

1 **Sensitivity of *Listeria monocytogenes* to lysozyme**  
2 **predicts ability to proliferate in bovine caruncular**  
3 **epithelial cells**

4

5 Adam M. Blanchard <sup>a†</sup>, Rosemarie Billenness <sup>a†</sup>, Jessica Warren <sup>a†</sup>, Amy Glanvill <sup>a</sup>, William  
6 Roden <sup>a</sup>, Emma Drinkall <sup>a</sup>, Grazieli Maboni <sup>a\*</sup>, Robert S Robinson<sup>a</sup>, Catherine E.D. Rees <sup>b</sup>,  
7 Christiane Pfarrer <sup>c</sup>, & Sabine Tötemeyer <sup>a#</sup>

8

9 <sup>a</sup> School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.

10 <sup>b</sup> School of Biosciences, University of Nottingham, Nottingham, UK.

11 <sup>c</sup> Department of Anatomy, University of Veterinary Medicine, Hannover, Germany.

12 \* Athens Veterinary Diagnostic Laboratory, University of Georgia, Georgia, United States of America

13

14 # corresponding author: [sabine.totemeyer@nottingham.ac.uk](mailto:sabine.totemeyer@nottingham.ac.uk)

15 <sup>†</sup>These authors contributed equally

16 AMB: [adam.blanchard@nottingham.ac.uk](mailto:adam.blanchard@nottingham.ac.uk), RB: [rbillenness@gmail.com](mailto:rbillenness@gmail.com), JW: [jesskswarren@gmail.com](mailto:jesskswarren@gmail.com), AG:  
17 [Amy.Glanvill@hotmail.co.uk](mailto:Amy.Glanvill@hotmail.co.uk), WR: [svywr@exmail.nottingham.ac.uk](mailto:svywr@exmail.nottingham.ac.uk), ED: [emma.drinkall@nottingham.ac.uk](mailto:emma.drinkall@nottingham.ac.uk), GM:  
18 [grazieli.maboni@gmail.com](mailto:grazieli.maboni@gmail.com), RSR: [bob.robinson@nottingham.ac.uk](mailto:bob.robinson@nottingham.ac.uk), CEDR: [Cath.Rees@nottingham.ac.uk](mailto:Cath.Rees@nottingham.ac.uk), CP:  
19 [Christiane.Pfarrer@tiho-hannover.de](mailto:Christiane.Pfarrer@tiho-hannover.de), ST: [sabine.totemeyer@nottingham.ac.uk](mailto:sabine.totemeyer@nottingham.ac.uk)

20

21 Keywords: *Listeria monocytogenes*, infection model, BCEC, MLST,

## 22 **Abstract**

23 *Listeria monocytogenes* is an important foodborne pathogen in human and  
24 veterinary health, causing significant morbidity and mortality including abortion.  
25 It has a particular tropism for the gravid uterus, however, the route of infection in  
26 reproductive tissues of ruminants (i.e. placentome), is much less clear. In this  
27 study, we aimed to investigate a bovine caruncular epithelial cell (BCEC) line as a  
28 model for *L. monocytogenes* infection of the bovine reproductive tract. The BCEC  
29 infection model was used to assess the ability of 14 different *L. monocytogenes*  
30 isolates to infect these cells. Lysozyme sensitivity and bacterial survival in 580 µg  
31 lysozyme/ml correlated with attenuated ability to proliferate in BCEC ( $p=0.004$   
32 and  $p=0.02$ , respectively). Four isolates were significantly attenuated compared  
33 to the control strain 10403S. One of these strains (AR008) showed evidence of  
34 compromised cell wall leading to increased sensitivity to  $\beta$ -lactam antibiotics, and  
35 another (7644) had compromised cell membrane integrity leading to increased  
36 sensitivity to cationic peptides. Whole genome sequencing followed by Multi Locus  
37 Sequence Type analysis identified that five invasive isolates had the same  
38 sequence type, ST59, despite originating from three different clinical conditions.  
39 Virulence gene analysis showed that the attenuated isolate LM4 was lacking two  
40 virulence genes (*uhpT*, *virR*) known to be involved in intracellular growth and  
41 virulence.

42 In conclusion, the BCEC model was able to differentiate between the infective  
43 potential of different isolates. Moreover, resistance to lysozyme correlated with  
44 the ability to invade and replicate within BCEC, suggesting co-selection for  
45 surviving challenging environments as the abomasum.

## 46 **Background**

47 The zoonotic intracellular pathogen *Listeria monocytogenes* causes a range of  
48 clinical presentations including listeriosis, meningitis, septicaemia and abortions,  
49 in both cattle and humans. During pregnancy, *L. monocytogenes* is able to invade  
50 the placenta, causing inflammation leading to abortion by septicaemia [1, 2].  
51 Listeriosis is of major veterinary importance in cattle due to its negative impact  
52 on animal health and the resulting economic losses [7].

53 The route by which *Listeria* spp. infect the ruminant placenta is unclear. Most  
54 studies have focused on infection of humans and rodents, and distinct species  
55 differences in placental structures as well as interhemal barriers mean that making  
56 comparisons between this and infection in other species is erroneous.

57 In the placenta, maternal and fetal tissues interact. In hemochorial placentas that  
58 are present in humans or guinea pigs, maternal blood comes into direct contact  
59 with fetal trophoblast cells. In contrast, in synepitheliochorial placentas found in  
60 cattle and sheep, the maternal and fetal blood are separated by several  
61 cell/tissue layers which any pathogen must cross to cause fetal infection [10]. In  
62 addition, the ruminant placenta is composed of multiple placentomes throughout  
63 the uterus, with each placentome formed from fetal cotyledons interdigitating with  
64 maternal caruncles. The latter are formed by multiple layers of stromal cells  
65 covered in a single layer of caruncular epithelial cells that interact with the fetal  
66 trophoblasts [10]. *L. monocytogenes* have been isolated from infected bovine  
67 placentomes post abortion and identified as the causative agent [11].

68 *Listeria* spp. invasion is primarily mediated by the interaction of the surface  
69 Internalin (Inl) proteins A and B with host cell receptors E-cadherin and c-Met

70 tyrosine kinase (c-Met), respectively. For InIA-dependent entry into cells, proline  
71 at position 16 of E-cadherin is critical; in rats and mice if this proline is replaced  
72 by glutamic acid, then InIA-dependent entry into cells is prevented [12]. Whereas  
73 InIB-dependent cell invasion via c-Met does not occur in rabbits and guinea pigs  
74 but is functional in both mice and humans [13]. The *in/A* and *in/B* genes are  
75 arranged in an operon and can either be expressed as one bi-cistronic mRNA or  
76 independently expressed from promoters [14]. The overall pattern of gene  
77 expression is made more complex by the fact that there are multiple promoter  
78 sites which can be controlled by the virulence regulator, PrfA [14] and the stress  
79 sigma factor, Sigma B [15]. Generally, *in/A* mRNA levels are slightly higher than  
80 those for *in/B*, and expression of both genes is higher in the stationary phase of  
81 growth or under other environmental stress conditions [16]. However, it is also  
82 widely reported that many environmental strains may contain mutations in InIA  
83 which result in a less invasive phenotype [17], therefore, monitoring mRNA levels  
84 alone is not sufficient to fully characterise the virulence potential of strains.

85 Recently, InIP has been identified as a virulence factor linked to tissue tropism in  
86 the gravid uterus [18]. Deletion mutants of *in/P* were found to be attenuated using  
87 both, human explant and rodent models especially in the guinea pig, which most  
88 closely resembles the maternal-fetal interface of humans. The study suggested  
89 that InIP probably promotes pathogenesis at stages downstream of host cell  
90 invasion mediated by InIA or InIB (depending on the species), but there may be  
91 synergistic effects between InIP and InIA during infection of the placenta.

92

93 We hypothesize that *L. monocytogenes* isolates from bovine abortions readily infect  
94 bovine caruncles and replicate within the cells. In this study, we investigated a  
95 bovine caruncular epithelial cell (BCEC) line as a model for *L. monocytogenes*  
96 infection of the bovine reproductive tract. The bovine E-cadherin and c-Met  
97 sequences and mRNA expression were analysed to determine permissiveness for  
98 interaction with InlA and InlB, respectively. The ability of a range of *L.*  
99 *monocytogenes* isolates from different clinical or environmental sources to infect  
100 the bovine caruncular epithelial cell lines was investigated. In addition, genome  
101 sequencing was used to determine MLST type, clonality and virulence gene  
102 presence of these isolates.

103

## 104 **Materials and Methods**

### 105 **Bacterial culture**

106 *Listeria monocytogenes* strains used in the infection studies are listed in Table 1.  
107 Bacteria were cultured overnight (approximately 17h) at 37°C in 5ml Heart  
108 infusion (HI) broth or on HI agar plates (Oxoid, UK). Growth was monitored using  
109 optical density (OD<sub>600nm</sub>) and cultures were diluted depending on the multiplicity  
110 of infection (MOI) required for infection experiments. The precise CFU/ml of the  
111 inoculum was then determined by serial dilution and plating on HI agar. To  
112 determine the growth rates and generation times of the isolates, overnight  
113 cultures were diluted in HI broth to OD<sub>600</sub>= 0.01. Growth was monitored using  
114 optical density (OD<sub>600nm</sub>) and serial dilution plated on HI agar.

### 115 **Multiplex PCR assay for *Listeria monocytogenes* serotyping**

116 Multiplex PCR was performed in order to separate the four major serovars (1/2a,  
117 1/2b, 1/2c, and 4b) and three main lineages (I, II, III) of *L. monocytogenes* [54,  
118 55]. To prepare template DNA, three to six colonies resuspended in 1 ml of sterile  
119 water were incubated at 90°C for 10min and then chilled on ice for 10min; 1µl of  
120 this was used as template DNA for each PCR reaction.

121 **Cell culture and infections**

122 Bovine caruncular epithelial cell line BCEC-1 (BCEC), provided by Prof. C. Pfarrer  
123 [56], were grown in DMEM/Ham's nutrient mixture F12 1:1 (Sigma-Aldrich, UK)  
124 with 10% (v/v) fetal calf serum (Sigma), 2mM L-Glutamine and 100 U/ml  
125 penicillin/streptomycin (Gibco) at 37°C with 5% CO<sub>2</sub> [57]. BCECs were seeded  
126 into 24-well plates (Thermo Scientific, UK) in 500µl of complete medium and  
127 grown to confluence. One hour before infection, the complete medium was  
128 replaced with antibiotic-free medium and the plate incubated at 37°C. Cells were  
129 infected with an MOI of 200 (n≥5, for details see result section), and incubated  
130 for 1h. Medium was then removed from the wells and replaced with medium  
131 containing 100µg/ml gentamycin (Sigma) to kill extracellular bacteria. After a  
132 further 1h incubation, the medium was replaced with medium containing 5µg/ml  
133 gentamycin and incubated for 2-24hr post-infection. To enumerate intracellular  
134 bacteria, cells were washed three times with pre-warmed (37°C) PBS and lysed  
135 by addition of 100µl of ice-cold 0.5% (v/v) Triton-X-100 (Fisher Scientific, UK) per  
136 well. This was incubated on ice for 20min and the resultant lysate serially diluted  
137 in PBS before 10µl samples were plated using the Miles Misra technique onto HI  
138 agar and incubated at 37°C overnight. Then, the CFU/ml of lysates was calculated.

139 **Antibiotic resistance screening**

140 Samples (100µl) of each of the 14 isolates of *L. monocytogenes* were spread onto  
141 individual HI agar plates. Disks of penicillin G (1U), cefuroxime/sodium (30µg),  
142 oxacillin (1µg), ampicillin (25µg) and ciprofloxacin (1µg) (Oxoid Ltd, Basingstoke,  
143 UK) were immediately placed on top of the spread culture. The plates were then  
144 incubated at 37°C overnight and the zones of inhibition were measured (mm).

145 **Antimicrobial peptide challenge assay**

146 The antimicrobial peptide challenge was performed as outlined by Burke *et al.*  
147 (2014) [35] using mouse cathelicidin-related antimicrobial peptide (H-  
148 GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ-OH; Isca Biochemicals, Exeter, UK)  
149 [58] at a final concentration of 10 µg/ml (stock concentration: 1mg/ml in dimethyl  
150 sulfoxide (DMSO)).

151 **Isolation of RNA, cDNA synthesis and quantitative (q) PCR**

152 Late log phase culture containing approximately 10<sup>9</sup> CFU/ml was centrifuged at  
153 13000xg for 2 min at room temperature. The pelleted cells were suspended in 1ml  
154 RNAlater (Sigma Aldrich) and incubated for 1h at room temperature. The  
155 suspension was centrifuged at 13000xg for 5min and the supernatant removed.  
156 The pelleted cells were suspended in 375µl of freshly prepared cell wall disruption  
157 buffer (30 U/ml mutanolysin, 10mg/ml lysozyme in 10ml of 10mM Tris, 1mM EDTA  
158 buffer, pH 8), incubated at 37°C for 30 min and then centrifuged at 13000xg for  
159 5min at room temperature. RNA was extracted using NucleoSpin®RNA isolation  
160 kit (Macherey-Nagel, UK) following manufacturer's instructions.

161 For BCEC RNA extractions, the supernatant was removed and cells were lysed with  
162 350µl of RNA lysis buffer (Nucleospin®RNA isolation kits, Machery-Nagel, UK)  
163 followed by RNA isolation according to manufacturer's instructions. Eluted RNA

164 was quantified using Qubit (Qiagen) and stored at -80°C. RNA was diluted in water  
165 and cDNA was synthesized using MMLV reverse transcriptase (Promega, Madison,  
166 USA) according to manufacturer's instructions. The final volume of each reaction  
167 was diluted in RNase/DNAse free water (Fischer Scientific, UK).

168 Quantitative PCR was performed using a LightCycler® 480 (Roche, Hertfordshire,  
169 UK). For primer sequences see Table 2. For bacterial and host gene expression,  
170 qPCR was performed in 20µl reactions with 0.25mM of each of the forward and  
171 reverse primer, 2X Luminoc SYBR Green qPCR ready mix (Sigma-Aldrich, Dorset,  
172 UK), 25ng of cDNA and PCR grade water (Roche, Hertfordshire, UK). An initial  
173 denaturation cycle of 95°C for 10min was used followed by 45 cycles of 10s at  
174 95°C, 50s at 60°C and 1min at 72°C and a final extension of 10min at 72°C.  
175 Normalized gene expression of each gene was calculated based on the method  
176 described by Hughes *et al* 2007 [59].

## 177 **WGS and sequence analysis**

178 DNA was extracted using the Cador Pathogen Minikit (Qiagen) following  
179 manufacturer's recommendations. High throughput sequencing was performed at  
180 MicrobesNG (Birmingham U.K.) using Illumina MiSeq. Raw reads were assembled  
181 using the A5-MiSeq pipeline [60] and contigs were uploaded to the Pasteur MLST  
182 database were they are publically available and the MLST sequence type was  
183 determined (<http://bigsdb.pasteur.fr/listeria/listeria.html>).

## 184 **Multi Sequence Alignments**

185 All nucleotide and protein alignments were completed using secondary structure  
186 aware high throughput multi-sequence alignment DECIPHER [61] (R script  
187 available at <https://github.com/ADAC-UoN/DECIPHER-Sequence-Alignment.git>).

188 Trees were calculated using maximum likelihood by Fasttree double precision  
189 (version 2.1.8) [62] and visualised in iTOL [63].

190 **Virulence finder**

191 Assembled genome files were uploaded to the virulence finder online *Listeria*  
192 database at the Danish Centre For Genomic Epidemiology  
193 (<https://cge.cbs.dtu.dk/services/VirulenceFinder/version 1.5>) [64] and searches  
194 were performed against reference isolate EDG-e, using a minimum of 90% identity  
195 along 80% of the coding sequence.

196 **Statistical Analysis**

197 Statistical analysis of data was performed using GraphPad Prism 6.05. To compare  
198 the growth rates of *L. monocytogenes* isolates, a one-way ANOVA was carried out  
199 followed by Dunn's multiple comparison test. To compare isolates in an infection  
200 context, a Kruskal-Wallis test was carried out, followed by Dunn's multiple  
201 comparisons test. Pearson's correlations were performed to compare data sets. *L.*  
202 *monocytogenes* sequence type distributions were analysed using Fisher's exact  
203 test. Significance was reported for P<0.05.

204

205 **Results**

206 **Sequence comparisons of host receptors E-cadherin and c-Met tyrosine  
207 kinase receptors**

208 Since host specificity towards InIA-dependant entry into cells depends on the  
209 presence of proline at position 16 of E-cadherin in the first extracellular domain  
210 [12], alignment of the E-cad region of a range of species containing residue 16

211 was performed (Fig. 1A). This showed that bovine E-cadherin has proline at  
212 position 16 and suggests that bovine and ovine E-cadherin will interact with InlA  
213 in a similar way to human and guinea pig E-cadherin and can act as a receptor for  
214 *L. monocytogenes* in ruminant species. Interactions between InlB and c-Met are  
215 not as well defined; in c-MET the Sema, PSI and Ig1 region have shown to play a  
216 role in interaction with InlB [19]. Alignment of amino acids in these c-Met regions  
217 derived from bovine, ovine, human, murine, rabbit and guinea pig genome  
218 sequences showed that bovine c-Met does not cluster closely to rabbit and guinea  
219 pig c-Met (Fig. 1C). There were no consistent amino acid substitutions evident in  
220 the six amino acids of the Ig1 region that interacts with InlB (Fig. 1B), indicating  
221 that there is no obvious structural reason why InlB-dependent cell entry would not  
222 occur when *L. monocytogenes* interacts with bovine cells.

223 Next, the expression of *E-cadherin* and *c-Met* mRNA in BCEC cells, chosen as the  
224 caruncular cell infection model was verified. mRNA for both were detected in these  
225 cells in the presence and absence of *L. monocytogenes* infection (Fig. 1D & E).  
226 More importantly, no difference in *E-cadherin* and *c-Met* mRNA expression level  
227 was observed when these cells were exposed to four different *L. monocytogenes*  
228 isolates and LPS (Fig. 1D & E). This indicated that infection with these bacteria did  
229 not down-regulate these receptors. Taken together, these results clearly  
230 demonstrate that *L. monocytogenes* should be able to productively interact with  
231 BCECs, and confirmed these cells are a suitable candidate to use as an infection  
232 model.

233 ***L. monocytogenes* infection of bovine caruncular epithelial cells.**

234 Initial experiments carried out to establish an infection method using the BCEC  
235 cells used a range of MOIs. This revealed that MOI of at least 200 was required to

236 achieve consistent bacterial recovery from BCEC cells 2h post infection (data not  
237 shown), which is high but not unexpected as placental tissues are not easily or  
238 immediately invaded by *L. monocytogenes* [32]. Thus, all subsequent infections  
239 of BCEC cells were carried out using a MOI of 200. After 2h of infection, very low  
240 levels of intracellular bacteria (mean 0.78-1.5  $\log_{10}$  CFU per  $2 \times 10^5$  BCEC cells  
241 per well) were recovered and high levels of variability were observed between  
242 replicate infections. Although, the level detected was close to the detection limit  
243 ( $0.7 \log_{10}$  CFU per  $2 \times 10^5$  BCEC cells per well) all isolates were able to invade  
244 BCEC 2h post infections to a similar extent (S1 Fig A). A preliminary time course  
245 of 4-24 h incubation post-infection showed that 24h yielded the most consistent  
246 and reproducible levels of bacterial recovery (S1 Fig B), therefore this was used  
247 for further experiments.

248 Using this infection model, the ability of the different *L. monocytogenes* isolates  
249 to invade BCEC cells was investigated. Fourteen *Listeria* spp. isolates from  
250 different origins and clinical presentations were used to infect BCEC cells including  
251 the well characterised strain 10403S (Table 1). Of the 14 isolates tested, four were  
252 significantly attenuated compared to the control strain (10403S). These were an  
253 isolate from a healthy bovine eye (AR008,  $P<0.001$ ), an isolate from a milk  
254 processing plant (LM4  $P<0.01$ ) and two abortion isolates (7644  $P<0.05$ , C07754  
255  $P<0.001$ ) (Fig 2). In contrast to the control, the percentage of intracellular  
256 bacteria recovered was 1.9%, 8%, 0.5% and 33%, respectively (Fig. 2). No  
257 apparent extensive cell death was observed microscopically that would account  
258 for these low invasion rates.

259 Differences in intracellular bacterial numbers may be due to the variation in *InlA*  
260 or *B* expression levels. Expression of *inlA* and *inlB* mRNA were determined in heart

261 infusion broth as a proxy for the nutritional environment likely to be experienced  
262 in the animal host environment [20]. All isolates expressed *inlA* and *inlB* mRNA  
263 (Fig. 3) and this did not vary between strains (Fig. 3). As expected, *inlA* and *inlB*  
264 mRNA levels were positively correlated ( $r=0.58$ ,  $p=0.03$ ) and the levels of *inlB*  
265 mRNA were consistently lower than those of *inlA* as previously reported [21].  
266 Thus, there was no evidence that differences in InlA or InlB levels would account  
267 for the differences in levels of intracellular bacteria recovered.

268 **Sensitivity to lysozyme correlates with attenuated ability to proliferate in  
269 BCECs.**

270 Lysozyme sensitivity is an important factor in determining the ability of most *L.*  
271 *monocytogenes* strains to infect a bovine conjunctiva explant model [22].  
272 Interestingly, the number of recovered bacteria from BCEC cells after 24h of  
273 infection correlated strongly with levels of lysozyme resistance (MIC [ $r=0.82$ ,  
274  $p=0.004$ ]; bacterial survival in 580  $\mu$ g lysozyme/ml [ $r=0.72$ ,  $p=0.02$ ]). However,  
275 there was no correlation with growth rate ( $r=0.49$ ,  $p>0.05$ ) or with intracellular  
276 bacteria recovered from conjunctiva explant infections ( $r=0.55$ ,  $p>0.05$ ) (Table 3,  
277 MIC & survival in lysozyme were previously reported) [22].

278 To investigate the basis of differences in sensitivity to lysozyme of these strains,  
279 isolates were challenged with  $\beta$ -lactam antibiotics (ampicillin, penicillin G and  
280 cefuroxime) to test cell wall integrity and a cationic peptide (mCRAMP) to test  
281 membrane integrity. Only one isolate, AR008 (isolated from a healthy eye),  
282 showed significant increased sensitivity compared to the reference strain 10403S  
283 to ampicillin ( $p=0.04$ ), penicillin G ( $p=0.004$ ) and cefuroxime ( $p=0.0001$ ). This  
284 suggested that a compromised cell wall may contribute to the lysozyme sensitivity  
285 of this isolate (Fig. 4 A-C). Of the three lysozyme-sensitive isolates, only isolate

286 7644 showed sensitivity to mCRAMP, indicating that compromised cell membrane  
287 integrity may contribute to the lysozyme sensitivity of this isolate (Fig. 4 D-F).

288 **Analysis of *L. monocytogenes* sequence types, core genomes and**  
289 **virulence genes.**

290 To further characterise these isolates, WGS was carried out on all the  
291 uncharacterised isolates and these sequence data were added to the open access  
292 Pasteur MLST database to determine sequence types (ST) (Table 1, Fig. 5A). From  
293 the ten identified, eight were single STs, while five isolates belonged to ST59.  
294 Interestingly, while the ST59 isolates were collected over several years (1999-  
295 2012) and from three different clinical presentations (keratoconjunctivitis (n=1),  
296 meningitis (n=1), abortion (n=3)), they were all able to infect and replicate inside  
297 BCEC cells at levels comparable to wildtype (Fig. 5).

298 Core genome analysis was carried out for the 128 isolates in the MLST database  
299 where a genome sequence was available (accessed 24/7/2017, S1 Table). This  
300 showed that isolates C00938 (ST20), C07754 (ST91), C02118 (ST6), AR008  
301 (ST12) and LM6 (ST1) all cluster with other isolates of the same sequence type  
302 (Fig. 6). Some clusters contained more than one sequence type, for instance  
303 LM7644 (ST122) clustered with sequence types ST9, ST622 and ST441, and  
304 C08389 (ST7) is part of a cluster that also contains ST58 isolates (including  
305 10403S) and ST98. Isolates LM4 (ST1009) and LM7 (ST220) were the only isolates  
306 of that sequence type present in the database but clustered closely with ST5 and  
307 ST194, respectively (Fig. 6).

308 Further analysis of the WGS data for virulence gene content (presence and  
309 absence of genes as well as sequence similarity), showed that they clustered

310 according to their lineage and serotype as expected (Fig. 7, S2 Table). Sequence  
311 identity in general was high, between 91.3-100%, except for *inIK* (90.1-100%)  
312 and genes encoding the sRNA family *IhrC* (90.1-100 %) (Fig. 7, S2 Table). Five  
313 genes were only present in the six isolates of the 1.2a, 3a serotype: *inIL*  
314 (adherence), *ami* (adherence), *vip* (invasion) and two genes of the *IhrC* family  
315 (non-coding regulatory sRNA) (Fig. 7, S2 Table). The absence of those genes did  
316 not correlate with attenuation in the context of BCEC infection. In contrast, LM4  
317 was the only isolate in this study that lacks two virulence genes known to be  
318 involved in intracellular growth and virulence. These were the *uhpT*, the sugar  
319 phosphate antiporter important for intracellular proliferation [23, 24] and *virR*, a  
320 transcriptional two component response regulator implicated in cell invasion and  
321 virulence *in vitro* and *in vivo* [25, 26] (S2 Table). In addition, LM4 had three other  
322 virulence genes (*srtB* (surface display), *sipZ* (intracellular survival) and *inIC*  
323 (internalin)) with the lowest reported level of sequence identity to the reference  
324 genome (S2 Table).

325 Analysis of the *inIA* sequences of these isolates for known changes that would be  
326 predicted to reduce levels of InIA (i.e. frameshifts causing premature stop codons  
327 or mutations in the promoter region [27]) was also performed. In agreement with  
328 the results gained from the *inIA* mRNA analysis (Fig. 3), no differences were  
329 identified in the *inIA* and *actA* promoter regions that might contribute to the lower  
330 levels of cell invasion and intracellular replication recorded. Similarly, InIP had  
331 94% identity at the protein level across all of our isolates and therefore this did  
332 not seem to provide an explanation for the variation seen in the ability of these  
333 strains to infect the BCEC cells.

334 **Discussion**

335 *L. monocytogenes* has been isolated from placentomes of infected cattle [1]. The  
336 maternal caruncle contains a dense network of blood vessels [28] allowing *Listeria*  
337 access to the maternal side of the placenta through the blood stream. The caruncle  
338 is also in close contact with the fetal chorion, meaning infection of the uterus can  
339 lead to endotoxaemia, an increased prostaglandin synthesis and subsequent lysis  
340 of the corpus luteum, leading to abortion. Alternatively, placentitis itself can  
341 disrupt the metabolic exchange of nutrients to the fetus, triggering the abortion  
342 [29]. While BCECs have been used for *L. monocytogenes* infections as a  
343 comparison to other tissues previously [30, 31] this study presents BCEC cells as  
344 infection model to characterise bovine *L. monocytogenes* isolates from different  
345 clinical presentations and sources. *L. monocytogenes* infected BCECs at low  
346 efficiency and required a high MOI. In other species, such as pregnant guinea pigs,  
347 colonisation of the placenta was initially slow with  $10^3$ - $10^4$  fewer bacteria seen in  
348 the placenta than in the liver and spleen immediately after intravenous inoculation  
349 [32]. This suggests that placental tissues are not easily or immediately invaded  
350 by *L. monocytogenes*. This is consistent with our findings that low numbers of  
351 bacteria were recovered from caruncular cells 2h post infection with a wide range  
352 of variation. However, the invasion of a single bacterium into the placenta of  
353 guinea pigs can be sufficient to cause an abortion. Once colonised, there is poor  
354 bacterial clearance from the placenta and replication allows *Listeria* spp. to  
355 migrate into other tissues in high numbers [32]. This is consistent with our findings  
356 that at 24h post infection, higher numbers of bacteria were recovered from BCECs  
357 with less variation between infection experiments. This also suggests that any  
358 isolates able to invade BCECs may be able to cause an abortion *in utero*. Entry  
359 points towards systemic infections in cattle may include small breaches of oral

360 mucosa from rough feeding material which may lead to repeat exposure of *L.*  
361 *monocytogenes* through contaminated silage [33].

362 The use of the BCEC infection model allowed us to identify strains with different  
363 potential to infect this cell type. Surprisingly, given that this isolate originated  
364 from a bovine abortion case, isolate 7644 was highly attenuated in the BCEC  
365 infection model. However, identification of *Listeria* from aborted fetuses is  
366 problematic, and the possibility exists that this isolate was a post-abortive  
367 environmental contaminant rather than the causative agent of infection.  
368 Alternatively, the animal may have been challenged with a high infectious dose.  
369 This assumption was previously proposed for a field isolate from a bovine abortion,  
370 which had a truncated PrfA, and was strongly attenuated in infection experiments  
371 with a wide range of cell types [31]. However, loss of infectivity may also be due  
372 to mutations accumulated during long term culture of the bacteria in a laboratory  
373 environment. In our previous study, both LM4 and 7644 were attenuated in a  
374 Caco2 infection model, whereas AR008 was able to infect Caco2 cells at similar  
375 levels to the control strain 10403S [22]. The fact that AR008 was attenuated in  
376 the BCEC model suggest that there are specific factors in these bovine placental  
377 cells involved in the interactions with *L. monocytogenes*.

378 Previously, we have shown that resistance to lysozyme was a positive predictive  
379 factor for infection of bovine conjunctiva explant model [22] but genome analysis  
380 performed in this study did not reveal any differences between the isolates used  
381 in the genes suspected to be involved in lysozyme resistance (*pdgA*, *oatA*, *degU*)  
382 [22, 34, 35]. Interestingly, there was also a strong correlation between *L.*  
383 *monocytogenes* replication in BCECs 24h post-infection and their level of lysozyme  
384 resistance. In cattle, lysozyme activity in most tissues is relatively low compared

385 to other species, except for the abomasum [36] and tear fluid [37] which both  
386 have high levels of lysozyme activity. This may explain the co-selection for high  
387 levels of lysozyme resistance found in isolates from conjunctivitis as well as from  
388 other sites (reproductive tissues/fetus, brain and milk) that require the bacteria  
389 to survive passage through the abomasum. In addition, degradation of *L*  
390 *monocytogenes* cell wall by lysozyme leads to the release of peptidoglycan and its  
391 breakdown products that are ligands for the pattern recognition receptors of the  
392 innate immune system, such as Nod1, Nod2 and Toll-like receptor (TLR) 2 [38–  
393 41]. This is illustrated by *L monocytogenes* lacking *pgdA*, which was not only  
394 highly attenuated in its virulence *in vivo* and *in vitro* but also elicited a strong TLR2  
395 and Nod1 dependent interferon- $\beta$  response [42]. This suggest that lysozyme  
396 resistance may contribute to *L monocytogenes* virulence in two different manners,  
397 by increasing bacterial survival as well as modulating the host response [43].

398 WGS identified the absence of virulence genes *virR* and *uhpT* in LM4 which  
399 potentially explains the attenuation of this isolate in the BCEC infection model.  
400 VirR is part of a two-component regulator (VirR–VirS) which is required for the  
401 virulence of *Listeria* *in vivo* [26]. It was also found that *virR* mutants are affected  
402 in their entry into Caco2 cells [25] and we have previously reported that LM4 also  
403 has a reduced capacity to invade this cell type [22]. The sugar phosphate  
404 antiporter UhpT promotes the uptake of phosphorylated hexoses during cytosolic  
405 growth [24] and deletion of this gene also leads to impaired intracellular  
406 proliferation in Caco2 cells [44]. Therefore, as LM4 lacks these two genes, it would  
407 be predicted that it would be less able to grow in BCEC cells. Interestingly, in our  
408 previous study, LM4 was not significantly attenuated in its ability to invade and  
409 proliferate in bovine conjunctiva tissues [22] but perhaps in that infection model

410 the high level of resistance to lysozyme may compensate for any reduced  
411 intracellular growth. VirRS is also known to control the expression of a set of 17  
412 genes, several of which affect bacterial cell wall and membrane integrity and, virR  
413 mutants are reported to be more sensitive to some beta-lactam antibiotics,  
414 including penicillin and cefuroxime [45]. However, LM4 did not show increased  
415 levels of sensitivity to these two antibiotics, or to challenge with cationic peptides,  
416 suggesting in the absence of VirR the genes in this operon are regulated in a  
417 different manner.

418 Genome sequencing of the isolates used in this study revealed that within our set  
419 of bovine clinical isolates, collected across the UK over several years and from  
420 different disease presentations, the MLST sequence type ST59 was over  
421 represented, with 5 out of the 10 clinical isolates belonging to that sequence type.  
422 Core MLST analysis further confirmed that they are closely related, forming a  
423 distinct cluster with other ST59 isolates. Within the MLST database, ST59 is  
424 associated with at least 6 human invasive infections (details are lacking for some  
425 human isolates) demonstrates that *L. monocytogenes* ST59 can be associated with  
426 invasive infections in both humans and cattle.

427 Interestingly, one of our cattle isolates has the MLST type ST6 (C02118,  
428 keratoconjunctivitis isolate, 2007), which is the sequence type identified in the  
429 large outbreaks of human disease in Europe and South Africa during 2017/2018.  
430 As sequence type and core genome analyses revealed that isolates from different  
431 clinical diseases, as well as from different species (human/cattle) cluster together,  
432 this suggests that it is less likely that the ability of *L. monocytogenes* to infect  
433 different host species is due to species-specific virulence factors, but more subtle  
434 variation in gene sequence influencing host interactions of this pathogen.

435 **Conclusion**

436 *L. monocytogenes* is a highly versatile and adaptive bacterium, with the ability to  
437 not only infect a wide range of tissues within a host, but also to infect a wide range  
438 of physiologically distinct animal hosts. The placentome cell model provides a  
439 novel tool to characterise the infection processes carried out by *Listeria* spp. in a  
440 different host, where different host factors may influence the infection process.

441

442 **Declarations**

443 **Ethics approval and consent to participate**

444 Not Applicable

445 **Consent for publication**

446 Not Applicable

447 **Availability of data and materials**

448 The datasets analysed during the current study are available as part of the Pasteur  
449 institute MLST database repository, (<http://bigsdb.pasteur.fr/listeria/>)

450 **Competing interests**

451 The authors declare that they have no competing interests

452 **Funding**

453 This work was supported by the Biotechnology and Biological Sciences Research  
454 Council [BB/I024291/1] (BBSRC), to JW (BBSRC Research Experience Placement)  
455 and ED (BBSRC Doctoral Training Partnership) and the University of Nottingham;  
456 RB was awarded a Microbiology Society Harry Smith Vacation Studentship.

457 **Authors' contributions**

458 ST, AMB and CEDR designed the experiments and wrote the manuscript, AMB, ST  
459 and RB analysed the data, RB, ED, JW, AG, WR and GM generated the data, CP  
460 provide cells lines and CP and RSR discussed experimental design. All authors  
461 have read and edited the manuscript.

462 **Acknowledgements**

463 Not Applicable

464

## 465 **References**

466 1. Johnson CT, Lupson GR, Lawrence KE (1994) The bovine placentome in  
467 bacterial and mycotic abortions. *Vet Rec* 134:263 LP-266

468 2. Yaeger M, Holler L (2007) Bacterial causes of bovine infertility and abortion.  
469 In: *Curr. Ther. large Anim. theriogenology*. Saunders Elsevier, pp 389–399

470 3. Eurosurveillance editorial team (2016) The European Union summary report  
471 on trends and sources of zoonoses, zoonotic agents and food?borne  
472 outbreaks in?2015. *EFSA J* 14:20449

473 4. Department of Health Saouth Africa (2018) NICD Listeriosis Situation Report  
474 – 27 April 2018.

475 5. Food E, Authority S, Europoean Food Safety Authority (2018) Multi-country  
476 outbreak of *Listeria monocytogenes* serogroup IVb, multi-locus sequence  
477 type 6, infections probably linked to frozen corn. *EFSA Support Publ.* doi:  
478 10.2903/sp.efsa.2018.EN-1402

479 6. Koopmans MM, Brouwer MC, Bijlsma MW, Bovenkerk S, Keijzers W, Van Der  
480 Ende A, Van De Beek D (2013) *Listeria monocytogenes* sequence type 6 and  
481 increased rate of unfavorable outcome in meningitis: Epidemiologic cohort  
482 study. *Clin Infect Dis* 57:247–253

483 7. Cabell E (2007) Bovine abortion: aetiology and investigations. In *Pract*  
484 29:455–463

485 8. Erdogan HM, Cripps PJ, Morgan KL, Cetinkaya B, Green LE (2001)  
486 Prevalence, incidence, signs and treatment of clinical listeriosis in dairy

487 cattle in England. *Vet Rec* 149:289–293

488 9. Animal and Plant Health Agency (2016) Veterinary Investigation Diagnosis

489 Analysis (VIDA).

490 10. Robbins JR, Bakardjiev AI (2012) Pathogens and the placental fortress. *Curr*

491 *Opin Microbiol* 15:36–43

492 11. Johnson CT, Lupson GR, Lawrence KE (1994) The Bovine Placentome in

493 Bacterial and Mycotic Abortions. *Vet. Rec.*

494 12. Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P

495 (1999) A single amino acid in E-cadherin responsible for host specificity

496 towards the human pathogen *Listeria monocytogenes*. *EMBO J* 18:3956–

497 3963

498 13. Khelef N, Lecuit M, Bierne H, Cossart P (2006) Species specificity of the

499 *Listeria monocytogenes* InlB protein. *Cell Microbiol* 8:457–470

500 14. Lingnau A, Domann E, Hudel M, Bock M, Nichterlein T, Wehland JR,

501 Chakraborty T (1995) Expression of the *Listeria monocytogenes* EGD inlA

502 and inlB Genes, Whose Products Mediate Bacterial Entry into Tissue Culture

503 Cell Lines, by PrfA-Dependent and -Independent Mechanisms. *Infect Immun*

504 63:3896–3903

505 15. McGann P, Wiedmann M, Boor KJ (2007) The Alternative Sigma Factor sigma

506 B and the Virulence Gene Regulator PrfA Both Regulate Transcription of

507 *Listeria monocytogenes* Internalins. *Appl Environ Microbiol* 73:2919–2930

508 16. Kim H, Marquis H, Boor KJ (2005) Sigma B contributes to *Listeria*

509 *monocytogenes* invasion by controlling expression of inlA and inlB.

510 Microbiology 151:3215–3222

511 17. Handa-Miya S, Kimura B, Takahashi H, Sato M, Ishikawa T, Igarashi K, Fujii  
512 T (2007) Nonsense-mutated *inlA* and *prfA* not widely distributed in *Listeria*  
513 *monocytogenes* isolates from ready-to-eat seafood products in Japan. *Int J*  
514 *Food Microbiol* 117:312–318

515 18. Faralla C, Rizzuto GA, Lowe DE, Kim B, Cooke C, Shiow LR, Bakardjiev AI  
516 (2016) *InlP*, a new virulence factor with strong placental tropism. *Infect*  
517 *Immun* 84:3584–3596

518 19. Niemann HH, Jäger V, Butler PJG, van den Heuvel J, Schmidt S, Ferraris D,  
519 Gherardi E, Heinz DW (2007) Structure of the Human Receptor Tyrosine  
520 Kinase Met in Complex with the *Listeria* Invasion Protein *InlB*. *Cell* 130:235–  
521 246

522 20. Werbrouck H, Grijspeerdt K, Botteldoorn N, Van Pamel E, Rijpens N, Van  
523 Damme J, Uyttendaele M, Herman L, Van Coillie E (2006) Differential *inlA*  
524 and *inlB* expression and interaction with human intestinal and liver cells by  
525 *Listeria monocytogenes* strains of different origins. *Appl Environ Microbiol*  
526 72:3862–3871

527 21. Tamburro M, Sammarco ML, Ammendolia MG, Fanelli I, Minelli F, Ripabelli G  
528 (2015) Evaluation of transcription levels of *inlA*, *inlB*, *hly*, *bsh* and *prfA* genes  
529 in *Listeria monocytogenes* strains using quantitative reverse-transcription  
530 PCR and ability of invasion into human CaCo-2 cells. *FEMS Microbiol Lett*  
531 362:1–7

532 22. Warren J, Owen AR, Glanvill A, Francis A, Maboni G, Nova RJ, Wapenaar W,

533                   Rees C, Tötemeyer S (2015) A new bovine conjunctiva model shows that  
534                   Listeria monocytogenes invasion is associated with lysozyme resistance. *Vet*  
535                   *Microbiol* 179:76–81

536   23. Chico-Calero I, Suarez M, Gonzalez-Zorn B, Scotti M, Slaghuis J, Goebel W,  
537                   Vazquez-Boland JA (2002) Hpt, a bacterial homolog of the microsomal  
538                   glucose- 6-phosphate translocase, mediates rapid intracellular proliferation  
539                   in *Listeria*. *Proc Natl Acad Sci* 99:431–436

540   24. Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S,  
541                   Domann E, Chakraborty T, Hain T (2006) Intracellular Gene Expression  
542                   Profile of *Listeria monocytogenes* Intracellular Gene Expression Profile of  
543                   *Listeria monocytogenes* †. *Infect Immun* 74:1323–1338

544   25. Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A,  
545                   Lasa I, Johansson J, Cossart P (2005) VirR, a response regulator critical for  
546                   *Listeria monocytogenes* virulence. *Mol Microbiol* 57:1367–1380

547   26. Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, Sousa S,  
548                   Cossart P, Cabanes D (2009) In vivo transcriptional profiling of *Listeria*  
549                   monocytogenes and mutagenesis identify new virulence factors involved in  
550                   infection. *PLoS Pathog.* doi: 10.1371/journal.ppat.1000449

551   27. Moura A, Criscuolo A, Pouseele H, et al (2016) Whole genome-based  
552                   population biology and epidemiological surveillance of *Listeria*  
553                   monocytogenes. *Nat Microbiol* 2:16185

554   28. Senger P (2005) Pathways to Pregnancy and Parturition. *Psychiatr Rehabil J*  
555                   35:381

556 29. Miller RB (1977) A summary of some of the pathogenetic mechanisms  
557 involved in bovine abortion. *Can Vet J* 18:87–95

558 30. Rupp S, Bärtschi M, Frey J, Oevermann A (2017) Hyperinvasiveness and  
559 increased intercellular spread of *listeria monocytogenes* sequence type 1 are  
560 independent of listeriolysin s, internalin f and internalin J1. *J Med Microbiol.*  
561 doi: 10.1099/jmm.0.000529

562 31. Rupp S, Aguilar-Bultet L, Jagannathan V, Guldmann C, Drögemüller C,  
563 Pfarrer C, Vidondo B, Seuberlich T, Frey J, Oevermann A (2015) A naturally  
564 occurring *prfA* truncation in a *Listeria monocytogenes* field strain contributes  
565 to reduced replication and cell-to-cell spread. *Vet Microbiol* 179:91–101

566 32. Bakardjiev AI, Theriot JA, Portnoy DA (2006) *Listeria monocytogenes* traffics  
567 from maternal organs to the placenta and back. *PLoS Pathog* 2:0623–0631

568 33. Low JC, Donnelly W (1997) A Review of *Listeria monocytogenes* and  
569 Listeriosis. *Veteriinaruy J* 9–29

570 34. Aubry C, Corr SC, Wienerroither S, Goulard C, Jones R, Jamieson AM, Decker  
571 T, O'Neill LAJ, Dussurget O, Cossart P (2012) Both TLR2 and TRIF contribute  
572 to interferon- $\beta$  production during *listeria* infection. *PLoS One* 7:1–9

573 35. Burke TP, Loukitcheva A, Zemansky J, Wheeler R, Boneca IG, Portnoy DA  
574 (2014) *Listeria monocytogenes* is resistant to lysozyme through the  
575 regulation, not the acquisition, of cell wall-modifying enzymes. *J Bacteriol*  
576 196:3756–3767

577 36. Prieur DJ (1986) Tissue specific deficiency of lysozyme in ruminants. *Comp*  
578 *Biochem Physiol -- Part B Biochem* 85:349–353

579 37. Sotirov L, Semerdjiev V, Maslev T, Draganov B (2007) Breed-related  
580 differences in blood lysozyme concentration and complement activity in cows  
581 in Bulgaria. *Rev Med Vet (Toulouse)* 158:239–243

582 38. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G,  
583 Flavell RA (2005) Nod2-dependent regulation of innate and adaptive  
584 immunity in the intestinal tract. *Science* (80- ). doi:  
585 [10.1126/science.1104911](https://doi.org/10.1126/science.1104911)

586 39. Kobayashi K, Inohara N, Hernandez LD, Galán JE, Núñez G, Janeway CA,  
587 Medzhitov R, Flavell RA (2002) RICK/Rip2/CARDIAK mediates signalling for  
588 receptors of the innate and adaptive immune systems. *Nature*. doi:  
589 [10.1038/416194a](https://doi.org/10.1038/416194a)

590 40. Opitz B, Puschel A, Beermann W, Hocke AC, Forster S, Schmeck B, van Laak  
591 V, Chakraborty T, Suttorp N, Hippenstiel S (2006) *Listeria monocytogenes*  
592 Activated p38 MAPK and Induced IL-8 Secretion in a Nucleotide-Binding  
593 Oligomerization Domain 1-Dependent Manner in Endothelial Cells. *J*  
594 *Immunol.* doi: [10.4049/jimmunol.176.1.484](https://doi.org/10.4049/jimmunol.176.1.484)

595 41. Torres D, Barrier M, Bihl F, Quesniaux VJ, Maillet I, Akira S, Ryffel B, Erard  
596 F (2004) Toll-like receptor 2 is required for optimal control of *Listeria*  
597 *monocytogenes* infection. *Infect Immun*

598 42. Boneca IG, Dussurget O, Cabanes D, et al (2007) A critical role for  
599 peptidoglycan N-deacetylation in *Listeria* evasion from the host innate  
600 immune system. *Proc Natl Acad Sci U S A* 104:997–1002

601 43. Ragland SA, Criss AK (2017) From bacterial killing to immune modulation:

602       Recent insights into the functions of lysozyme. PLoS Pathog. doi:  
603       10.1371/journal.ppat.1006512

604       44. Chico-Calero I, Suárez M, González-Zorn B, Scortti M, Slaghuis J, Goebel W,  
605       Vázquez-Boland JA (2002) Hpt, a bacterial homolog of the microsomal  
606       glucose- 6-phosphate translocase, mediates rapid intracellular proliferation  
607       in *Listeria*. Proc Natl Acad Sci 99:431–436

608       45. Collins B, Curtis N, Cotter PD, Hill C, Ross RP (2010) The ABC transporter  
609       AnrAB contributes to the innate resistance of *Listeria monocytogenes* to  
610       nisin, bacitracin, and various  $\beta$ -lactam antibiotics. Antimicrob Agents  
611       Chemother 54:4416–4423

612       46. Wang Y, Zhao A, Zhu R, et al (2012) Genetic diversity and molecular typing  
613       of *Listeria monocytogenes* in China. BMC Microbiol 12:119

614       47. Huang YT, Ko WC, Chan YJ, Lu JJ, Tsai HY, Liao CH, Sheng WH, Teng LJ,  
615       Hsueh PR (2015) Disease burden of invasive listeriosis and molecular  
616       characterization of clinical isolates in Taiwan, 2000–2013. PLoS One 10:4–15

617       48. Zilelidou EA, Rychli K, Manthou E, Ciolacu L, Wagner M, Skandamis PN  
618       (2015) Highly invasive *Listeria monocytogenes* strains have growth and  
619       invasion advantages in strain competition. PLoS One 10:1–17

620       49. Jennison A V., Masson JJ, Fang N-X, et al (2017) Analysis of the *Listeria*  
621       monocytogenes Population Structure among Isolates from 1931 to 2015 in  
622       Australia. Front Microbiol 8:1–13

623       50. Linke K, R??ckerl I, Brugger K, Karpiskova R, Walland J, Muri-Klinger S,  
624       Tichy A, Wagner M, Stessl B (2014) Reservoirs of *Listeria* species in three

625 environmental ecosystems. *Appl Environ Microbiol* 80:5583–5592

626 51. Ebner R, Stephan R, Althaus D, Brisse S, Maury M, Tasara T (2015)  
627 Phenotypic and genotypic characteristics of *Listeria monocytogenes* strains  
628 isolated during 2011–2014 from different food matrices in Switzerland. *Food  
629 Control* 57:321–326

630 52. Dreyer M, Aguilar-Bultet L, Rupp S, et al (2016) *Listeria monocytogenes*  
631 sequence type 1 is predominant in ruminant rhombencephalitis. *Sci Rep*  
632 6:36419

633 53. Jensen AK, Björkman JT, Ethelberg S, Kiil K, Kemp M, Nielsen EM (2016)  
634 Molecular Typing and Epidemiology. *Emerg Infect Dis* 22:625–633

635 54. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004)  
636 Differentiation of the Major *Listeria monocytogenes* Serovars by Multiplex  
637 PCR Differentiation of the Major *Listeria monocytogenes* Serovars by  
638 Multiplex PCR. *J Clin Microbiol* 42:3819–3822

639 55. Ward TJ, Gorski L, Borucki MK, Mandrell RE, Hutchins J, Pupedis K (2004)  
640 Intraspecific phylogeny and lineage group identification based on the *prfA*  
641 virulence gene cluster of *Listeria monocytogenes*. *J Bacteriol* 186:4994–  
642 5002

643 56. Bridger PS, Haupt S, Klisch K, Leiser R, Tinneberg HR, Pfarrer C (2007)  
644 Validation of primary epitheloid cell cultures isolated from bovine placental  
645 caruncles and cotyledons. *Theriogenology*. doi:  
646 [10.1016/j.theriogenology.2007.05.046](https://doi.org/10.1016/j.theriogenology.2007.05.046)

647 57. Bridger PS, Menge C, Leiser R, Tinneberg HR, Pfarrer CD (2007) Bovine

648 Caruncular Epithelial Cell Line (BCEC-1) Isolated from the Placenta Forms a  
649 Functional Epithelial Barrier in a Polarised Cell Culture Model. *Placenta*  
650 28:1110-1117

651 58. Fritzsche S, Knappe D, Berthold N, Von Buttlar H, Hoffmann R, Alber G (2012)  
652 Absence of in vitro innate immunomodulation by insect-derived short  
653 proline-rich antimicrobial peptides points to direct antibacterial action in  
654 vivo. *J Pept Sci* 18:599-608

655 59. Hughes S, Poh TY, Bumstead N, Kaiser P (2007) Re-evaluation of the chicken  
656 MIP family of chemokines and their receptors suggests that CCL5 is the  
657 prototypic MIP family chemokine, and that different species have developed  
658 different repertoires of both the CC chemokines and their receptors. *Dev  
659 Comp Immunol* 31:72-86

660 60. Coil D, Jospin G, Darling AE (2015) A5-miseq: An updated pipeline to  
661 assemble microbial genomes from Illumina MiSeq data. *Bioinformatics*  
662 31:587-589

663 61. Wright ES (2015) DECIPHER: harnessing local sequence context to improve  
664 protein multiple sequence alignment. *BMC Bioinformatics* 16:322

665 62. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 - Approximately maximum-  
666 likelihood trees for large alignments. *PLoS One.* doi:  
667 10.1371/journal.pone.0009490

668 63. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for  
669 the display and annotation of phylogenetic and other trees. *Nucleic Acids  
670 Res* 44:W242-W245

671 64. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup  
672 FM (2014) Real-time whole-genome sequencing for routine typing,  
673 surveillance, and outbreak detection of verotoxigenic *Escherichia coli*. *J Clin*  
674 *Microbiol* 52:1501–1510

675

676 **Tables**

677 **Table 1: *Listeria monocytogenes* isolates used in this study**

| Strain number | Source <sup>a</sup>   | PCR Serotype <sup>c</sup> | PCR Lineage <sup>d</sup> | MLST <sup>e</sup> | Generation time [min] <sup>i</sup> | Source/ Reference           |
|---------------|-----------------------|---------------------------|--------------------------|-------------------|------------------------------------|-----------------------------|
| 10403S        | Skin Lesion           | 1/2a                      | II                       | 85                | 50±7.5                             | (Bishop and Hinrichs, 1987) |
| AR008         | Healthy eye           | 1/2a, 3a <sup>b</sup>     | II <sup>b</sup>          | 12                | 83.33±13.89 <sup>f</sup>           | (Warren et al., 2015)       |
| C00938        | Kerato-conjunctivitis | 1/2a, 3a <sup>b</sup>     | II <sup>b</sup>          | 20                | 43.48±0.76                         | APHA                        |
| R06262        | Kerato-conjunctivitis | 1/2b, 3b <sup>b</sup>     | I <sup>b</sup>           | 59                | 50±10                              | APHA                        |
| C02118        | Kerato-conjunctivitis | 4b <sup>b</sup>           | I <sup>b</sup>           | 6                 | 45.45±2.07                         | APHA                        |
| LM7644        | Abortion              | 1/2a, 3a <sup>b</sup>     | II <sup>b</sup>          | 122               | 62.5±11.72 <sup>g</sup>            | APHA                        |
| C08389        | Abortion              | 1/2a, 3a <sup>b</sup>     | II <sup>b</sup>          | 7                 | 58.82±17.3                         | APHA                        |
| C08078        | Abortion              | 1/2b, 3b                  | I                        | 59                | 52.63±5.54                         | APHA                        |
| C07872        | Abortion              | 1/2b, 3b                  | I                        | 59                | 55.56±6.17                         | APHA                        |
| C04949        | Abortion              | 1/2b, 3b                  | I                        | 59                | 38.46±8.88                         | APHA                        |
| C07754        | Abortion              | 1/2a, 3a                  | II                       | 91                | 38.46±2.96                         | APHA                        |
| G03652        | Meningitis            | 1/2b, 3b <sup>b</sup>     | I <sup>b</sup>           | 59                | 52.63±5.54                         | APHA                        |
| LM4           | Milk                  | 1/2b, 3b <sup>b</sup>     | I <sup>b</sup>           | 1009              | 66.67±4.44 <sup>h</sup>            | (Lawrence et al., 1995)     |
| LM6           | Milk                  | 4b <sup>b</sup>           | I <sup>b</sup>           | 1                 | 52.63±5.54                         | (Lawrence et al., 1995)     |

678 APHA: Animal and Plant Health Agency

679 <sup>a</sup> All isolates are from bovine sources except for the human isolate 10403S.

680 <sup>b</sup> Warren et al., 2015

681 <sup>c</sup> Serotypes were determined using the PCR-based method of Doumith et al (2004). This  
682 method in conjunction with the lineage typing cannot distinguish between serotypes 1/2a  
683 and 3a or 1/2b and 3b. However, serotypes 3a and 3b are not commonly isolated

684 <sup>d</sup> Lineages were determined using the PCR-based method of Ward et al. (2004)

685 <sup>e</sup> Institute Pasteur *Listeria* MLST data base

686 <sup>f</sup> Growth rate reduced compared to C04949 (p=0.001)

687 <sup>g</sup> Growth rate reduced compared to C04949 (p=0.024)

688 <sup>h</sup> Growth rate reduced compared to 10403S (p=0.039)

689 <sup>1</sup> Growth rates presented as mean +/- SD (n=3)

690

691 **Table 2: Primers**

| Target                                       | Sequence                                                    | Gene reference | Size (bp)/efficiency (%)<br>(%, qPCR) | Reference            |
|----------------------------------------------|-------------------------------------------------------------|----------------|---------------------------------------|----------------------|
| <b>Bovine primers</b>                        |                                                             |                |                                       |                      |
| GAPDH                                        | F=AGTTCAACGGCACAGTCAAG<br>R=AGCAGGGATGATATTCTGGG            | NM_001034034   | 463 bp                                | This study           |
| E-cadherin                                   | F=GGTCAAAGAGCCCTTACTGC<br>R=TGGCTCAAGTCAAAGTCCTG            | AY508164.1     | 105 bp                                |                      |
| C-met                                        | F=TGAAGGAGGGACAACACTGA<br>R=TAAGGTGCAGCTCTCATTGC            | NM_001012999.2 | 112 bp                                |                      |
| β actin                                      | F=GAAGGTGACAGCAGTCGGT<br>R=TTTCGCGATATTGGAATGA              | BT030480.1     | 114 bp                                |                      |
| <i>Listeria monocytogenes</i> primers (qPCR) |                                                             |                |                                       |                      |
| 16srRNA                                      | F-CTTCCGCAATGGACGAAAGT<br>R- ACGATCCGAAAACCTTCTTCATAC       |                | 95%                                   |                      |
| TufA                                         | F- GCTGAAGCTGGCGACAACA<br>R- CTTGACCACGTTGGATATCTTCAC       |                | 102%                                  |                      |
| InlA                                         | F- GAACCAGCTAACGCCIGTAAAAG<br>R- CGCCIGTTGGGCATCA           |                | 95%                                   | Werbrouck et al 2006 |
| InlB                                         | F- GGAAAAGCAAAAGCAIGATT<br>R- TCCATCAACATCATAACTTACTGTGTAAA |                | 92%                                   |                      |

692

693  
694  
695  
696

**Table 3: Pearson correlations**

|                                                         | <b>r</b> | <b>95% conf interval</b> | <b>R<sup>2</sup></b> | <b>p-</b>    |  |
|---------------------------------------------------------|----------|--------------------------|----------------------|--------------|--|
|                                                         |          |                          |                      | <b>value</b> |  |
| mRNA expression: <i>inlA</i> vs <i>InlB</i>             | 0.58     | 0.07 to 0.85             | 0.34                 | <b>0.03</b>  |  |
| <b>Intracellular bacteria count (log CFU/well with:</b> |          |                          |                      |              |  |
| MIC lysozyme                                            | 0.82     | 0.40 to 0.96             | 0.67                 | <b>0.004</b> |  |
| Survival in 580 µg/ml lysozyme (log CFU/ml)             | 0.72     | 0.16 to 0.93             | 0.52                 | <b>0.02</b>  |  |
| Growth rate in HI broth                                 | 0.49     | -0.05 to 0.81            | 0.24                 | 0.073        |  |
| Intracellular bacteria counts in conjunctiva            | 0.55     | -0.12 to 0.88            | 0.31                 | 0.097        |  |

697

698

699 **Figure legends**

700 **Figure 1: Bovine E-cad and cMet sequence comparisons and expression.**

701 (A) Multiple sequence alignment of the Pro16 residue of E-cad correlating with  
702 probability of invading the host cell [12], emboldened letters indicate amino acid  
703 substitutions previously identified in other studies and red letters indicate amino  
704 acid substitution unique to rodents. (B) Multiple sequence protein alignments of  
705 the region of c-MET, emboldened letters indicate amino acid substitutions which  
706 have previously been identified as a primary interface between InlB and c-MET  
707 [19], blue letters indicate relatedness of amino acid substitutions between certain  
708 species and red letters indicate amino acid substitutions discovered in this work.  
709 (C) Maximum likelihood tree of c-Met. E-cad (D) and c-MET (E) transcript levels  
710 in BCEC cells stimulated with  $1\mu\text{g.ml}^{-1}$  LPS or infected with *L. monocytogenes*  
711 (MOI=200) for 4, 8 or 24 h.

712 **Figure 2: Infection of BCEC cells.** BCEC cells were infected with an MOI=200  
713 with *L. monocytogenes* isolates for 24 h at 37°C; For each isolate 5 independent  
714 experiments were performed. Dark blue indicates isolates from cases of bovine  
715 abortion, pale blue indicates isolates from bovine keratoconjunctivitis, orange  
716 indicates isolates from an environmental source, green indicates isolates from a  
717 case of meningitis, pink indicates an isolate from a healthy eye and red indicates  
718 the control strain 10403S originally a human isolate from a skin lesion. All data  
719 points and mean are shown. Statistical significance is shown compared to 10403S:  
720 \*p<0.05, \*\*p<0.01, \*\*\*p<0.001, (Kruskal-Wallis test followed by Dunn's  
721 multiple comparisons test).

722 **Figure 3: InIA and InIB expression.** InIA and InIB transcript levels in *L.*  
723 *monocytogenes* isolates grown to late log phase in HI medium. Dark blue  
724 indicates isolates from cases of bovine abortion, pale blue indicates isolates from  
725 bovine keratoconjunctivitis, orange indicates isolates from an environmental  
726 source, green indicates isolates from a case of meningitis, pink indicates an isolate  
727 from a healthy eye and red indicates the control strain 10403S originally a human  
728 isolate from a skin lesion (Kruskal-Wallis test followed by Dunn's multiple  
729 comparisons test).

730 **Figure 4: Treatment of *L. monocytogenes* with cell wall acting antibiotics**  
731 **and CRAMP.** To investigate cell wall integrity, overnight cultures were plated on  
732 heart infusion agar and disks containing 1U penicillin G (A), 25 $\mu$ g ampicillin (B) or  
733 30 $\mu$ g cefuroxime sodium (C). The plates were incubated overnight at 37°C, and  
734 zones of inhibition were measured. Dark blue indicates isolates from cases of  
735 bovine abortion, pale blue indicates isolates from bovine keratoconjunctivitis,  
736 orange indicates isolates from an environmental source, green indicates isolates  
737 from a case of meningitis, pink indicates an isolate from a healthy eye and red  
738 indicates the control strain 10403S originally a human isolate from a skin lesion.  
739 For each isolate 5 independent experiments were performed. All data points and  
740 mean are shown. Statistical significant increase in susceptibility is shown  
741 compared to 10403S using a. \* P<0.05, \*\* P<0.01, \*\*\* P<0.001, \*\*\*\*  
742 P<0.0001. (One Way ANOVA followed by Dunnett's multiple comparisons test). To  
743 assess cell membrane integrity, duplicate cultures of *L. monocytogenes* isolates  
744 AR008 (D), 7644 (E), C08389 (F) were grown to log phase in HI broth at 37°C  
745 and stimulated with a final concentration of 10mg.ml<sup>-1</sup> CRAMP/DMSO or DMSO

746 alone (red dashed line). Absorbance at 600 nm was measured in 20 min intervals.

747 Data are representative of at least duplicate experiments.

748 **Figure 5: Epidemiological analysis of *L. monocytogenes* isolates based on**

749 **MLST.** (A) goeBURST analysis of the isolates used in this study; dark blue

750 indicates isolates from cases of bovine abortion, pale blue indicates isolates from

751 bovine keratoconjunctivitis, orange indicates isolates from an environmental

752 source, green indicates isolates from a case of meningitis, pink indicates an isolate

753 from a healthy eye and red indicates the control strain 10403S originally a human

754 isolate from a skin lesion. Numbers in the circles denote the sequence type. (B)

755 Maximum likelihood tree of the UK isolates present in the MLST database. Shaded

756 areas correspond to the isolates used in this study, where green identifies lineage

757 I and blue identifies lineage II.

758 **Figure 6: *L. monocytogenes* core genome comparison.** Maximum likelihood

759 tree has been generated using the core genome of isolates in the MLST database.

760 Shaded areas correspond to lineages, where green indicates lineage I, blue indicates

761 lineage II, orange indicates lineage III and red indicates lineage IV. Darker shading

762 highlights the isolates used in this study.

763 **Figure 7: Virulence gene analysis.** Heat map illustrating percentage identity of

764 87 *L. monocytogenes* virulence genes in comparison to isolate EDG-e determined

765 through virulence finder [64], with crosses denoting the absence of genes. The

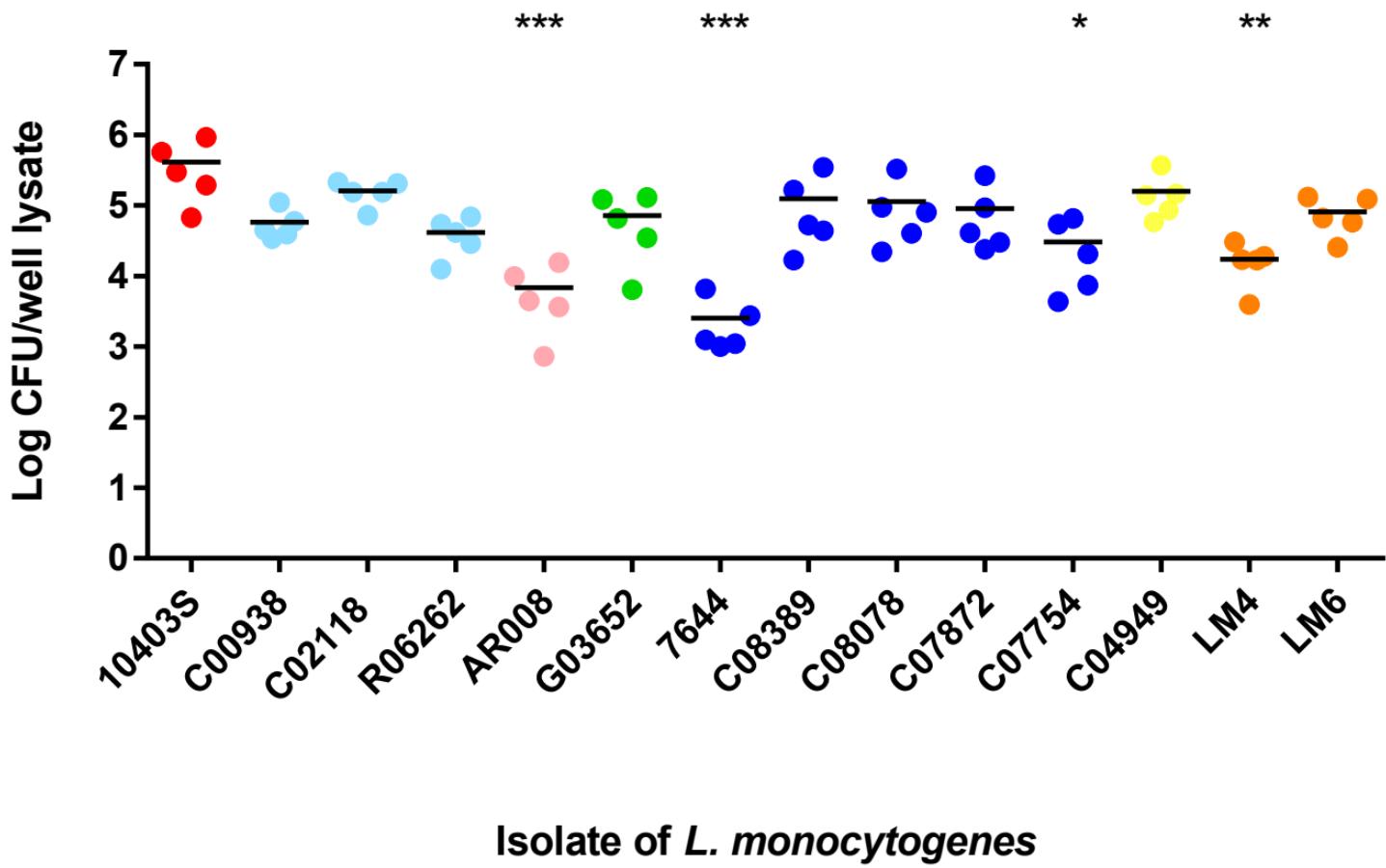
766 gene matrix represents from top to bottom, genes involved in teichoic acid

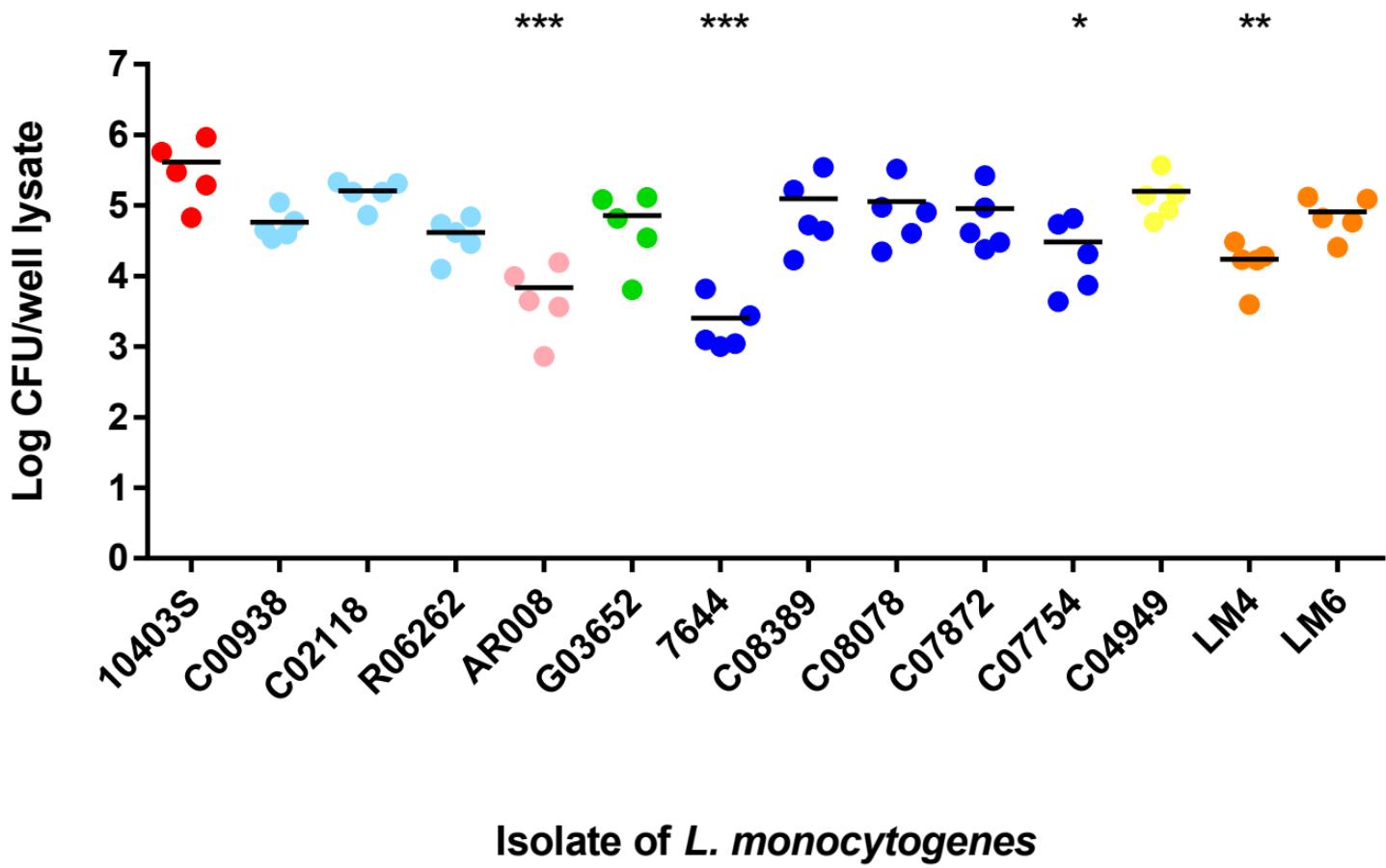
767 biosynthesis (*gtcA*), located in pathogenicity island LIPI-1 (*actA*, *hly*, *mpl*, *plcAB*,

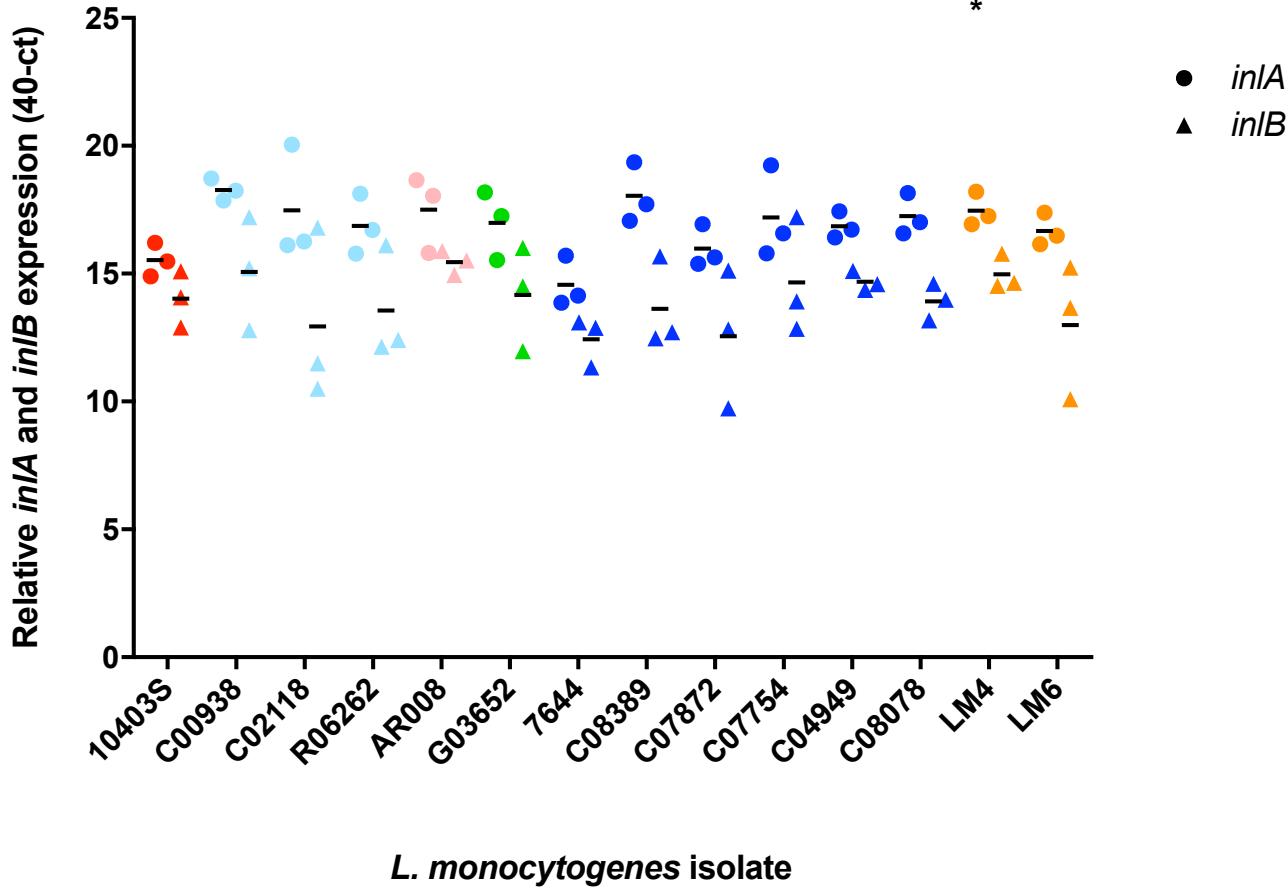
768 genes coding for internalins (*inlABCFLKL*) and other genes involved in

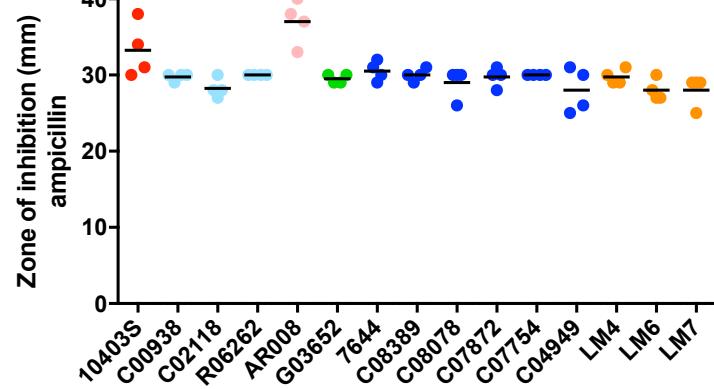
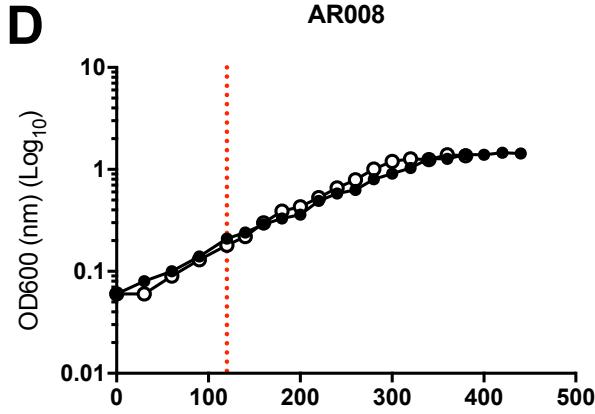
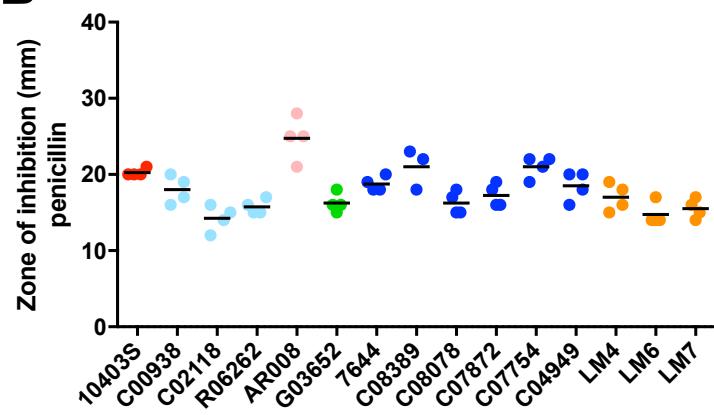
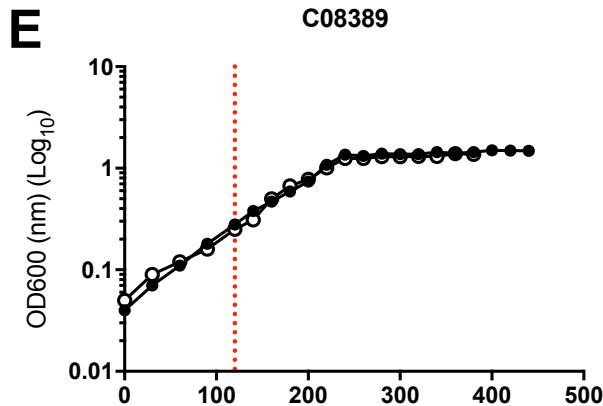
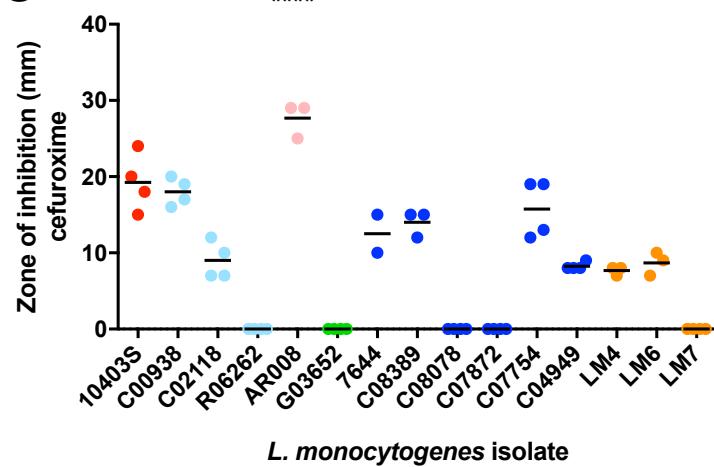
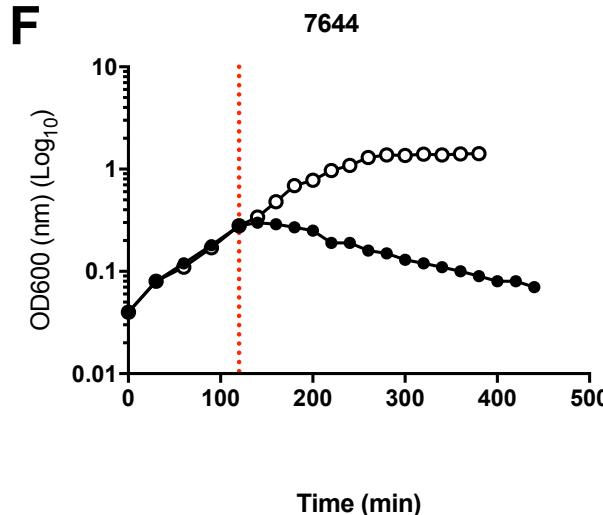
769 adherence (*ami*, *dltA*, *fbpA*, *lap*, *lapB*), invasion (*aut*, *iap*, *lpeA*, *recA*, *vip*),

770 Intracellular survival (*clpBCEP*, *dal*, *fri*, *htrA*, *IplA1*, *oppA*, *perR*, *prsA2*, *pvcA*, *relA*,  
771 *sipZ*, *sod*, *svpA*, *tig*, *uHpt*), regulation of transcription and translation (*ctsR*, *fur*,  
772 *gmar*, *hfg*, *Ihrc*, *lisKR*, *mogR*, *rsbv*, *sigB*, *stp*, *virk*, *rls55*, *rls60*), surface display  
773 (*lgt*, *lsp*, *sipX*, *srtAB*, *secA2*), peptidoglycan modification (*degU*, *murA*, *oatA*,  
774 *pgdA*), membrane integrity (*ctap*, *mrpf*), motility (*flaA*, *flgCE*), anaerobic growth  
775 (eut), regulation of metabolism (*codY*), immunomodulation (*chiA*, *lipA*, *InyA*, *pgl*)  
776 and bile resistance (*bile*, *bsh*).

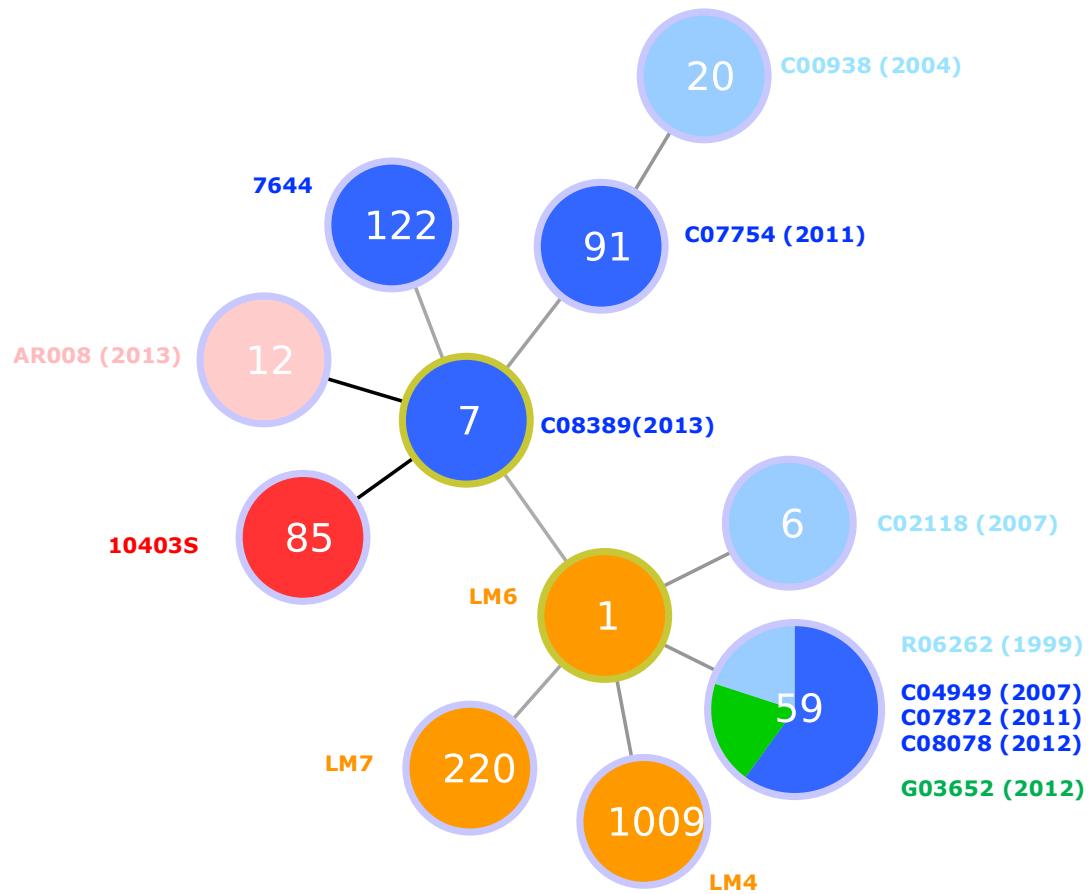

## 777 **Additional information**


778 **Additional File 1: Figure S1. Infection of BCEC cells for 2-24h.** BCEC cells  
779 were infected with an MOI=200 with *L. monocytogenes* isolates for 2-24 h at 37  
780 °C. (A) BCEC cells were infected for 2 h with nine different isolates, for each isolate  
781 6- 11 independent experiments were performed. Dark blue indicates isolates from  
782 cases of bovine abortion, pale blue indicates isolates from bovine  
783 keratoconjunctivitis, orange indicates an isolate from an environmental source,  
784 pink indicates an isolate from a healthy eye and red indicates the control strain  
785 10403S originally a human isolate from a skin lesion. All data points and mean  
786 are shown. (B) BCEC cells were infected for 4-24 h with four different isolates, for  
787 each isolate 3 independent experiments were performed, and average and  
788 standard deviation are shown. Statistical significance is shown: \*p<0.05,  
789 \*\*p<0.01.


790 **Additional File 3: Table S1. Multilocus sequence type metadata.** Metrics  
791 associated with all the isolates held in the MLST database.







792 **Additional File 4: Table S2. Determination of virulence associated genes.**  
793 Whole genome sequences were parsed through virulence finder [64] to identify

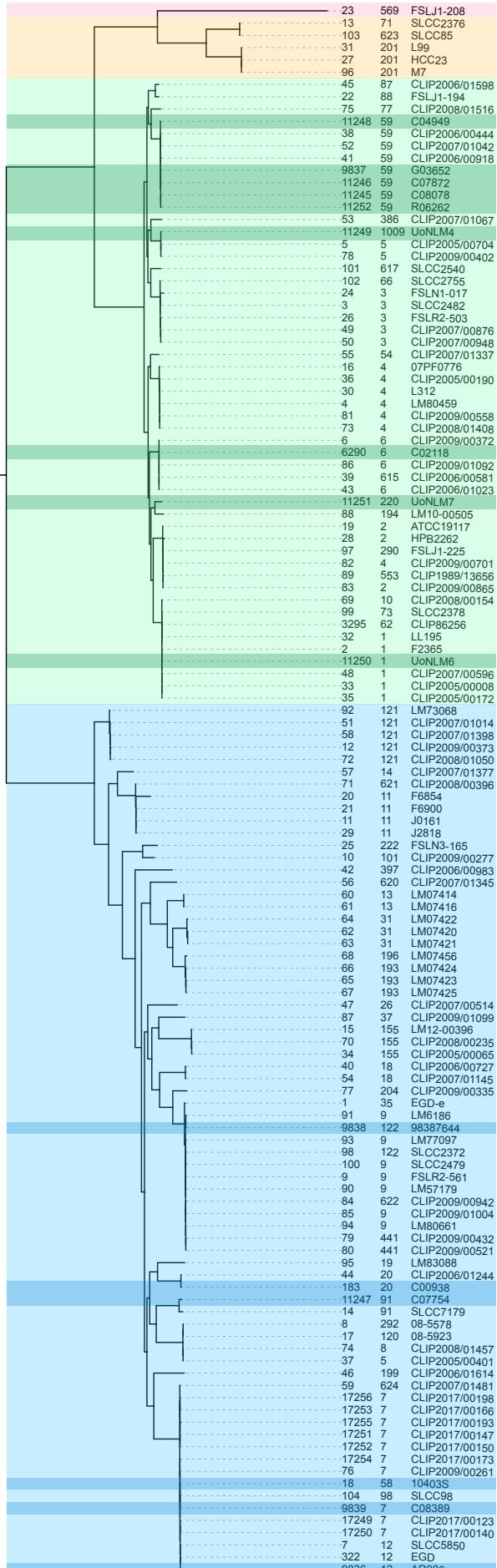
794 putative virulence associated genes for the isolates used in this study. Green cells  
795 indicate greater than 99% similarity to virulent gene loci, orange cells indicate 95-  
796 98% similarity and red indicate between 90-94% similarity.

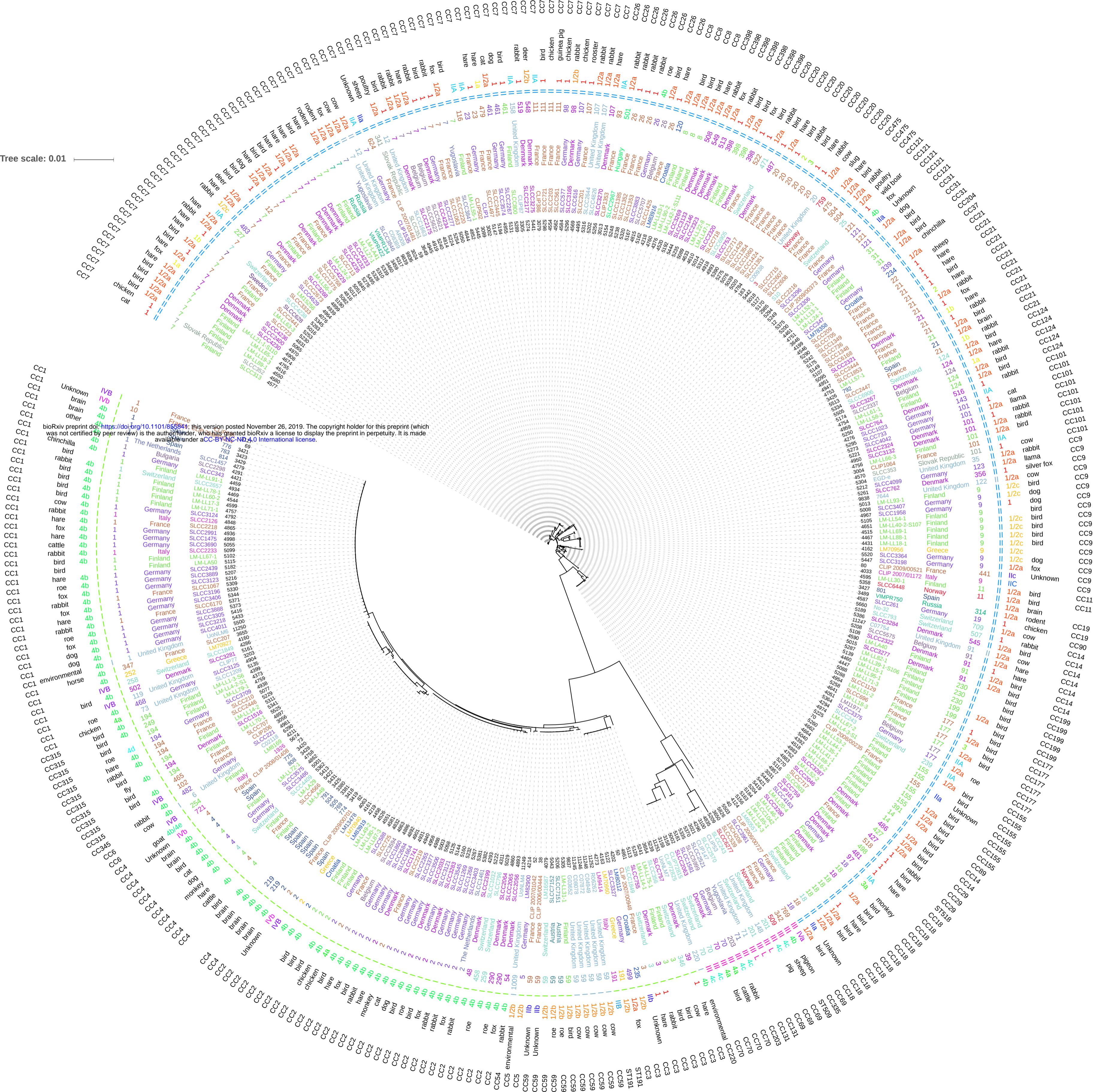


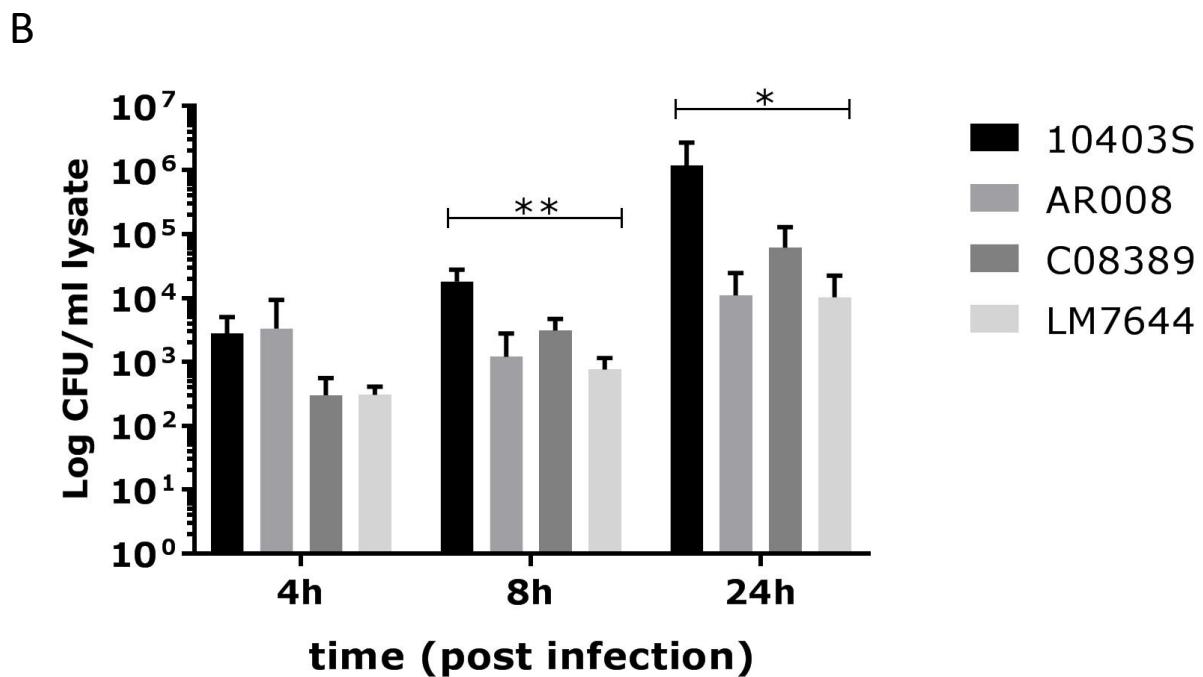
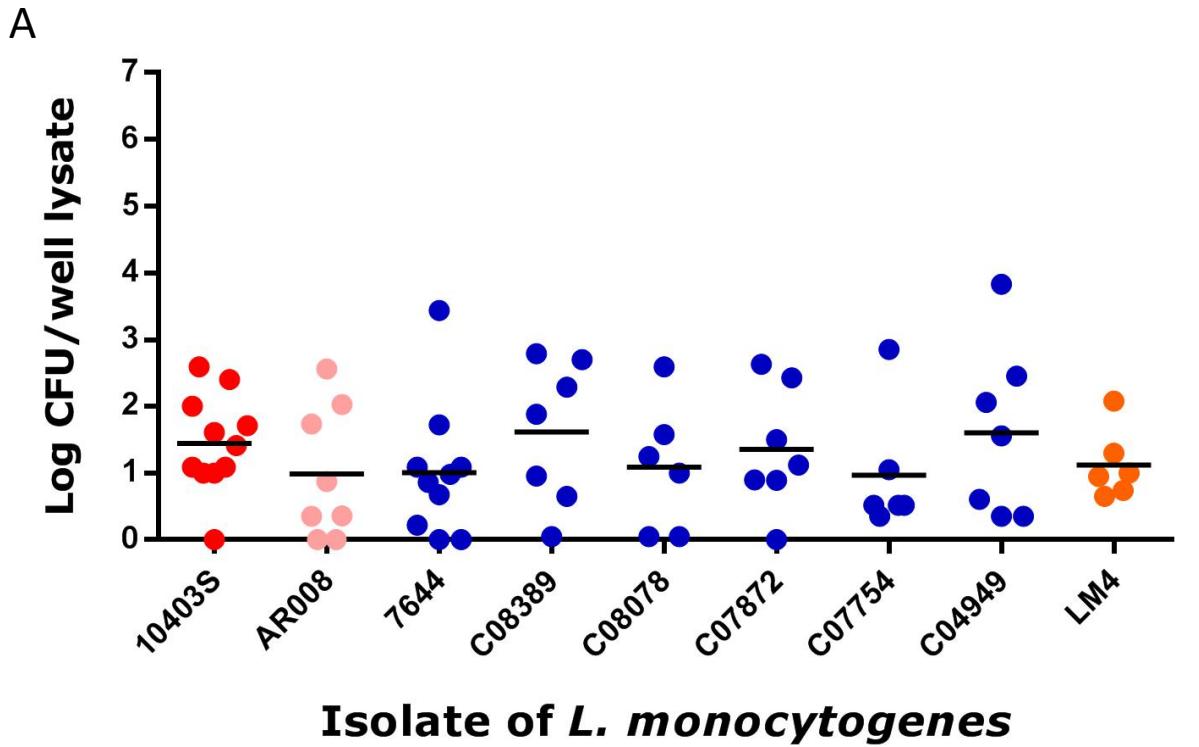


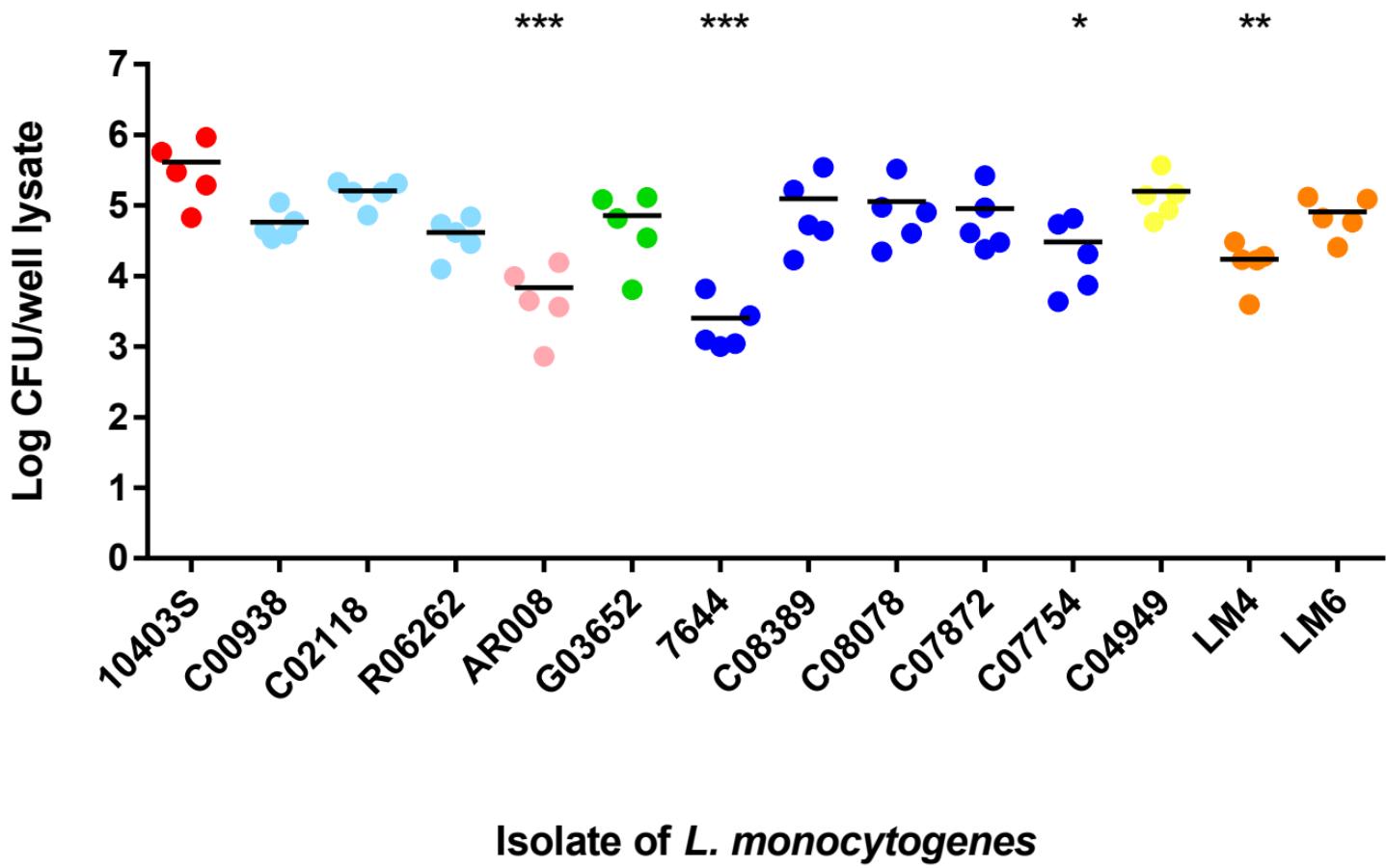



**A****D****B****E****C****F**


A






B



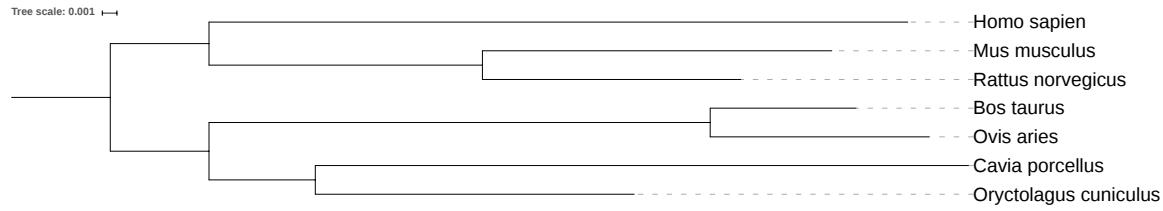

Tree scale: 0.01



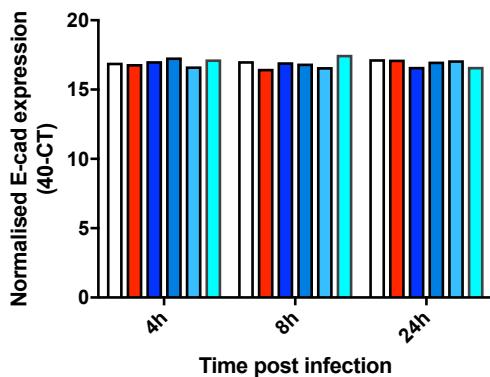




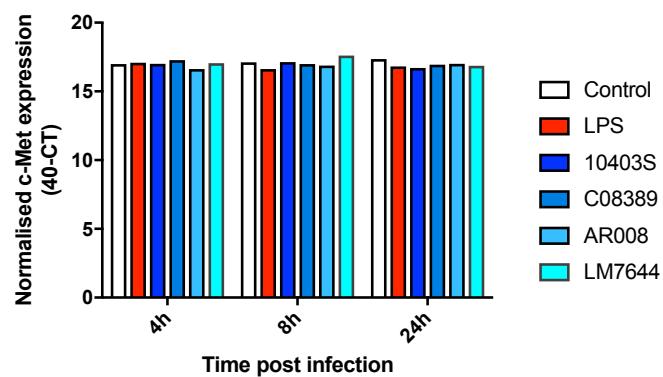


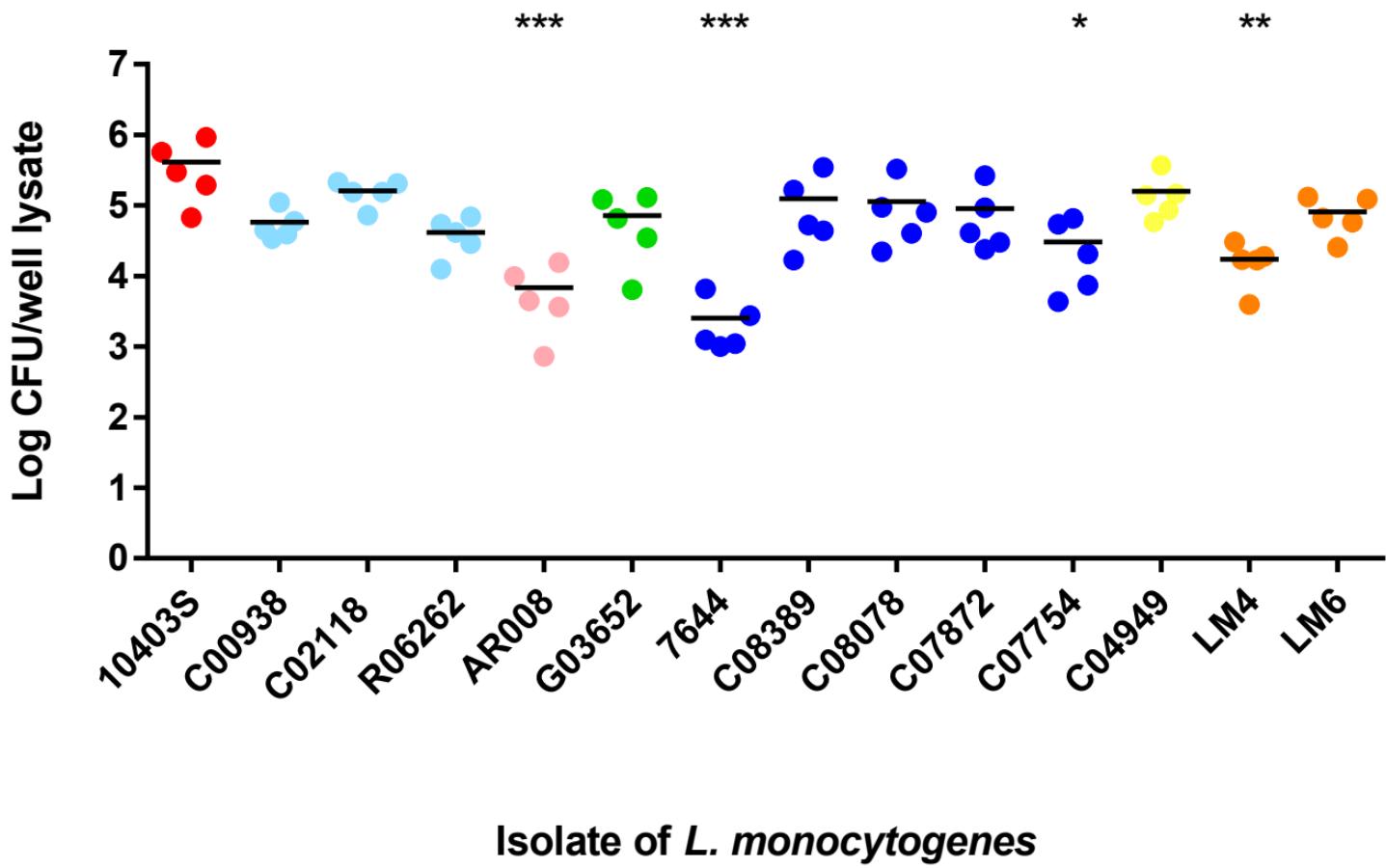

A

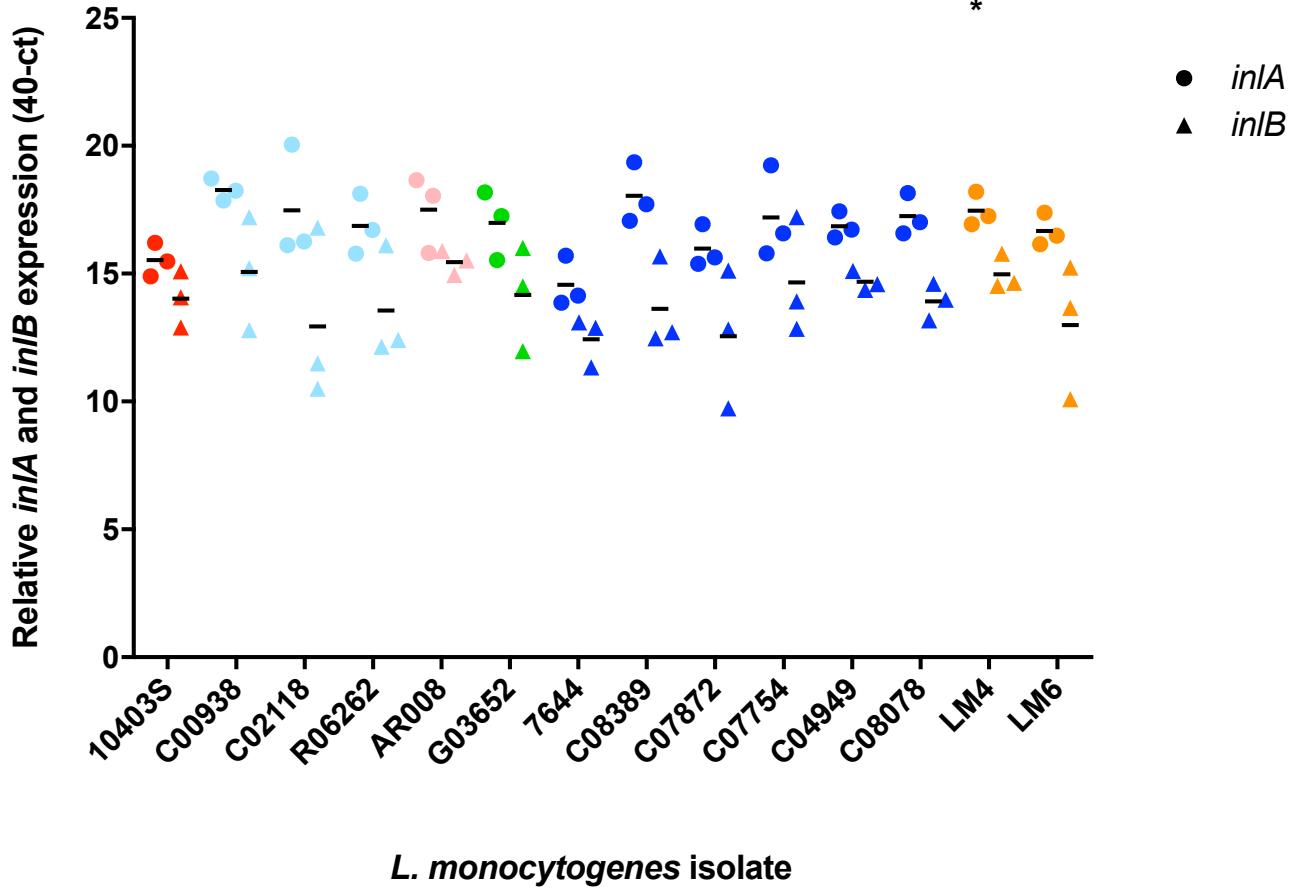
|                       |     |            |             |            |                    |            |
|-----------------------|-----|------------|-------------|------------|--------------------|------------|
| Homo_sapien           | 133 | SGIQAELLTF | PNSSPGLRRQ  | KRDWVIPPIS | CPENEKG <b>PFP</b> | KNLV-QIKSN |
| Mus_musculus          | 135 | SESNPELLMF | PSVYPGLRRQ  | KRDWVIPPIS | CPENEKG <b>EFP</b> | KNLV-QIKSN |
| Rattus_norvegicus     | 137 | SESNPELLTF | PSFHQGLRRQ  | KRDWVIPPIN | CPENQKG <b>EFP</b> | QRLV-QIKSN |
| Bos_taurus            | 79  | SGTQTEVLTF | PGPHHGLRRQ  | KRDWVIPPIS | CPENEKG <b>PFP</b> | KSLV-QIKSN |
| Ovis_aries            | 133 | SGTQTEVLTF | PGSHHGLRRQ  | KRDWVIPPIS | CPENEKG <b>PFP</b> | KSLV-QIKSN |
| Cavia_porcellus       | 79  | PLTQLEVIKF | PNFHGGGLRRQ | KRDWVIPPIS | CSENEKG <b>PFP</b> | KRLVQQIKSN |
| Oryctolagus_cuniculus | 174 | PGASTEVLTF | PDSHHGLRRQ  | KRDWVIPPIS | CPENEKG <b>PFP</b> | KNLV-QIKSN |
| consensus             | 181 | sgsq       | EvltF       | P          | hhGLRRQ            | KRDWVIPPIS |
|                       |     |            |             |            | CpENeKG <b>PFP</b> | k          |
|                       |     |            |             |            | LV                 | QIKSN      |

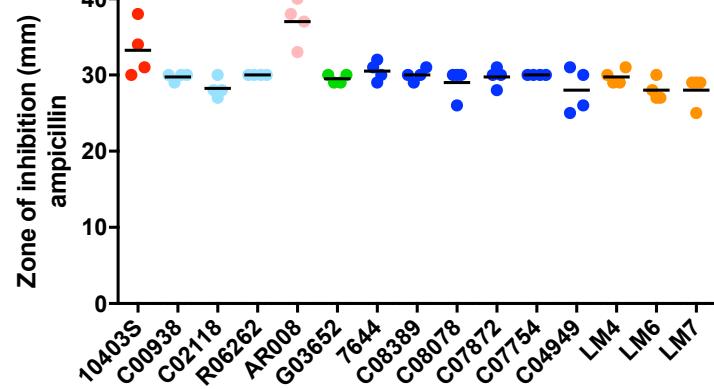
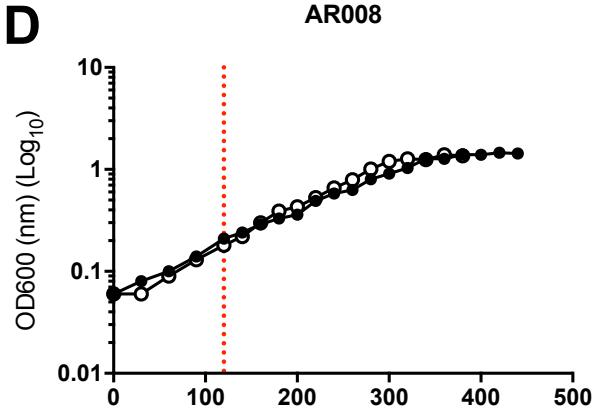
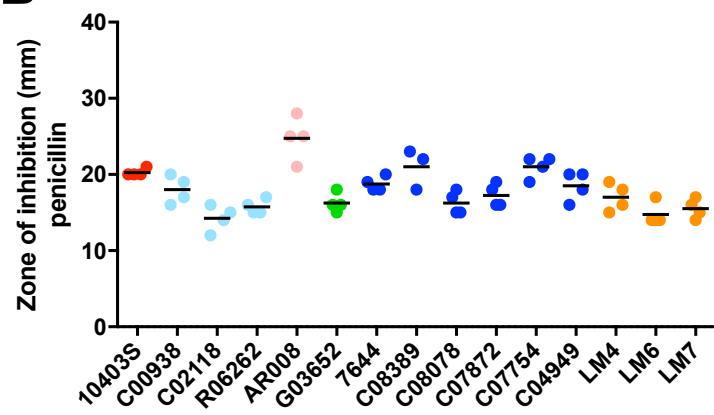
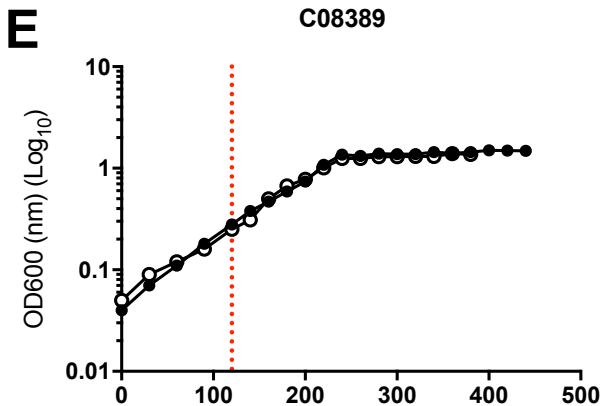
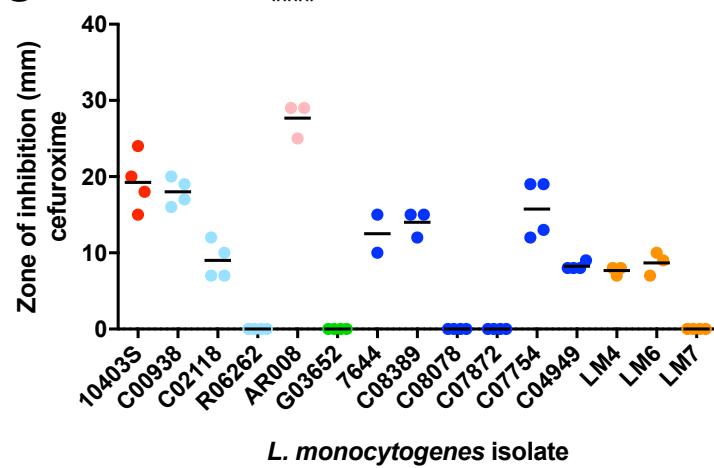
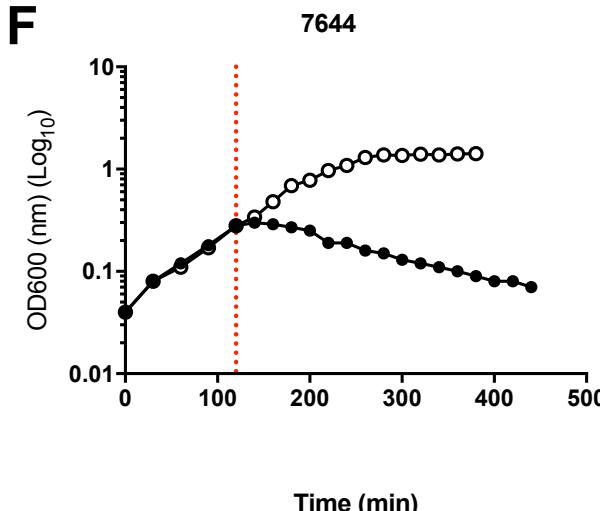

B

|                       |     |                     |            |                                    |                    |                                    |            |                     |
|-----------------------|-----|---------------------|------------|------------------------------------|--------------------|------------------------------------|------------|---------------------|
| Homo_sapien           | 333 | NVRCLQHFYG          | PNHEHCFNRT | LLRNSSGCE <b>A</b>                 | RRDEYRTE <b>FT</b> | TAL <b>Q</b> RVDL <b>F</b>         | GQFSEVLLTS | ISTF <b>I</b> KGDLT |
| Mus_musculus          | 332 | NVRCLQHFYG          | PNHEHCFNRT | LLRNSSGCE <b>A</b>                 | RSDEYRTE <b>FT</b> | TAL <b>Q</b> RVDL <b>F</b>         | GRLNQVLLTS | ISTF <b>I</b> KGDLT |
| Rattus_norvegicus     | 361 | NVRCLQHFYG          | PNHEHCFNRT | LLRNSSGCE <b>V</b>                 | RSDEYRTE <b>FT</b> | TAL <b>Q</b> RVDL <b>F</b>         | GRLNHVLLTS | ISTF <b>I</b> KGDLT |
| Bos_taurus            | 334 | NVRCLQHFYG          | PNHEHCFNRT | LLRNSSGCE <b>V</b>                 | RNDEYRTE <b>FT</b> | TAL <b>P</b> RVDL <b>F</b>         | GQFNQVLLTS | ISTF <b>I</b> KGDLT |
| Ovis_aries            | 334 | NVRCLQHFYG          | PNHEHCFNRT | LLRNSSGCE <b>V</b>                 | RNDEYRTE <b>FT</b> | TAL <b>P</b> RID <b>L</b> <b>F</b> | GQFNQVLLTS | ISTF <b>I</b> KGDLT |
| Cavia_porcellus       | 333 | NVKCLQHFYG          | PNHEHCFNRT | LLRNSSGCE <b>V</b>                 | RSDEYRTE <b>FT</b> | TAL <b>Q</b> RVDL <b>F</b>         | GQFKQVLLTS | ISTF <b>V</b> KGDLT |
| Oryctolagus_cuniculus | 334 | NVKCLQHFYG          | PNHEHCFNRT | LLRNSSD <b>C</b> <b>E</b> <b>A</b> | RSDEYRTE <b>LT</b> | TAL <b>Q</b> RVDL <b>F</b>         | GQFNQVLLTS | ISTF <b>I</b> KGDLT |
| consensus             | 361 | NV <b>r</b> CLQHFYG | PNHEHCFNRT | LLRNSSg <b>C</b> <b>E</b> <b>V</b> | RsDEYRTE <b>FT</b> | TAL <b>Q</b> RVDL <b>F</b>         | GqfnqVLLTS | ISTF <b>I</b> KGDLT |


C





D


E







**A****D****B****E****C****F**