-anchored common polysaccharide antigen
80 (CPA), which is identical across *P. aeruginosa* strains (McCaughey *et al*, 2016a) and is a
81 major surface antigen in cystic fibrosis isolates (Lam *et al*, 1989), and that PyoS5
82 susceptibility depends on the ferric pyochelin transporter FptA (Elfarash *et al*, 2014). Here,
83 we delineate how PyoS5, by parasitizing FptA and CPA in the outer membrane and in
84 conjunction with proton motive force (PMF)-linked TonB1 in the inner membrane, delivers
85 its cytotoxic domain into *P. aeruginosa*.

86

87

88

89 **Results and Discussion**

90 The structure of PyoS5 reveals a novel domain architecture underpins outer
91 membrane transport in *P. aeruginosa*

92 S-type pyocins (which we simply refer to as pyocins) belong to a broad group of
93 protein bacteriocins that includes colicins which kill *E. coli* as well as bacteriocins that target
94 other Gram-negative bacteria, such as *Klebsiella pneumoniae*, *Serratia marcescens* and
95 *Yersinia pestis*. Colicins, like pyocins, exploit the PMF to translocate through the cell
96 envelope to deliver a cytotoxic domain, typically a pore-forming domain or a nuclease that
97 cleaves DNA, rRNA or tRNA (Papadakos *et al*, 2012). Also like colicins, pyocins are
98 multidomain toxins, their constituent domains associated with binding outer membrane
99 receptors and the import process itself. There are currently several structures for intact
100 colicins in the protein data bank (PDB) but only two for pyocins, pyocin PaeM and L1
101 (McCaughey *et al*, 2014; Barreteau *et al*, 2012). However, pyocins PaeM and L1 are atypical
102 amongst the bacteriocins due to their small sizes (14 kDa for PaeM and 28 kDa for L1
103 compared to >50 kDa for most pyocins). Consequently, we know very little about the
104 structural biology of typical pyocins found in *P. aeruginosa* genomes. Structural data are
105 important to understanding bacteriocin uptake mechanisms, especially since the domain
106 arrangement of pyocins is different to that of colicins. The receptor-binding domains are
107 centrally located in colicins and their membrane translocation domains are at the N-terminus
108 whereas in pyocins the order is reported to be reversed (Sano *et al*, 1993). This change in
109 relative domain orientation would mean a fundamental difference in how these molecules
110 transport across the outer membrane. We therefore set out to determine the crystal
111 structure of PyoS5 and to define the functionality of its constituent domains.

112 PyoS5 was expressed and purified from *E. coli* cells (see Materials & Methods). The
113 57-kDa toxin was monomeric in solution and active against *P. aeruginosa* strains at sub-
114 nanomolar concentrations (Figure S1). The protein crystallized in the P2₁ space group and

115 the structure was solved by a combination of single wavelength anomalous diffraction and
116 molecular replacement to a resolution of 2.2 Å (Figure 1A, Supplementary Table S1 and
117 Materials and Methods). The first 39 residues were absent from the final model, presumed
118 unstructured which we refer to below as the disordered region. Otherwise, continuous
119 electron density was observed for the entirety of the remaining protein sequence (residues
120 40-498). The structure shows that PyoS5 is an elongated, α -helical protein measuring 36 Å
121 on the short axis and 195 Å on the long axis. Colicins are similarly long proteins and have
122 disordered N-termini (Soelaiman *et al*, 2001; Wiener *et al*, 1997; Johnson *et al*, 2017). The
123 extended conformation was confirmed by small angle X-ray scattering (SAXS) data; 93% of
124 the modelled PyoS5 residues were within the SAXS envelope (Figure S2). Also similar to
125 colicins is the prevalence of α -helical structure in PyoS5. PyoS5 contains 17 helices, the
126 high preponderance of helical structure likely reflecting the need to forcibly unfold the toxin
127 during transport into a cell and the lower forces known to be required for unfolding helices
128 relative to β -sheets (reviewed in (Brockwell *et al*, 2005)).

129 The structure of PyoS5 is comprised of three ordered domains (Figure 1A). The C-
130 terminal domain (domain 3; residues 315-498) has the canonical ten-helical bundle fold of
131 a pore-forming domain found in colicins (Cascales *et al*, 2007), which is consistent with the
132 killing activity of PyoS5 (Ling *et al*, 2010). Previous studies have highlighted that the
133 protective immunity proteins of pore-forming domains within colicins fall into two sub-groups
134 although the functional significance of this is unclear. Immunity proteins against colicins A,
135 B and N – the so-called A-Type - have four transmembrane helices while those against E1,
136 Ia and K – the so-called E1-type – have three (Cascales *et al*, 2007). Based on the predicted
137 number of transmembrane helices of its immunity protein the pore-forming domain of PyoS5
138 belongs to the E1-type (Parret & De Mot, 2000). Through detailed structural comparisons
139 of all pore-former domains with that of PyoS5 we identified a clear structural difference
140 between the pore-forming domains of the A- and E1-groups (Figure S3). Specifically, this

141 difference relates to the positioning of helices 1 and 5 of the domain with respect to each
142 other; in A-type structures, helix 1 is positioned close to the centre of the domain, pushing
143 out helix 5, while in E1-type structures, helix 5 is located closer to the centre of the domain.
144 These pore-forming domain structures represent the ground state of the ionophore before
145 depolarization of the inner membrane. We speculate the structural alterations evident in the
146 A and E1-groups may reflect differences in the way each class of pore-forming domain is
147 recognised by its particular type of immunity protein before insertion in the bacterial inner
148 membrane.

149 The other structured domains of PyoS5 are also helical bundles but of a novel fold.
150 Domain 1 comprises residues 40-194 while domain 2 comprises 195-315. The core
151 structural motif of each domain is a kinked three-helix bundle (kTHB). The two kTHB
152 domains are structurally similar to each other (superposition root-mean-square deviation
153 (RMSD), 2.5 Å) but share little sequence identity (~12%) (Figure 1B). Each kTHB domain
154 is composed of a kinked helix I connected to a straight helix II by a loop. Helix II packs
155 against both helix I and a third straight helix, helix III. The connection between helices II
156 and III varies between the two copies of the fold. In domain 1, this connection is composed
157 of three short helical turns while in domain 2 it is a loop. The other striking feature of the
158 kTHB structural motif is that the third helix from each domain extends into the next domain
159 of the pyocin; helix III of domain 1 extends over 90 Å into domain 2, where it forms helix I,
160 while helix III of domain 2 extends over 90 Å to the pore-forming domain of the toxin. The
161 kTHB fold is stabilised predominantly by hydrophobic interactions mediated by aliphatic
162 amino acid side chains and, in one instance, aromatic stacking (Tyr207-Tyr280, domain 2)
163 (Figure 1D). None of these stabilising interactions are conserved.

164 Recently, White et al reported the structure of the N-terminal domain of the nuclelease
165 pyocin PyoS2 bound to the outer membrane protein FpvAI (White et al, 2017). We found
166 by structural superposition that the kTHB domain 1 of PyoS5 is structurally similar to this

167 domain of PyoS2 (Figure 1C) and sequence similarity of 75% between the second domains
168 of PyoS5 and PyoS2 suggest similar structures here as well (Figure S4). Sequence
169 similarities of domains in pyocins S1, SD1, SD2, S3, SD3 and S4 to the kTHB domain also
170 suggest these are common among pyocins (Figure S4). The structural superposition of the
171 PyoS5 and PyoS2 kTHB domains, without the small helices connecting helix II and helix III
172 in PyoS5, has an RMSD of 4.1 Å over 128 residues (Figure 1C).

173 We conclude that PyoS5 is an elongated bacteriocin comprising a disordered region
174 at its N-terminus, two kTHB domains, which is a common structural platform for protein
175 bacteriocins targeting *P. aeruginosa*, and a C-terminal pore-forming domain. We next set
176 out to ascribe functions to each of the domains/regions of PyoS5 that transport the pore-
177 forming domain into *P. aeruginosa* cells.

178

179 **Functional annotation of PyoS5 domains**

180 We expressed and purified truncations of PyoS5 that removed one or more
181 domains/regions. These included PyoS5₁₋₃₁₅, in which the pore-forming domain was
182 removed, PyoS5₁₋₁₉₆, in which both domain 2 and the pore-forming domain were deleted,
183 and PyoS5₁₉₄₋₃₁₅, which only contained domain 2. The constructs were folded, as
184 determined by circular dichroism spectroscopy, and their thermal melting temperatures
185 largely recapitulated those found in intact PyoS5 (Figure S5).

186 We first analysed the capacity of PyoS5 and the various deletion constructs to bind
187 CPA in isothermal titration calorimetry (ITC) experiments. Heats of binding were observed
188 for PyoS5₁₋₃₁₅ and PyoS5₁₉₄₋₃₁₅ but not PyoS5₁₋₁₉₆ (in 0.2 M Na-phosphate buffer pH 7.5)
189 (Figure 2A-C, Supplementary Table S2). From these experiments, equilibrium dissociation
190 constants (K_{dS}) of 0.6 μM for PyoS5₁₋₃₁₅ and 0.3 μM for PyoS5₁₉₄₋₃₁₅ were obtained, similar
191 to that reported previously for intact PyoS5 binding CPA (McCaughay *et al*, 2016a). When
192 polysaccharides derived from *P. aeruginosa* PAO1 Δrmd were used (that do not contain

193 CPA) no binding to PyoS5₁₉₄₋₃₁₅ was detected (Figure 2C). These results demonstrate that
194 the CPA binding activity of PyoS5 resides within domain 2, and that the CPA-binding
195 function is not a conserved feature of the kTHB fold. Pyocins S2 and SD3 have also been
196 shown previously to bind *P. aeruginosa* CPA sugars (McCaughay *et al*, 2016a). Sequence
197 alignments show that each has a domain equivalent to that of domain 2 of PyoS5. Indeed,
198 the level of sequence identity across this region (39 %) is far greater than that between the
199 two kTHB domains of PyoS5. Moreover, over half of the 45 identical residues shared
200 between pyocins S2, SD3 and S5 form a grooved surface that runs perpendicular to the long
201 axis of PyoS5 (Figure S4+S6). We infer that this conserved groove is the CPA binding site
202 in these different pyocins, each of which nevertheless delivers a different cytotoxic domain
203 into *P. aeruginosa*.

204 PyoS5-mediated killing of *P. aeruginosa* cells requires the ferric pyochelin transporter
205 FptA, and the central region of the toxin (residues 151-300) has been implicated in defining
206 this specificity (Elfarash *et al*, 2014). This region corresponds largely to domain 2 in the
207 PyoS5 crystal structure, which, as the work above indicates, is involved in CPA binding. We
208 therefore investigated PyoS5 binding to FptA and identified the region involved. Initially, we
209 used native mass spectrometry (MS) to verify that PyoS5 binds FptA (Supplementary Table
210 S3). We then determined the affinity for the complex using surface plasmon resonance
211 (SPR) where the pyocin, and various deletion constructs, were immobilized on the chip
212 (Figure 2D, Supplementary Table S4). These experiments determined the K_d for the PyoS5-
213 FptA complex as 6.5 μ M (in 25 mM HEPES buffer pH 7.5, 150 mM NaCl, 1% (w/v) n-octyl-
214 β -D-glucoside (β -OG). Upon addition of ferric pyochelin to our SPR experiments, binding of
215 PyoS5 to FptA reduced significantly (Figure S7B), suggesting the binding sites for the pyocin
216 and pyochelin overlap. This result was confirmed by native state mass spectrometry
217 experiments where PyoS5 dissociated pre-formed complexes of ferric pyochelin bound to
218 FptA (Figure S7A). We next delineated the FptA binding site in PyoS5. Deletion of domain

219 2 had a marginal effect on FptA binding while domain 2 alone showed no FptA binding
220 (Figure 2D, Supplementary Table S4). Deletion of the disordered region at the N-terminus
221 of PyoS5 (residues 2-39) had a large effect on the amount of FptA that could bind to the
222 chip (Figure 2E), suggesting this was affecting binding. However, closer examination
223 indicated binding was affected only two-fold (Supplementary Table S4) and that the impact
224 of the truncation was likely due to restricted access of FptA to its binding site on domain 1
225 in this construct (Figure 2E, Supplementary Table S4). By contrast, when the first 13
226 residues of this region were deleted (PyoS5₁₋₃₁₅ Δ2-9 and PyoS5₁₋₃₁₅ Δ10-13) binding to FptA
227 remained unaffected (Supplementary Table S4). We conclude that the FptA binding site in
228 PyoS5 is predominantly localised to kTHB domain 1 with a minor contribution from its
229 associated disorder region at the N-terminus.

230 All protein bacteriocins access the PMF via either the Tol or Ton systems of Gram-
231 negative bacteria (generally referred to as group A and B toxins in the colicin literature),
232 which they use to drive translocation across the outer membrane (Kleanthous, 2010). It has
233 yet to be established which of these systems is contacted by PyoS5. Typically, Tol/Ton
234 dependence is evaluated using deletion strains. We focused initially on Ton dependence
235 since deletion strains in *P. aeruginosa* PAO6609 are available (Tol is essential in *P.*
236 *aeruginosa*). *P. aeruginosa* harbours three *tonB* genes, *tonB1*, *tonB2* and *tonB3* (Zhao &
237 Poole, 2000; Takase *et al*, 2000; Huang *et al*, 2004). PAO6609 is a derivative of *P.*
238 *aeruginosa* PAO1 and so is naturally immune to PyoS5 because it harbours the ImS5
239 immunity gene (Hohnadel *et al*, 1986). We therefore generated a PyoS5-Colla chimera in
240 which the pore-forming domain of PyoS5 was substituted for that of colicin Ia to overcome
241 this immunity. PyoS5-Colla was active against *P. aeruginosa* PAO6609 and strains with
242 *tonB2* and *tonB3* deleted (Figure S8). It was not possible to test the susceptibility of a *tonB1*
243 deletion strain because the high levels of iron needed for growth of this strain diminished
244 PyoS5-Colla chimera susceptibility in the parent *P. aeruginosa* PAO6609, most likely due

245 to iron-dependent down-regulation of FptA expression (Ankenbauer & Quan, 1994). We
246 therefore resorted to direct SPR binding assays to determine if PyoS5 bound purified TonB1
247 *in vitro* (see Materials and Methods for further details). We found that TonB1 binds PyoS5<sup>1-
248 315</sup> with an affinity of 230 nM in SPR experiments (Figure 2F, Supplementary Table S4).
249 Moreover, a putative 9-residue TonB box, found in TonB1-dependent transporters and
250 bacteriocins utilizing TonB1, is also found in the N-terminal disordered region of PyoS5
251 (residues 6-14). Deletion of residues 10-13 abolished binding to TonB1, confirming this
252 region as the TonB1 binding site (Figure 2F, Supplementary Table S4).

253 In summary, through a combination of biophysical and structural approaches we have
254 delineated the major binding interactions of PyoS5 with the *P. aeruginosa* cell envelope. Of
255 the two kTHB domains, domain 2 binds CPA while domain 1 binds the ferric pyochelin
256 transporter FptA with a minor contribution by the disordered region, which in addition binds
257 the inner membrane protein TonB1.

258

259 **260 Surface accumulation and energized import of fluorescently labelled PyoS5 into *P. aeruginosa* PAO1 cells**

261 We developed a fluorescence-based import assay for PyoS5 where transport of all
262 its domains, barring the pore-forming domain, could be visualised and where the energetics
263 of import could be established. We replaced the pore-forming domain of PyoS5 with a C-
264 terminal cysteine residue and labelled this residue with AlexaFluor488 (PyoS5¹⁻³¹⁵-AF⁴⁸⁸).
265 *P. aeruginosa* PAO1 cells were used in these experiments since cytotoxic activity was not
266 being monitored. PyoS5¹⁻³¹⁵-AF⁴⁸⁸ readily labelled *P. aeruginosa* PAO1 cells (Figure 3A).
267 Trypsin treatment of these labelled cells, to remove surface bound PyoS5, reduced
268 fluorescence intensity significantly (~eight-fold), but fluorescence was still associated with
269 cells (Figure 3A+B). Inclusion of the protonophore carbonyl cyanide *m*-chlorophenyl
270 hydrazone (CCCP) with the trypsin treatment completely eradicated this remaining

271 fluorescence suggesting this protected fluorescence was internalised due to the PMF
272 (Figure 3A+B). We next generated AF⁴⁸⁸-labelled constructs where either domain 2 was
273 removed (PyoS5₁₋₁₉₆-AF⁴⁸⁸) or where only labelled domain 2 was added to cells (PyoS5₁₉₄₋
274 315-AF⁴⁸⁸). Removal of the CPA-binding domain (domain 1, PyoS5₁₋₁₉₆-AF⁴⁸⁸) decreased
275 surface bound fluorescence in the absence of trypsin while addition of trypsin still revealed
276 internalised fluorescence (Figure 3C). PyoS5₁₉₄₋₃₁₅-AF⁴⁸⁸ (domain 2 construct) on the other
277 hand labelled cells much less efficiently (likely due to its weak binding of CPA on the surface)
278 and all this fluorescence was trypsin sensitive, suggesting no internalisation (Figure 3C).

279 Repeating these assays with *P. aeruginosa* PAO1 $\Delta fptA$ cells or using PyoS5₁₋₃₁₅
280 $\Delta 10-13$ -AF⁴⁸⁸, in which part of the TonB1 binding site (residues 10-13) was deleted, showed
281 that trypsin-protected fluorophores (i.e. imported molecules) were no longer detected,
282 consistent with PMF/TonB1-dependent import of PyoS5 across the outer membrane via
283 FptA (Figure 3D and S9). Finally, import assays were conducted using *P. aeruginosa* PAO1
284 Δrmd cells, which lack CPA. Surface-associated fluorescence of PyoS5₁₋₃₁₅-AF⁴⁸⁸ and
285 susceptibility to PyoS5Colla was much reduced in these cells, consistent with CPA being
286 required for surface accumulation of PyoS5, but imported fluorescence in a domain 2
287 deletion was unaffected (Figure 3E and S10).

288 In summary, our fluorescence assays suggest that import of PyoS5 occurs in two
289 stages. Initial binding to CPA via the central kTHB domain leads to accumulation on the
290 surface of *P. aeruginosa*. Thereafter, the first kTHB domain of the pyocin binds FptA in the
291 outer membrane, which also likely acts as the translocation channel, allowing contact
292 between the disordered TonB1 binding site of PyoS5 with TonB1 in the inner membrane
293 and PMF-driven import of the toxin (model presented below).

294

295 **Engineering pyocin susceptibility in *E. coli***

296 As with most bacteriocins, pyocins are specific for a subset of strains, in this case
297 from *P. aeruginosa*, which reflects the array of cell envelope interactions required for import.
298 Yet common principles are beginning to emerge suggesting generic import mechanisms
299 may apply for all Gram-negative bacteria that exploit protein bacteriocins. We therefore
300 devised a test of this hypothesis by engineering *E. coli* susceptibility towards PyoS5 utilising
301 our current understanding of its import pathway.

302 Our strategy was based on first determining if the pore-forming domain of PyoS5, if
303 imported, could kill *E. coli* cells and then engineering the minimal requirements into *E. coli*
304 in order for PyoS5 to be recognised and transported. A similar strategy was reported by
305 Bosak et al (2012) where *E. coli* was engineered to be susceptible to a bacteriocin specific
306 for *Yersinia kristensenii* (Bosák et al, 2012). In the present work, we first showed that a
307 chimera of the PyoS5 pore-forming domain fused to the C-terminus of the colicin B
308 translocation and receptor-binding region (replacing colicin B's own pore-forming domain)
309 was cytotoxic against *E. coli* BL21 (DE3) cells. We next challenged *E. coli* BL21 (DE3) cells
310 expressing *P. aeruginosa* FptA but saw no PyoS5 killing (Figure 4). Rationalising that *E.*
311 *coli* TonB may not be recognising the TonB1 binding sites (Ton boxes) of FptA and/or
312 PyoS5, we also expressed, in *E. coli* BL21 (DE3) cells expressing FptA along with a chimera
313 of *E. coli* TonB (TonB₁₋₁₀₂) fused to *P. aeruginosa* TonB₁₋₂₀₁₋₃₄₂. In this chimera, TonB-B1,
314 the C-terminal domain and periplasmic regions of TonB are those from *P. aeruginosa* but
315 the transmembrane domain that associates with TonB's partner proteins ExbB and ExbD
316 are those from *E. coli*. Under these conditions, *E. coli* became sensitized to PyoS5-
317 mediated killing (Figure 4). To determine the generality of this cross-species killing, we
318 expressed the *fpvA1* gene, which is recognised by PyoS2 and PyoS4, in *E. coli* cells
319 expressing the *E. coli*-*P. aeruginosa* TonB-B1 hybrid. This strain was sensitive to both
320 PyoS2 and PyoS4 but not to PyoS5 (Figure S11).

321 We conclude that our engineered system is a simple means by which the import
322 apparatus required for bacteriocins can be readily defined. Indeed, through this work we
323 showed for the first time that PyoS4 is a TonB1-dependent bacteriocin. Importantly, our
324 complete functional characterisation of PyoS5 demonstrates that the prevailing view of
325 receptor-binding and translocation domains being inverted in pyocins relative to colicins is
326 not correct. Instead, pyocins and colicins are organised in the same way, which likely
327 explains how a pyocin can be made to work in *E. coli*. They have central receptor-binding
328 domains (kTHB domain 2 in PyoS5) and N-terminally-located translocation domains (kTHB
329 domain 1 and its associated disordered region). The confusion that has emerged in the
330 field, that N-terminal domains of pyocins represent their receptor-binding domains, has
331 arisen because pyocin interactions with their translocation channels (e.g. PyoS2 with FpvAI;
332 (White *et al*, 2017)) can be much higher affinity than the interaction of the pyocin with its
333 initial CPA receptor. In summary, our results suggest that the underlying mechanism by
334 which Ton-dependent bacteriocins cross the outer membranes of the *Enterobacteriales* and
335 *Pseudomonadales*, long thought to be unrelated, are fundamentally the same.

336

337 **Model for pyocin transport across the outer membrane of *P. aeruginosa***

338 White et al demonstrated recently that the N-terminal domain of PyoS2 translocates
339 directly through FpvAI (White *et al*, 2017). The mechanism of import is analogous to that of
340 FpvAI's cognate siderophore ligand, ferripyoverdine; a labile portion of the transporter plug
341 domain is removed by TonB1, allowing the TonB1 binding site (TonB box) of PyoS2 to enter
342 the periplasm and activate import of the pyocin. Binding of PyoS2 to FpvAI is primarily
343 through a short polyproline region that lacks regular secondary structure and mimics
344 pyoverdine. The principal binding site of PyoS5 for FptA is domain 1 and its associated
345 disordered region, which does not however have an equivalent polyproline sequence. Its
346 binding to FptA is also significantly weaker than that of PyoS2 for FpvAI. For both PyoS2

347 and PyoS5, however, initial association with *P. aeruginosa* is by their central kTHB domains
348 (domain 2 in PyoS5) which binds CPA embedded in the outer membrane and allows the
349 toxin to decorate the cell surface (McCaughay *et al*, 2016a).

350 In **Figure 5**, we present a unifying model for TonB1-dependent pyocin import based
351 on our data for PyoS5 and that presented by White *et al* for PyoS2 (White *et al*, 2017). CPA
352 binding likely orients the pyocin horizontally with respect to the membrane since the
353 predicted CPA-binding groove in PyoS5 is perpendicular to the long axis of PyoS5. This
354 orientation assumes CPA molecules are projected vertically from the surface from their LPS
355 anchors. After this initial surface association, we postulate that pyocins use their disordered
356 N-terminus to find their transporter, the binding of which causes the pyocin to reorient,
357 allowing the N-terminal kTHB domain to engage the transporter (as found in the PyoS2-
358 FpvAI complex). Similar ‘fishing pole’ models have been proposed for receptor-bound
359 colicins finding translocator proteins, but in these instances the receptor is generally an outer
360 membrane protein (Zakharov *et al*, 2004). Following opening of the transporter channel by
361 TonB1, the pyocin’s own TonB1 binding site enters the periplasm. A second PMF-
362 dependent step then occurs in which TonB1 in conjunction with the PMF unfolds the kTHB
363 domain of the pyocin and pulls it through the transporter. Whether this energized interaction
364 is responsible for the entire pyocin entering the periplasm (as shown in Figure 5) or whether
365 domain refolding in the periplasm contributes to the entry process remains to be established.

366

367 **Materials and methods**

368 Pyochelin was synthesized as described previously (Zamri & Abdallah, 2000).
369 Chromatography columns were purchased from GE Healthcare.

370

371 **Strains and plasmids**

372 All bacteria (Table 2-1) were cultured in LB (10 g/L tryptone, 10 g/L NaCl, 5 g/L yeast extract,
373 pH 7.2) at 37 °C at 120 rpm shaking unless otherwise stated. Liquid cultures were inoculated
374 from single colonies on LB agar (1.5% (w/v)) plates. M9 medium (8.6 mM NaCl, 18.7 mM
375 NH₄Cl, 42.3 mM Na₂HPO₄, 22.0 mM KH₂PO₄) was supplemented with 0.4% (w/v) glucose,
376 2 mM MgSO₄, and 0.1 mM CaCl₂.

377

378 **Molecular biology**

379 Genes were amplified from genomic DNA or synthesized by Genewiz. Plasmids were
380 created by restriction enzyme digest and ligation or quick-change mutagenesis. Chemically
381 competent *E. coli* NEB5α and BL21 (DE3) were purchased from NEB. Antibiotics were used
382 at the following final concentrations; ampicillin, 100 µg/mL, kanamycin and gentamicin, 50
383 µg/mL, all from stock solutions in water; chloramphenicol at 37 µg/mL and tetracyclin at 10
384 µg/mL from stock solutions in ethanol.

385

386 **Expression and purification of bacteriocins**

387 PyoS5 and its derivatives, as well as ColBPyoS5, PyoS5Colla, PyoS2, PyoS4 and Colla
388 were expressed heterologously from *E. coli* BL21 (DE3) for 3 h at 37 °C or overnight at 20
389 °C while shaking at 120 rpm. For constructs containing the PyoS5 pore-forming domain

390 (amino acid residues 315-498) the cells were co-transformed with pHB22 which carries the
391 ImS5 immunity protein, for increased yield. The bacteria were harvested at 5050 g for 15
392 min at 10 °C, resuspended in binding buffer (0.5 M NaCl, 20 mM Tris-HCl pH 7.5) and
393 sonicated on ice. They were then centrifuged at 12500 g for 20 min at 4 °C, filtered through
394 a 0.45 µm syringe filter, loaded onto a 5 mL HisTrap-HP-column equilibrated in binding
395 buffer and eluted by gradient elution using elution buffer (binding buffer + 0.75 M imidazole).
396 The protein was then dialyzed into size exclusion buffer (150 mM NaCl, 20 mM Tris-HCl pH
397 7.5) using a 12-14 kDa molecular weight cut off membrane (Spectra/Por, Spectrum), filtered
398 through a 0.45 µm syringe filter and applied to a 26/60 Superdex 200 size exclusion
399 chromatography column.

400 PyoS4 was expressed at 28 °C in the presence of an additional copy of ImS4 (pNGH243),
401 and purified on an S200 16/60 size exclusion column.

402 Mass spectrometry indicated that all bacteriocins purified without their N-terminal
403 methionines, with exception of PyoS5₁₋₃₁₅ Δ2-20, PyoS5₁₉₄₋₃₁₅ and PyoS5₁₉₄₋₃₁₅-Cys.

404

405 **Expression and purification of TonB1 soluble fragments**

406 The TonB1 construct was purified by HisTrap-HP-column as described for PyoS5 and then
407 incubated in 300 mM NaCl, 50 mM Tris-HCl pH 7.0 with 0.07 mg/mL 6-His-TEV (tobacco
408 etch virus-protease) at RT for 4.5 h. TonB1 was then purified by affinity chromatography on
409 a HisTrap-HP column and by size exclusion chromatography on a 26/60 Superdex 200
410 column.

411

412 **Expression and purification of FptA**

413 FptA purification was modelled after a previous BtuB purification protocol (Housden *et al*,
414 2005). FptA was expressed heterologously from *E. coli* TNE012 at 37 °C while shaking at
415 120 rpm in LB, and upon reaching OD₆₀₀ 0.6 induced with 0.15% (w/v) arabinose and
416 supplemented with 0.15% w/v glucose. The bacteria were harvested as described for PyoS5
417 and resuspended in 10 mM Tris-HCl pH 8.0, 0.25% (w/v) lithium diiodosalicylic acid (LIS),
418 sonicated as described for PyoS5 and centrifuged at 4000 g for 20 min at 4 °C. The
419 supernatant was collected, the pellet resuspended in fresh buffer and centrifuged again.
420 Both supernatants were ultra-centrifuged at 200 000 g for 45 min at 4 °C. The pellet was
421 homogenized in 10 mM Tris-HCl pH 8.0, 0.25% (w/v) LIS, 2% (v/v) Triton X-100 and ultra-
422 centrifuged again. The resulting pellet was homogenized in 10 mM Tris-HCl pH 8.0 and
423 ultra-centrifuged again. The resulting pellet was homogenized in 10 mM Tris-HCl pH 8.0 +
424 2% (w/v) β-OG, 5 mM ethylenediaminetetraacetic acid (EDTA) and ultra-centrifuged again.
425 FptA was purified from the supernatant by anion exchange chromatography. A 5 mL HiTrap
426 DEAE FF column was equilibrated in buffer E (50 mM Tris-HCl pH 7.5, 1% (w/v) β-OG, 5
427 mM EDTA) and gradient eluted with buffer F (buffer E + 1 M LiCl). This was followed by
428 16/60 Sephadryl 300 size exclusion chromatography in buffer E and anion exchange
429 chromatography on a Mono Q 4.6/100 PE column in buffer E, with gradient elution with
430 buffer F.

431

432 Protein quantification

433 All protein concentrations were measured using absorbance at 280 nm which was converted
434 to concentration using the sequence based predicted molar extinction coefficient (ExPASy
435 ProtParam). The presence of scattering impurities, such as protein aggregates, was
436 checked for by measuring the absorbance at 320 nm. All protein masses were confirmed by

437 denaturing electrospray ionization (ESI) mass spectrometry (MS), performed on proteins
438 diluted in formic acid.

439

440 **Pyocin cytotoxicity assays**

441 *P. aeruginosa* YHP17 were grown to OD₆₀₀ 0.6 and 200 µL of the culture were mixed with
442 melted, 50 °C warm, soft LB agar (0.75% (w/v) agar) and poured over an LB agar plate.
443 Once the plate had set, 2.5 µL of each bacteriocin concentration were spotted onto the plate.
444 The plates were left to dry and then incubated at 37 °C overnight.

445

446 **LPS-derived polysaccharide isolation**

447 LPS-derived polysaccharides were isolated as described previously (McCaughay *et al*,
448 2016a). Briefly, 1 L of cells were grown for 20 h at 37 °C, pelleted at 6000 g for 20 min and
449 resuspended in 10 mL 50 mM Tris pH 7.5, 2 mg/mL lysozyme, 0.5 mg/mL DNase I. Cells
450 were lysed by sonication, as described for PyoS5 isolation, the lysate incubated for 30 min
451 at RT and then 0.2 mM EDTA added. An equal volume of aqueous phenol was then added
452 and the mixture heated for 20 min at 70 °C with mixing. The solution was incubated on ice
453 for 30 min, centrifuged at 7000 g for 20 min and the aqueous upper layer was extracted.
454 0.05 mg/mL proteinase K was added and the solution dialysed overnight against 5 L dH₂O,
455 followed by dialysis against 5 L fresh dH₂O for 5 h. LPS was pelleted by ultracentrifugation
456 for 1 h at 100 000 g and the pellet resuspended in 10 mL dH₂O. The suspension was heated
457 at 60 °C for 30 min, then acetic acid added and the mixture heated at 96 °C for 1.5 h. Lipid A
458 was pelleted by centrifugation at 13 500 g for 3 min and the supernatant, which contains the
459 polysaccharide was extracted with 10 mL chloroform. The aqueous phase was then
460 lyophilized.

461 **Biophysical methods**

462 **Native mass spectrometry** was performed in 100 mM ammonium acetate buffer with
463 exception of TonB1 which was analysed in 200 mM ammonium acetate buffer.

464 **SPR** was performed on a Biacore T200 instrument. A Series S Sensor Chip CM5 (GE
465 LifeScience) was docked and primed into HBS-OG buffer (25 mM HEPES pH 7.5, 150 mM
466 NaCl, 1% (w/v) β -OG). This buffer was used as a running buffer for all SPR experiments.

467 For amine coupling using the Amine Coupling kit (GE Healthcare), ligand proteins were
468 desalted into immobilization buffer (25 mM potassium phosphate pH 7.5, 50 mM NaCl) and
469 diluted 10-fold in 10 mM sodium acetate pH 5.0 (GE LifeScience).

470 For thiol coupling using the Thiol Coupling kit (GE Healthcare), ligand proteins were
471 incubated with 10 mM (dithiothreitol) DTT for 2 h, then desalted into immobilization buffer
472 diluted 10-fold in 10 mM sodium acetate pH 5.0 (GE LifeScience) immediately before
473 immobilization.

474 Analyte proteins were desalted into HBS-OG buffer before application. The contact time for
475 SPR was set to 120 s, the dissociation time to 600 s and the flow rate to 30 μ L/min. Lower
476 analyte concentrations were applied first.

477 **ITC** was performed using a MicroCal iTC200 instrument at 25 °C in 0.2 M sodium phosphate
478 buffer pH 7.5. Proteins in the syringe were at 150 μ M, polysaccharides in the cell at 7 mg/mL
479 which estimated to be 30 μ M based on a molecular weight of 10 kDa and the assumption
480 that CPA constitutes 5% of the LPS polysaccharides. The data were fitted to a one binding
481 site model in Microcal LLC Origin software. As the CPA concentration is estimated, the
482 observed stoichiometry is unlikely to be correct, while ΔH , ΔS and K_d are unaffected by the
483 analyte concentration. Errors reported in the text are standard deviations of the average of
484 two experiments.

485 **SAXS** data were collected at the B21 Beamline at Diamond Light Source proteins following
486 in-line size exclusion chromatography on a Superdex 200 column and processed using
487 Scatter and Atsas (Rambo, 2019; Petoukhov *et al*, 2012). Guinier approximation analysis
488 and P(r) distributions were determined using Scatter. Dummy atoms were fit using multiple
489 parallel runs of DAMMIF (Franke & Svergun, 2009) and refined using DAMMIN (reference).
490 Bead models were converted to maps using Situs (Wriggers, 2012) and structures fit into
491 the envelopes using Chimera (Pettersen *et al*, 2004). CRYSTAL from the Atsas suite was
492 used to generate the theoretical curve of the crystal structure and to fit it to the SAXS data.

493 **Circular dichroism.** Proteins were analysed at 0.1 mg/mL in 10 mM potassium phosphate
494 buffer pH 7.5, 20 mM NaCl using a Jasco J-815 Spectropolarimeter. Spectra were measured
495 between 260 nm and 190 nm at a digital integration time of 1 s and a 1 nm band width. Each
496 sample spectrum was measured in quadruplicate and averaged. Molar ellipticity was
497 calculated by subtracting the baseline from sample spectra and dividing by the molecular
498 weight, molar concentration and pathlength in mm. Thermal melting curves for proteins were
499 measured at 222 nm between 20 °C and 86 °C and 4-parameter sigmoidal melting curves
500 were fit to the equation $f = y_0 + a/(1+e^{((x-x_0)/b)})$ using non-linear regressions in SigmaPlot to
501 determine the melting temperature (T_m).

502 **Size exclusion multi angle light scattering (SEC-MALS).** Proteins were separated in 50
503 mM Tris pH 7.5, 150 mM NaCl using a Superdex 200 10/300 GL column and detected by a
504 Wyatt Dawn HELEOS-II 8-angle light scattering detector and a Wyatt Optilab rEX refractive
505 index monitor linked to a Shimadzu HPLC system.

506

507 **X-ray crystallography**

508 Pyocin S5 was concentrated to 16 mg/mL in 25 mL Tris-HCl pH 7.5, 150 mM NaCl using a
509 VivaSpin 20 column with a 30 kDa molecular weight cut off (Sartorius). The crystallisation

510 screens Index (Hampton Research) and PACT, JCSG+ and Morpheus (Molecular
511 Dimensions) were used to screen for crystals. Crystals were grown in a vapour diffusion
512 sitting drop set up in JCSG+ screen (Molecular Dimensions) condition C7 (10% (w/v) PEG
513 3000, 0.1 M sodium acetate, 0.1 M zinc acetate, pH 4.5) at 18 °C. Drops contained 100 nL
514 protein and 100 nL buffer. The cryoprotectant solution was 25 % glycerol, 10% w/v PEG
515 3000, 0.1 M sodium acetate, 0.1 M zinc acetate, pH 4.5 for cooling the crystals in liquid
516 nitrogen. Diffraction data were collected at beamline ID30A-3 at ESRF at a wavelength of
517 0.9679 Å using an EIGER detector. We collected 225 degrees of data with 0.15-degree
518 oscillation. Transmission was 20% and exposure time was 0.010 s.

519 The raw data were analysed in Dials, revealing a $P2_1$ space group and yielding a 98.8%
520 complete set of indexed diffraction spots but no anomalous signal. Molecular replacement
521 was carried out using Colla residues 450-624 in Phaser and yielded electron density for the
522 pore-forming domain of PyoS5. Lack of density for the remainder of the protein indicated
523 that the phases, obtained from Colla, were not sufficient to build a model for the whole
524 protein.

525 Improved phases were obtained from anisotropy correction of the same data set using
526 Staraniso in AutoProc (Vonrhein *et al*, 2011; Tickle *et al*, 2019), which allowed a weak
527 anomalous signal to be detected. The partial model from molecular replacement from Dials
528 and the anomalous data from AutoProc were combined for MR-SAD phasing using Phaser
529 (McCoy *et al*, 2007). An anomalous substructure containing eight metal ions was identified.
530 Based on the type of metal present in the crystallization condition, these were assumed to
531 be Zn^{+2} . The result was additional, visible helical density beyond the pore-forming domain.

532 Iterations of model building into the visible helical density in Coot and refinement against the
533 complete Dials data set in Buster version 2.10.3, resulted in a model of PyoS5. The model
534 was optimized in Coot (Emsley & Cowtan, 2004), followed by one crystallographic

535 refinement in Buster, followed by model optimization in Coot and one refinement in Phenix
536 1.12 (Adams *et al*, 2010). Up to then the whole model was treated as one TLS group. At this
537 point four new TLS groups were created based on similar B-factors as determined in Phenix,
538 comprising residues 40 to 212, 213 to 338, 339 to 395 and 395 to 505, respectively. This
539 increased the R_{work} and R_{free} upon refinement indicating that the use of multiple TLS groups
540 made the model worse. The refinement process was therefore continued with the whole
541 model treated as one TLS group.

542 At the end of the model optimization and refinement the R_{work} was 0.212 and the R_{free} 0.272.
543 MolProbitly, (Chen *et al*, 2010), was used to validate the structure and assess its quality,
544 resulting in a Molprobity score of 1.57. At the end of this validation process the R_{work} was
545 0.225 and the R_{free} 0.275. Figures of the crystal structure were created using CCP4MG
546 (Winn *et al*, 2011) and PyMOL (Delano, 2002).

547

548 **Fluorescence microscopy**

549 **Fluorescent labelling of proteins**

550 Bacteriocins were fluorescently labelled using maleimide AF488 labels via an engineered
551 C-terminal cysteine. To reduce the cysteine, the protein was mixed in a 1 to 9 ratio with DTT
552 to yield a concentration of 10 mM DTT and incubated for 2 h at RT. To remove aggregates,
553 the protein was centrifuged at 16000 g for 1.5 min and the supernatant transferred to a new
554 tube. The supernatant was then applied to a 5 mL HiTrap desalting column and desalted
555 into 25 mM Tris-HCl pH 7.5, 100 mM NaCl, 1% (w/v) β -OG. The protein concentration was
556 measured and immediately maleimide AF488 was added in 3-fold excess. The reaction was
557 allowed to proceed for 1 h while mixing by rotary inversion in the dark at RT. Then the
558 reaction was quenched by adding DTT to a final concentration of 5 mM. The solution was
559 centrifuged and desalting as before. The absorbance was measured at 280 nm and 494 nm

560 using a V-550 UV-Visible Spectrophotometer (Jasco). Labelling efficiency was determined
561 as described in the manufacturers protocol (Molecular Probes Inc, 2006). All fluorescently
562 labelled proteins used for microscopy were labelled with more than 95% efficiency.

563

564 **Fluorescent labelling of bacteria**

565 Coverslips were cleaned by water bath sonication at 50 °C for 15 min in 2% Neutracon
566 (Decon) solution, washed in ddH₂O and air dried.

567 Bacteria were grown over night in LB medium. 1 mL of this overnight culture were pelleted
568 and resuspended in 10 mL supplemented M9 medium and grown until an OD₆₀₀ of 0.6. 600
569 µL of this culture were used per condition. All pelleting steps were performed at 7000 g for
570 3 min at RT.

571 For CCCP treatment, CCCP was added to a final concentration of 100 µM from a 10 mM
572 stock in DMSO to the bacteria before addition of the fluorescently labelled protein. The
573 bacteria were incubated with CCCP while mixing by rotary inversion at RT for 5 min, while
574 all other samples were incubated without CCCP for the same time. Fluorescently labelled
575 protein was then added to a concentration of 1 µM and the sample incubated in the dark
576 while mixing by rotary inversion for 20 min at RT.

577 For trypsin treatment, trypsin was added to a final concentration of 0.1 mg/mL immediately
578 after the incubation with the fluorophore-labelled pyocin. The bacteria were incubated with
579 or without trypsin at 30 °C for 1 hour at 120 rpm.

580 Subsequently, bacteria were washed three times in supplemented M9, where each wash
581 consisted of pelleting the bacteria, removing the supernatant, resuspending the pellet in 50
582 µL by repeated pipetting (10 times) with a P20 pipette, transferring the 50 µL to a new tube
583 with 450 µL supplemented M9, and vortexing. The bacteria were resuspended in a final

584 volume of 30 μ L. 3 μ L were applied to an agar pad for microscopic analysis. Agar pads were
585 prepared using Geneframes (Thermo Scientific) as follows. 1% (w/v) supplemented M9 agar
586 was prepared and 190 μ L pipetted into the Geneframe. Using a coverslip, the surface was
587 flattened and excess agar removed. Once the agar was solidified the cover slip was
588 removed, the bacterial suspension added and a new coverslip attached to the adhesive side
589 of the Geneframe.

590

591 **Image collection**

592 All images were collected on an Oxford Nanoimager S microscope at 100 ms exposure. For
593 every image, 200 frames were collected and averaged. Green fluorescence (excitation: 473
594 nm, emission 425/50 nm) was measured at 35% laser power.

595

596 **Data analysis**

597 In ImageJ the 200 collected frames per image were merged using the command “Z project”.
598 Bacterial cells and background were identified in trans-illumination images using “Trainable
599 Weka Classifier”. Regions of interest were transferred to green fluorescence images and the
600 mean fluorescence of cells, “signal”, and background “noise” quantified. Each image
601 contained a minimum of 15 bacterial cells. For each repeat a minimum of six images were
602 collected per sample and three independent experiments were performed for each
603 experiment. As a result, a minimum of 270 bacterial cells were quantified for each sample.
604 Students t-tests were performed to determine p-values.

605

606 **Sequence and structure comparisons**

607 Sequences were compared using NCBI BLASTn and BLASTp (Altschul *et al*, 1990),
608 MUSCLE (Madeira *et al*, 2019), and jackhmmer (Potter *et al*, 2018). Similar structures were
609 searched for using NCBI VAST (Madej *et al*, 2014) and eFOLD (Krissinel & Henrick, 2004).

610

611 **Data availability**

612 The data supporting the findings of the study are available in the article and its Supporting
613 Information or from the corresponding author upon request. The crystallography data from
614 this publication have been deposited to the PDB database <https://www.rcsb.org/> and
615 assigned the identifier 6THK.

616

617 **Acknowledgements**

618 We are indebted to Dr David Staunton (Molecular Biophysics Suite, Oxford) for help and
619 assistance with biophysical measurements. We thank Professor William Cramer for
620 providing TNE012 cells, Professor Iain Lamont for providing PAO6609, K1407, K1408,
621 MS231 and MS233 cells, and Professor Cezar Khursigara for providing PAO1 Δrmd cells.
622 This work was supported by the Wellcome Trust through the Infection, Immunology &
623 Translational Medicine DPhil studentship to HMB and through a Collaborative Award to CK
624 and DW. TMW was supported by the Erasmus+ scheme of the European Commission.
625 CVR is funded by a Wellcome Trust Investigator Award (104633/Z/14/Z), an ERC Advanced
626 Grant ENABLE (641317) and an MRC Programme Grant (MR/N020413/1). JG
627 acknowledges support of a Junior Research Fellowship from The Queen's College, Oxford.
628 *P. aeruginosa* Mutant Library strain PW8161 was created with support of grant NIH P30
629 DK089507.

630

631 **Author contributions**

632 HMB, NGH and CK designed the research. HMB, EDL, JG, NGH, RK, TMW and CMAT
633 performed the research. HMB, EDL, JG, NGH and TMW analysed data. GLAM and IJS
634 provided essential material. HMB and CK wrote the article. HMB, EDL, NGH, DW and CK
635 revised the article. IJS, DW, CVR and CK obtained funding.

636

637 **Conflict of interest statement**

638 The authors declare that they have no conflict of interest.

639

640 **References**

641 Adams PD, Afonine P V., Bunkóczki G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW,
642 Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ,
643 Richardson DC, Richardson JS, Terwilliger TC & Zwart PH (2010) PHENIX: A
644 comprehensive Python-based system for macromolecular structure solution. *Acta
645 Crystallogr. Sect. D Biol. Crystallogr.* **66**: 213–221

646 Altschul SF, Gish W, Miller W, Myers EW & J. Lipman D (1990) Basic Local Alignment
647 Search Tool. *J. Mol. Biol.* **215**: 403–410

648 Ankenbauer RG & Quan HN (1994) FptA, the Fe(III)-pyochelin receptor of *Pseudomonas*
649 *aeruginosa*: A phenolate siderophore receptor homologous to hydroxamate
650 siderophore receptors. *J. Bacteriol.* **176**: 307–319

651 Barreteau H, Tiouajni M, Graille M, Josseaume N, Bouhss A, Patin D, Blanot D,
652 Fourgeaud M, Mainardi J, Arthur M, Tilbeurgh H Van, Mengin-lecreulx D & Touzé T
653 (2012) Functional and Structural Characterization of PaeM, a Colicin M-like

654 Bacteriocin Produced by *Pseudomonas aeruginosa*. *J. Biol. Chem.* **287**: 37395–
655 37405

656 Behrens HM, Six A, Walker D & Kleanthous C (2017) The therapeutic potential of
657 bacteriocins as protein antibiotics. *Emerg. Top. Life Sci.* **1**: 65–74 Available at:
658 <http://www.emergtoplifesci.org/lookup/doi/10.1042/ETLS20160016>

659 Bosák J, Laiblová P, Smarda J, Dedicova D & Smajs D (2012) Novel colicin FY of *Yersinia*
660 *frederiksenii* inhibits pathogenic *Yersinia* strains via YiuR-mediated reception, TonB
661 import, and cell membrane pore formation. *J. Bacteriol.* **194**: 1950–1959

662 Brockwell DJ, Beddard GS, Paci E, West DK, Olmsted PD, Smith DA & Radford SE (2005)
663 Mechanically unfolding the small, topologically simple protein L. *Biophys. J.* **89**: 506–
664 519 Available at: <http://dx.doi.org/10.1529/biophysj.105.061465>

665 Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S
666 & Cavard D (2007) Colicin Biology. *Microbiol. Mol. Biol. Rev.* **71**: 158–229

667 Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW,
668 Richardson JS & Richardson DC (2010) MolProbity: All-atom structure validation for
669 macromolecular crystallography. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **66**: 12–21

670 Delano W (2002) The PyMOL Molecular Graphics System. *DeLano Sci. Palo Alto*, CA

671 Elfarash A, Dingemans J, Ye L, Hassan AA, Craggs M, Reimann C, Thomas MS &
672 Cornelis P (2014) Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to
673 kill *Pseudomonas aeruginosa*. *Microbiol. (United Kingdom)* **160**: 261–269

674 Emsley P & Cowtan K (2004) Coot: Model-building tools for molecular graphics. *Acta*
675 *Crystallogr. Sect. D Biol. Crystallogr.* **60**: 2126–2132

676 Franke D & Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination
677 in small-angle scattering . *J. Appl. Crystallogr.* **42**: 342–346

678 Granato ET, Meiller-Legrand TA & Foster KR (2019) The Evolution and Ecology of
679 Bacterial Warfare. *Current* **29**: 531–537 Available at:
680 <https://doi.org/10.1016/j.cub.2019.04.024>

681 Hohnadel D, Haas D & Meyer J-M (1986) Mapping of mutations affecting pyoverdine
682 production in *Pseudomonas aeruginosa*. *FEMS Microbiol. Lett.* **36**: 195–199

683 Housden NG, Loftus SR, Moore GR, James R & Kleanthous C (2005) Cell entry
684 mechanism of enzymatic bacterial colicins : Porin recruitment and the
685 thermodynamics of receptor binding. *Proc. Natl. Acad. Sci.* **102**: 13849–13854

686 Huang B, Ru K, Yuan Z, Whitchurch CB & Mattick JS (2004) *tonB3* Is Required for Normal
687 Twitching Motility and Extracellular Assembly of Type IV Pili. *J. Bacteriol.* **186**: 4387–
688 4389

689 Johnson CL, Solovyova AS, Hecht O, Macdonald C, Waller H, Grossmann JG, Moore GR
690 & Lakey JH (2017) The Two-State Prehensile Tail of the Antibacterial Toxin Colicin N.
691 *Biophys. J.* **113**: 1673–1684 Available at:
692 <http://linkinghub.elsevier.com/retrieve/pii/S0006349517309232>

693 Kleanthous C (2010) Swimming against the tide: progress and challenges in our
694 understanding of colicin translocation. *Nat. Rev. Microbiol.* **8**: 843–848

695 Krissinel E & Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast
696 protein structure alignment in three dimensions. *Acta Crystallogr. Sect. D Biol.*
697 *Crystallogr.* **60**: 2256–2268

698 Lam M, McGroarty E, Kropinski A, MacDonald L, Pedersen S, Hoiby N & Lam J (1989)
699 Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of
700 *Pseudomonas aeruginosa*. *J. Clin. Microbiol.* **27**: 962–967

701 Ling H, Saeidi N, Rasouliha BH & Chang MW (2010) A predicted S-type pyocin shows a

702 bactericidal activity against clinical *Pseudomonas aeruginosa* isolates through
703 membrane damage. *FEBS Lett.* **584**: 3354–3358 Available at:
704 <http://dx.doi.org/10.1016/j.febslet.2010.06.021>

705 Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey A,
706 Potter S, Finn R & Lopez R (2019) The EMBL-EBI search and sequence analysis
707 tools APIs in 2019. *Nucleic Acids Res.* **April**: epub

708 Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A & Bryant SH
709 (2014) MMDB and VAST+: Tracking structural similarities between macromolecular
710 complexes. *Nucleic Acids Res.* **42**: 297–303

711 McCaughey LC, Grinter R, Josts I, Roszak AW, Waløen KI, Cogdell RJ, Milner J, Evans T,
712 Kelly S, Tucker NP, Byron O, Smith B & Walker D (2014) Lectin-Like Bacteriocins
713 from *Pseudomonas* spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a
714 Cellular Receptor. *PLoS Pathog.* **10**: 1–15

715 McCaughey LC, Josts I, Grinter R, White P, Byron O, Tucker NP, Matthews JM,
716 Kleanthous C, Whitchurch CB & Walker D (2016a) Discovery, characterisation and in
717 vivo activity of pyocin SD2, a protein antibiotic from *Pseudomonas aeruginosa*.
718 *Biochem. J.* **473**: 2345–2358 Available at:
719 <http://biochemj.org/cgi/doi/10.1042/BCJ20160470>

720 McCaughey LC, Ritchie ND, Douce GR, Evans TJ & Walker D (2016b) Efficacy of species-
721 specific protein antibiotics in a murine model of acute *Pseudomonas aeruginosa* lung
722 infection. *Sci. Rep.* **6**: 1–8

723 McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007)
724 Phaser crystallographic software. *J. Appl. Crystallogr.* **40**: 658–674

725 Molecular Probes Inc (2006) Alexa Fluor® 488 Protein Labeling Kit. *ThermoFisher Sci.*: 1–

726 6 Available at: <https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp10235.pdf> [Accessed January 2, 2019]

727

728

729 Papadakos G, Wojdyla JA & Kleanthous C (2012) Nuclease colicins and their immunity

730 proteins. *Q. Rev. Biophys.* **45**: 57–103

731 Parret A & De Mot R (2000) Novel bacteriocins with predicted tRNase and pore-forming

732 activities in *Pseudomonas aeruginosa* PAO1. *Mol. Microbiol.* **35**: 472–473

733 Petoukhov M V., Franke D, Shkumatov A V., Tria G, Kikhney AG, Gajda M, Gorba C,

734 Mertens HDT, Konarev P V. & Svergun DI (2012) New developments in the ATSAS

735 program package for small-angle scattering data analysis. *J. Appl. Crystallogr.* **45**:

736 342–350

737 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE

738 (2004) UCSF Chimera--a visualization system for exploratory research and analysis.

739 *J. Comput. Chem.* **25**: 1605–12 Available at:

740 <http://www.ncbi.nlm.nih.gov/pubmed/15264254>

741 Poole K, Zhao Q, Neshat S, Heinrichs DE & Dean CR (1996) The *Pseudomonas*

742 *aeruginosa* *tonB* gene encodes a novel TonB protein. *Microbiology* **142**: 1449–1458

743 Potter SC, Luciani A, Eddy SR, Park Y, Lopez R & Finn RD (2018) HMMER web server:

744 2018 update. *Nucleic Acids Res.* **46**: W200–W204

745 Rambo RP (2019) ScÅtter version 3.0. *Diam. Light Source Didcot*:

746 Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud M V., Vila MMDC, Teixeira

747 JA & Balc??o VM (2016) Alternatives to overcoming bacterial resistances: State-of-

748 the-art. *Microbiol. Res.* **191**: 51–80

749 Rocchetta HL, Pacan JC & Lam JS (1998) Synthesis of the A-band polysaccharide sugar

750 D-rhamnose requires Rmd and WbpW: Identification of multiple AlgA homologues,
751 WbpW and ORF488, in *Pseudomonas aeruginosa*. *Mol. Microbiol.* **29**: 1419–1434

752 Sano Y, Matsui H, Kobayashi M & Kageyama M (1993) Molecular structures and functions
753 of pyocins S1 and S2 in *Pseudomonas aeruginosa*. *J. Bacteriol.* **175**: 2907–2916

754 Sharp C, Bray J, Housden NG, Maiden MDJ & Kleanthous C (2017) Diversity and
755 distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden
756 Markov Models. *PLOS Comput. Biol.*: 1–24

757 Shirley M & Lamont IL (2009) Role of TonB1 in pyoverdine-mediated signaling in
758 *Pseudomonas aeruginosa*. *J. Bacteriol.* **191**: 5634–5640

759 Soelaiman S, Jakes K, Wu N, Li C & Shoham M (2001) Crystal Structure of Colicin E3:
760 Implications for Cell Entry and Ribosome Inactivation. *Mol. Cell* **8**: 1053–1062
761 Available at: <http://www.sciencedirect.com/science/article/pii/S1097276501003963>

762 Takase H, Nitanai H, Hoshino K & Otani T (2000) Requirement of the *Pseudomonas*
763 *aeruginosa tonB* gene for high-affinity iron acquisition and infection. *Infect. Immun.* **68**:
764 4498–4504

765 Taylor R, Burgner JW, Clifton J & Cramer WA (1998) Purification and characterization of
766 monomeric *Escherichia coli* vitamin B12receptor with high affinity for colicin E3. *J.*
767 *Biol. Chem.* **273**: 31113–31118

768 Tickle IJ, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C & Bricogne G (2019)
769 STARANISO.

770 Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, Womack T & Bricogne
771 G (2011) Data processing and analysis with the autoPROC toolbox. *Acta Cryst. D* **67**:
772 293–302

773 White P, Joshi A, Rassam P, Housden NG & Kaminska R (2017) Exploitation of an iron

774 transporter for bacterial protein antibiotic import. *PNAS*: 0–2

775 WHO (2017) Prioritization of pathogens to guide discovery, research and development of
776 new antibiotics for drug resistant bacterial infections, including tuberculosis. *Essent.
777 Med. Heal. Prod.*: 88 Available at:
778 http://www.who.int/medicines/areas/rational_use/PPLreport_2017_09_19.pdf?ua=1%0A
779 http://www.who.int/medicines/areas/rational_use/prioritization-of-pathogens/en/

780 Wiener M, Freymann D, Ghosh P & Stroud RM (1997) Crystal structure of colicin Ia.
781 *Nature* **385**: 461–464

782 Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM,
783 Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS,
784 Potterton EA, Powell HR, Read RJ, Vagin A & Wilson KS (2011) Overview of the
785 CCP4 suite and current developments. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **67**:
786 235–242

787 Wriggers W (2012) Conventions and workflows for using Situs. *Acta Crystallogr. Sect. D
788 Biol. Crystallogr.* **68**: 344–351

789 Zakharov SD, Eroukova VY, Rokitskaya TI, Zhalnina M V., Sharma O, Loll PJ, Zgurskaya
790 HI, Antonenko YN & Cramer WA (2004) Colicin occlusion of OmpF and TolC
791 channels: Outer membrane translocons for colicin import. *Biophys. J.* **87**: 3901–3911
792 Available at: <http://dx.doi.org/10.1529/biophysj.104.046151>

793 Zamri A & Abdallah MA (2000) An improved stereocontrolled synthesis of pyochelin,
794 siderophore of *Pseudomonas aeruginosa* and *Burkholderia cepacia*. *Tetrahedron* **56**:
795 249–256

796 Zhao Q & Poole K (2000) A second *tonB* gene in *Pseudomonas aeruginosa* is linked to the
797 *exbB* and *exbD* genes. *FEMS Microbiol. Lett.* **184**: 127–132

798

799 **Figure Legends**

800

801 **Figure 1: Crystal structure of PyoS5.**

802 (A) The 2.2 Å crystal structure of PyoS5 (residues 40 to 195). The first kTHB domain is in
803 *red* (residues 196-315), the second kTHB is in grey (residues 316-505) and the pore-forming
804 domain is in *black*. Residues 2 to 39 are not resolved and represented (to scale) by a red
805 dashed line. (B) Structural alignment of PyoS5₄₀₋₁₉₆ (*red*) and PyoS5₁₉₄₋₃₁₅ (*grey*), RMSD 2.5
806 Å. Residues 123-162 (*pink*) are not conserved in PyoS5₁₉₄₋₃₁₅ and were excluded from the
807 alignment. (C) Structural alignment of PyoS5 kTHB domains (*red* and *grey*) with that from
808 PyoS2 (*teal*), RMSD 4.1 Å. PyoS5 residues 2-213 are shown, with 123-156 excluded and
809 PyoS2 residues 46-206 are shown, with 124-151 excluded. (D) Interactions within domain
810 1 (*red*) and domain 2 (*grey*) are not conserved, as illustrated by exemplary interactions
811 shown. Electron density is shown, cut-off 1 σ.

812

813 **Figure 2: kTHB domain 2 binds CPA, kTHB domain 1 binds FptA and the N-terminal**
814 **disordered region binds TonB1**

815 (A) ITC data for PyoS5₁₋₃₁₅ titrated into *P. aeruginosa* PAO1 LPS-derived polysaccharide
816 containing CPA and OSA (closed circles) and (B) PyoS5₁₋₁₉₆ titrated into *P. aeruginosa*
817 PAO1 LPS-derived polysaccharide. (C) ITC data for PyoS5₁₉₄₋₃₁₅ titrated into *P. aeruginosa*
818 PAO1 LPS-derived polysaccharide. PyoS5₁₉₄₋₃₁₅ titrated into *P. aeruginosa* Δ*rmd* LPS-
819 derived polysaccharide containing OSA only (open circles). (A-C) K_ds and concentrations
820 can be found in Table 3. All ITC experiments were performed in duplicate in 0.2 M Na-
821 phosphate buffer pH 7.5 at 25 °C, one repeat is shown. Data were corrected for heats of
822 dilution by subtracting the average of the last five injections and fit to a model of single-site
823 binding. (D) SPR data for FptA (0.03-32 μM) binding to PyoS5₁₋₃₁₅ (*closed circles*), PyoS5₁₋

824 196 (*open circles*) or PyoS5₁₉₄₋₃₁₅ (*diamonds*). (E) SPR data for FptA (0.03-32 μ M) binding to
825 PyoS5₁₋₃₁₅ (*closed circles*) or PyoS5₁₋₃₁₅ Δ 2-39 (*open circles*). (F) SPR data for TonB1
826 (0.009-35 μ M) binding to PyoS5₁₋₃₁₅ (*closed circles*) or PyoS5₁₋₃₁₅ Δ 10-13 (*open circles*). (D-
827 F) One of three repeats is shown. All experiments were performed in parallel on the same
828 chip in HBS-OG buffer at 25 °C. All ligands were immobilized by amine-coupling and
829 sensorgram data was extracted and fit with a 1:1 binding model. K_d s are presented in Table
830 4.

831

832 **Figure 3: CPA accumulates PyoS5 at the cell surface while FptA and TonB1 mediate
833 import.**

834 (A) Fluorescent labelling of live *P. aeruginosa* PAO1 cells with PyoS5₁₋₃₁₅-AF⁴⁸⁸.
835 Additionally, the effects of depleting the PMF with CCCP before incubation with TF-AF⁴⁸⁸
836 and of trypsin treatment to remove surface exposed PyoS5₁₋₃₁₅-AF⁴⁸⁸ after incubation with
837 PyoS5₁₋₃₁₅-AF⁴⁸⁸ were examined. Scale bars 5 μ m. (B) Quantification of the average cell
838 fluorescence observed under different conditions tested in A. (C) Fluorescent labelling of
839 live *P. aeruginosa* PAO1 using PyoS5₁₋₃₁₅-AF⁴⁸⁸, PyoS5₁₋₁₉₆-AF⁴⁸⁸ and PyoS5₁₉₄₋₃₁₅-AF⁴⁸⁸
840 with and without trypsin treatment quantified to determine the average cell fluorescence. (D)
841 Fluorescent labelling of live *P. aeruginosa* PW8161 (Δ fptA) and *P. aeruginosa* PAO1 using
842 PyoS5₁₋₃₁₅-AF⁴⁸⁸, PyoS5₁₋₁₉₆-AF⁴⁸⁸ and PyoS5₁₉₄₋₃₁₅-AF⁴⁸⁸ with and without trypsin
843 treatment was quantified to determine the average cell fluorescence. (E) Fluorescent
844 labelling of live *P. aeruginosa* PAO1 Δ rmd and PAO1 using PyoS5₁₋₃₁₅-AF⁴⁸⁸, PyoS5₁₋₁₉₆-
845 AF⁴⁸⁸ and PyoS5₁₉₄₋₃₁₅-AF⁴⁸⁸ with or without trypsin treatment was quantified to determine
846 the average cell fluorescence. (A-E) **** indicates a p-value below 0.0001 in Student's t-
847 test.

848

849

850 **Figure 4: FptA and TonB1 constitute the minimal system for PyoS5-susceptibility in**
851 ***E. coli*.**

852 (A) Susceptibility to PyoS5 (3 and 60 μ M) was assessed for *P. aeruginosa* YHP17, (B) for
853 *E. coli* BL21 (DE3) expressing FptA, (C) for *E. coli* BL21 (DE3) expressing TonB-B1, and
854 (D) for *E. coli* BL21 (DE3) expressing FptA and TonB-B1. Zones of clearance are observed
855 in all *E. coli* samples for the ColBPyoS5 (13 μ M) control (B-D) and for both concentrations
856 of PyoS5 in *E. coli* expressing FptA and TonB-B1 (D). In the *P. aeruginosa* control clearance
857 zones were observed for PyoS5 (A).

858

859 **Figure 6: Model of PyoS5 import.**

860 (A) PyoS5 accumulates on the cell surface by binding to CPA through kTHB domain 2. (B)
861 PyoS5 then contacts its outer membrane translocator, FptA, initially with its disordered N-
862 terminus, and then through binding of kTHB domain 1. (C) Interactions between FptA and
863 TonB1 possibly act to induce movement of the receptor plug domain, allowing for the
864 unstructured N-terminus of PyoS5 to thread through the receptor and access the periplasm.
865 Following entry to the periplasm the N-terminus of PyoS5 binds to TonB1 through the TonB-
866 box motif. The formation of the PyoS5-TonB1 complex enables coupling to inner membrane
867 protein targets of TonB1. (D) This coupling provides energy transduction from the PMF that
868 facilitates translocation of PyoS5 through the outer membrane. (E) Finally, this results in
869 PyoS5 translocation into the periplasm.

870

871

872 **Supplementary Figure S1: Characterisation of purified PyoS5**

873 (A) Coomassie-stained SDS-PAGE showing purified PyoS5, compared to molecular weight
874 standards (Fermentas unstained protein marker). (B) ESI-MS of full length PyoS5 gives a
875 mass of 57008.00 Da, compared with a sequence-based expected mass of 58007.98 Da.

876 (C) PyoS5 spotted on *P. aeruginosa* YHP17 in three-fold dilutions starting at 10 μ M. Zones
877 of clearance indicate growth inhibition by PyoS5. (D) SEC-MALS of PyoS5 at 9.5 mg/mL
878 (black), 4.8 mg/mL (grey), 2.4 mg/mL (red), 1.1 mg/mL (blue) and 0.6 mg/mL (yellow) shows
879 PyoS5 is monomeric at all tested concentrations.

880

881 **Supplementary Figure S2: SAXS data of PyoS5.**

882 (A) SAXS of PyoS5 (black) at 5.4 mg/mL shows PyoS5 is monodispersed. The theoretical
883 scattering curve for the crystal structure (red line) fits the experimental SAXS data well with
884 a χ^2 of 1.74. (B) Fit of the PyoS5 crystal structure into the PyoS5 SAXS envelope by Chimera
885 shows 93% of atoms within the SAXS envelope.

886

887 **Supplementary Figure S3: Comparison of pore forming domains from bacteriocins.**

888 All available structures of pore-forming domains were aligned and coloured in a gradient
889 from yellow (N-terminus) to red (C-terminus). The pores are shown in order of decreasing
890 alignment quality (Q) score. All pores in the left column have immunity proteins that pass
891 the membrane three times, those in the right column have immunity proteins that pass the
892 membrane four times. RMSDs, Q-scores, and immunity protein topologies are shown. The
893 following residues were aligned to PyoS5 315-498: Colla 448-624 (PDB 1CII), ColE1 345-
894 522 (PDB 2I88), ColN 188-486 (PDB 1A87), ColA 393-591 (PDB 1COL), ColS4 299-499
895 (PDB 3FEW) and ColB 312-511 (PDB 1RH1).

896

897 **Supplementary Figure S4: Potential kTHB domains in other pyocins**

898 (A) Phylogenetic tree of kTHB domains with branch lengths in substitutions per site (grey)
899 and percent protein sequence identity to the most similar crystalized kTHB (blue and red).
900 (B) Sequence alignment of the three kTHBs that have been shown to bind CPA. Identical
901 residues are shown in green.

902

903 **Supplementary Figure S5: Circular dichroism (CD) spectra of PyoS5 constructs**

904 (A) CD spectra of 0.1 mg/mL PyoS5₁₋₃₁₅ (*black*), PyoS5₁₋₁₉₆ (*red*) and PyoS5₁₉₄₋₃₁₅ (*grey*) at
905 RT in 20 mM NaCl, 10 mM potassium phosphate buffer pH 7.5 show the PyoS5 domains
906 are helical and folded. (B) CD thermal melts of 0.1 mg/mL PyoS5₁₋₃₁₅ (*black*) T_m 51.0 ±0.1
907 °C, PyoS5₁₋₁₉₆ (*red*) T_m 57.5 ±0.0 °C, and PyoS5₁₉₄₋₃₁₅ (*grey*) T_m 43.7 ±0.3 °C in 20 mM
908 NaCl, 10 mM potassium phosphate buffer pH 7.5. Two repeats were performed; one is
909 shown as circles with its fit as a line.

910

911 **Supplementary Figure S6: Conserved residues between PyoS2, PyoSD3 and PyoS5**
912 **CPA-binding domains.**

913 Residues identical in all three CPA-binding domains (*red*) are mapped onto PyoS5 CPA-
914 binding kTHB domain 2 (*grey*). Surface and cartoon representation are shown at two
915 different angles.

916

917 **Supplementary Figure S7: Pyochelin and PyoS5 compete for FptA binding**

918 (A) FptA was incubated with 4-fold excess ferric pyochelin (Pch) for 45 min, then excess
919 Pch was removed by desalting. The native mass spectrum of this FptA sample (19 μM) in
920 the presence of 19 μM PyoS5₁₋₂₉₉ shows species with masses consistent with free FptA
921 (*grey*), FptA-Pch complex (*red*), FptA-PyoS5₁₋₂₉₉ complex (*blue*) and dissociated FptA
922 (*yellow*). No complex of FptA, PyoS5₁₋₂₉₉ and Pch is detected. (B) SPR shows 3.4 μM FptA
923 binding to immobilized PyoS5₁₋₃₁₅ in the presence of pre-mixed Pch and FeCl₃ at the
924 following ratios of 1:0:0 (*black*), 1:2:8 (*grey*) and 1:10:40 (*red*) FptA to Pch to FeCl₃,
925 respectively. An excess of iron over Pch was chosen to ensure a high percentage of ferric
926 Pch. With a 10-fold excess of Pch no binding of FptA to PyoS5₁₋₃₁₅ is observed.

927

928 **Supplementary Figure S8: PyoS5Colla is not TonB2 or TonB3 dependent.**

929 Zones of clearance from PyoS5Colla did not differ between parent strain PA6609, TonB2-
930 deficient strain K1408, TonB3-deficient strain MS231, and TonB2- and TonB3-deficient
931 strain MS233. 3-fold dilution series starting at 10 μ M PyoS5Colla added to strains grown on
932 LB agar.

933

934 **Supplementary Figure S9: Deletion of the PyoS5 TonB-box prevents translocation.**

935 (A) Fluorescent labelling of live *P. aeruginosa* PAO1 using PyoS5₁₋₃₁₅-AF⁴⁸⁸ and PyoS5₁₋₃₁₅
936 Δ 10-13-AF⁴⁸⁸ with and without trypsin treatment. Scale bars 5 μ m. (B) Quantification of the
937 average cell fluorescence observed under different conditions tested in A. **** indicates a
938 p-value below 0.0001 in Student's t-test, ns indicates p-value above 0.05.

939

940 **Supplementary Figure S10: CPA increases susceptibility to PyoS5Colla.**

941 3-fold serial dilution starting at 10 μ M spotted onto the soft agar containing *P. aeruginosa*
942 PAO1 or *P. aeruginosa* PAO1 Δ rmd from top left to bottom right. In the CPA-deficient Δ rmd
943 strain a 9-fold reduction in susceptibility but not complete resistance is observed.

944

945 **Supplementary Figure S11: FpvAI and TonB1 constitute the minimal system for**
946 **PyoS2- and PyoS4-susceptibility.**

947 Susceptibility to 1 μ M PyoS2, PyoS4, PyoS5 and ColBPyoS5 was assessed for (A) *P.*
948 *aeruginosa* YHP17, (B) *E. coli* BL21 (DE3) expressing FpvAI, (C) *E. coli* BL21(DE3)
949 expressing TonB-B1, and (D) *E. coli* BL21 (DE3) expressing FpvAI and TonB-B1. Zones of
950 clearance were observed for all *E. coli* conditions tested when ColBPyoS5 was applied (B-
951 D). Similarly, *E. coli* expressing FpvAI and TonB-B1 was susceptible to both PyoS2 and
952 PyoS4, as was the *P. aeruginosa* control (A+D). Zones of clearance for PyoS5 were only
953 observed in *P. aeruginosa*.

954 **Table 1: Bacterial strains used in this study**

Name	Relevant characteristics	Source
<i>E. coli</i>		
NEB5a	<i>fhuA2</i> Δ (<i>argF-lacZ</i>) <i>U169</i> <i>phoA</i> <i>glnV44</i> ϕ 80 Δ (<i>lacZ</i>) <i>M15</i> <i>gyrA96</i> <i>recA1</i> <i>relA1</i> <i>endA1</i> <i>thi-1</i> <i>hsdR17</i>	New England Biolabs
BL21 (DE3)	<i>fhuA2</i> [<i>lon</i>] <i>ompT</i> <i>gal</i> (λ DE3) [<i>dcm</i>] Δ <i>hsdS</i> λ DE3 = λ <i>sBamH1</i> Δ <i>EcoRI-B</i> <i>int</i> ::(<i>lacI</i> :: <i>PlacUV5</i> :: <i>T7</i> <i>gene1</i>) <i>i21</i> Δ <i>nin5</i>	New England Biolabs
TNE012	<i>ompA</i> -, <i>ompB</i> -, <i>tsx</i> -	Professor William Cramer (Taylor <i>et al</i> , 1998)
<i>P. aeruginosa</i>		
PAO1	Clinical isolate	Manoil lab Washington mutant library
YHP17	Clinical isolate	Professor Daniel Walker
PAO6609	<i>met-9011</i> <i>amiE200</i> <i>strA</i> <i>pvd-9</i>	Professor Iain Lamont (Hohnadel <i>et al</i> , 1986)
K1407	<i>PAO6609 tonB1</i> ⁻	Professor Iain Lamont (Poole <i>et al</i> , 1996; Zhao & Poole, 2000)
K1408	<i>PAO6609 tonB2</i> ⁻	Professor Iain Lamont (Zhao & Poole, 2000)
MS231	<i>PAO6609 tonB3</i> ⁻	Professor Iain Lamont (Shirley & Lamont, 2009)
MS233	<i>PAO6609 tonB2</i> ⁻ , <i>tonB3</i> ⁻	Professor Iain Lamont (Shirley & Lamont, 2009)
PW8161	<i>PAO1 fptA</i> ⁻	Manoil lab Washington mutant library
PAO1 Δ <i>rmd</i>	<i>CPA</i> deficient	Professor Cezar Khursigara (Rocchetta <i>et al</i> , 1998)

955

956

957

958

959

960

961

962

963

964

965

966 **Table 2: Expression plasmids used in this study**

Plasmid name	Protein expressed	Description	Parent vector	Source
pPW18	PyoS5	<i>PyoS5</i> with a C-terminal His6-tag cloned into the <i>Nde</i> I/ <i>Xho</i> I sites	pET21a(+)	This study
pHB18	PyoS5 ₁₋₃₁₅	<i>PyoS5₁₋₃₁₅</i> with a C-terminal His6-tag cloned into the <i>Nde</i> I/ <i>Xho</i> I sites	pET21a(+)	This study
pHB32	PyoS5 ₁₋₃₁₅ -Cys	Derivative of pHB18, containing <i>PyoS5₁₋₃₁₅</i> with a C-terminal cysteine, followed by a C-terminal His6-tag	pET21a(+)	This study
pHB40	PyoS5 ₁₋₃₁₅ Δ2-39	Derivative of pHB18	pET21a(+)	This study
pHB42	PyoS5 ₁₋₃₁₅ Δ2-9	Derivative of pHB18	pET21a(+)	This study
pHB41	PyoS5 ₁₋₃₁₅ Δ10-13	Derivative of pHB18	pET21a(+)	This study
pHB43	PyoS5 ₁₋₃₁₅ Δ16-20	Derivative of pHB18	pET21a(+)	This study
pHB46	PyoS5 ₁₋₃₁₅ Δ10-13-Cys	Derivative of pHB32	pET21a(+)	This study
pHB19	PyoS5 ₁₋₁₉₆	<i>PyoS5₁₋₁₉₆</i> with a C-terminal His6-tag cloned into the <i>Nde</i> I/ <i>Xho</i> I sites	pET21a(+)	This study
pHB33	PyoS5 ₁₋₁₉₆ -Cys	Derivative of pHB19, containing <i>PyoS5₁₋₁₉₆</i> with a C-terminal cysteine followed by a C-terminal His6-tag	pET21a(+)	This study
pHB24	PyoS5 ₁₉₄₋₃₁₅	<i>PyoS5₁₉₄₋₃₁₅</i> with a C-terminal His6-tag cloned into the <i>Nde</i> I/ <i>Xho</i> I sites	pET21a(+)	This study
pHB34	PyoS5 ₁₉₄₋₃₁₅ -Cys	Derivative of pHB24, containing <i>PyoS5₁₉₄₋₃₁₅</i> with a C-terminal cysteine followed by a C-terminal His6-tag	pET21a(+)	This study
pHB09	ColBPyoS5	<i>ColB</i> ₁₋₃₄₀ translationally fused to <i>PyoS5</i> ₃₀₃₋₄₉₈ with a C-terminal His6-tag cloned into the <i>Nde</i> I/ <i>Xho</i> I sites	pET21a(+)	This study
pHB47	PyoS5 Colla	<i>PyoS5₁₋₃₁₅</i> translationally fused to <i>Colla</i> ₄₈₅₋₆₂₆ with a C-	pET21a(+)	This study

		terminal His6-tag cloned into the <i>Nde</i> I/ <i>Xba</i> I sites		
pHB22	ImS5	<i>ImS5</i> with a stop codon cloned into the <i>Nde</i> I/ <i>Xba</i> I sites	pACYCDuet-1	This study
pHB04	FptA	<i>FptA</i> with OmpF signal sequence cloned into the <i>Ncol</i> / <i>Sac</i> I sites	pBAD/His-MycB	This study
pPW17	TonB1	<i>TonB</i> ₁₀₉₋₃₄₂ with N-terminal His6-tag followed by TEV cleavage site, cloned into the <i>Ncol</i> / <i>Sac</i> I sites	pETM11	Paul White (White <i>et al</i> , 2017)
pHB25	TonB-B1 hybrid	<i>E. coli</i> <i>TonB</i> ₁₋₁₀₂ translationally fused to <i>P. aeruginosa</i> <i>TonB</i> ₁₂₀₁₋₃₄₂ cloned into the <i>Nde</i> I/ <i>Xba</i> I sites	pACYCDuet-1	This study
pNGH131	Colla	<i>Colla</i> with a C-terminal His6-tag cloned into the <i>Nde</i> I/ <i>Xba</i> I sites	pET21a	This study
pNGH243	ImS4	<i>ImS4-His6</i> cloned into the <i>Ncol</i> / <i>Hind</i> III sites	pET24a	This study
pNGH246	PyoS4-ImS4	<i>PyoS4-ImS4-His6</i> cloned into the <i>Nde</i> I/ <i>Xba</i> I sites	pACYCDuet-1	This study
pPW02	PyoS2-ImS2	<i>PyoS2-ImS2-His6</i> cloned into the <i>Nde</i> I/ <i>Xba</i> I sites	pET21a	Paul White (White <i>et al</i> , 2017)

967

968

969

970

971

972

973

974

975

976

977

978

979

980 **Supplementary Table S1: X-ray data processing, refinement and validation statistics**
981 **for PyoS5.**

Data Processing	
X-ray wavelength	0.9679 Å
Space group	P 1 2 ₁ 1
Cell dimensions	a = 50.246 Å, b = 52.878 Å, c = 104.807 Å
Cell angles	α = 90°, β = 95.16°, γ = 90°
Resolution	53.88-2.20 Å (2.27-2.20 Å)
Unique reflections	28285 (2473)
Completeness	98.8 % (99.8 %)
Multiplicity	4.4 (4.6)
CC(1/2)	0.996 (0.728)
R _{meas}	0.179 (2.52)
Refinement	
R _{work} /R _{free}	0.225/0.275
Number of protein atoms	3633
Number of Zn ²⁺ atoms	8
Average B-factor	63.91 Å ²
Validation	
RMS bonds	0.0096 Å
RMS angles	1.05°
Ramachandran favoured	98.49%
Ramachandran allowed	1.51%
Ramachandran outliers	0%
MolProbity Clashscore	2.76

982 Values in parenthesis denote highest resolution shell.

983

984

985

986

987

988

989

990

991

992

993

994

995 **Supplementary Table S2: K_d s of PyoS5 constructs binding to LPS-derived**
996 **polysaccharides.**

Polysaccharide in the cell with concentration	Titrant with concentration	K_d [nM]	ΔH [kcal/mol]	ΔS [cal/mol/K]	N
7 mg/mL <i>P. aeruginosa</i> PAO1 LPS-derived polysaccharide containing CPA and OSA	150 μ M PyoS5 ₁₋₃₁₅	612 \pm 332	-18 \pm 6	-32 \pm 22	0.16 \pm 0.04
7 mg/mL <i>P. aeruginosa</i> PAO1 LPS-derived polysaccharide containing CPA and OSA	150 μ M PyoS5 ₁₋₁₉₆	No binding was observed			
7 mg/mL <i>P. aeruginosa</i> PAO1 LPS-derived polysaccharide containing CPA and OSA	150 μ M PyoS5 ₁₉₄₋₃₁₅	269 \pm 44	-14 \pm 0.3	-16 \pm 1	0.56 \pm 0.36
7 mg/mL <i>P. aeruginosa</i> Δ rmd LPS-derived polysaccharide containing OSA only	150 μ M PyoS5 ₁₉₄₋₃₁₅	No binding was observed			

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010 **Supplementary Table S3: PyoS5₁₋₁₉₆ binds FptA.**

1011 Complex formation of FptA with PyoS5 constructs observed by native MS

Construct(s)	μM	Expected mass of complex (Da)	Observed mass (Da)
FptA	10	76068.27	76066
FptA + PyoS5 ₁₋₃₁₅	10 + 17.3	113261.40	113259
FptA + PyoS5 ₁₋₁₉₄	5 + 7.5	99797.97	99796
FptA + PyoS5 ₁₉₄₋₃₁₅	10 + 7	91116.37	76066

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038 **Supplementary Table 4: K_ds determined by SPR at 25 °C, average of three repeats.**

Ligand immobilized by amine coupling	Amount immobilized [RUs]	Analyte in HBS-OG buffer	K _d
PyoS5 ₁₋₃₁₅	3464	FptA	6.5 ±0.4 μM
PyoS5 ₁₋₁₉₆	4153	FptA	7.1 ±0.7 μM
PyoS5 ₁₉₄₋₃₁₅	2088	FptA	No binding observed
PyoS5 ₁₋₃₁₅ Δ2-39	9223	FptA	14.7 ±0.4 μM
PyoS5 ₁₋₃₁₅	3464	TonB1	241 ±9 nM
PyoS5 ₁₋₃₁₅ Δ10-13	5324	TonB1	No binding
PyoS5 ₁₋₃₁₅ Δ2-9	5352	TonB1	1.57 ±0.09 μM
PyoS5 ₁₋₃₁₅ Δ16-20	7727	TonB1	3.12 ±0.05 μM
PyoS5 ₁₋₃₁₅ Δ2-9	5324	FptA	6.53 ±0.13 μM
PyoS5 ₁₋₃₁₅ Δ10-13	5352	FptA	10.07 ±0.19 μM
PyoS5 ₁₋₃₁₅ Δ16-30	7727	FptA	36.2 ±4.9 μM

1039

1040

1041

1042

1043

1044

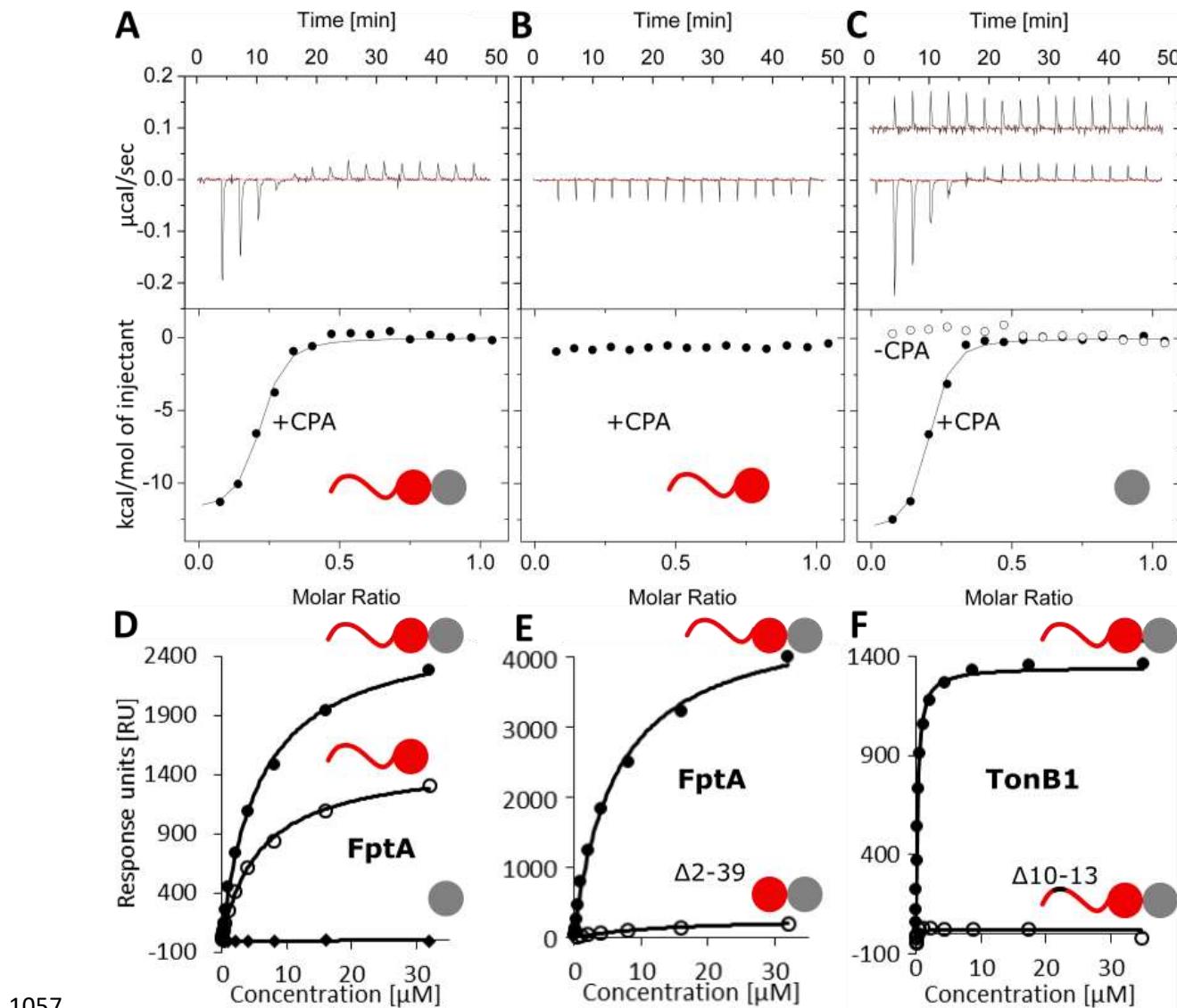
1045

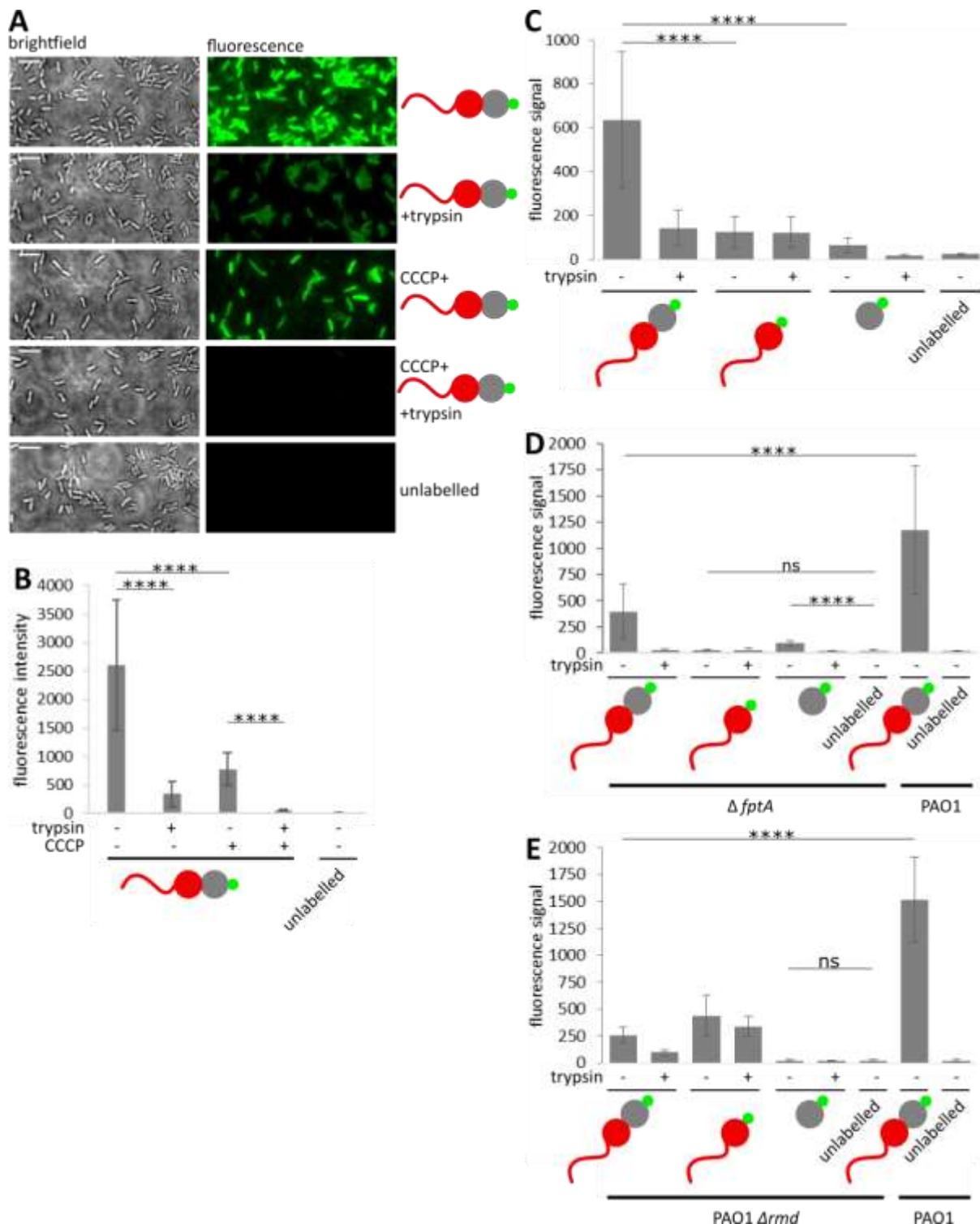
1046

1047

1048

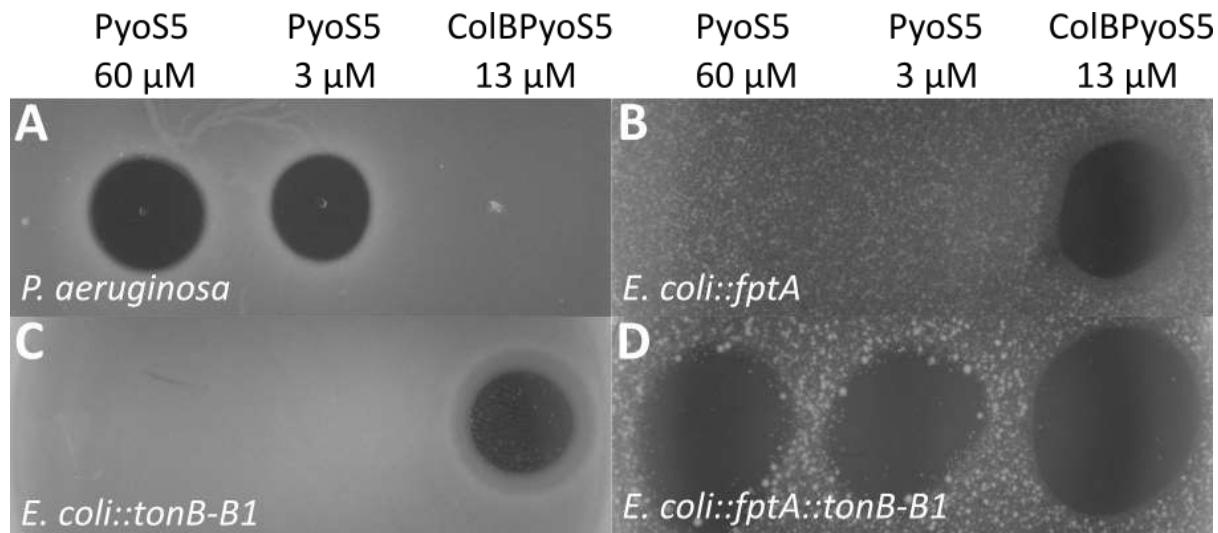
1049


1050


1051

1052

1053



1059

1060 Figure 3

1061

1062 Figure 4

1063

1064

1065

1066

1067

1068

1069

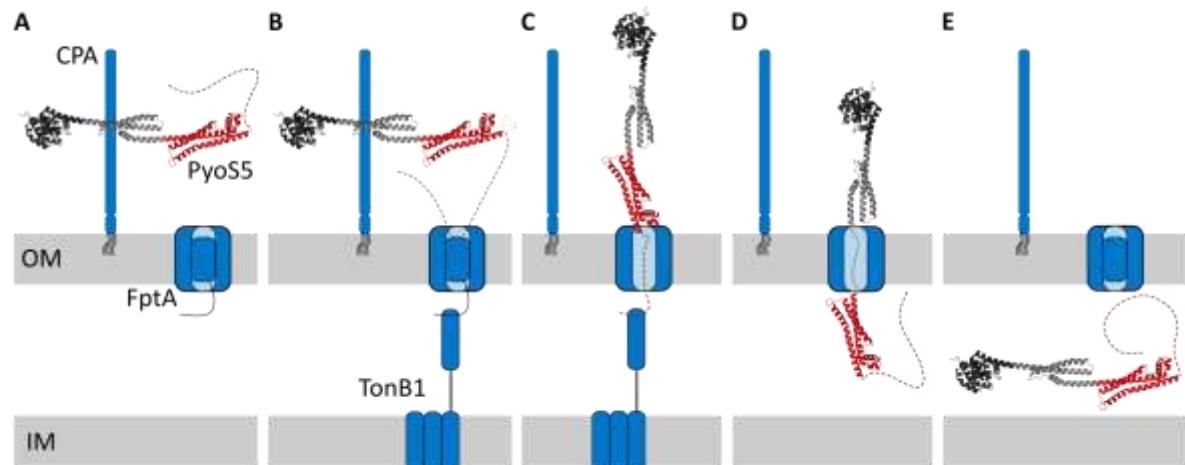
1070

1071

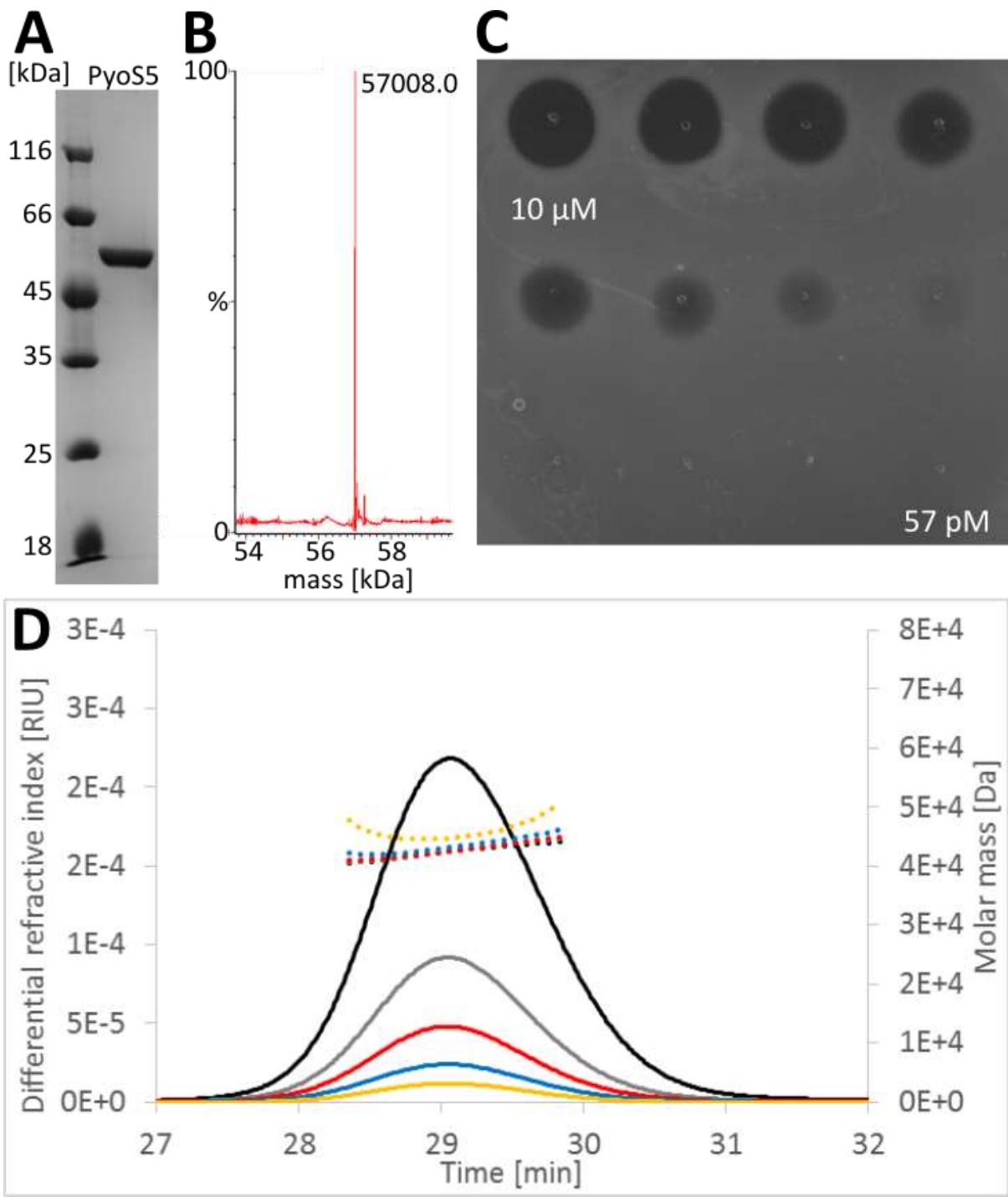
1072

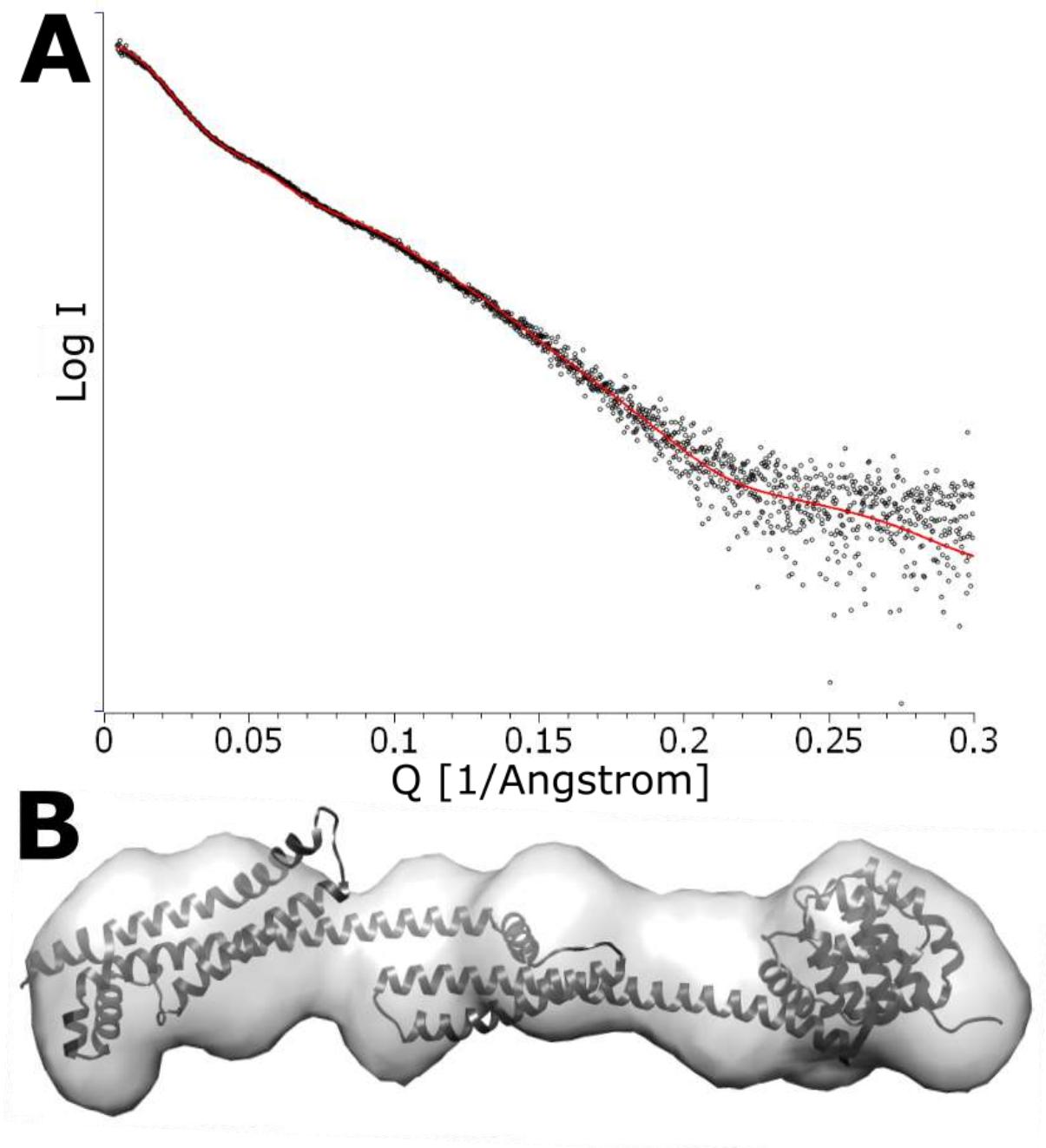
1073

1074

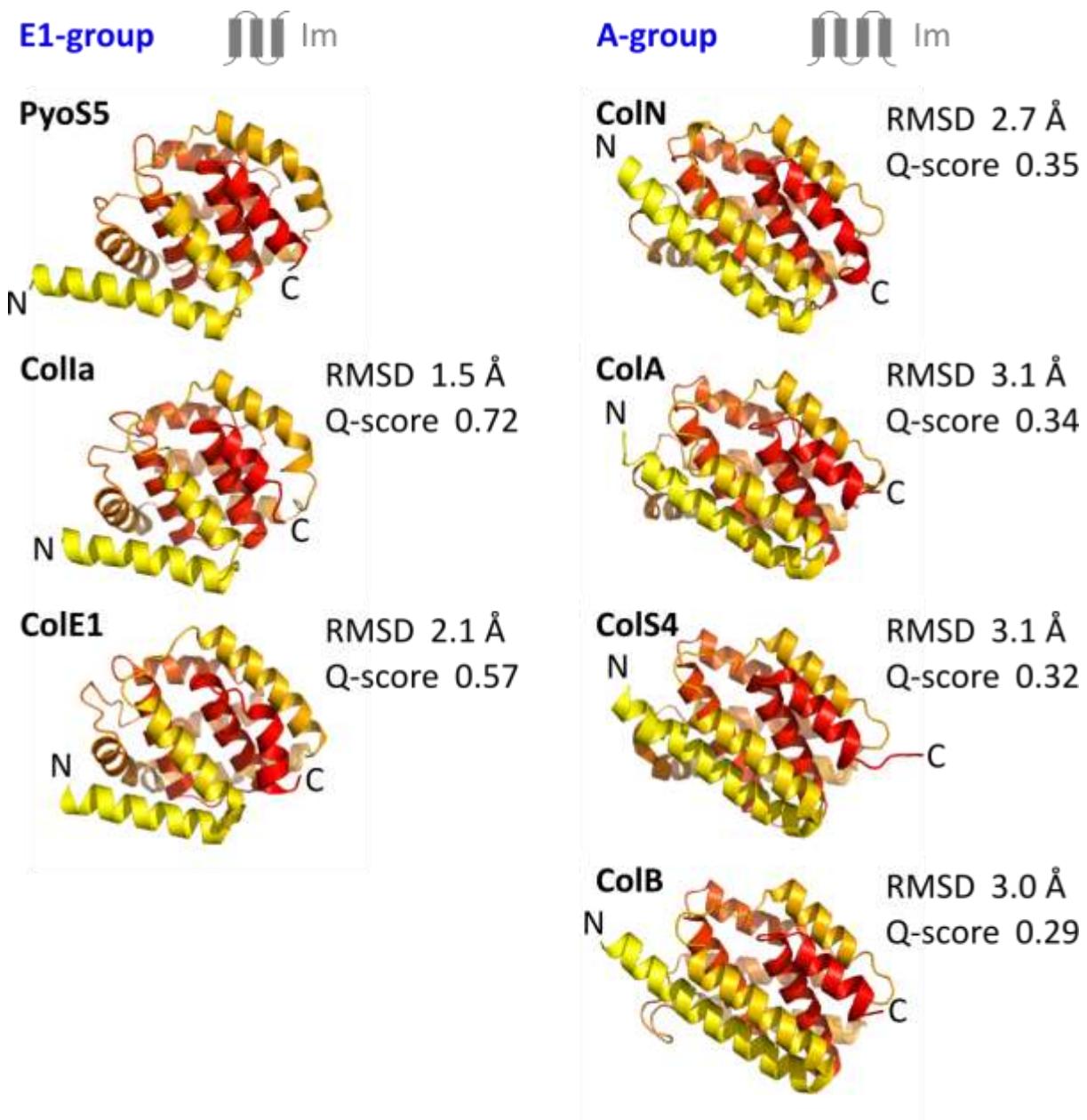

1075

1076


1077


1078

1079


1081 Figure 5

1084

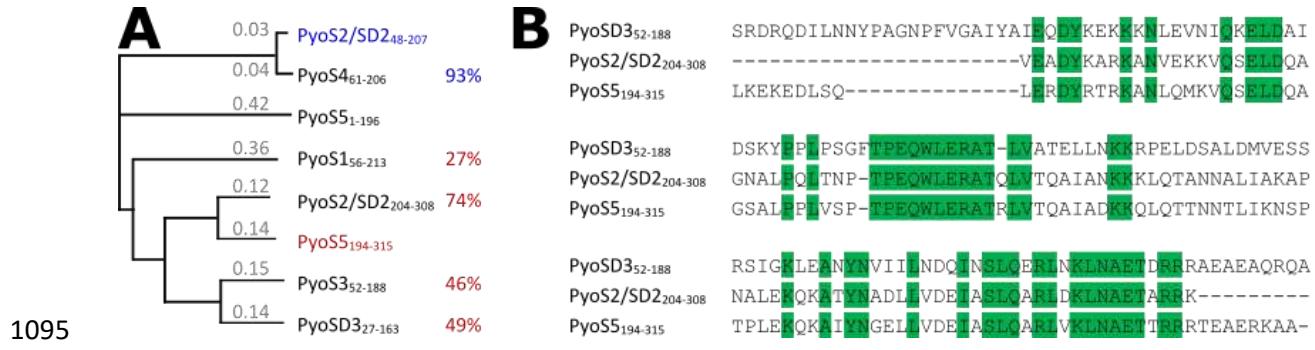
1085 Supplementary Figure S2

1086

1087 Supplementary Figure S3

1088

1089


1090

1091

1092

1093

1094

1096 Supplementary Figure S4

1097

1098

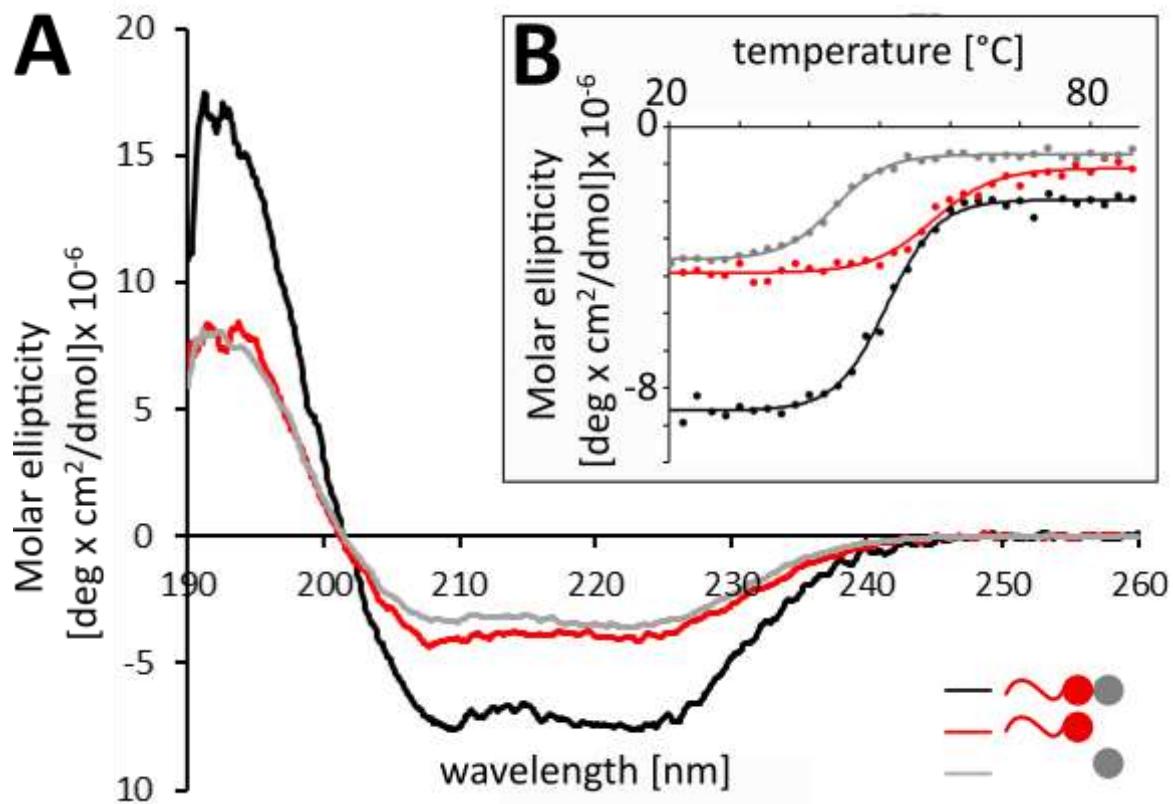
1099

1100

1101

1102

1103

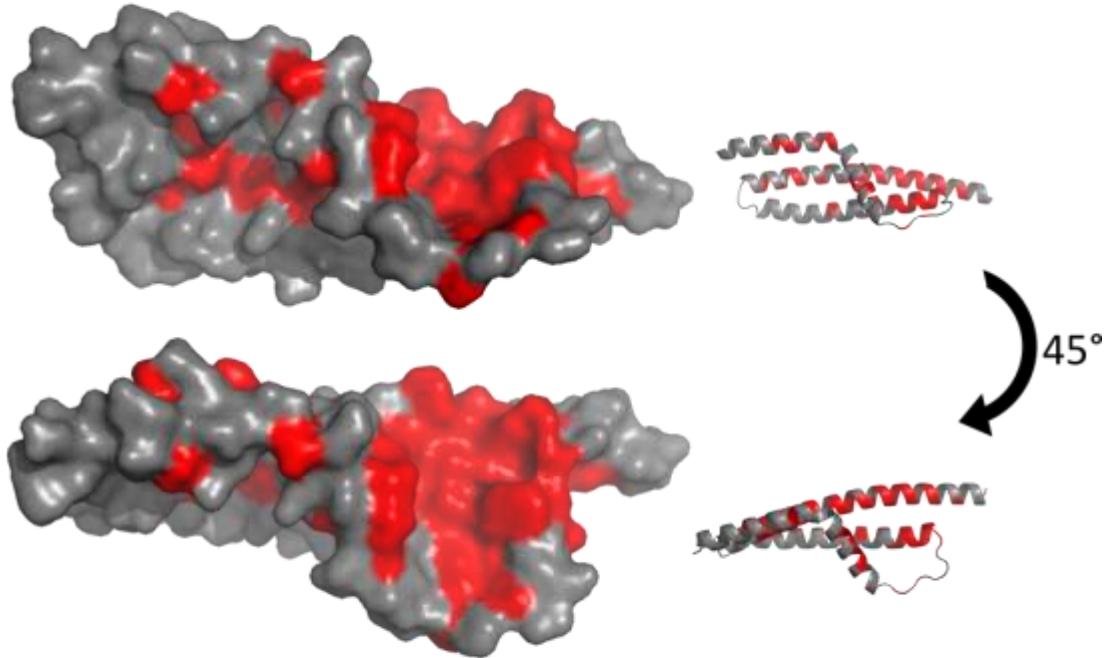

1104

110E

1106

1167

1128


1110

1111 Supplementary Figure S5

1112

1113

1114

1115

1116 Supplementary Figure S6

1117

1118

1119

1120

1121

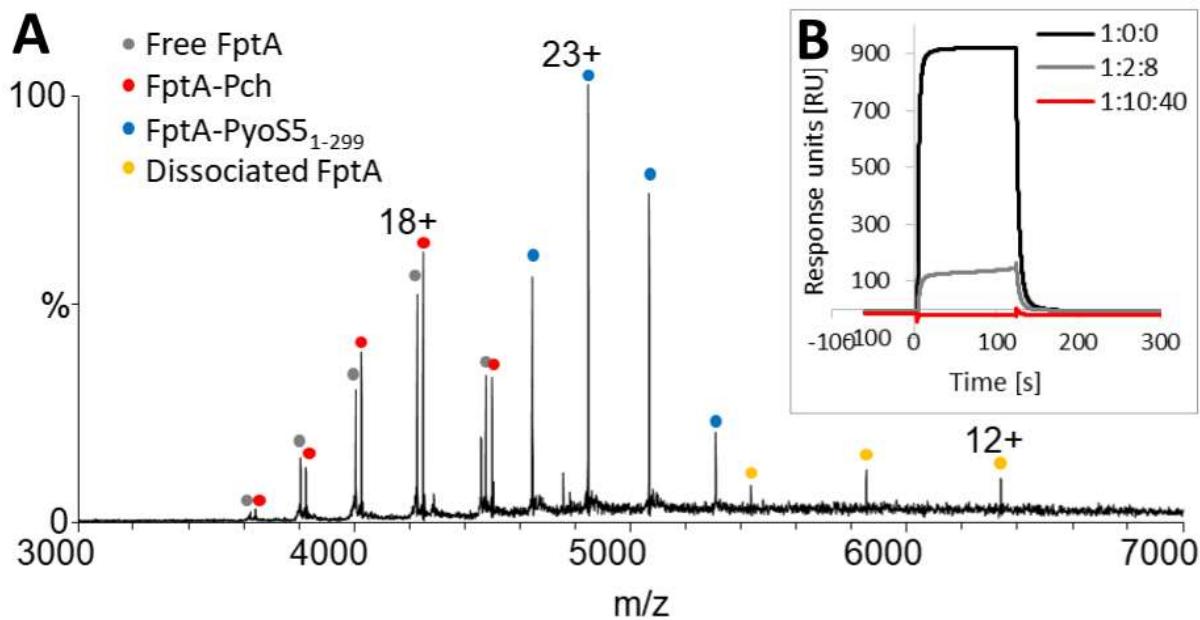
1122

1123

1124

1125

1126


1127

1128

1129

1130

1131

1132

1133 Supplementary Figure S7

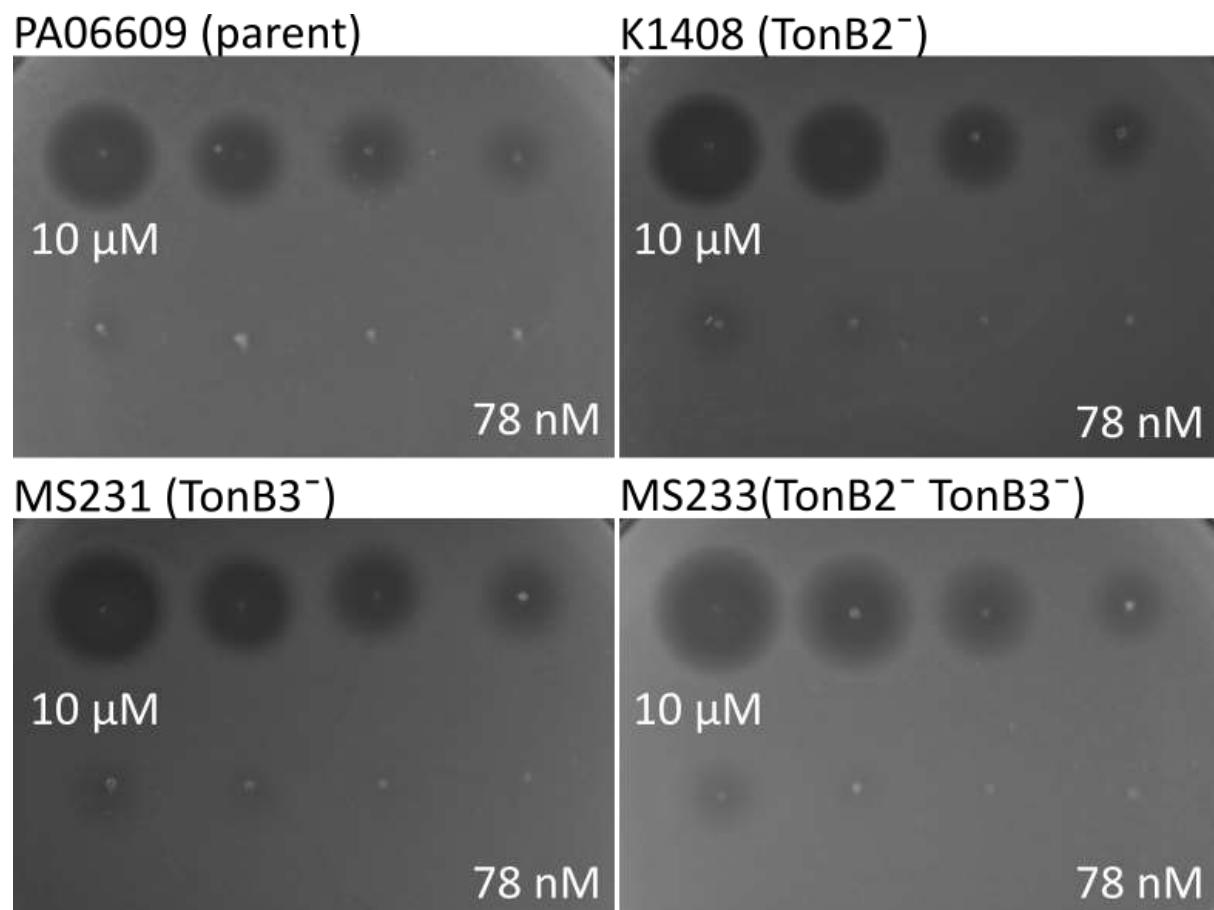
1134

1135

1136

1137

1138


1139

1140

1141

1142

1143

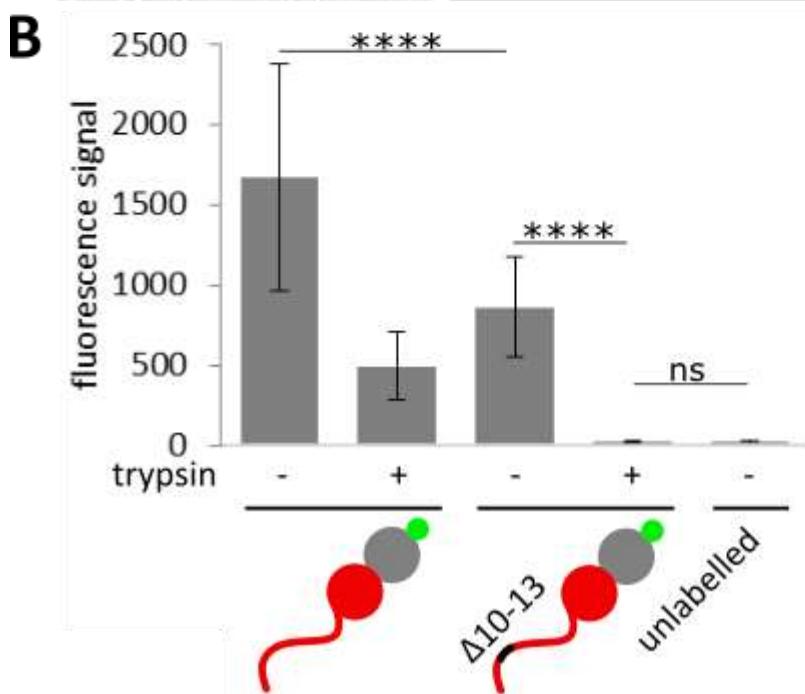
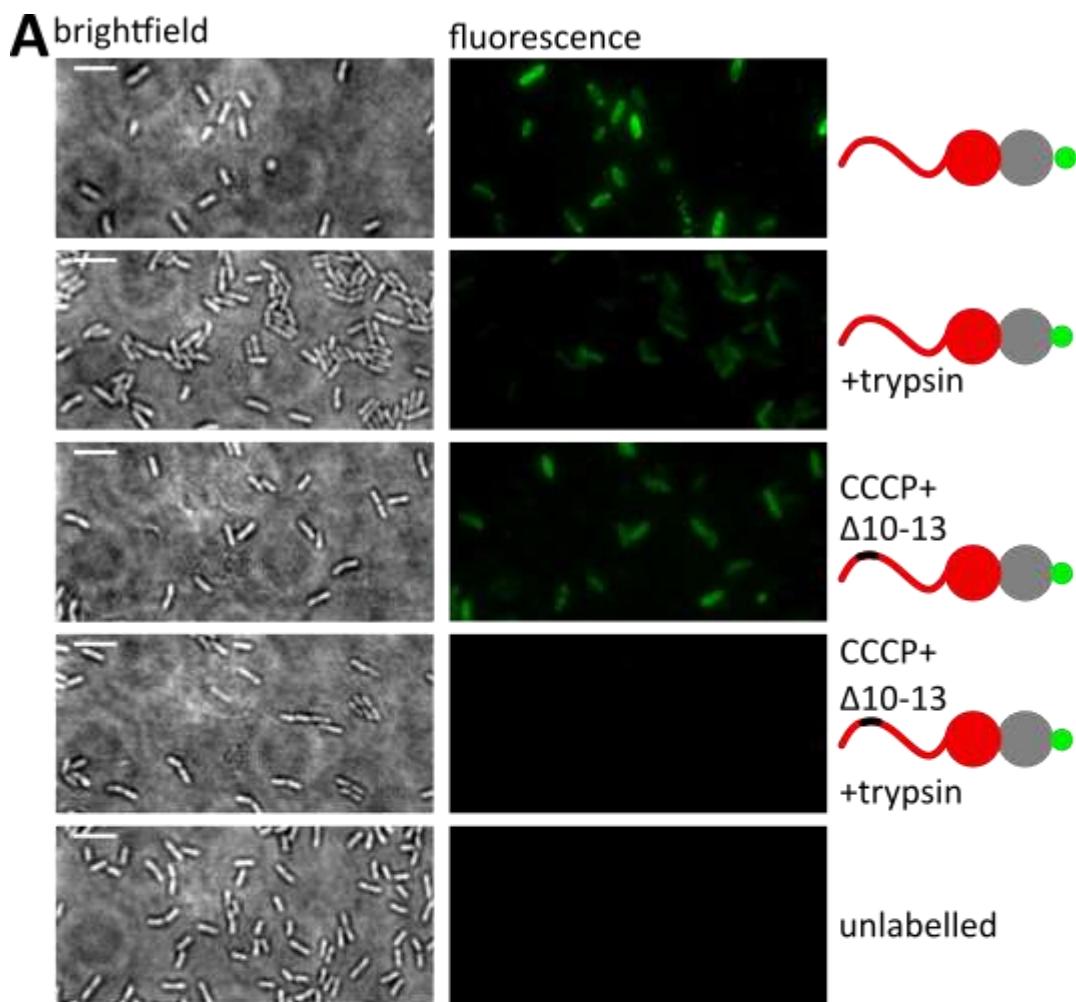
1144

1145 Supplementary Figure S8

1146

1147

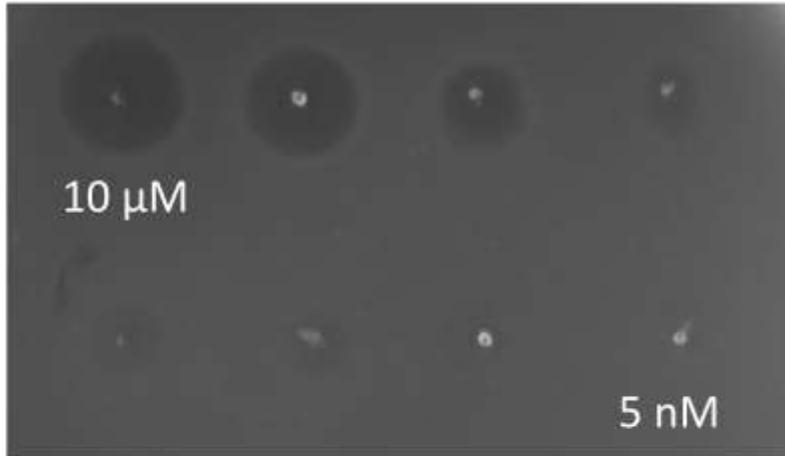
1148

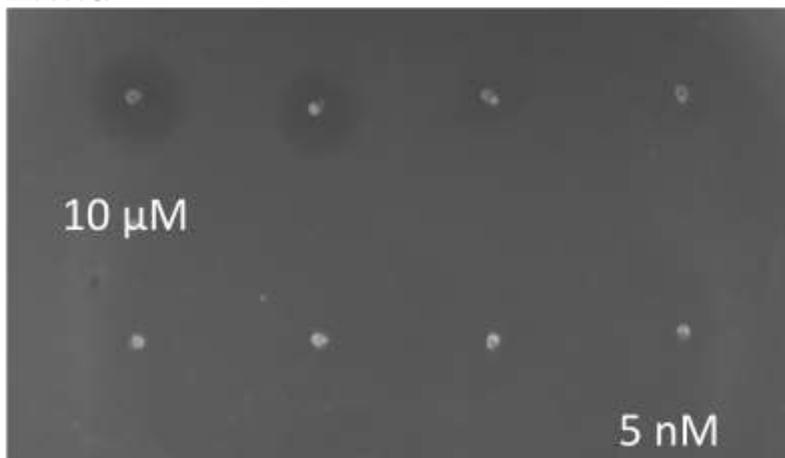


1149

1150

1151

1152


1153


1154

1155 Supplementary Figure S9

PAO1

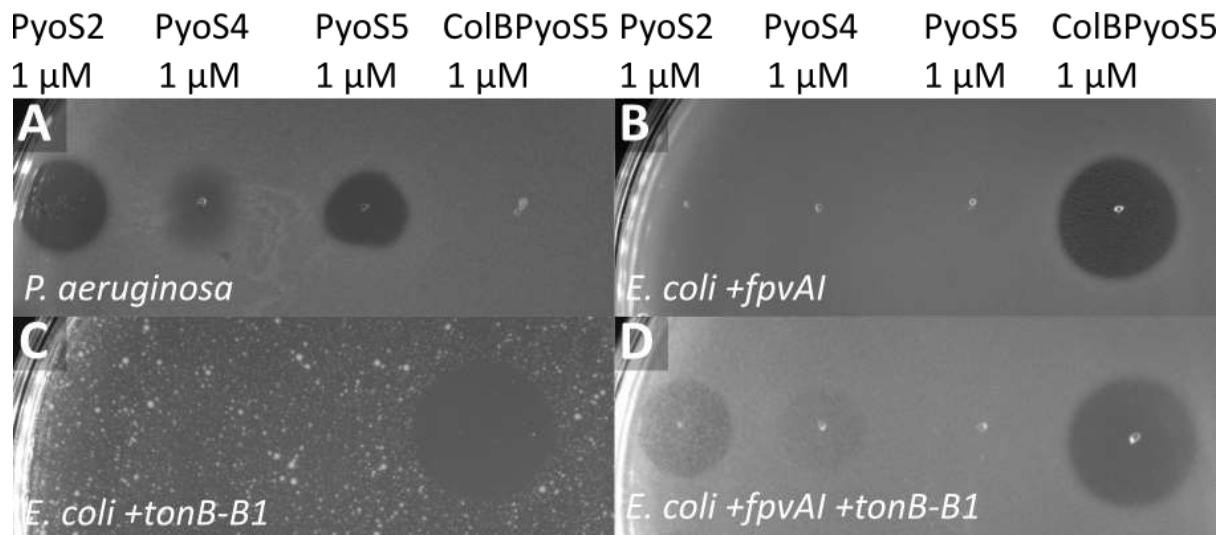
Δr_{md}

1156

1157 Supplementary Figure S10

1158

1159


1160

1161

1162

1163

1164

1165

1166 Supplementary Figure S11

1167

1168

1169

1170

1171

1172