

3 Dario R. Shaw¹, Muhammad Ali¹, Krishna P. Katuri¹, Jeffrey A. Gralnick², Joachim Reimann³,
4 Rob Mesman³, Laura van Niftrik³, Mike S. M. Jetten³ & Pascal E. Saikaly^{1,*}

5

6 Affiliations:

⁷ ¹Water Desalination and Reuse Center (WDRC), Biological and Environmental Science &
⁸ Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST),
⁹ Thuwal 23955-6900, Saudi Arabia.

10 ²BioTechnology Institute and Department of Plant and Microbial Biology, University of
11 Minnesota, Twin Cities, St. Paul, Minnesota 55108, United States.

12 ³Department of Microbiology, Institute for Water and Wetland Research (IWWR), Faculty of
13 Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.

*Correspondence to: Pascal Saikaly, Al-Jazri Building, Office 4237, Thuwal 23955-6900, Saudi Arabia, E-mail: pascal.saikaly@kaust.edu.sa.

16

17

18

19

20

21 **Abstract:** Anaerobic ammonium oxidation (anammox) by anammox bacteria contributes
22 significantly to the global nitrogen cycle, and plays a major role in sustainable wastewater
23 treatment. Anammox bacteria convert ammonium (NH_4^+) to dinitrogen gas (N_2) using nitrite (NO_2^-
24) or nitric oxide (NO) as the electron acceptor. In the absence of NO_2^- or NO, anammox bacteria
25 can couple formate oxidation to the reduction of metal oxides such as Fe(III) or Mn(IV). Their
26 genomes contain homologs of *Geobacter* and *Shewanella* cytochromes *involved in extracellular*
27 *electron transfer (EET)*. However, it is still unknown whether anammox bacteria have EET
28 capability and can couple the oxidation of NH_4^+ with transfer of electrons to carbon-based
29 insoluble extracellular electron acceptors. Here we show using complementary approaches that in
30 the absence of NO_2^- , freshwater and marine anammox bacteria couple the oxidation of NH_4^+ with
31 transfer of electrons to carbon-based insoluble extracellular electron acceptors such as graphene
32 oxide (GO) or electrodes poised at a certain potential in microbial electrolysis cells (MECs).
33 Metagenomics, fluorescence *in-situ* hybridization and electrochemical analyses coupled with
34 MEC performance confirmed that anammox electrode biofilms were responsible for current
35 generation through EET-dependent oxidation of NH_4^+ . ^{15}N -labelling experiments revealed the
36 molecular mechanism of the EET-dependent anammox process. NH_4^+ was oxidized to N_2 via
37 hydroxylamine (NH_2OH) as intermediate when electrode was the terminal electron acceptor.
38 Comparative transcriptomics analysis supported isotope labelling experiments and revealed an
39 alternative pathway for NH_4^+ oxidation coupled to EET when electrode is used as electron acceptor
40 compared to NO_2^- as electron acceptor. To our knowledge, our results provide the first
41 experimental evidence that marine and freshwater anammox bacteria can couple NH_4^+ oxidation
42 with EET, which is a significant finding, and challenges our perception of a key player of anaerobic
43 oxidation of NH_4^+ in natural environments and engineered systems.

44 **Main text:** Anaerobic ammonium oxidation (anammox) by anammox bacteria contributes up to
45 50% of N₂ emitted into Earth's atmosphere from the oceans (1, 2). Also, anammox bacteria has
46 been extensively investigated for energy-efficient removal of NH₄⁺ from wastewater (3). Initially,
47 anammox bacteria were assumed to be restricted to NH₄⁺ as electron donor and NO₂⁻ or NO as
48 electron acceptor (4, 5). More than a decade ago, preliminary experiments showed that *Kuenenia*
49 *stuttgartiensis* and *Scalindua* could couple the oxidation of formate to the reduction of insoluble
50 extracellular electron acceptors such as Fe(III) or Mn(IV) oxides (6, 7). However, the mechanism
51 of how anammox bacteria reduce insoluble extracellular electron acceptors has remained
52 unexplored to date. Also, growth or electrochemical activity was not quantified in these
53 experiments. Further, these experiments could not discriminate between Fe(III) oxide reduction
54 for nutritional acquisition (i.e., via siderophores) versus respiration through extracellular electron
55 transfer (EET) (8). Therefore, with these preliminary experiments it could not be determined if
56 anammox bacteria have EET capability or not.

57 Although preliminary work showed that *K. stuttgartiensis* could not reduce Mn(IV) or Fe(III)
58 with NH₄⁺ as electron donor (6), the possibility of anammox bacteria to oxidize NH₄⁺ coupled to
59 EET to other insoluble extracellular electron acceptors cannot be ruled out. In fact EET (and set
60 of genes involved with EET) is not uniformly applied to all insoluble extracellular electron
61 acceptors; some electroactive bacteria are not able to transfer electrons to carbon-based insoluble
62 extracellular electron acceptors such as electrodes in bioelectrochemical systems but could reduce
63 metal oxides and vice versa (9). It is known for more than two decades that carbon-based high-
64 molecular-weight organic materials, which are ubiquitous in terrestrial and aquatic environments
65 and that are not involved in microbial metabolism (i.e., humic substances) can be used as external
66 electron acceptor for the anaerobic oxidation of compounds (10). Also, it has been reported that

67 anaerobic NH_4^+ oxidation linked to microbial reduction of natural organic matter fuels nitrogen
68 loss in marine sediments (11). A literature survey of more than 100 EET-capable species indicated
69 that there are many ecological niches for microorganisms able to perform EET (12). This resonates
70 with a recent finding where *Listeria monocytogenes*, a host-associated pathogen and fermentative
71 Gram-positive bacterium, was able to respire through a flavin-based EET process and behaved as
72 an electrochemically active microorganism (i.e., able to transfer electrons from oxidized fuel
73 (substrate) to a working electrode via EET process) (13). Further it was reported that anammox
74 bacteria seem to have homologs of *Geobacter* and *Shewanella* multi-heme cytochromes that are
75 responsible for EET (14). These observations stimulated us to investigate whether anammox
76 bacteria can couple NH_4^+ oxidation with EET to carbon-based insoluble extracellular electron
77 acceptor and can behave as electrochemically active bacteria.

78

79 **Ammonium oxidation coupled with EET**

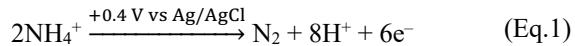
80 To evaluate if anammox bacteria possess EET capability, we first tested whether enriched
81 cultures of three phylogenetically and physiologically distant anammox species can couple the
82 oxidation of NH_4^+ with the reduction of insoluble extracellular electron acceptor. Cultures of *Ca.*
83 *Brocadia* (freshwater anammox species) and *Ca. Scalindua* (marine anammox species) were
84 enriched and grown as planktonic cells in membrane bioreactors (Fig. S1A) (15). Fluorescence in
85 situ hybridization (FISH) showed that the anammox bacteria constituted >95% of the bioreactor's
86 community (Fig. S1B-G). Also, a previously enriched *K. stuttgartiensis* (freshwater anammox
87 species) culture was used (4). The anammox cells were incubated anoxically for 216 hours in the
88 presence of $^{15}\text{NH}_4^+$ (4 mM) and graphene oxide (GO) as a proxy for insoluble electron acceptor.
89 No NO_2^- or NO_3^- were added to the incubations. GO particles are bigger than bacterial cells and

90 cannot be internalized, and thus GO can only be reduced by EET (16). Indeed, GO was reduced
91 by anammox bacteria as shown by the formation of suspended reduced GO (rGO), which is black
92 in color and insoluble (Fig. 1A) (16). In contrast, abiotic controls did not form insoluble black
93 precipitates. Reduction of GO to rGO by anammox bacteria was further confirmed by Raman
94 spectroscopy, where the formation of the characteristic 2D and D+D' peaks of rGO (17) were
95 detected in the vials with anammox cells (Fig. 1B), whereas no peaks were detected in the abiotic
96 control. Further, isotope analysis of the produced N₂ gas showed that anammox cells were capable
97 of ³⁰N₂ formation (Fig. 1C). In contrast, ²⁹N₂ production was not significant in any of the tested
98 anammox species or controls, suggesting that unlabeled NO₂⁻ or NO₃⁻ were not involved. The
99 production of ³⁰N₂ indicated that the anammox cultures use a different mechanism for NH₄⁺
100 oxidation in the presence of an insoluble extracellular electron acceptor (further explained below).
101 Gas production was not observed in the abiotic control (Fig. 1C). To determine if anammox
102 bacteria are still dominant after incubation with GO, we extracted and sequenced total DNA from
103 the *Brocadia* and *Scalindua* vials at the end of the experiment. Differential coverage showed that
104 the metagenomes were dominated by anammox bacteria (Fig. S2A and C). Also, no known EET-
105 capable bacteria were detected in the metagenomes. Taken together, these results support that
106 anammox bacteria have EET capability.

107

108 **Electroactivity of anammox bacteria**

109 Electrochemical techniques provide a powerful tool to evaluate EET, where electrodes
110 substitute for the insoluble minerals as the terminal electron acceptor (13). Compared to metal
111 oxides, the use of electrodes as the terminal electron acceptor allow us to quantify the number of
112 externalized electrons per mol of NH₄⁺ oxidized. Also, since the electrode is only used for bacterial


113 respiration, then we can better assess EET activity compared to metal oxides, where we cannot
114 differentiate between metal oxide reduction for nutritional acquisition from respiration through
115 EET activity. Therefore, we tested if anammox bacteria interact with electrodes via EET and use
116 them as the sole electron acceptor in MEC. Single-chamber MEC operated at eight different set
117 potentials (from -0.3 to 0.4 V vs Ag/AgCl) using multiple working electrodes (Fig. S1H) were
118 initially operated under abiotic conditions with the addition of NH_4^+ only. No current and NH_4^+
119 removal were observed in any of the abiotic controls. Subsequently, the *Ca. Brocadia* culture was
120 inoculated into the MEC and operated under optimal conditions for anammox (i.e., addition of
121 NH_4^+ and NO_2^-). Under this scenario, NH_4^+ and NO_2^- were completely removed from the medium
122 without any current generation (Fig. 2A). Stoichiometric ratios of consumed NO_2^- to consumed
123 NH_4^+ ($\Delta\text{NO}_2^-/\Delta\text{NH}_4^+$) and produced NO_3^- to consumed NH_4^+ ($\Delta\text{NO}_3^-/\Delta\text{NH}_4^+$) were in the range
124 of 1.0–1.3 and 0.12–0.18, respectively, which are close to the theoretical ratios of the anammox
125 reaction (18). These ratios indicated that anammox bacteria were responsible for NH_4^+ removal in
126 the MEC. Subsequently, NO_2^- was gradually decreased to 0 mM leaving the electrodes as the sole
127 electron acceptor. When the exogenous electron acceptor (i.e., NO_2^-) was completely removed
128 from the feed, anammox cells began to form a biofilm on the surface of the electrodes (Fig. S1I)
129 and current generation coupled to NH_4^+ oxidation was observed in the absence of NO_2^- (Fig. 2A).
130 Further, NO_2^- and NO_3^- were below the detection limit at all time points when the working
131 electrode was used as the sole electron acceptor. The magnitude of current generation was
132 proportional to the NH_4^+ concentration (Fig. 2A) and maximum current density was observed at
133 set potential of 0.4 V vs Ag/AgCl. There was no visible biofilm growth and current generation at
134 set potentials ≤ 0 V vs Ag/AgCl. To confirm that the electrode-dependent anaerobic oxidation of
135 NH_4^+ was catalyzed by anammox bacteria, additional control experiments were conducted in

136 chronological order in the MEC. The presence of ATU, a compound that selectively inhibits
137 aerobic NH₃ oxidation by ammonia monooxygenase (AMO) in ammonia oxidizing bacteria
138 (AOB), ammonia oxidizing archaea (AOA) and Comammox (19), did not result in an inhibitory
139 effect on NH₄⁺ removal and current generation (Fig. 2A). NH₄⁺ was not oxidized when the MEC
140 was operated in open circuit voltage mode (OCV; electrode is not used as electron acceptor) (Fig.
141 2B), strongly suggesting an electrode-dependent NH₄⁺ oxidation and that trace amounts of O₂ if
142 present, are not responsible for NH₄⁺ oxidation. Addition of NO₂⁻ resulted in an immediate drop
143 in current density with simultaneous removal of NH₄⁺ and NO₂⁻ and formation of NO₃⁻, in the
144 expected stoichiometry (18) (Fig. 2C). Repeated addition of NO₂⁻ resulted in the complete
145 abolishment of current generation, indicating that anammox bacteria were solely responsible for
146 current production in the absence of an exogenous electron acceptor. Absence of NH₄⁺ from the
147 feed resulted in no current generation, and current was immediately resumed when NH₄⁺ was
148 added again to the feed (Fig. 2D), further supporting the role of anammox bacteria in current
149 generation. These results also indicate that current generation was not catalyzed by
150 electrochemically active heterotrophs, which might utilize organic carbon generated from
151 endogenous decay processes. Autoclaving the MECs immediately stopped current generation and
152 NH₄⁺ removal (Fig. 2D) indicating that current generation was due a biotic reaction. Similar results
153 were also obtained with MECs operated with *Ca. Scalindua* or *K. stuttgartiensis* cultures (Fig. S3A
154 and B), suggesting that they are also electrochemically active and can oxidize NH₄⁺ using working
155 electrodes as the electron acceptor. Taken together these results provide strong evidence for
156 electrode-dependent anaerobic oxidation of NH₄⁺ by phylogenetically distant anammox bacteria.

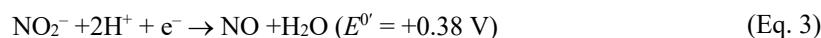
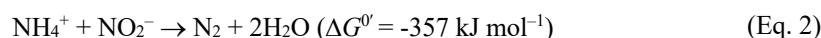
157 Cyclic voltammetry (CV) was used to correlate between current density and biofilm age, in
158 cell-free filtrates (filtered reactor solution) and the developed biofilms at different time intervals.

159 The anodes exhibited similar redox peaks with midpoint potentials ($E_{1/2}$) of ~200 mV vs Standard
160 Hydrogen Electrode (SHE) for all three anammox species (Fig. 2E and Fig. S3C and D). No redox
161 peaks were observed for the cell-free solution, indicating that soluble mediators are not involved
162 in EET. Also, addition of exogenous riboflavin, which is a common soluble mediator involved in
163 flavin-based EET process in gram-positive and gram-negative bacteria (13, 20), did not invoke
164 changes in current density. Thus, the CV analysis corroborated that the electrode biofilms were
165 responsible for current generation through direct EET mechanism.

166 The mole of electrons transferred to the electrode per mole of NH_4^+ oxidized to N_2 (Table S1)
167 was stoichiometrically close to equation 1 (Eq. 1). Also, electron balance calculations showed that
168 coulombic efficiency (CE) was >80% for all NH_4^+ concentrations and anammox cultures tested in
169 the experiments with electrodes as the sole electron acceptor (Table S1).

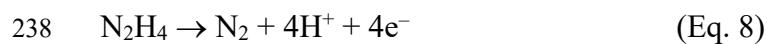
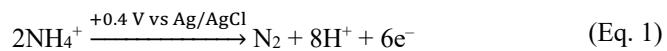
170 To determine if cathodic reaction (i.e., hydrogen evolution reaction) has an effect on electrode-
171 dependent anaerobic NH_4^+ oxidation, additional experiments with *Ca. Brocadia* were conducted
172 by operating single and double-chamber MECs in parallel (at 0.4 V vs Ag/AgCl applied potential).
173 However, there was no significant difference in NH_4^+ oxidation and current production between
174 the different reactor configurations (Fig. S4), suggesting no influence of cathodic reaction (i.e., H_2
175 recycling) on the process. This was further supported by electron balance and CE calculations
176 (Table S1). In addition, NH_4^+ oxidation and current production were not affected by the addition
177 of Penicillin G (Fig. S4), a compound that has inhibitory effects in some heterotrophs but it does
178 not have any observable short-term effects on anammox activity (21, 22). This further supports
179 that current generation was not catalyzed by electrochemically active heterotrophs. Similar results
180 were obtained with *Ca. Scalindua* and *K. stuttgartiensis* (data not shown).

181 Scanning electron microscopy (SEM) confirmed biofilm formation on the electrodes' surface
182 for the three tested anammox bacteria (Fig. S5). The biofilm cell density of MECs inoculated with
183 *Ca. Brocadia* was higher at 0.4 V (Fig. S5E and F) compared to other set potentials, and no biofilm
184 was observed at set potentials ≤ 0 V vs Ag/AgCl (Fig. S5A). These observations correlate very
185 well with the obtained current profiles at different set potentials (Fig. 2A). Cell appendages
186 between cells and the electrode were not observed. Cell appearance was very similar to reported
187 SEM images of anammox cells (21).



188 FISH with anammox-specific probes (Fig. 2F) and metagenomics of DNA extracted from the
189 biofilm on the working electrodes of MECs showed that anammox were the most abundant
190 bacteria in the biofilm community (Fig. S2B and D). Also, no other known electrochemically
191 active bacteria were detected in the metagenomes. Similarly, AOB were not detected which further
192 supports the lack of ATU inhibition on NH_4^+ removal and current generation. By differential
193 coverage and sequence composition-based binning (23) it was possible to extract high-quality
194 genomes of *Brocadia* and *Scalindua* species from the electrodes (Fig. S2B and 2D). Based on the
195 differences in the genome content, average amino acid identity (AAI) $\leq 95\%$ compared to reported
196 anammox genomes to date, and evolutionary divergence in phylogenomics analysis (Fig. S6) we
197 propose a tentative name for *Ca. Brocadia* present in our MECs: *Candidatus Brocadia electricigens*
198 (etymology: L. adj. *electricigens*; electricity generator).

199

200 **Molecular mechanism of EET-dependent anammox process**



201 To better understand how NH_4^+ is converted to N_2 by anammox bacteria in electrode-
202 dependent anammox process, isotope labelling experiments were carried out. Complete oxidation
203 of NH_4^+ to N_2 was demonstrated by incubating the MECs with $^{15}\text{NH}_4^+$ (4 mM) and $^{14}\text{NO}_2^-$ (1 mM).

204 Consistent with expected anammox activity, anammox bacteria consumed first the $^{14}\text{NO}_2^-$
205 resulting in the accumulation of $^{29}\text{N}_2$ in the headspace of the MECs. Interestingly, after depletion
206 of available $^{14}\text{NO}_2^-$, a steady increase of $^{30}\text{N}_2$ was observed with slower activity rates compared to
207 the typical anammox process (Fig 3A, Table S2). These results confirm the GO experiments where
208 $^{30}\text{N}_2$ was detected when the three anammox species were incubated with $^{15}\text{NH}_4^+$ (Fig. 1C). Gas
209 production was not observed in the abiotic control incubations. In the current model of the
210 anammox reaction (Eq. 2) (4), NH_4^+ is converted to N_2 with NO_2^- as terminal electron acceptor.
211 This is a process in which first, NO_2^- is reduced to nitric oxide (NO, Eq. 3) and subsequently
212 condensed with ammonia (NH_3) to produce hydrazine (N_2H_4 , Eq. 4), which is finally oxidized to
213 N_2 (Eq. 5). The four low-potential electrons released during N_2H_4 oxidation fuel the reduction
214 reactions (Eq. 3 and 4), and are proposed to build up the membrane potential and establish a proton-
215 motive force across the anammoxosome membrane driving the ATP synthesis.

216 In the MEC experiments with *Ca. Brocadia* using electrodes as sole electron acceptor we
217 observed the production of NH_2OH followed by a transient accumulation of N_2H_4 (Fig. S7). No
218 inhibitory effect was observed in incubations with 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-
219 oxyl-3-oxide (PTIO) (Fig. S8), an NO scavenger (4). Therefore, we hypothesized that NH_2OH ,
220 and not NO, is an intermediate of the electrode-dependent anammox process. To investigate
221 whether NH_2OH could be produced directly from NH_4^+ in electrode-dependent anammox process,
222 MECs were incubated with $^{15}\text{NH}_4^+$ (4 mM) and $^{14}\text{NH}_2\text{OH}$ (2 mM). The isotopic composition of
223 the reactors revealed that unlabeled $^{14}\text{NH}_2\text{OH}$ was used as a pool substrate and we detected newly

224 synthetized $^{15}\text{NH}_2\text{OH}$ from $^{15}\text{NH}_4^+$ oxidation (Fig. 3B). It is known that NO and NH_2OH , the
225 known intermediates in the anammox process, are strong competitive inhibitors of the N_2H_4
226 oxidation activity by the hydrazine dehydrogenase (HDH) (24). However, oxidation of N_2H_4 (Fig.
227 S7) and detection of $^{30}\text{N}_2$ (Fig. 3A) in our experiments, suggest that even though there might be
228 some inhibition caused by the NH_2OH , the HDH is still active. Also, comparative transcriptomics
229 analysis of the electrode's biofilm revealed that the HDH was one of the most upregulated genes
230 when the electrode was used as the electron acceptor instead of NO_2^- (Supplementary text).
231 Incubations with $^{15}\text{NH}_4^+$ (4 mM) in 10% deuterium oxide (D_2O) showed accumulation of
232 $^{15}\text{NH}_2\text{OD}$, which suggests that in order to oxidize the NH_4^+ to NH_2OH , the different anammox
233 bacteria use OH^- ions generated from water (Fig. 3C). Abiotic incubations did not show any
234 production of NH_2OH or NH_2OD . Based on these results we propose the following reactions for
235 electrode-dependent anammox process:

239 The complete NH_4^+ oxidation to N_2 coupled with reproducible current production can only be
240 explained by electron transfer from the anammoxosome compartment (energetic central of
241 anammox cells and where the NH_4^+ is oxidized) to the electrode. In order to compare the pathway
242 of NH_4^+ oxidation and electron flow through compartments (anammoxosome) and membranes
243 (cytoplasm and periplasm) in EET-dependent anammox process (electrode poised at 0.4 V vs
244 Ag/AgCl as electron acceptor) versus typical anammox process (i.e., nitrite used as electron
245 acceptor), we conducted a genome-centric comparative transcriptomics analysis (Supplementary

246 text). In the anammoxosome compartment, the genes encoding for ammonium transporter (AmtB),
247 a hydroxylamine oxidoreductase (HAO) and HDH were the most upregulated in response to the
248 electrode as the electron acceptor (Table S8). This observation agrees with the NH_4^+ removal and
249 oxidation to N_2 observed in the MECs and isotope labeling experiments (Fig. 2A, Fig 3A). The
250 genes encoding for NO and NO_2^- reductases (*nir* genes) and their redox couples were significantly
251 downregulated when electrode was used as the electron acceptor (Table S8). This is expected as
252 NO_2^- was not added in the electrode-dependent anammox process. Also, this supports the
253 hypothesis that NO is not an intermediate of the electrode-dependent anammox process and that
254 there was no effect of PTIO when NO_2^- was replaced by the electrode as electron acceptor (Fig.
255 S8). Isotope labelling experiments revealed that NH_2OH was the intermediate in EET-dependent
256 anammox process and NO was not detected throughout the experiment (Fig. 3B), suggesting that
257 the production of NH_2OH was not through NO reduction. This was further supported by the
258 observation that the electron transfer module (ETM) and its redox partner whose function is to
259 provide electrons to the hydrazine synthase (H2S) for NO reduction to NH_2OH were
260 downregulated (Table S6). Interestingly, our analysis revealed that the electrons released from the
261 N_2H_4 oxidation (Eq. 8) are transferred to the electrode via an EET pathway that is analog to the
262 ones present in metal-reducing organisms such as *Geobacter* spp. and *Shewanella* spp. (Fig. S10,
263 Supplementary text). Highly expressed cytoplasmic electron carriers such as NADH and
264 ferredoxins can be oxidized at the cytoplasmic membrane by NADH dehydrogenase (NADH-DH)
265 and/or formate dehydrogenase (FDH) to directly reduce the menaquinone pool inside the
266 cytoplasmic membrane (Supplementary materials, Table S3). An upregulated protein similar to
267 CymA (tetraheme c-type cytochrome) in *Shewanella* would then oxidize the reduced
268 menaquinones, delivering electrons to highly upregulated periplasmic cytochromes shuttles and to

269 a porin-cytochrome complex that spans the outer membrane (Fig. S10, Table S3, Supplementary
270 materials). From this complex, electrons could be directly accepted by the insoluble extracellular
271 electron acceptor. Taken together, the results from the comparative transcriptomics analysis
272 suggest an alternative pathway for NH_4^+ oxidation coupled to EET when working electrode is used
273 as electron acceptor compared to NO_2^- as electron acceptor.

274 In conclusion, our study provides the first experimental evidence that phylogenetically and
275 physiologically distant anammox bacteria have EET capability and can couple the oxidation of
276 NH_4^+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors. The
277 prevalence of EET-based respiration has been demonstrated using bioelectrochemical systems for
278 both Gram-positive and Gram-negative bacteria (13, 25). However, compared to reported EET-
279 capable bacteria, to externalize electrons anammox bacteria have to overcome an additional
280 electron transfer barrier: the anammoxosome compartment. Electrochemically active bacteria are
281 typically found in environments devoid of oxygen or other soluble electron acceptors (25). Our
282 results show a novel process of anaerobic ammonium oxidation coupled to EET-based respiration
283 of carbon-based insoluble extracellular electron acceptor by both freshwater and marine anammox
284 bacteria and suggest that this process may also occur in natural anoxic environments where soluble
285 electron acceptors are not available. These results offer a new perspective of a key player involved
286 in the biogeochemical nitrogen cycle. Therefore, a better understanding of EET processes
287 contributes to our understanding of the cycles that occur on our planet (25).

288

289 **References:**

290 1. A. H. Devol, Denitrification, Anammox, and N₂ Production in Marine Sediments. *Ann.*
291 *Rev. Mar. Sci.* **7**, 403–423 (2015).

292 2. P. Lam, M. M. M. Kuypers, Microbial Nitrogen Cycling Processes in Oxygen Minimum
293 Zones. *Ann. Rev. Mar. Sci.* **3**, 317–345 (2010).

294 3. B. Kartal, J. G. Kuenen, M. C. M. van Loosdrecht, Sewage Treatment with Anammox.
295 *Science (80-.)*. **328**, 702–703 (2010).

296 4. B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M.
297 Op den Camp, H. R. Harhangi, E. M. Janssen-Megens, K.-J. Francoijis, H. G.
298 Stunnenberg, J. T. Keltjens, M. S. M. Jetten, M. Strous, Molecular mechanism of
299 anaerobic ammonium oxidation. *Nature*. **479**, 127–130 (2011).

300 5. Z. Hu, H. J. C. T. Wessels, T. van Aken, M. S. M. Jetten, B. Kartal, Nitric oxide-dependent
301 anaerobic ammonium oxidation. *Nat. Commun.* **10**, 1244 (2019).

302 6. M. Strous, E. Pelletier, S. Mangenot, T. Rattei, A. Lehner, M. W. Taylor, N. Fonknechten,
303 M. Horn, H. Daims, D. Bartol-mavel, P. Wincker, C. Schenowitz-truong, C. Me, A.
304 Collingro, D. Vallenet, B. Snel, B. E. Dutilh, H. J. M. O. Den Camp, C. Van Der Drift, I.
305 Cirpus, K. T. Van De Pas-schoonen, H. R. Harhangi, L. Van Niftrik, M. Schmid, J.
306 Keltjens, J. Van De Vossenberg, B. Kartal, H. Meier, D. Frishman, M. A. Huynen, H.
307 Mewes, J. Weissenbach, M. S. M. Jetten, M. Wagner, D. Le Paslier, Deciphering the
308 evolution and metabolism of an anammox bacterium from a community genome. **440**,
309 790–794 (2006).

310 7. J. Van De Vossenberg, J. E. Rattray, W. Geerts, B. Kartal, L. Van Niftrik, E. G. Van
311 Donselaar, J. S. S. Damsté, M. Strous, M. S. M. Jetten, Enrichment and characterization of
312 marine anammox bacteria associated with global nitrogen gas production. **10**, 3120–3129
313 (2008).

314 8. F. Jiménez Otero, C. H. Chan, D. R. Bond, Identification of Different Putative Outer
315 Membrane Electron Conduits Necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide,
316 or Electrode Reduction by *Geobacter sulfurreducens*. *J. Bacteriol.* **200**, e00347-18 (2018).

317 9. K. Rabaey, L. Angenent, U. Schröder, J. Keller, Bioelectrochemical Systems: From
318 Extracellular Electron Transfer to Biotechnological Application (2009), p. Chapter 5, ,
319 doi:10.2166/9781780401621.

320 10. D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, J. C. Woodward, Humic
321 substances as electron acceptors for microbial respiration. *Nature*. **382**, 445–448 (1996).

322 11. E. E. Rios-Del Toro, E. I. Valenzuela, J. E. Ramírez, N. E. López-Lozano, F. J. Cervantes,
323 Anaerobic Ammonium Oxidation Linked to Microbial Reduction of Natural Organic
324 Matter in Marine Sediments. *Environ. Sci. Technol. Lett.* **5**, 571–577 (2018).

325 12. C. Koch, F. Harnisch, Is there a Specific Ecological Niche for Electroactive
326 Microorganisms? *ChemElectroChem.* **3**, 1282–1295 (2016).

327 13. S. H. Light, L. Su, R. Rivera-Lugo, J. A. Cornejo, A. Louie, A. T. Iavarone, C. M. Ajo-
328 Franklin, D. A. Portnoy, A flavin-based extracellular electron transfer mechanism in
329 diverse Gram-positive bacteria. *Nature*, 1 (2018).

330 14. C. Ferousi, S. Lindhoud, F. Baymann, B. Kartal, M. S. M. Jetten, J. Reimann, Iron
331 assimilation and utilization in anaerobic ammonium oxidizing bacteria. *Curr. Opin. Chem.*
332 *Biol.* **37**, 129–136 (2017).

333 15. M. Oshiki, T. Awata, T. Kindaichi, H. Satoh, S. Okabe, Cultivation of Planktonic
334 Anaerobic Ammonium Oxidation (Anammox) Bacteria Using Membrane Bioreactor.
335 *Microbes Environ.* **28**, 436–443 (2013).

336 16. E. C. Salas, Z. Sun, A. Lüttege, J. M. Tour, Reduction of Graphene Oxide via Bacterial
337 Respiration. *ACS Nano.* **4**, 4852–4856 (2010).

338 17. S. Kalathil, K. P. Katuri, A. S. Alazmi, S. Pedireddy, N. Kornienko, P. M. F. J. Costa, P.
339 E. Saikaly, Bioinspired Synthesis of Reduced Graphene Oxide-Wrapped Geobacter
340 sulfurreducens as a Hybrid Electrocatalyst for Efficient Oxygen Evolution Reaction.
341 *Chem. Mater.* **31**, 3686–3693 (2019).

342 18. T. Lotti, R. Kleerebezem, C. Lubello, M. C. M. van Loosdrecht, Physiological and kinetic
343 characterization of a suspended cell anammox culture. *Water Res.* **60**, 1–14 (2014).

344 19. M. A. H. J. Van Kessel, D. R. Speth, M. Albertsen, P. H. Nielsen, H. J. M. O. Den Camp,
345 B. Kartal, M. S. M. Jetten, S. Lücker, Complete nitrification by a single microorganism.
346 *Nature.* **528**, 555–559 (2015).

347 20. E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, D. R. Bond,
348 Shewanella secretes flavins that mediate extracellular electron transfer. *PNAS.* **105**, 6–11
349 (2008).

350 21. M. Oshiki, S. Ishii, K. Yoshida, N. Fujii, M. Ishiguro, H. Satoh, S. Okabe, Nitrate-
351 Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox)
352 Bacteria. *Appl. Environ. Microbiol.* **79**, 4087–4093 (2013).

353 22. Z. Hu, T. van Alen, M. S. M. Jetten, B. Kartal, Lysozyme and penicillin inhibit the growth
354 of anaerobic ammonium-oxidizing planctomycetes. *Appl. Environ. Microbiol.* **79**, 7763–9
355 (2013).

356 23. M. Albertsen, P. Hugenholtz, A. Skarszewski, K. L. Nielsen, G. W. Tyson, P. H. Nielsen,
357 Genome sequences of rare, uncultured bacteria obtained by differential coverage binning

358 of multiple metagenomes. *Nat. Biotechnol.* **31**, 533–538 (2013).

359 24. W. J. Maalcke, J. Reimann, S. De Vries, J. N. Butt, A. Dietl, N. Kip, U. Mersdorf, T. R.
360 M. Barends, M. S. M. Jetten, J. T. Keltjens, B. Kartal, Characterization of anammox
361 hydrazine dehydrogenase, a Key -producing enzyme in the global nitrogen cycle. *J. Biol.
362 Chem.* **291**, 17077–17092 (2016).

363 25. A. Kumar, L. H.-H. Hsu, P. Kavanagh, F. Barrière, P. N. L. Lens, L. Lapinsonnière, J. H.
364 Lienhard V, U. Schröder, X. Jiang, D. Leech, The ins and outs of microorganism–
365 electrode electron transfer reactions. *Nat. Rev. Chem.* **1**, 0024 (2017).

366 25. A. A. van de Graaf, A. Mulder, P. De Bruijn, M. S. Jetten, L. A. Robertson, J. G. Kuenen,
367 Anaerobic oxidation of ammonium is a biologically mediated process. *Appl Env. Microb.*
368 **61**, 1246–1251 (1995).

369 26. M. Ali, M. Oshiki, T. Awata, K. Isobe, Z. Kimura, H. Yoshikawa, D. Hira, T. Kindaichi,
370 H. Satoh, T. Fujii, S. Okabe, Physiological characterization of anaerobic ammonium
371 oxidizing bacterium “CandidatusJettenia caeni.” *Environ. Microbiol.* **17**, 2172–2189
372 (2015).

373 27. S. X. Peng, M. J. Strojnowski, J. K. Hu, B. J. Smith, T. H. Eichhold, K. R. Wehmeyer, S.
374 Pikul, N. G. Almstead, Gas chromatographic-mass spectrometric analysis of
375 hydroxylamine for monitoring the metabolic hydrolysis of metalloprotease inhibitors in rat
376 and human liver microsomes. *J. Chromatogr. B Biomed. Sci. Appl.* **724**, 181–187 (1999).

377 28. A. D. and E.W., Baird, R.B., Eaton, L. S. (eds) Clesceri, *American Public Health
378 Association, American Water Works Association and Water Environment Federation
379 (2012) Standard Methods for the Examination of Water and Wastewater.* (American

380 Public Health Association, New York, ed. 22th, 2012).

381 29. M. Oshiki, M. Ali, K. Shinyako-hata, H. Satoh, S. Okabe, Hydroxylamine-dependent
382 Anaerobic Ammonium Oxidation (Anammox) by “Candidatus Brocadia sinica”. *Env.*
383 *Microbiol.* **18**, 3133–3143 (2016).

384 30. D. S. Frear, R. C. Burrell, Spectrophotometric Method for Determining Hydroxylamine
385 Reductase Activity in Higher Plants. *Anal. Chem.* **27**, 1664–1665 (1955).

386 31. G. W. Watt, J. D. Chrisp, Spectrophotometric Method for Determination of Hydrazine.
387 *Anal. Chem.* **24**, 2006–2008 (1952).

388 32. P. H. Nielsen, H. Daims, H. Lemmer, I. Arslan-Alaton, T. Olmez-Hanci, Eds., *FISH*
389 *Handbook for Biological Wastewater Treatment* (IWA Publishing, 2009).

390 33. H. Daims, A. Brühl, R. Amann, K.-H. Schleifer, M. Wagner, The Domain-specific Probe
391 EU338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a
392 more Comprehensive Probe Set. *Syst. Appl. Microbiol.* **22**, 434–444 (1999).

393 34. R. I. Amann, B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, D. A. Stahl, *Appl.*
394 *Environ. Microbiol.*, in press (available at <http://aem.asm.org/content/56/6/1919.abstract>).

395 35. M. Schmid, U. Twachtmann, M. Klein, M. Strous, S. Juretschko, M. Jetten, J. W.
396 Metzger, K.-H. Schleifer, M. Wagner, Molecular Evidence for Genus Level Diversity of
397 Bacteria Capable of Catalyzing Anaerobic Ammonium Oxidation. *Syst. Appl. Microbiol.*
398 **23**, 93–106 (2000).

399 36. M. Schmid, K. Walsh, R. Webb, W. I. Rijpstra, K. van de Pas-Schoonen, M. J.
400 Verbruggen, T. Hill, B. Moffett, J. Fuerst, S. Schouten, J. S. Sinninghe Damsté, J. Harris,
401 P. Shaw, M. Jetten, M. Strous, *Candidatus “Scalindua brodae”*, sp. nov., *Candidatus*

402 “Scalindua wagneri”, sp. nov., Two New Species of Anaerobic Ammonium Oxidizing
403 Bacteria. *Syst. Appl. Microbiol.* **26**, 529–538 (2003).

404 37. H. Daims, Use of Fluorescence In Situ Hybridization and the daime Image Analysis
405 Program for the Cultivation-Independent Quantification of Microorganisms in
406 Environmental and Medical Samples. **4**, 1–8 (2009).

407 38. M. F. Alqahtani, K. P. Katuri, S. Bajracharya, Y. Yu, Z. Lai, P. E. Saikaly, Porous Hollow
408 Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to
409 Methane through Microbial Electrosynthesis. *Adv. Funct. Mater.* **28**, 1–8 (2018).

410 39. P. Walther, A. Ziegler, Freeze substitution of high-pressure frozen samples : the visibility
411 of biological membranes is improved when the substitution. *J. Microsc.* **208**, 3–10 (2002).

412 40. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads.
413 *EMBnet.journal.* **17**, 10–12 (2011).

414 41. A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.
415 Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotnik, N.
416 Vyahhi, G. Tesler, M. a. Alekseyev, P. a. Pevzner, SPAdes: A New Genome Assembly
417 Algorithm and Its Applications to Single-Cell Sequencing. *J. Comput. Biol.* **19**, 455–477
418 (2012).

419 42. H. Li, Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics.* **34**, 3094–
420 3100 (2018).

421 43. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
422 R. Durbin, The Sequence Alignment/Map format and SAMtools. *Bioinformatics.* **25**,
423 2078–2079 (2009).

424 44. D. Hyatt, G.-L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer, L. J. Hauser, Prodigal:
425 prokaryotic gene recognition and translation initiation site identification. *BMC*
426 *Bioinformatics*. **11**, 119 (2010).

427 45. C. L. Dupont, D. B. Rusch, S. Yooseph, M.-J. Lombardo, R. Alexander Richter, R. Valas,
428 M. Novotny, J. Yee-Greenbaum, J. D. Selengut, D. H. Haft, A. L. Halpern, R. S. Lasken,
429 K. Nealson, R. Friedman, J. Craig Venter, Genomic insights to SAR86, an abundant and
430 uncultivated marine bacterial lineage. *ISME J.* **6**, 1186–1199 (2012).

431 46. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: Molecular
432 Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and
433 Maximum Parsimony Methods. *Mol. Biol. Evol.* **28**, 2731–2739 (2011).

434 47. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment
435 search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

436 48. E. Pruesse, J. Peplies, F. O. Glöckner, SINA: Accurate high-throughput multiple sequence
437 alignment of ribosomal RNA genes. *Bioinformatics*. **28**, 1823–1829 (2012).

438 49. S. M. S. M. Karst, R. H. Kirkegaard, M. Albertsen, Mmgenome: a Toolbox for
439 Reproducible Genome Extraction From Metagenomes. *bioRxiv*, 059121 (2016).

440 50. R Core Team (2018) R: A language and environment for statistical computing R
441 Foundation for Statistical Computing, Vienna, Austria (2018).

442 51. D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson, CheckM :
443 assessing the quality of microbial genomes recovered from isolates , single cells , and
444 metagenomes. *Genome Res.* **25**, 1043–1055 (2015).

445 52. B. J. Campbell, L. Yu, J. F. Heidelberg, D. L. Kirchman, Activity of abundant and rare

446 bacteria in a coastal ocean. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 12776–12781 (2011).

447 53. T. Seemann, Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*. **30**, 2068–
448 2069 (2014).

449 54. A. M. Eren, C. Esen, C. Quince, J. H. Vineis, H. G. Morrison, M. L. Sogin, T. O.
450 Delmont, Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ*,
451 1–29 (2015).

452 55. S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis
453 version 7.0 for bigger datasets. *Mol. Biol. Evol.*, 1–5 (2016).

454 56. R. C. Edgar, Search and clustering orders of magnitude faster than BLAST.
455 *Bioinformatics*. **26**, 2460–2461 (2010).

456 57. B. Bushnell, BBMap: A fast, accurate, splice-aware aligner Ernest Orlando Lawrence
457 Berkeley National Laboratory, Berkeley, CA (US) (2014).

458 58. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F. O.
459 Glöckner, The SILVA ribosomal RNA gene database project: improved data processing
460 and web-based tools. *Nucleic Acids Res.* **41**, D590–D596 (2013).

461 59. M. I. Love, S. Anders, W. Hu-, *Differential analysis of count data – the DESeq2 package*
462 (2016).

463 60. J. Oksanen, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L.
464 Simpson, P. Solymos, M. H. H. Stevens, H. Wagner, The vegan package. *Community*
465 *Ecol. Packag.* **10**, 631–637. (2007).

466 61. J. Juan, A. Armenteros, K. D. Tsirigos, C. K. Sønderby, T. N. Petersen, O. Winther, S.
467 Brunak, G. Von Heijne, H. Nielsen, SignalP 5.0 improves signal peptide predictions using

468 deep neural networks. *Nat. Biotechnol.* **37** (2019), doi:10.1038/s41587-019-0036-z.

469 62. N. Y. Yu, J. R. Wagner, M. R. Laird, G. Melli, S. Rey, R. Lo, P. Dao, S. C. Sahinalp, M.
470 Ester, L. J. Foster, F. S. L. Brinkman, PSORTb 3.0: improved protein subcellular
471 localization prediction with refined localization subcategories and predictive capabilities
472 for all prokaryotes. *Bioinformatics*. **26**, 1608–1615 (2010).

473 63. S. Ishii, S. Suzuki, A. Tenney, K. H. Nealson, O. Bretschger, Comparative
474 metatranscriptomics reveals extracellular electron transfer pathways conferring microbial
475 adaptivity to surface redox potential changes. *ISME J.* (2018), doi:10.1038/s41396-018-
476 0238-2.

477 64. N. M. De Almeida, S. Neumann, R. J. Mesman, C. Ferousi, J. T. Keltjens, M. S. M. Jetten,
478 B. Kartal, L. Van Niftrik, Immunogold Localization of Key Metabolic Enzymes in the
479 Anammoxosome and on the Tubule-Like Structures of *Kuenenia stuttgartiensis*. *J.*
480 *Bacteriol.* **197**, 2432–2441 (2015).

481 65. B. Kartal, N. M. De Almeida, W. J. Maalcke, H. J. M. O. Den Camp, M. S. M. Jetten, J.
482 T. Keltjens, N. M. De Almeida, W. J. Maalcke, H. J. M. Op den Camp, M. S. M. Jetten, J.
483 T. Keltjens, How to make a living from anaerobic ammonium oxidation. *FEMS Microbiol.*
484 *Rev.* **37**, 428–461 (2013).

485 66. N. M. De Almeida, H. J. C. T. Wessels, R. M. De Graaf, C. Ferousi, M. S. M. Jetten, J. T.
486 Keltjens, B. Kartal, Membrane-bound electron transport systems of an anammox
487 bacterium : A complexome analysis. *Biochim. Biophys. Acta - Bioenerg.* **1857**, 1694–1704
488 (2016).

489 67. J. Kostera, J. McGarry, A. A. Pacheco, Enzymatic interconversion of ammonia and nitrite:

490 The right tool for the job. *Biochemistry*. **49**, 8546–8553 (2010).

491 68. Z. He, J. Kan, Y. Wang, Y. Huang, F. Mansfeld, K. H. Nealson, Electricity Production
492 Coupled to Ammonium in a Microbial Fuel Cell. *Environ. Sci. Technol.* **43**, 3391–3397
493 (2009).

494 69. B. Qu, B. Fan, S. Zhu, Y. Zheng, Anaerobic ammonium oxidation with an anode as the
495 electron acceptor. *Environ. Microbiol. Rep.* **6**, 100–105 (2014).

496 70. A. Vilajeliu-Pons, C. Koch, M. D. Balaguer, J. Colprim, F. Harnisch, S. Puig, Microbial
497 electricity driven anoxic ammonium removal. *Water Res.* **130**, 168–175 (2018).

498 71. G. Zhan, D. Li, Y. Tao, X. Zhu, Ammonia as carbon-free substrate for hydrogen
499 production in bioelectrochemical systems. *Int. J. Hydrogen Energy*. **39**, 11854–11859
500 (2014).

501 72. G. Zhan, L. Zhang, D. Li, W. Su, Y. Tao, J. Qian, Autotrophic nitrogen removal from
502 ammonium at low applied voltage in a single-compartment microbial electrolysis cell.
503 *Bioresour. Technol.* **116**, 271–277 (2012).

504 73. G. Zhan, L. Zhang, Y. Tao, Y. Wang, X. Zhu, Anodic ammonia oxidation to nitrogen gas
505 catalyzed by mixed biofilms in bioelectrochemical systems. *Electrochim. Acta*. **135**, 345–
506 350 (2014).

507 74. M. Ruiz-Urigüen, W. Shuai, P. R. Jaffé, Electrode Colonization by the Feamnox
508 Bacterium Acidimicrobiaceae sp. Strain A6. *Appl. Environ. Microbiol.* **84**, e02029-18
509 (2018).

510 75. M. Ruiz-Urigüen, D. Steingart, P. R. Jaffé, Oxidation of ammonium by Feamnox
511 Acidimicrobiaceae sp. A6 in anaerobic microbial electrolysis cells. *Environ. Sci. Water*

512 *Res. Technol.* **5**, 1582–1592 (2019).

513 76. B. Kartal, J. T. Keltjens, Anammox Biochemistry : a Tale of Heme c Proteins. *Trends*
514 *Biochem. Sci.* **41**, 998–1011 (2016).

515 77. A. Dietl, C. Ferousi, W. J. Maalcke, A. Menzel, S. de Vries, J. T. Keltjens, M. S. M.
516 Jetten, B. Kartal, T. R. M. Barends, The inner workings of the hydrazine synthase
517 multiprotein complex. *Nature*. **527**, 394–397 (2015).

518 78. C. Ferousi, S. Lindhoud, F. Baymann, E. R. Hester, J. Reimann1, B. Kartal, Discovery of
519 a functional, contracted heme-binding motif within a multiheme cytochrome. *J. Biol.*
520 *Chem.* (2019), doi:10.1074/jbc.RA119.010568.

521 79. M. Akram, J. Reimann, A. Dietl, A. Menzel, W. Versantvoort, M. S. M. Jetten, T. R. M.
522 Barends, C. X. S. Group, A nitric oxide-binding heterodimeric cytochrome c complex
523 from the anammox bacterium *Kuenenia stuttgartiensis* binds to hydrazine synthase. *J.*
524 *Biol. Chem.* (2019), doi:10.1074/jbc.RA119.008788.

525 80. M. Akram, A. Dietl, U. Mersdorf, S. Prinz, W. Maalcke, J. Keltjens, C. Ferousi, N. M. de
526 Almeida, J. Reimann, B. Kartal, M. S. M. Jetten, K. Parey, T. R. M. Barends, A 192-heme
527 electron transfer network in the hydrazine dehydrogenase complex. *Sci. Adv.* **5**, eaav4310
528 (2019).

529 81. L. Shi, H. Dong, G. Reguera, H. Beyenal, A. Lu, J. Liu, H. Yu, J. K. Fredrickson,
530 Extracellular electron transfer mechanisms between microorganisms and minerals. *Nat.*
531 *Publ. Gr.* **14**, 651–662 (2016).

532 82. J. S. Gescher, C. D. Cordova, A. M. Spormann, Dissimilatory iron reduction in
533 *Escherichia coli*: identification of CymA of *Shewanella oneidensis* and NapC of *E. coli* as

534 ferric reductases. *Mol. Microbiol.* **68**, 706–719 (2008).

535 83. C. R. Beckwith, M. J. Edwards, M. Lawes, L. Shi, J. N. Butt, D. J. Richardson, T. A.
536 Clarke, Characterization of MtoD from Sideroxydans lithotrophicus: A cytochrome c
537 electron shuttle used in lithoautotrophic growth. *Front. Microbiol.* **6**, 332 (2015).

538 84. S. Luo, W. Guo, K. H. Nealson, X. Feng, Z. He, 13C Pathway Analysis for the Role of
539 Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in
540 Microbial Fuel Cells. *Sci. Rep.* **6**, 1–8 (2016).

541 85. A. L. Kane, E. D. Brutinel, H. Joo, R. Maysonet, C. M. Vandrisse, N. J. Kotloski, J. A.
542 Gralnick, Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force
543 and Prevents Growth without an Electron Acceptor. *J. Bacteriol.* **198**, 1337–1346 (2016).

544 86. F. Kracke, I. Vassilev, J. O. Krömer, Microbial electron transport and energy conservation
545 – the foundation for optimizing bioelectrochemical systems. *Front. Microbiol.* **6**, 1–18
546 (2015).

547 87. Y. Liu, Z. Wang, J. Liu, C. Levar, M. J. Edwards, J. T. Babauta, D. W. Kennedy, Z. Shi,
548 H. Beyenal, D. R. Bond, T. A. Clarke, J. N. Butt, D. J. Richardson, K. M. Rosso, J. M.
549 Zachara, J. K. Fredrickson, L. Shi, A trans-outer membrane porin-cytochrome protein
550 complex for extracellular electron transfer by Geobacter sulfurreducens PCA. *Environ.*
551 *Microbiol. Rep.* **6**, 776–785 (2014).

552 88. L. Shi, J. K. Fredrickson, J. M. Zachara, Genomic analyses of bacterial porin-cytochrome
553 gene clusters. *Front. Microbiol.* **5**, 1–10 (2014).

554 89. J. M. Dantas, M. A. Silva, D. Pantoja-uceda, D. L. Turner, M. Bruix, C. A. Salgueiro,
555 Solution structure and dynamics of the outer membrane cytochrome OmcF from

556 Geobacter sulfurreducens. *BBA - Bioenerg.* **1858**, 733–741 (2017).

557 90. T. Ikeda, T. Ochiai, S. Morita, A. Nishiyama, E. Yamada, H. Arai, M. Ishii, Y. Igarashi,
558 Anabolic five subunit-type pyruvate:ferredoxin oxidoreductase from Hydrogenobacter
559 thermophilus TK-6. *Biochem Biophys Res Commun.* **340**, 76–82 (2006).

560 91. R. H. H. Van Den Heuvel, B. Curti, M. A. Vanoni, A. Mattevi, Glutamate synthase : a
561 fascinating pathway from L-glutamine to L-glutamate. *Cell Mol Life Sci.* **61**, 669–681
562 (2004).

563 92. P. Y. Chen, B. Li, C. L. Drennan, J. Sean, P. Y. Chen, B. Li, C. L. Drennan, S. J. Elliott, A
564 Reverse TCA Cycle 2-Oxoacid : Ferredoxin Oxidoreductase that Makes C-C Bonds from
565 CO 2 A Reverse TCA Cycle 2-Oxoacid : Ferredoxin Oxidoreductase that Makes C-C
566 Bonds from CO 2. *Joule*, 1–17 (2018).

567 93. K. A. Weber, L. A. Achenbach, J. D. Coates, Microorganisms pumping iron: anaerobic
568 microbial iron oxidation and reduction. *Nat Rev Microbiol.* **4**, 752–764 (2006).

569 94. N. Noinaj, M. Guillier, T. J. Barnard, S. K. Buchanan, TonB-Dependent Transporters :
570 Regulation , Structure , and Function. *Annu Rev Microbiol.* **64**, 43–60 (2010).

571 95. K. Mosbahi, M. Wojnowska, A. Albalat, D. Walker, Bacterial iron acquisition mediated
572 by outer membrane translocation and cleavage of a host protein. *Proc Natl Acad Sci U S*
573 *A.* **115**, 6840–6845 (2018).

575 Acknowledgments

576 **Funding:** This work was supported by Center Competitive Funding Program (FCC/1/1971-33-01)
577 to Pascal E. Saikaly from King Abdullah University of Science and Technology (KAUST). Mike

578 S. M. Jetten was supported by ERC AG 232937 and 339880 and SIAM OCW/NWO 024002002.

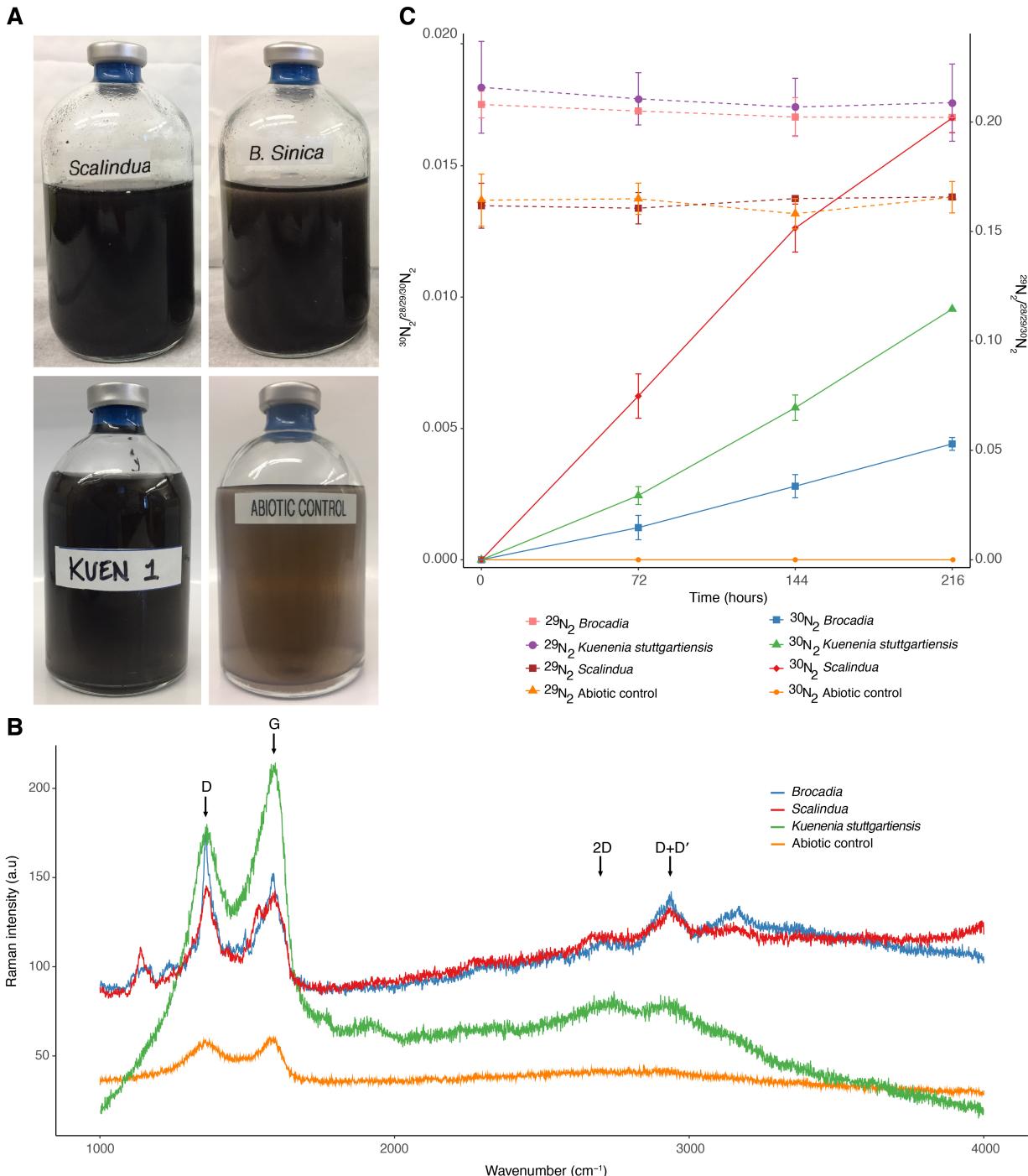
579 **Author contributions:** D.R.S executed the experiments and analyzed the data. M.A enriched
580 planktonic cells *Ca. Brocadia* and *Scalindua* in the MBRs and contributed with the isotope
581 labelling experiments. Bioelectrochemical analysis were done by D.R.S and K.P.K. R.M. and
582 L.V.N designed and executed the scanning electron microscopy analyses. D.R.S performed the
583 metagenomics analysis. D.R.S and M.A. did the phylogenomics analysis. D.R.S and M.S.M.J.
584 designed the Isotopic batch experiments. D.R.S and J.R. did the comparative transcriptomics
585 analysis and developed the molecular model. D.R.S., M.A., K.P.K., M.S.M.J and P.E.S. planned
586 the research. D.R.S wrote the paper with critical feedback from P.E.S., M.S.M.J., L.V.N, J.A.G,
587 M.A., K.P.K., J.R., and R.M. **Competing interests:** Authors declare no competing interests. **Data**

588 **and materials availability:** The genome binning and the comparative transcriptomics analysis are
589 entirely reproducible using the R files available on <https://github.com/DarioRShaw/Electro->
590 anammox. Also, complete Datasets generated in the differential expression analysis are available
591 in the online version of the paper. Raw sequencing reads of Illumina HiSeq of metagenomics and
592 metatranscriptomics data associated with this project can be found at the NCBI under BioProject
593 PRJNA517785. Annotated GenBank files for the anammox genomes extracted in this study can
594 be found under the accession numbers SHMS00000000 and SHMT00000000.

595

596 **Supplementary Materials:**

597 Materials and Methods

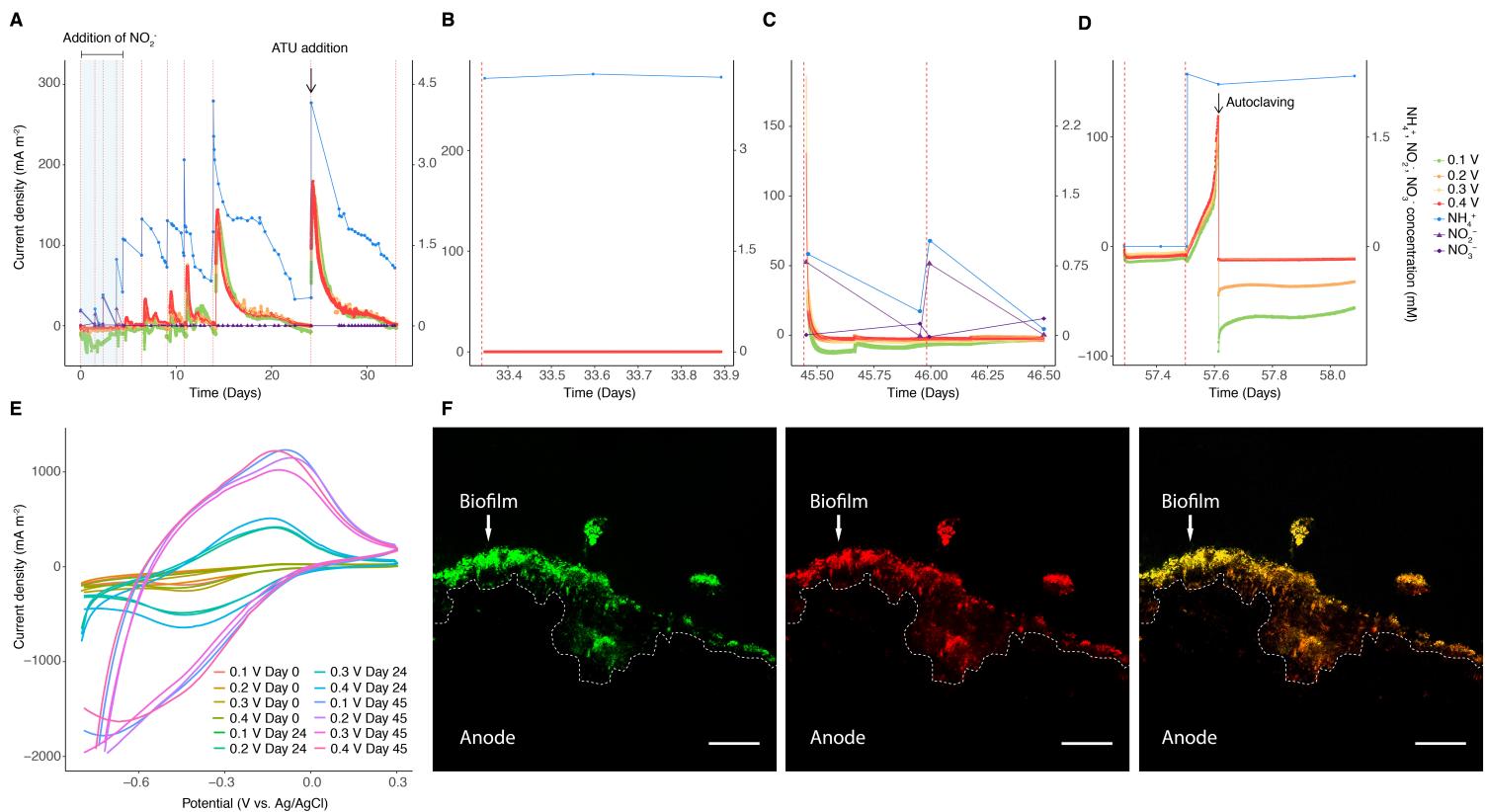

598 Supplementary text

599 Figures S1-S10

600 Tables S1-S13

601

602



603

604 **Figure 1. Different anammox bacteria can perform EET by coupling the oxidation of NH_4^+**
605 **with the reduction of GO.** (A) Photographs of serum vials after 216 hours of incubation with
606 different species of anammox bacteria, $^{15}\text{NH}_4^+$ and GO. The presence of black precipitates
607 indicates the formation of reduced GO (rGO). No obvious change in color was observed in the

608 abiotic control vials after the same period of incubation with $^{15}\text{NH}_4^+$ and GO. **(B)** Raman spectra
609 of the vials after 216 hours of incubation. Peaks in bands of 2D and D + D' located at \sim 2700 and
610 \sim 2900 cm^{-1} , respectively, indicate the formation of rGO. **(C)** $^{30}\text{N}_2$ production by different
611 anammox bacteria from $^{15}\text{NH}_4^+$ and GO as the sole electron acceptor. Anammox cells were
612 incubated with 4 mM $^{15}\text{NH}_4^+$ and GO to a final concentration of 200 mg L^{-1} . There was no $^{29}\text{N}_2$
613 formation throughout the experiment. NO and N_2O were not detected throughout the experiment.
614 Results from triplicate serum vial experiments are represented as mean \pm SD.

615

616 **Figure 2. *Ca. Brocadia* is electrochemically active (i.e., able to release electrons from inside**

617 **the cell to working electrode).** (A to D) Ammonium oxidation coupled to current generation in

618 chronoamperometry experiment conducted in single-chamber multiple working electrode MEC

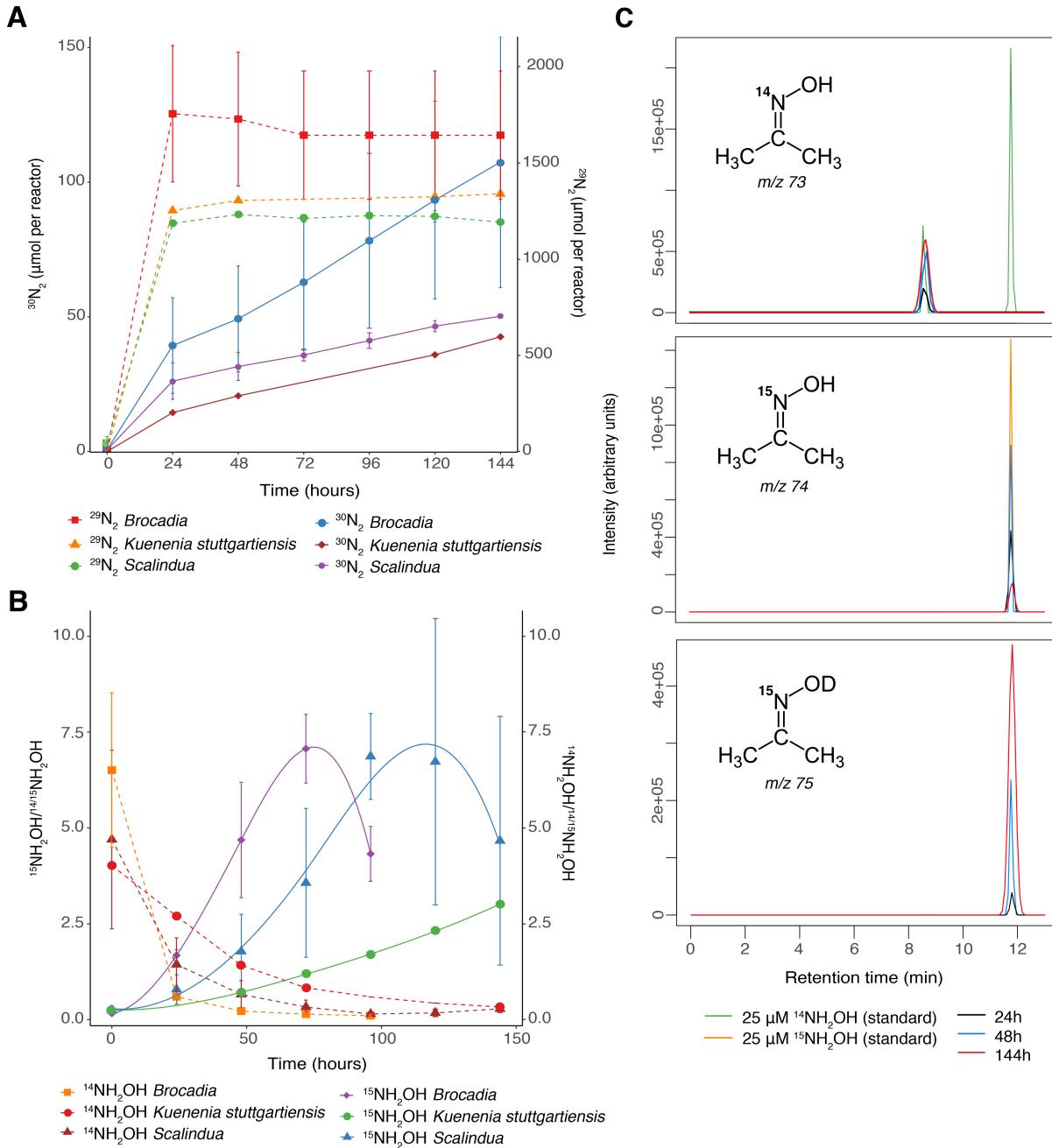
619 inoculated with *Ca. Brocadia*. (A) MEC operated initially under different set potentials with

620 addition of nitrite, which is the preferred electron acceptor for ammonium oxidation by anammox

621 bacteria, followed by operation with working electrodes as sole electron acceptors. The highlighted

622 area in blue refers to the operation of MEC in the presence of nitrite. The black arrow indicates

623 the addition of ATU, a compound that selectively inhibits nitrifiers. (B) MEC operated under open


624 circuit voltage (OCV) mode. (C) MEC operated at different set potentials and with addition of

625 nitrite. (D) MEC operated at different set potentials and without addition of ammonium and then

626 with addition of ammonium followed by autoclaving. The black arrow in (D) indicates autoclaving

627 followed by re-connecting of the MECs. Red dashed lines in **(A)**, **(B)**, **(C)** and **(D)** represent a
628 change of batch. **(E)** Cyclic Voltammogram (1 mV s^{-1}) of anammox biofilm grown on working
629 electrodes (i.e., anodes) operated at different set potentials and growth periods following
630 inoculation in MEC. **(F)** Confocal laser scanning microscopy images of a thin cross-section of the
631 graphite rod anodes (0.4 V vs Ag/AgCl applied potential). The images are showing the *in-situ*
632 spatial organization of all bacteria (green), anammox bacteria (red) and the merged micrograph
633 (yellow). Fluorescence *in-situ* hybridization was performed with EUB I, II and III probes for all
634 bacteria and Alexa647-labeled Amx820 probe for anammox bacteria. The dotted outline indicates
635 the graphite rod anode surface. The white arrow indicates the biofilm. The scale bars represent 20
636 μm in length.

637

638

639 **Figure 3. Molecular mechanism of electrode-dependent anaerobic ammonium oxidation by**
 640 **different anammox bacteria. (A)** Time course of the anaerobic oxidation of $^{15}\text{NH}_4^+$ to $^{29}\text{N}_2$ and
 641 $^{30}\text{N}_2$. The single-chamber MECs with mature biofilm on the working electrodes operated at 0.4 V
 642 vs Ag/AgCl were fed with 4 mM $^{15}\text{NH}_4^+$ and 1 mM $^{14}\text{NO}_2^-$. Under these conditions, anammox
 643 bacteria will consume first the preferred electron acceptor (i.e., $^{14}\text{NO}_2^-$) and form $^{29}\text{N}_2$ and then the

644 remaining $^{15}\text{NH}_4^+$ will be oxidized to the final product ($^{30}\text{N}_2$) through the electrode-dependent
645 anammox process. NO and N_2O were not detected throughout the experiment. Results from
646 triplicate MEC reactors are presented as mean \pm SD. **(B)** Determination of NH_2OH as the
647 intermediate of the electrode-dependent anammox process. The MECs with mature biofilm on the
648 working electrodes operated at 0.4 V vs Ag/AgCl were fed with 4 mM $^{15}\text{NH}_4^+$ and 2 mM $^{14}\text{NH}_2\text{OH}$.
649 Under these conditions, anammox bacteria would preferentially consume the unlabelled pool of
650 hydroxylamine (i.e., $^{14}\text{NH}_2\text{OH}$), leading to the accumulation of $^{15}\text{NH}_2\text{OH}$ due to the oxidation of
651 $^{15}\text{NH}_4^+$. Samples were derivatized using acetone, and isotopic ratios were determined by gas
652 chromatography mass spectrometry (GC/MS). Results from triplicate MEC reactors are presented
653 as mean \pm SD. **(C)** Ion mass chromatograms of hydroxylamine derivatization with acetone. The
654 MECs with mature biofilm (*Ca. Brocadia*) on the working electrodes operated at 0.4 V vs Ag/AgCl
655 were fed with 4 mM $^{15}\text{NH}_4^+$ and 10% D_2O . The mass to charge (m/z) of 73, 74 and 75 corresponds
656 to derivatization products of $^{14}\text{NH}_2\text{OH}$, $^{15}\text{NH}_2\text{OH}$, and $^{15}\text{NH}_2\text{OD}$, respectively with acetone
657 determined by GC/MS. 25 μM of $^{14}\text{NH}_2\text{OH}$ and $^{15}\text{NH}_2\text{OH}$ were used as standards. The 73 m/z
658 (top) at retention time of 8.6 minutes arises from the acetone used for derivatization. The 75 m/z
659 (bottom) accumulation over the course of the experiment indicates that the oxygen used in the
660 anaerobic oxidation of ammonium originates from OH^- of the water molecule.

661

662

663

664

665

666

667

668
669

Supplementary Materials for

670 **Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox** 671 **bacteria**

672 Dario R. Shaw, Muhammad Ali, Krishna P. Katuri, Jeffrey A. Gralnick, Joachim Reimann, Rob
673 Mesman, Laura van Niftrik, Mike S. M. Jetten & Pascal E. Saikaly*

674 *Corresponding author. E-mail: pascal.saikaly@kaust.edu.sa

675

676

677 **This PDF file includes:**

678

679 Materials and Methods

680 Supplementary Text

681 Figs. S1 to S10

682

683 **Other Supplementary Materials for this manuscript include the following:**

684

685 Data for Tables S1 to S13 (.xlsx)

686

687 **Materials and Methods**

688

689 **Enrichment and cultivation of anammox bacteria**

690 Biomass from upflow column reactors (XK 50/60 Column, GE Healthcare, UK) with *Ca. Brocadia*
691 and *Ca. Scalindua* were harvested and used as inoculum. *Ca. Brocadia* and *Ca. Scalindua*
692 planktonic cells were enriched in two bioreactors (BioFlo®115, New Brunswick, USA) equipped
693 with a microfiltration (average pore size 0.1 μm) hollow fiber membrane module (zena-membrane,
694 Czech Republic) (Fig. S1A). Operating conditions of the membrane bioreactors (MBRs) were
695 described previously (15). The MBRs were operated at pH 7.5–8.0 and $35\pm1^\circ\text{C}$ for *Brocadia* and
696 room temperature (20–25 $^\circ\text{C}$) for *Scalindua*. The culture liquid in the MBRs was continuously
697 mixed with a metal propeller at a stirring speed of 150 rpm and purged with 95% Ar – 5% CO_2 at
698 a flow rate of 10 mL min^{-1} to maintain anaerobic conditions. Inorganic synthetic medium was fed
699 continuously to the reactors at a rate of $\sim 5 \text{ L d}^{-1}$ and hydraulic retention time was maintained at
700 one day. The synthetic medium was prepared by adding the following constituents; NH_4^+ (2.5-10)
701 mM, NO_2^- (2.5-12) mM, CaCl_2 100 mg L^{-1} , MgSO_4 300 mg L^{-1} , KH_2PO_4 30 mg L^{-1} , KHCO_3 500
702 mg L^{-1} and trace element solutions (25). In the case of *Ca. Scalindua* culture, the synthetic medium
703 was prepared using non-sterilized Red Sea water. Samples for microbial community
704 characterization were taken from the MBRs for fluorescence *in situ* hybridization (FISH) and
705 metagenomics analysis (See FISH and DNA extraction, metagenome library preparation,
706 sequencing and sequence processing and analysis sections below). A previously enriched *K.*
707 *stuttgartiensis* culture was also used for the experiments (4).

708

709 **Incubation of anammox bacteria in serum vials with NH_4^+ and graphene oxide as the**
710 **insoluble extracellular electron acceptor**

711 To test whether anammox bacteria have extracellular electron transfer (EET) capability, the three
712 enriched anammox cultures were incubated in serum vials for 216 hours with $^{15}\text{NH}_4^+$ and graphene
713 oxide (GO) as a proxy for insoluble extracellular electron acceptor. Standard anaerobic techniques
714 were employed in the batch incubation experiments. All the procedures were performed in the
715 anaerobic chamber (Coy Laboratory Products; Grass Lake Charter Township, MI, USA). Anoxic
716 buffers and solutions were prepared by repeatedly vacuuming and purging helium gas (>99.99%)
717 before experiments. Biomass from the MBRs was centrifuged, washed twice and suspended in
718 inorganic medium containing 2 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES,
719 pH 7.8) prior to inoculation into the vials. The same composition of the inorganic medium used in
720 the MBRs was supplied to the vials. Cell suspension was dispensed into 100 mL glass serum vials,
721 which were sealed with butyl rubber stoppers and aluminum caps. Biomass concentration in the
722 vials ranged from 0.1–0.9 mg–protein mL⁻¹. The headspace of the serum vials was replaced by
723 repeatedly vacuuming and purging with pure (>99.99%) helium gas. Positive pressure (50–75 kPa)
724 was added to the headspace to prevent unintentional contamination with ambient air during the
725 incubation and gas sampling. Prior the addition of $^{15}\text{NH}_4^+$, the vials were pre-incubated overnight
726 at room temperature (~25°C) to remove any trace amounts of substrates and oxygen. The activity
727 test was initiated by adding 4 mM of $^{15}\text{NH}_4\text{Cl}$ (Cambridge Isotope Laboratories) and GO to a final
728 concentration of 200 mg L⁻¹ using a gas-tight syringe (VICI; Baton Rouge, LA, USA). No NO_2^-
729 or NO_3^- were added to the incubations. The vials were incubated in triplicates at 30°C for *Ca.*
730 *Brocadia* and *K. stuttgartiensis* cultures and at room temperature (~25°C) for vials with *Ca.*
731 *Scalindua*. Vials without biomass were also prepared as abiotic controls. The concentrations of

732 $^{28}\text{N}_2$, $^{29}\text{N}_2$ and $^{30}\text{N}_2$ gas were determined by gas chromatography mass spectrometry (GC/MS)
733 analysis (27). Fifty microliter of headspace gas was collected using a gas-tight syringe (VICI;
734 Baton Rouge, LA, USA) and immediately injected into a GC (Agilent 7890A system equipped
735 with a CP-7348 PoraBond Q column) combined with 5975C quadrupole inert MS (Agilent
736 Technologies; Santa Clara, CA, USA), and mass to charge (m/z) = 28, 29 and 30 was monitored.
737 Standard calibration curve of N_2 gas was prepared with $^{30}\text{N}_2$ standard gas (>98% purity)
738 (Cambridge Isotope Laboratories; Tewksbury, MA, USA). At the end of the batch incubations,
739 DNA was extracted and sequenced for metagenomics analysis (See DNA extraction, metagenome
740 library preparation, sequencing and sequence processing and analysis section below). To confirm
741 the reduction of the GO, the samples were centrifuged and subjected to dehydration process with
742 absolute ethanol. Samples were maintained in a desiccator until Raman spectroscopy analysis.
743 Raman spectroscopy (StellarNet Inc) was performed with the following settings: Laser 473 nm,
744 acquisition time 20 seconds, accumulation 5 and objective 50X.

745

746 **Bioelectrochemical analyses**

747 To evaluate if anammox bacteria (*Ca. Brocadia* and *Ca. Scalindua*) are electrochemically active,
748 single-chamber multiple working electrode glass reactors with 500 mL working volume were
749 operated in microbial electrolysis cell (MEC) mode. The working electrodes (anodes) were
750 graphite rods of 8 cm length (7.5 cm inside the reactor) and 0.5 cm in diameter. Platinum mesh
751 was used as counter electrode (cathode) and Ag/AgCl as reference electrode (Bioanalytical
752 Systems, Inc.). A schematic representation of the multiple working electrode microbial electrolysis
753 cell (MEC) is presented in Fig. S1H. The multiple working electrodes were operated at a set
754 potential of -0.3 , -0.2 , -0.1 , 0 , 0.1 , 0.2 , 0.3 and 0.4 V vs Ag/AgCl. Amperometric current was

755 monitored continuously using a VMP3 potentiostat (BioLogic Science Instruments, USA), with
756 measurements every 60 s and analyzed using EC-lab V 10.02 software. To evaluate if *K.*
757 *stuttgartiensis* is electrochemically active, experiments were conducted in single-chamber MECs
758 (300 mL working volume) with carbon cloth working electrode (0.4 V vs Ag/AgCl). The reactors
759 and working and counter electrodes were sterilized by autoclaving prior to the start of the
760 experiments. The reference electrodes were sterilized by soaking in 3 M NaCl overnight and
761 rinsing with sterile medium. After the reactors were assembled, epoxy glue was used to seal every
762 opening in the reactor to avoid leakage. Gas bags (0.1 L Cali -5 -Bond. Calibrate, Inc.) were
763 connected to the MECs to collect any gas generated. The gas composition in the gas bags was
764 analyzed using a gas chromatograph (SRI 8610C gas chromatograph, SRI Instruments).

765 The inorganic medium composition in the MECs was the same as the one supplied in the MBRs
766 (See Enrichment and cultivation of anammox bacteria section above), with variations in the NH₄⁺
767 and/or NO₂⁻ concentration. After preparation, the inorganic medium was boiled, sparged with
768 N₂:CO₂ (80:20) gas mix for 30 min to remove any dissolved oxygen and finally autoclaved. The
769 autoclaved medium was cooled down to room temperature inside the anaerobic chamber (Coy
770 Laboratory, USA). Prior to the experiments, KHCO₃ was weighed in the anaerobic chamber and
771 dissolved in the medium. The reactors were operated in fed batch mode at 30°C for *Ca.* Brocadia
772 and *K. stuttgartiensis* cultures and at room temperature (~25°C) for *Ca.* Scalindua. The medium
773 in the MECs was gently mixed with a magnetic stirrer throughout the course of the experiments.
774 The pH of the MECs was not controlled but was at all times between 7.0–7.5. To exclude the effect
775 of abiotic (i.e., non-Faradaic) current, initial operation of the reactors was done without any
776 biomass addition. After biomass inoculation, the MECs were operated with set potentials and
777 optimal conditions for the anammox reaction (i.e., addition of NH₄⁺ and NO₂⁻). Afterwards, NO₂⁻

778 was gradually decreased to 0 mM leaving the working electrodes as the sole electron acceptor. To
779 confirm that the electrode-dependent anaerobic oxidation of NH_4^+ was catalyzed by anammox
780 bacteria, additional control experiments were conducted in chronological order including addition
781 of allylthiourea (ATU), operation in open circuit voltage mode (i.e., anodes were not connected to
782 the potentiostat; electrode is not used as electron acceptor), addition of nitrite, operation without
783 addition of NH_4^+ and then with addition of NH_4^+ , and autoclaving. ATU was added to a final
784 concentration of 100 μM to evaluate the contribution of nitrifiers to the process (19). Biomass from
785 a nitrifying reactor was incubated in triplicate vials with 100 μM of ATU and was used as a positive
786 control for the inhibitory effect of ATU. Throughout the reactor operation, the concentrations of
787 NH_4^+ , NO_2^- , and NO_3^- were determined as described below (See Analytical methods section). All
788 experiments were done in triplicate MECs, unless mentioned otherwise.

789 Cyclic voltammetry (CV) at a scan rate of 1mV s^{-1} was performed for the anodic biofilms at
790 different time intervals following initial inoculation to determine their redox behavior. Scans
791 ranged from -0.8 to 0.4 V vs Ag/AgCl. Current was normalized to the geometric anode surface
792 area. To determine the presence of extracellular secreted redox mediators by anodic communities,
793 CVs were performed with cell-free filtrates (filtered using a 0.2 mm pore diameter filter) collected
794 from the reactors and placed in separate sterile electrochemical cells. Also, experiments were
795 conducted to evaluate the effect of adding riboflavin, which is a common soluble mediator
796 involved in EET in gram-positive and gram-negative bacteria (13, 20). Riboflavin was added to
797 the mature anammox biofilm to a final concentration of 250 nM (20).

798 To test if cathodic reaction (i.e., hydrogen evolution reaction) has an effect on electrode-
799 dependent anaerobic ammonium oxidation, experiments were also conducted in double-chamber
800 MECs (Fig. S1K) with a single carbon cloth working electrode (0.4 V vs Ag/AgCl). The anode

801 and cathode chambers in double-chamber MECs were separated by a proton-exchange Nafion
802 membrane. Also, to exclude the effect of heterotrophic activity on current generation, 500 mg L⁻¹
803 of penicillin G (Sigma-Aldrich, St. Louis, MO) was added in the last batch cycle to inhibit
804 heterotrophs (21, 22).

805 To determine the role of NO in the electrode-dependent anammox metabolism, single-chamber
806 MECs were incubated with 4 mM NH₄⁺ and 100 M of 2-phenyl-4,4,5,5-tetramethylimidazoline-
807 1-oxyl-3-oxide (PTIO), an NO scavenger. MECs with 4 mM NH₄⁺ and without PTIO addition
808 were run in parallel as negative control. PTIO inhibits *K. stuttgartiensis* activity when NO is an
809 intermediate of the anammox reaction (4), therefore vials with *K. stuttgartiensis* were used as
810 positive control of the effect of PTIO. Liquid samples were taken every day and filtered using a
811 0.2 mm filter and subjected to determination of NH₄⁺ concentration as described below (See
812 Analytical methods section).

813 For isotopic and comparative transcriptomics analysis experiments, single-chamber MECs
814 (Adams & Chittenden Scientific Glass, USA) with a single carbon cloth working electrode (0.4 V
815 vs Ag/AgCl) and 300 mL working volume were used (Fig. S1J).

816

817 **¹⁵N tracer batch experiments in MECs**

818 To elucidate the molecular mechanism of electrode-dependent anaerobic ammonium oxidation by
819 different anammox bacteria, isotopic labelling experiments were conducted in single-chamber
820 MECs operated at set potential of 0.4 V vs Ag/AgCl. All batch incubation experiments were
821 performed in triplicate MECs. MEC incubations without biomass for the ¹⁵N tracer batch
822 experiments were also prepared to exclude any possibility of an abiotic reaction. Standard
823 anaerobic techniques were employed in the batch incubation experiments. All the procedures were

824 performed in the anaerobic chamber (Coy Laboratory Products; Grass Lake Charter Township,
825 MI, USA). Anoxic buffers and solutions were prepared by repeatedly vacuuming and purging
826 helium gas (>99.99%) before the experiments. Purity of ¹⁵N-labelled compounds was greater than
827 99%. The headspace of the MECs was replaced by repeatedly vacuuming and purging with pure
828 (>99.99%) helium gas. Positive pressure (50–75 kPa) was added to the headspace to prevent
829 unintentional contamination with ambient air during the incubation and gas sampling. Oxidation
830 of NH₄⁺ to N₂ was demonstrated by incubating the MECs with ¹⁵NH₄Cl (Cambridge Isotope
831 Laboratories, 4 mM) and ¹⁴NO₂[−] (1 mM). The MECs were incubated for 144 hours at 30°C for *Ca.*
832 *Brocadia* and *K. stuttgartiensis* cultures, and at room temperature (~25°C) for *Ca. Scalindua*. The
833 concentrations of ²⁸N₂, ²⁹N₂, ³⁰N₂, ¹⁴NO, ¹⁵NO, ²⁸N₂O, ²⁹N₂O and ³⁰N₂O gas were determined by
834 GC/MS (27). Fifty microliter of headspace gas was collected using a gas-tight syringe (VICI;
835 Baton Rouge, LA, USA) and immediately injected into a GC (Agilent 7890A system equipped
836 with a CP-7348 PoraBond Q column) combined with 5975C quadrupole inert MS (Agilent
837 Technologies; Santa Clara, CA, USA). Standard calibration curve of N₂ gas was prepared with
838 ³⁰N₂ standard gas (>98% purity) (Cambridge Isotope Laboratories; Tewksbury, MA, USA).

839 To investigate whether hydroxylamine (NH₂OH) could be produced directly from NH₄⁺ in
840 electrode-dependent anaerobic ammonium oxidation by anammox bacteria, single-chamber MECs
841 were incubated with ¹⁵NH₄Cl (4 mM, Cambridge Isotope Laboratories) and an unlabeled pool of
842 ¹⁴NH₂OH (2 mM) for 144 hours. Liquid samples were taken every day and filtered using a 0.2 mm
843 filter and subjected to determination of ¹⁵NH₂OH and ¹⁴NH₂OH. NH₂OH was determined by
844 GC/MS analysis after derivatization using acetone (27). Briefly, 100 µl of liquid sample was mixed
845 with 4 µl of acetone, and 2 µl of the derivatized sample was injected to a GC (Agilent 7890A
846 system equipped with a CP-7348 PoraBond Q column) combined with 5975C quadrupole inert

847 MS (Agilent Technologies; Santa Clara, CA, USA) in splitless mode. NH₂OH was derivatized to
848 acetoxime (C₃H₇NO), and the molecular ion peaks were detected at mass to charge (m/z) = 73 and
849 74 for ¹⁴NH₂OH and ¹⁵NH₂OH, respectively. 25 M of ¹⁴NH₂OH and ¹⁵NH₂OH were used as
850 standards. To determine the source of the oxygen used in the electrode-dependent NH₄⁺ oxidation
851 to NH₂OH, MECs were incubated with ¹⁵NH₄Cl (4 mM, Cambridge Isotope Laboratories) in
852 presence of 10% D₂O for 144 hours. Stable isotopes of NH₂OH were determined by GC/MS
853 analysis after derivatization using acetone as described above.

854

855 **Activity and electron balance calculations**

856 Activities of specific anammox (²⁹N₂) with nitrite as the preferred electron acceptor and electrode-
857 dependent anammox (³⁰N₂) with working electrode (0.4 V vs Ag/AgCl) as sole electron acceptor
858 were calculated based on the changes in gas concentrations in single-chamber MEC batch
859 incubations. The activity was normalized against protein content of the biofilm on the electrodes.
860 Protein content was measured as described below (See Analytical methods section).

861 The moles of electrons recovered as current per mole of NH₄⁺ oxidized were calculated using:

$$862 n_{CE}(\text{NH}_4^+) = \frac{\int_{t=0}^t I \, dt}{\Delta \text{NH}_4^+ \cdot F}$$

863 where *I* is the current (A) obtained from the chronoamperometry, *dt* (s) is the time interval over
864 which data was collected, NH₄⁺ is the moles of NH₄⁺ consumed during the experiment, and *F* =
865 96485 C/mol e⁻ is Faraday's constant. Coulombic efficiency (CE) was calculated using:

$$866 \text{CE}(\%) = \frac{n_{CE}(\text{NH}_4^+)}{n_{CE \, \text{Theo}}(\text{NH}_4^+)} \times 100$$

867 where n_{CE Theo}(NH₄⁺) is the theoretical number of moles of electrons (in our case it is 3 moles of
868 electrons) recovered as current per mole of NH₄⁺ oxidized.

869

870 **Analytical methods**

871 All samples were filtered through a 0.2 μm pore-size syringe filters (Pall corporation) prior to
872 chemical analysis. NH_4^+ concentration was determined photometrically using the indophenol
873 method (28) (lower detection limit = 5 μM). Absorbance at a wavelength of 600 nm was
874 determined using multi-label plate readers (SpectraMax Plus 384; Molecular Devices, CA, USA).
875 NO_2^- concentration was determined by the naphthylethylenediamine method (28) (lower detection
876 limit = 5 μM). Samples were mixed with 4.9 mM naphthylethylenediamine solution, and the
877 absorbance was measured at a wavelength of 540 nm. NO_3^- concentration was measured by HACH
878 kits (HACH, CO, USA; lower detection limit = 0.01 mg 1^{-1} NO_3^- -N). User's guide was followed
879 for these kits and concentrations were measured by spectrophotometer (D5000, HACH, CO,
880 USA). Concentrations of NH_2OH and hydrazine (N_2H_4) were determined colorimetrically as
881 previously described (29). For NH_2OH , liquid samples were mixed with 8-quinolinol solution
882 (0.48% (w/v) trichloroacetic acid, 0.2% (w/v) 8-hydroxyquinoline and 0.2 M Na_2CO_3) and heated
883 at 100°C for 1 min. After cooling down for 15 min, absorbance was measured at 705 nm (30).
884 N_2H_4 was derivatized with 2% (w/v) p-dimethylaminobenzaldehyde and absorbance at 460 nm
885 was measured (31). The concentration of biomass on the working electrodes was determined as
886 protein concentration using DC Protein Assay Kit (Bio-Rad, Tokyo, Japan) according to
887 manufacturer's instructions. Bovine serum albumin was used as the protein standard.

888

889 **Fluorescence *in situ* hybridization**

890 The microbial community in the MBRs and the spatial distribution of anammox cells on the surface
891 of the graphite rod electrodes was examined by FISH after 30 days of reactor operation. The

892 graphite rod electrodes were cut in the anaerobic chamber with sterilized tube cutter (Chemglass
893 Life Sciences, US). The electrode samples were fixed with 4% (v/v) paraformaldehyde (PFA),
894 followed by 10 nm cryosectioning at -30°C (Leica CM3050 S Cryostat). FISH with rRNA-
895 targeted oligonucleotide probes was performed as described elsewhere (32) using the EUB338
896 probe mix composed of equimolar EUB338 I, EUB338 II and EUB 338 III (33, 34) for the
897 detection of bacteria and probes AMX820 or SCA1309 for anammox (35, 36). Cells were
898 counterstained with 1 µg ml⁻¹ DAPI (4',6-diamidino-2-phenylindole) solution. Fluorescence
899 micrographs were recorded by using a Leica SP7 confocal laser scanning microscope. To
900 determine the relative abundance of anammox bacteria by quantitative FISH, 20 confocal images
901 of FISH probe signals were taken at random locations in each well and analyzed by using the
902 digital image analysis DAIME software as described elsewhere (37).

903

904 **Scanning Electron Microscopy**

905 The graphite rod electrodes were cut in the anaerobic chamber with sterilized tube cutter
906 (Chemglass Life Sciences, US). The electrode samples were soaked in 2% glutaraldehyde solution
907 containing phosphate buffer (50 mM, pH 7.0) and stored at 4°C. Sample processing and scanning
908 electron microscopy (SEM) was performed as described elsewhere (38). Samples from the carbon-
909 cloth electrodes were punched out using a 4.8 mm Ø biopsy punch and placed into a 200 µm cavity
910 of a type A platelet (6 mm diameter; 0.1-0.2 mm depth, Leica Microsystems) and closed with the
911 flat side of a type B platelet (6 mm diameter, 300 µm depth). Platelet sandwiches were cryo-fixed
912 by high-pressure freezing (Leica HPM 100; Leica Microsystems, Vienna, Austria) and stored in
913 liquid nitrogen until use. For Hexamethyldisilazane (HMDS) embedding, frozen samples were
914 freeze-substituted in anhydrous methanol containing 2% osmium tetroxide, 0.2% uranyl acetate

915 and 1% H₂O (39). The substitution followed several intervals: cells were kept at -90°C for 47
916 hours; brought to -60°C at 2°C per hour and kept at -60°C for 8 hours; brought to -30°C at 2°C
917 per hour and kept at -30°C for 8 hours in a freeze-substitution unit (AFS; Leica Microsystems,
918 Vienna, Austria). To remove fixatives the samples were washed four times for 30 min in the AFS
919 device at -30°C with anhydrous methanol and subsequently infiltrated with HMDS by incubating
920 two times for 15 minutes with 50% HMDS in anhydrous methanol followed by two times 15
921 minutes 100% HMDS. After blotting and air-drying the electrode samples were mounted on
922 specimen stubs using conductive carbon tape and sputter-coated with gold-palladium before
923 imaging in a JEOL JSM-6335F SEM, operating at 3kV.

924

925 **DNA extraction, metagenome library preparation, sequencing and sequence processing
926 and analysis**

927 Biomass from the vials of the GO experiment was harvested by centrifugation (4000g, 4°C) at the
928 end of the batch incubations. Biofilm samples from the electrodes were collected after 30 days of
929 reactor operation with working electrode as the sole electron acceptor. The biomass pellet and the
930 electrode samples were suspended in Sodium Phosphate Buffer in the Lysing Matrix E 2 mL tubes
931 (MP Biomedicals, Tokyo, Japan). After 2 minutes of physical disruption by bead beating (Mini-
932 beadbeater™, Biospec products), the DNA was extracted using the Fast DNA spin kit for soil (MP
933 Biomedicals, Tokyo, Japan) according to the manufacturer's instructions. The DNA was quantified
934 using Qubit (Thermo Fisher Scientific, USA) and fragmented to approximately 550 bp using a
935 Covaris M220 with microTUBE AFA Fiber screw tubes and the settings: duty factor 20%,
936 peak/displayed power 50W, cycles/burst 200, duration 45s and temperature 20°C. The fragmented
937 DNA was used for metagenome preparation using the NEB Next Ultra II DNA library preparation

938 kit. The DNA library was paired-end sequenced (2 x 301bp) on a Hiseq 2500 system (Illumina,
939 USA).

940 Raw reads obtained in the FASTQ format were processed for quality filtering using Cutadapt
941 package v. 1.10 (40) with a minimum phred score of 20 and a minimum length of 150 bp. The
942 trimmed reads were assembled using SPAdes v. 3.7.1 (41). The reads were mapped back to the
943 assembly using minimap2 (42) (v. 2.5) to generate coverage files for metagenomic binning. These
944 files were converted to the sequence alignment/map (SAM) format using samtools (43). Open
945 reading frames (ORFs) were predicted in the assembled scaffolds using Prodigal (44). A set of 117
946 hidden Markov models (HMMs) of essential single-copy genes were searched against the ORFs
947 using HMMER3 (<http://hmmer.janelia.org/>) with default settings, with the exception that option
948 (-cut_tc) was used (45). Identified proteins were taxonomically classified using BLASTP against
949 the RefSeq protein database with a maximum e-value cut-off of 10^{-5} . MEGAN was used to extract
950 class-level taxonomic assignments from the BLAST output (46). The script network.pl
951 (<http://madsalbertsen.github.io/mmgenome/>) was used to obtain paired-end read connections
952 between scaffolds. 16S rRNA genes were identified using BLAST (47) (v. 2.2.28+, and the 16S
953 rRNA fragments were classified using SINA (48) (v. 1.2.11) with default settings except min
954 identity adjusted to 0.80. Additional supporting data for binning was generated according to the
955 description in the mmgenome package (49) (v. 0.7.1.). Genome binning was carried out in R (50)
956 (v. 3.3.4) using the R-studio environment. Individual genome bins were extracted using the
957 multimetagenome principles (23) implemented in the mmgenome R package (50) (v. 0.7.1).
958 Completeness and contamination of bins were assessed using coverage plots through the
959 mmgenome R package and by the use of CheckM (51) based on occurrence of a set of single-copy

960 marker genes (52). Genome bins were refined manually as described in the mmgenome package
961 and the final bins were annotated using PROKKA (53) (v. 1.12-beta).

962

963 **Phylogenomics analysis**

964 Extracted bins and reported anammox genomes were used for phylogenetic analysis. Reported
965 anammox genomes were downloaded from the NCBI GenBank. Hidden Markov model profiles
966 for 139 single-copy core genes (52) were concatenated using anvi'o platform (54). Phylogenetic
967 trees with estimated branch support values were constructed from these concatenated alignments
968 using MEGA7 (55) with Neighbor Joining, Maximum-likelihood and UPGMA methods.

969

970 **Comparative transcriptomics analysis**

971 Comparative transcriptomic analysis was conducted to compare the metabolic pathway of NH₄⁺
972 oxidation and electron flow when working electrode is used as electron acceptor versus NO₂⁻ as
973 electron acceptor. Samples for comparative transcriptomic analysis were taken from mature
974 electrode's biofilm of duplicate single-chamber MECs with NO₂⁻ as the sole electron acceptor and
975 after switching to set potential growth (0.4 V vs Ag/AgCl, electrode as electron acceptor). Biofilm
976 samples were collected from carbon cloth electrodes with sterilized scissors in the anaerobic
977 chamber. Samples were stored in RNAlaterTM Stabilization Solution (InvitrogenTM) until further
978 processing. Total RNA was extracted from the samples using PowerBiofilm RNA Isolation kit
979 (QiAGEN) according to manufacturer's instructions. The RNA concentration of all samples was
980 measured in duplicate using the Qubit BR RNA assay. The RNA quality and integrity were
981 confirmed for selected samples using TapeStation with RNA ScreenTape (Agilent Technologies).
982 The samples were depleted of rRNA using the Ribo-zero Magnetic kit (Illumina Inc.) according

983 to manufacturer's instructions. Any potential residual DNA was removed using the DNase MAX
984 kit (MoBio Laboratories Inc.) according to the manufacturer's instructions. After rRNA depletion
985 and DNase treatment the samples were cleaned and concentrated using the RNeasy MinElute
986 Cleanup kit (QIAGEN) and successful rRNA removal was confirmed using TapeStation HS RNA
987 ScreenTapes (Agilent Technologies). The samples were prepared for sequencing using the TruSeq
988 Stranded Total RNA kit (Illumina Inc.) according to the manufacturer's instructions. Library
989 concentrations were measured using Qubit HS DNA assay and library size was estimated using
990 TapeStation D1000 ScreenTapes (Agilent Technologies). The samples were pooled in equimolar
991 concentrations and sequenced on an Illumina HiSeq2500 using a 1x50 bp Rapid Run (Illumina
992 Inc).

993 Raw sequence reads in fastq format were trimmed using USEARCH (56) v10.0.2132, -
994 fastq_filter with the settings -fastq_minlen 45 -fastq_truncqual 20. The trimmed transcriptome
995 reads were also depleted of rRNA using BBduk (57) with the SILVA database as reference
996 database (58). The reads were mapped to the predicted protein coding genes generated from Prokka
997 (53) v1.12 using minimap2 (42) v2.8-r672, both for the total metagenome and each extracted
998 genome bin. Reads with a sequence identity below 0.98 were discarded from the analysis. The
999 count table was imported to R (50), processed and normalized using the DESeq2 workflow (59)
1000 and then visualized using ggplot2. Analyses of overall sample similarity were done using
1001 normalized counts (log transformed), through vegan (60) and DESeq2 (59) packages.
1002 Differentially expressed genes were evaluated for the presence of N-terminal signal sequences,
1003 transmembrane spanning helices (TMH) and subcellular localization using SignalP 5.0 (62),
1004 TMHMM 2.0 software and PSORTb 3.0.2 (62) respectively. Differentially expressed genes that
1005 appeared annotated as 'hypothetical' were reconsidered for a putative function employing BLAST

1006 searches (i.e., BLASTP, CD-search, SmartBLAST), MOTIF search, COG and PFAM databases,
1007 as well as by applying the HHpred homology detection and structure prediction program (MPI
1008 Bioinformatics Toolkit).

1009

1010 **Statistics and reproducibility**

1011 The number of replicates is detailed in the subsections for each specific experiment and was mostly
1012 determined by the amount of biomass available for the different cultures. In all experiments, three
1013 biological replicates were used, unless mentioned otherwise. No statistical methods were used to
1014 predetermine the sample size. The experiments were not randomized, and the investigators were
1015 not blinded to allocation during experiments and outcome assessment. Statistical analyses were
1016 carried out in R (50) v. 3.3.4 using the R-studio environment.

1017

1018 **Data availability**

1019 The genome binning and the comparative transcriptomics analysis are entirely reproducible using
1020 the R files available on <https://github.com/DarioRShaw/Electro-anammox>. Also, complete
1021 Datasets generated in the differential expression analysis are available in the online version of the
1022 paper. Raw sequencing reads of Illumina HiSeq of metagenomics and metatranscriptomics data
1023 associated with this project can be found at the NCBI under BioProject PRJNA517785. Annotated
1024 GenBank files for the anammox genomes extracted in this study can be found under the accession
1025 numbers SHMS00000000 and SHMT00000000.

1026

1027

1028

1029 **Supplementary Text**

1030

1031 **Putative EET-dependent anammox pathway**

1032 We provided evidence that phylogenetically distant anammox bacteria can perform EET and are
1033 electrochemically active, and we elucidated the molecular mechanism of NH_4^+ oxidation, which
1034 by itself are significant findings that changes our perception of a key player in the global nitrogen
1035 cycle. Next, we conducted comparative transcriptomic analysis to compare the possible pathways
1036 involved in the EET-dependent anammox process (electrode poised at 0.4 V vs Ag/AgCl as
1037 electron acceptor) versus typical anammox process (i.e., NO_2^- as electron acceptor). Currently,
1038 pure cultures of anammox bacteria are unavailable to conduct mutant studies to address the genetic
1039 basis of EET-dependent anammox process (13). Also, the slow growth rates of anammox bacteria
1040 and the fact that they do not rapidly degrade the majority of their proteins, make the changes to
1041 specific conditions (i.e., changes in the electron acceptor) not immediately reflected at the protein
1042 level (5). Therefore, to detect immediate changes in response to a stimulus, short-term gene
1043 expression responses would be more appropriate for this aim. In our study, the potential metabolic
1044 pathways involved in EET-dependent anammox process, were studied using a genome-centric
1045 stimulus-induced transcriptomics approach that has been successfully applied before to identify
1046 metabolic networks within complex EET-active microbial communities (63). RNA samples were
1047 extracted from mature electrode biofilm of two independent single-chamber *Ca. Brocadia* MECs
1048 operated first with NO_2^- as the sole electron acceptor and after switching to set potential growth
1049 (0.4 V vs Ag/AgCl), and were subjected to a comparative transcriptomics analysis. Similar
1050 experiments were conducted with *Ca. Scalindua* and *K. stuttgartiensis*, but we did not get sufficient
1051 mRNA from the biofilm samples, and hence only the data for *Ca. Brocadia* are presented here.
1052 High similarity was observed between the biological replicates and differentially expressed genes

1053 across the experimental setups (Fig. S9). Based on the known cell biology (64), biochemistry and
1054 anammox metabolism (4, 65, 66), and the expression profiles of the known anammox pathways
1055 obtained with the differential expression analysis done in this study (Table S3 and 4), we propose
1056 a putative molecular model to describe how electrons flow from the anammoxosome to the
1057 electrode in the EET-dependent anammox process (Fig. S10). The most differentially expressed
1058 genes in response to the change to electrode as electron acceptor were mainly associated with
1059 energy conservation and nitrogen metabolism (Table S6 and 8). The metabolic challenge that must
1060 be solved for EET process in anammox cells is to transfer the electrons through the separate
1061 compartments and membranes (anammoxosome, cytoplasm and periplasm). The observed NH_4^+
1062 oxidation and reproducible current generation can only be explained by electrons being transported
1063 from the anammoxosome (energetic central of the cell and where the NH_4^+ is oxidized) to the
1064 electrode. In the anammoxosome, the genes encoding for ammonium transporters (AmtB), a
1065 hydroxylamine oxidoreductase (HAO) and hydrazine dehydrogenase (HDH) were the most
1066 upregulated (Fig. S10, Table S8). This result is consistent with the NH_4^+ uptake, oxidation and
1067 final conversion to N_2 observed in the MECs and isotope labeling experiments (Fig. 2A, Fig 3A).
1068 The requirement of more moles of NH_4^+ when anammox growth is based on EET compared to
1069 NO_2^- as electron acceptor (Eq. 1), increases the demand of NH_4^+ import into the cell, which can
1070 explain the upregulation of the ammonium transporters. In contrast, the genes encoding for NO
1071 and NO_2^- reductases (*nir* genes) and their redox couples were significantly downregulated (Fig.
1072 S10, Table S8). This agrees, with the fact that NO_2^- and NO_3^- were below the detection limit in
1073 the MECs (Fig. 2A, Fig. S3A and B) and there was no effect of PTIO when NO_2^- was replaced by
1074 electrode as electron acceptor (Fig. S8). Also, this supports the hypothesis that NO is not an
1075 intermediate of the electrode-dependent anammox process. The most downregulated HAO in the

1076 electrode-dependent anammox process (EX330_09385, [Table S8](#)) is an ortholog of the proposed
1077 nitrite reductase in *K. stuttgartiensis* kustc0458 (66). Currently, nitrite reductase(s) responsible for
1078 NO_2^- reduction in *Brocadia* species are unidentified (29). Therefore, it would be of interest to
1079 further investigate the function of the downregulated HAO found in this study as possible
1080 candidate for *nir* in *Brocadia*. On the other hand, the *nxr* genes encoding for the soluble
1081 nitrite:nitrate oxidoreductase maintained similar levels of expression under both conditions ([Table](#)
1082 [S9](#)). However, cytochromes of the *nxr* gene cluster and the hypothetical membrane-bound NXR
1083 were found downregulated under set-potential ([Table S8](#)). Even though ammonia is difficult to
1084 activate under anaerobic conditions (67), previous studies have reported anaerobic NH_4^+ oxidation
1085 in bioelectrochemical systems dominated by nitrifiers (68–73), but the molecular mechanism was
1086 not elucidated. Also, an alternative process to anammox called Feammox has been reported
1087 recently, where NH_4^+ oxidation is coupled with Fe(III) reduction by the Actinobacteria
1088 *Acidimicrobiaceae* sp. A6 (74, 75). It should be noted that *Acidimicrobiaceae* sp. A6 is not
1089 recognized as a key player in the nitrogen cycle. When pure culture of *Acidimicrobiaceae* sp. A6
1090 was tested in MECs with electrode as electron acceptor, there was no colonization and biofilm
1091 formation over the course of the experiment. The majority of *Acidimicrobiaceae* cells were present
1092 in suspension in the MECs, which explains the low Coulombic Efficiency of the process (~16.4%)
1093 and the need for the soluble electron shuttle 9,10-anthraquinone-2,6-disulfonic acid (AQDS). In
1094 the absence of AQDS, no change in NH_4^+ concentration was detected. Future experiments are
1095 needed to differentiate Fe(III) reduction for nutritional acquisition from respiration through EET,
1096 and to address the genetic basis of the Feammox process and elucidate the molecular mechanism
1097 of NH_4^+ oxidation. Our isotope labelling experiments revealed that NH_2OH is a key intermediate
1098 in the oxidation of NH_4^+ in electrode-dependent anammox process ([Fig. 3B](#)), suggesting that the

1099 internalized NH_4^+ is oxidized to NH_2OH . More than 10 paralogs of HAO-like proteins in anammox
1100 are the most likely candidate enzymes catalyzing anaerobic NH_4^+ oxidation. The only upregulated
1101 HAO-like protein (EX330_11045) (Fig. S10, Table S8), whose function is still uncharacterized,
1102 lacks the tyrosine residue needed for crosslinking of catalytic heme 4, thereby favoring reductive
1103 reactions (29). This HAO is an ortholog of *K. stuttgartiensis* kustd2021 which under normal
1104 anammox conditions has low expression levels (76). However, it is worth mentioning that under
1105 set potential the whole gene cluster EX330_11030-11050 was significantly upregulated (Table
1106 S10). Thus, further investigation should focus on determining the role of this cluster in electrode-
1107 dependent anammox process. The produced NH_2OH is then condensed with NH_3 to produce N_2H_4
1108 by the hydrazine synthase (HZS) (77) (Fig. S10). Recent crystallography study of *Ca. K. K.*
1109 *stuttgartiensis* HZS, suggested that N_2H_4 synthesis is a two-step reaction: NO reduction to NH_2OH
1110 and subsequent condensation of NH_2OH and NH_3 (77). Our isotope labelling experiments showed
1111 that NH_2OH is an intermediate in the electrode-dependent anammox process, and thus there is no
1112 need for the reduction of NO to NH_2OH , which explains the downregulation of the electron transfer
1113 module (ETM) and its redox partner (Fig. S10, Table S6). Under “normal” anammox conditions
1114 (i.e., NO_2^- as electron acceptor), the membrane associated quinol-interacting ETM encoded in the
1115 HZS gene cluster, mediate the first half-reaction for N_2H_4 synthesis (66, 78). The ETM provides
1116 three-electrons to the HZS enzymatic complex for NO reduction to NH_2OH with the help of an
1117 electron shuttle (78, 79). N_2H_4 is further oxidized to N_2 by HDH (Fig. 4). The four low-potential
1118 electrons released from this reaction must be stored until they are transferred to a redox partner
1119 and feed the quinone (quinol) pool within the anammoxosome membrane to build up the
1120 membrane potential (80). Currently, it is not known how electrons are transported over membranes
1121 when NO_2^- is the electron acceptor. Understanding the electron flow and electron carriers is an

1122 important next step in anammox research. A recent exciting study showing the structure of the
1123 HDH (80), revealed that HDH can store up to 192 electrons and it is proposed that the appropriate
1124 carriers might specifically dock into the enzyme to get the electrons and transport them to the
1125 desired acceptor. This will prevent accidental transfer of the low-redox potential electrons to
1126 random acceptors. Interestingly, HDH was one of the most upregulated enzymes in our study when
1127 the anode was the electron acceptor, which suggests an increased demand of electron storage and
1128 transport when the anode is the electron acceptor. In the typical anammox process, quinol
1129 oxidation supplies electrons for the reductive steps, thus closing the electron transfer cycle.
1130 However, under electrode-dependent anammox process, where there is no NO_2^- and the electrode
1131 is the sole electron acceptor, electrons must first pass to the cytoplasm. By accepting the electrons
1132 from N_2H_4 oxidation, energy would be conserved as reduced quinone and NAD(P)H, which can
1133 work as electron carrier in the cytoplasm. This set of reactions are thermodynamically feasible and
1134 are done by the Rieske/cytb complexes of anammox bacteria (66) ([Supplementary materials](#),
1135 [Respiratory complexes of anammox bacteria in EET-dependent anammox process](#)).

1136 Several genes encoding for low-molecular-weight mobile carriers dissolved in the cytoplasm
1137 (NADH, ferredoxins, rubredoxins) were found expressed under set potential conditions ([Fig. S10](#),
1138 [Table S3](#)). These low-molecular-weight electron carriers act as electron shuttles between the
1139 respiratory complexes in the anammoxosome and the central carbon and iron metabolism of
1140 anammox bacteria (65, 66) ([Supplementary materials](#)). Even though non-heme electron carriers
1141 dissolved in the cytoplasm are proposed as electron shuttles, it is still not clear how the electrons
1142 are transferred from the respiratory complexes in the anammoxosome to the inner membrane, even
1143 when NO_2^- is the electron acceptor. Our transcriptomic data identified an EET pathway in *Ca.*
1144 *Brocadia* electricigens in response to the electrode as electron acceptor. The EET pathway found

1145 in anammox bacteria is analog to the ones present in metal-reducing organisms such as *Geobacter*
1146 spp. and *Shewanella* spp (25). To overcome the membrane barriers, electrons from the oxidation
1147 of menaquinol by an inner-membrane tetraheme *c*-type cytochrome (Cyt *c* (4 hemes)) are
1148 transferred to the periplasmic mono-heme *c*-type cytochrome (Cyt *c* (1 heme)) (Fig. S10, Table
1149 S3). The tetraheme *c*-type cytochrome (Cyt *c* (4 hemes)), may function as a quinol dehydrogenase
1150 of the EET cascade, similar to the role played by the tetraheme CymA in *Shewanella* (81, 82). The
1151 highly upregulated mono-heme cytochrome *c* (Cyt *c* (1 heme)) was found to have homology with
1152 MtoD of the metal-oxidizing bacteria *Sideroxydans lithotrophicus* ES-1 (83). MtoD has been
1153 characterized as a periplasmic monoheme cytochrome *c* that works as electron shuttle between
1154 CymA and outer membrane cytochromes (81, 83). It is still not clear which protein(s) feed the
1155 menaquinol pool used by the tetraheme *c*-type cytochrome in the inner membrane. It has been
1156 reported that for EET in *S. oneidensis*, electrons could enter the inner-membrane pool via the
1157 activity of primary dehydrogenases, such as NADH dehydrogenases, hydrogenases or formate
1158 dehydrogenase (Fdh) (84). Also, a previous study revealed formate oxidation coupled with Fe(III)
1159 or Mn(IV) reduction in anammox bacteria (6). In our analysis, we found a significant expression
1160 under set potential of multiple copies of the Fdh and its transcriptional activator (Fig. S10, Table
1161 S3), which possibly are involved in the EET pathway to respire insoluble minerals in anammox
1162 bacteria. It has been reported that C1 metabolism such as formate oxidation by Fdh is strongly
1163 related to the electron transferring to the extracellular environment (84). Evidence suggests that
1164 formate can act as a stimulus for external electron transfer in the absence of soluble electron
1165 acceptors, which is related to the existence of a periplasmic Fdh to convert formate to CO₂ with
1166 the electrons being released extracellularly (84). Similar to *S. oneidensis*, *Ca. Brocadia*

1167 electricigens gets a significant amount of proton motive force and feeds the quinol pool in the inner
1168 membrane by transporting and oxidizing formate in the periplasm (85) ([Fig. S10](#)).

1169 Outer membrane protein complexes can transfer the electrons from the periplasm to the
1170 bacterial surface via an electron transport chain (81). The wide windows of these cytochromes
1171 allow an overlapping of redox potentials in an electron transport chain and make possible a
1172 thermodynamic downhill process of electron transport (86). It has been reported that *K.*
1173 *stuttgartiensis* possesses a trans-outer membrane porin-cytochrome complex for extracellular
1174 electron transfer that is widespread in different phyla (87, 88). The genes encoding for the porin-
1175 cytochromes are adjacent to each other in the genome (kuste4024 and kuste4025) and consist of a
1176 periplasmic and a porin-like *c*-type outer-membrane cytochrome (87, 88). As expected, *Ca.*
1177 *Brocadia* electricigens expressed the ortholog of the outer-membrane porin-cytochrome complex
1178 ([Fig. S10](#), [Table S3](#)). Compared to the porin-cytochrome complexes of six different phyla,
1179 anammox bacteria porin-cytochromes are larger and possess more heme-binding motifs (88). This
1180 may provide anammox bacteria a sufficient span to transfer electrons across the outer membrane
1181 without the need of additional outer-membrane cytochromes (88). However, biofilm CV analysis
1182 ([Fig. 2E](#), [Fig. S3C and D](#)) exhibited oxidation/reduction peaks, which suggests that additional
1183 cytochrome(s) that transfer electrons directly to the electrode via solvent exposed hemes may be
1184 involved. Also, no cytochromes for long-range electron transport were detected in the analysis
1185 ([Table S6 and 7](#)), suggesting that EET to electrodes by anammox bacteria rely on a direct EET
1186 mechanism. Homology detection and structure prediction by hidden Markov model comparison
1187 (HMM-HMM) of the highly upregulated penta-heme cytochrome EX330_07910 ([Fig. S10](#), [Table](#)
1188 [S6](#)) gave high probability hits to proteins associated to the extracellular matrix and outer membrane
1189 iron respiratory proteins such as MtrF, OmcA and MtrC. Also, it is worth mentioning that the gene

1190 cluster EX330_07910-07915 was one of the most upregulated under set-potential conditions.
1191 Therefore, future work should focus on determining the role of EX330_07910- 07915 in the EET-
1192 dependent anammox process. Likewise, we also found the expression of outer membrane mono-
1193 heme *c*-type cytochromes (OM Cyt c (1 heme) (Fig. S10, Table S7) homologs to *G.*
1194 *sulfurreducens*' OmcF, which has been characterized to be an outer membrane-associated
1195 monoheme cytochrome involved in the regulation of extracellular reduction of metal oxides (89).
1196 Anammox bacteria have a diverse repertoire of conductive and electron-carrier molecules that can
1197 be involved in the electron transfer to insoluble electron acceptors. Therefore, it is possible that
1198 different pathways may be involved in parallel in the EET-dependent anaerobic ammonium
1199 oxidation

1200

1201 **Respiratory complexes of anammox bacteria in EET-dependent anammox process**

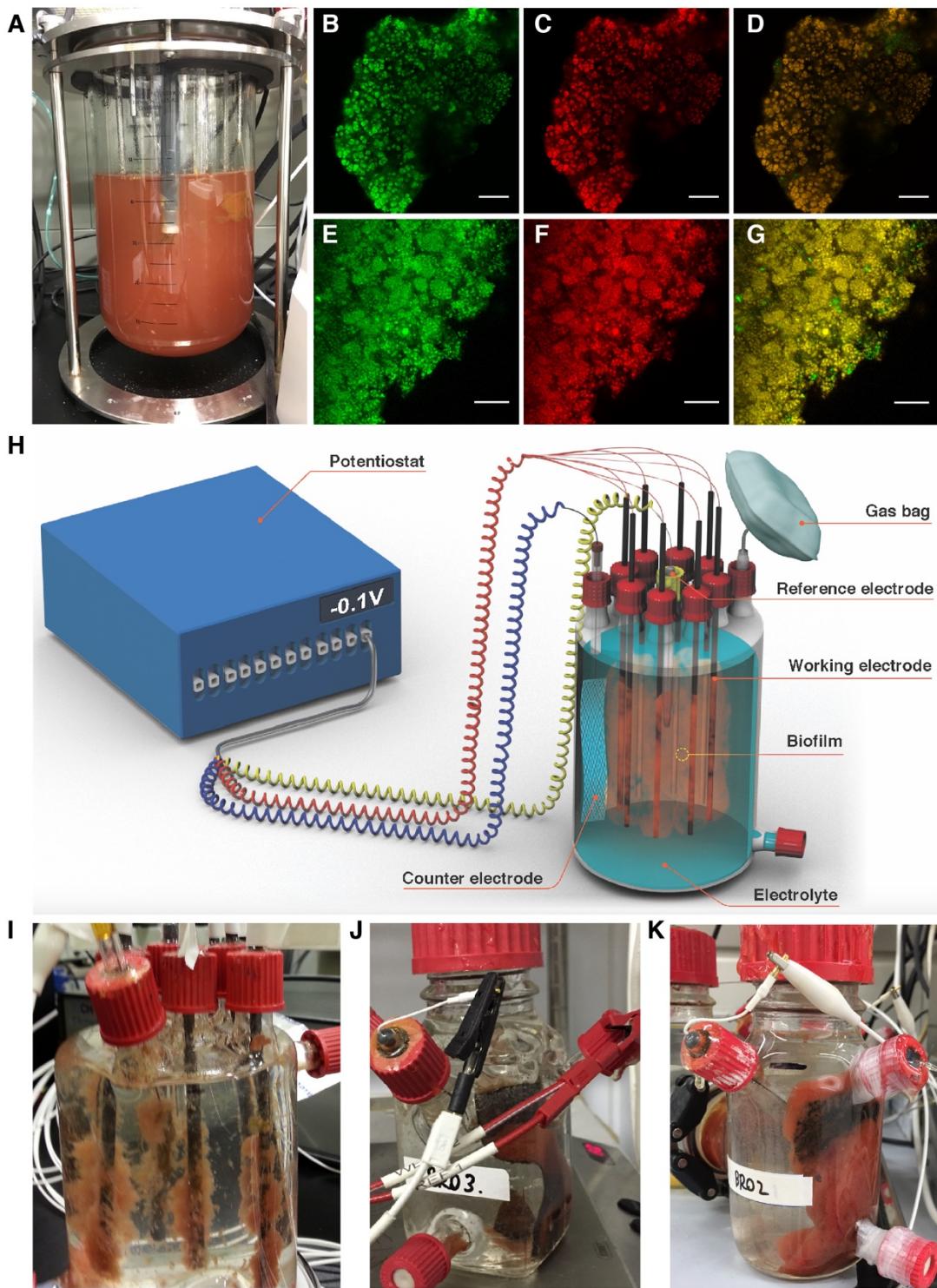
1202 In the current proposed model of the anammox process, the four electrons released from the N₂H₄
1203 oxidation are transferred to the menaquinone pool in the anammoxosome membrane by the action
1204 of a yet unknown oxidoreductase (66, 80). The resulting proton gradient across the
1205 anammoxosome membrane drive the adenosine 5'-triphosphate (ATP) synthesis (80). However,
1206 in general, little is known about how anammox bacteria transport and utilize the energy released
1207 by the N₂H₄ oxidation in the respiratory complexes in the anammoxosome membrane (80). These
1208 respiratory processes depend heavily on membrane-bound complexes such as the *bc1* complex
1209 (65). It is proposed that the Rieske/cytb *bc1* complex in anammox bacteria plays a central role
1210 coupling the oxidation of two-electron carrier quinol with the reduction of two *c*-type cytochromes
1211 with a net proton translocation stoichiometry of 4H⁺/2e⁻ (65). With this electron bifurcation
1212 mechanism, it is thermodynamically feasible to synthesize NAD(P)H by coupling oxidation of

1213 (mena)quinol to the reduction of an electron acceptor of higher redox potential such as NAD(P)
1214 (65). A previous study revealed that in the typical anammox process (i.e., NO_2^- as electron
1215 acceptor), gene products of Rieske/cytb *bc1* and *bc3* of anammox bacteria were the least and most
1216 abundant complexes in the anammoxosome membrane, respectively (66). In contrast, our
1217 comparative transcriptomics analysis revealed that with electrode as the sole electron acceptor,
1218 complex *bc1* and *bc3* were upregulated and downregulated, respectively (Fig. S10, Table S6). In
1219 agreement with the current knowledge of anammox biochemistry (65, 66), in our model, we also
1220 propose a bifurcation mechanism for NAD(P)H generation in concert with menaquinol oxidation
1221 catalyzed by the *bc1* complex and/or a H^+ translocating NADH:quinone oxidoreductase (NADH
1222 dehydrogenase, NADH-DH). Energy released by NADH oxidation to quinone reduction ($\Delta G^0' = -$
1223 47 kJ) can be utilized by the upregulated sodium-dependent NADH:ubiquinone oxidoreductase
1224 (RnfABCDEFGE type electron transport complex) to translocate sodium ions, thus creating a Na-
1225 motive force (65) (Fig. S10). Accordingly, a Na-motive force might be employed to drive the
1226 opposite unfavorable NAD^+ reduction by the upregulated NAD-dependent oxidoreductases, quinol
1227 dehydrogenases or NAD-dependent dehydrogenase (65) (Fig. S10, Table S3). In the membrane-
1228 bound Rnf complex, the electrons from the oxidation of NADH are transferred to ferredoxins
1229 (Fd_{red}) (66). Since redox potential of Fd ($E^0'_{\text{Fd}} = -500$ to -420 mV) is more negative than
1230 NAD^+/NADH couple ($E^0'_{\text{NADH}} = -320$ mV), the excess energy is available for transmembrane ion
1231 transport (86). Ferredoxins act as non-heme electron carriers in the cytoplasm for reactions of the
1232 central carbon and iron metabolism of anammox bacteria (65, 66).

1233

1234 **Central carbon metabolism of anammox bacteria in EET-dependent anammox process**

1235 Our analysis showed upregulation under electrode-dependent anammox process of the genes in
1236 the Wood-Ljungdahl pathway for CO₂ fixation and acetyl-CoA synthesis (Fig. S10, Table S6).
1237 Also, the key enzyme for CO₂ fixation via the reductive tricarboxylic acid cycle (rTCA)
1238 pyruvate:ferredoxin oxidoreductase (PFdO) was upregulated under electrode-dependent anammox
1239 process (Fig. S10, Table S6). This enzyme can catalyze the decarboxylation of pyruvate with use
1240 of ferredoxins (90). Apart from serving as main electron donor in anammox bacteria, NH₄⁺ is also
1241 assimilated for biosynthesis via glutamate synthase (GltS). Multiple copies of GltS were found
1242 expressed in our analysis (Fig. S10, Table S3). GltS catalyzes the binding of the ammonium-
1243 nitrogen to 2-oxoglutarate with the oxidation of Fd_{red} (91). The 2-oxoglutarate used for this
1244 reaction can be provided by the key enzyme of the rTCA cycle 2-oxoglutarate:ferredoxin
1245 oxidoreductase (OGOR) (92). Multiple copies of OGOR were expressed similarly under both types
1246 of electron acceptor (Fig. S10, Table S3). These enzymes depend on the reducing power of reduced
1247 ferredoxin (Fd_{red}) for the reactions, which are the proposed soluble electron carriers in the
1248 cytoplasm.

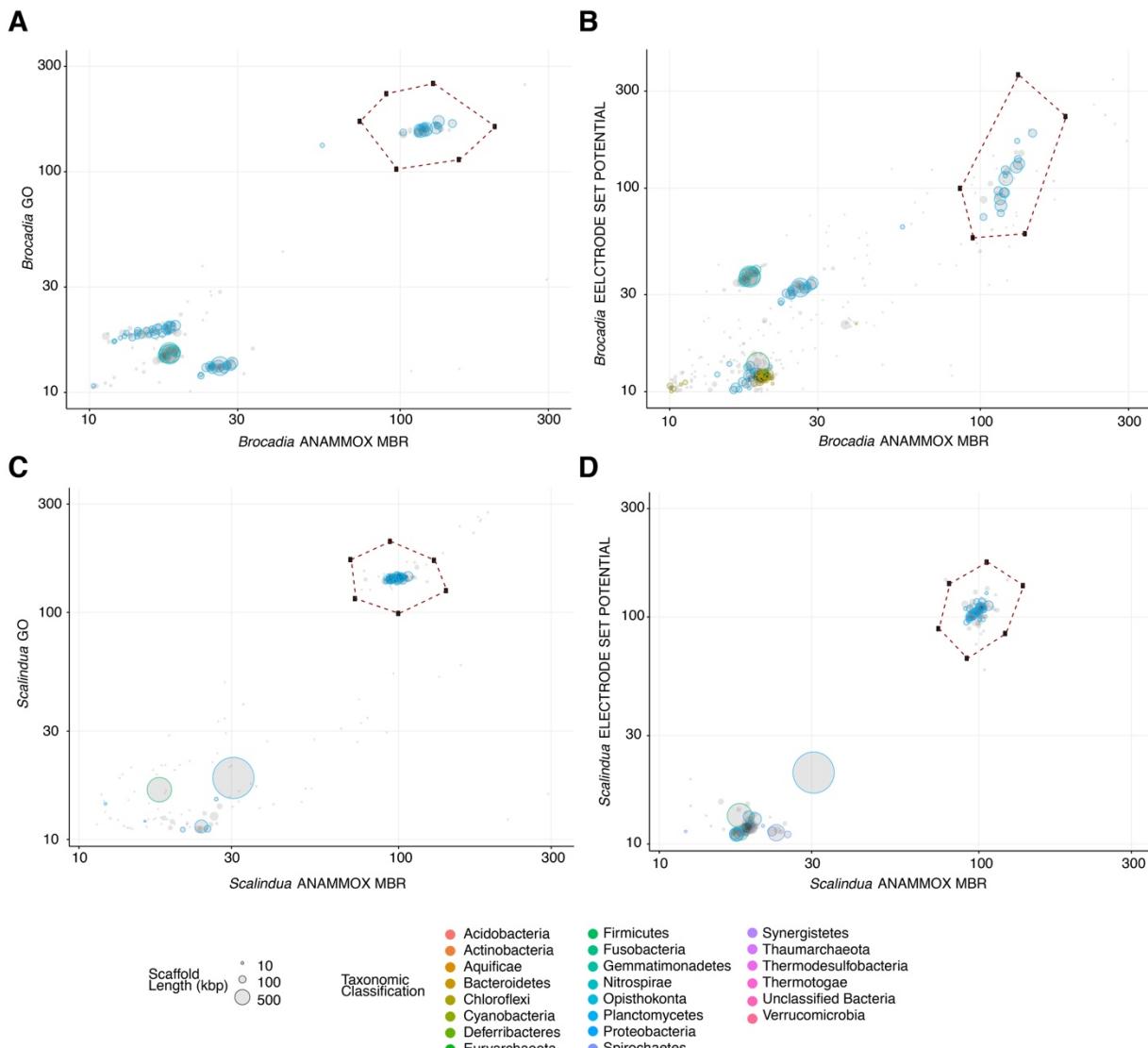

1249

1250 **Iron assimilation in anammox bacteria in EET-dependent anammox process**

1251 Iron is the fourth most abundant element in Earth's crust (93) and plays an essential role in
1252 anammox metabolism. Energy conservation in anammox bacteria depends on iron-containing
1253 proteins (i.e., cytochromes and iron-sulfur proteins) (14). Surprisingly the proteins involved in iron
1254 transport and assimilation are still unknown. Our analysis revealed that in the absence of soluble
1255 electron acceptors (i.e., NO₂⁻, NO₃⁻), *Ca. Brocadia electricigens* expressed two gene clusters
1256 encoding a siderophore-mediated iron uptake system (Fig. S10, Table S3 and 13). The expressed
1257 siderophore-mediated transport system, which was previously believed to be absent in anammox

1258 bacteria (14), is homolog to the well-studied TonB-dependent Fe(III) uptake complex present in
1259 Gram-negative bacteria (94). Fe(III) uptake relies on beta-barrel TonB-dependent receptors in the
1260 outer membrane (95) and an energy-transducing protein complex TonB-ExbB-ExbD that links the
1261 outer with the inner membrane and generate a proton motive force (94). A periplasmic iron-binding
1262 protein and an ATP-dependent ABC transporter permease are responsible for the Fe(III)-
1263 siderophore translocation across the inner membrane into the cytoplasm, where the Fe(III) is
1264 reduced to Fe(II) and released from the complex (94) (Fig. S10). Fe(III) reduction in the cytoplasm
1265 can be carried out by ferric-chelate reductases/rubredoxins, from which multiple genes were found
1266 to be expressed (Fig. S10, Table S3). After being reduced, the iron can be assimilated into the
1267 metalloprosthetic groups of protein complexes (14). Even though Fe(III) was not added in the
1268 experimental setup, *Ca. Brocadia electricigens* may have activated this system in order to uptake
1269 Fe(III) as an alternative electron acceptor as well as for iron uptake for assimilation. This finding
1270 is in agreement with a previous study using the EET-capable model bacteria *Geobacter sulfurreducens*
1271 (8), in which it was shown that the pathways required for EET and metal oxide reduction are distinct.

1272



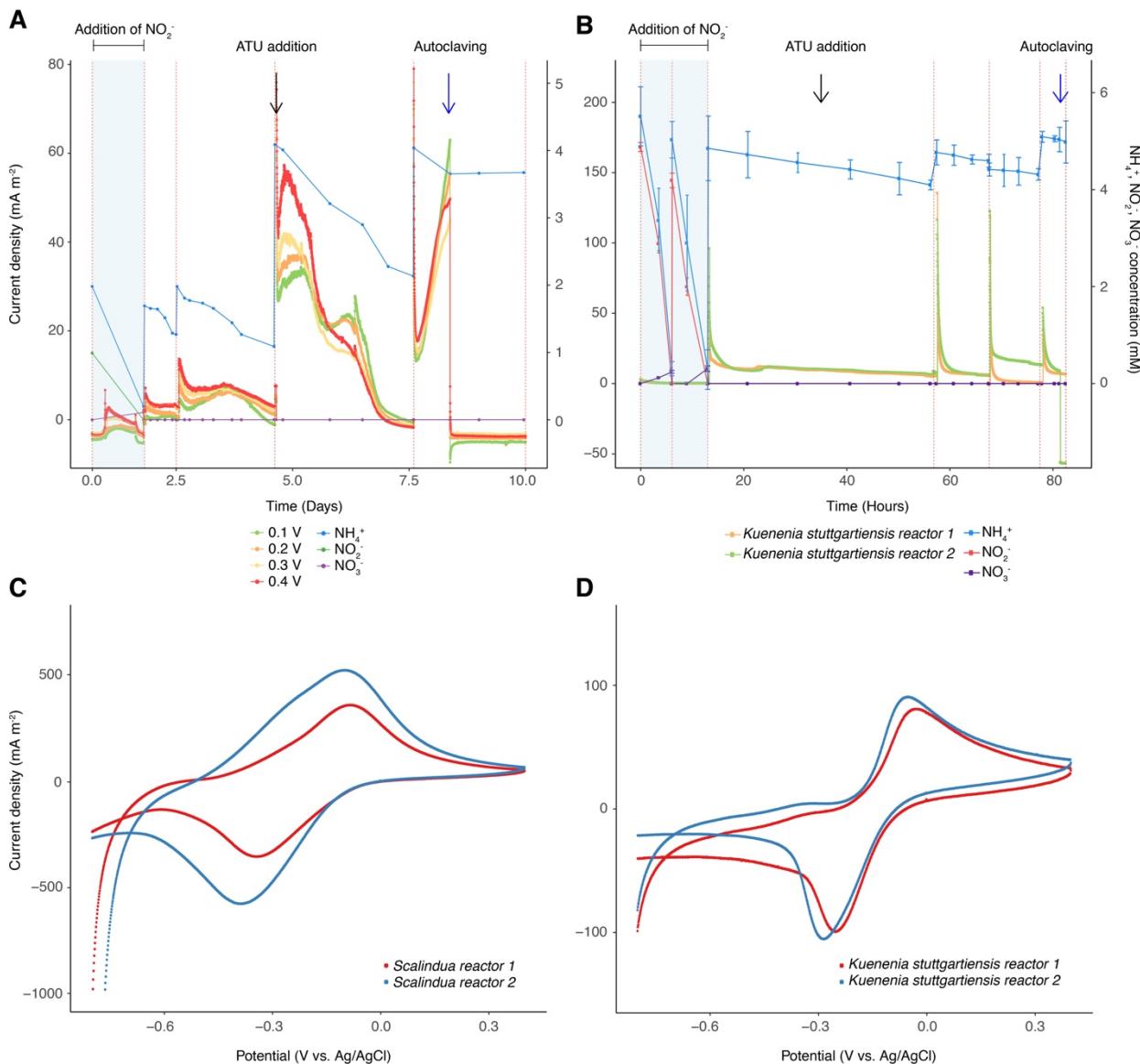
1273

1274 **Figure S1. Reactors used in this study. (A)** Photograph of membrane bioreactor (MBR) used for
1275 the enrichment of anammox planktonic cells. **(B to G)** Confocal laser scanning microscopy images

1276 of enriched biomass of *Ca. Brocadia* (**B**, **C** and **D**) and *Ca. Scalindua* (**E**, **F** and **G**). The images
1277 are showing all bacteria (green), anammox bacteria (red) and the merged micrograph (yellow).
1278 Fluorescence *in-situ* hybridization was performed with EUB I, II and III probes for all bacteria and
1279 Alexa647-labeled Amx820 probe for anammox bacteria. The scale bars represent 20 μm in length.
1280 (**H**) Schematic representation of the multiple working electrode microbial electrolysis cell (MEC).
1281 (**I** to **K**) Photographs of the single-chamber multiple working electrode MEC (**I**); single-chamber
1282 MEC with single working electrode (**J**); and double-chamber MEC with single working electrode
1283 (**K**) with anammox biofilm shown on all the electrodes.

1284

1285

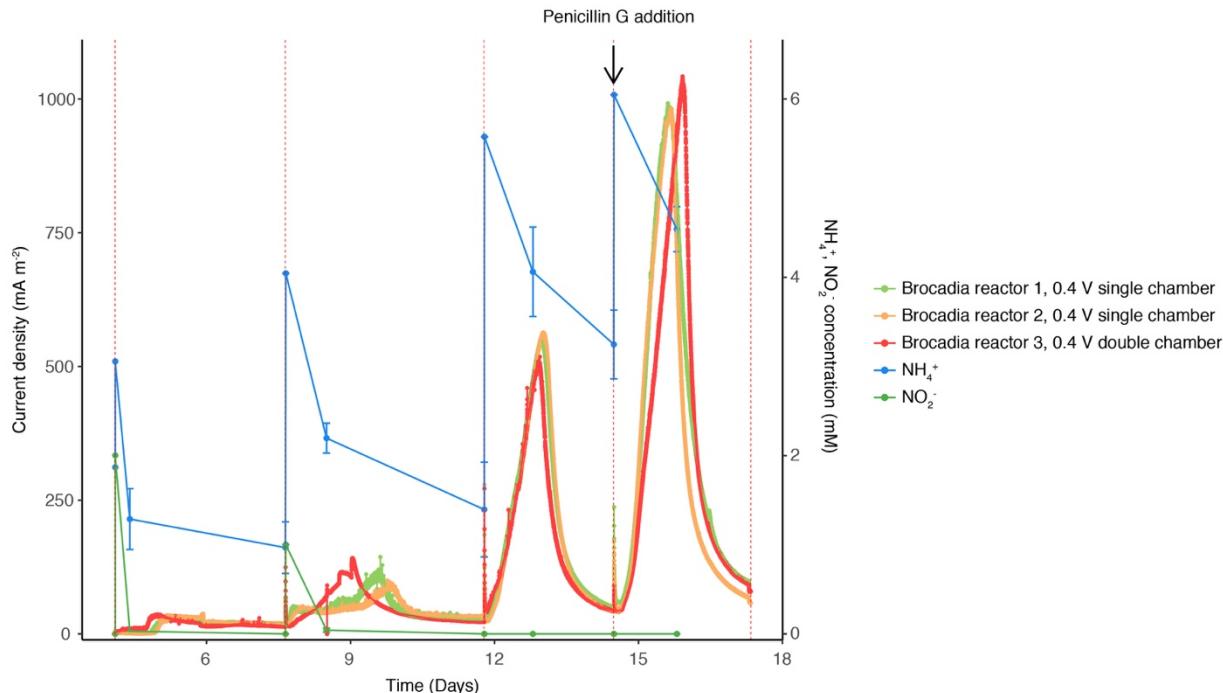

1286 **Figure S2. Sequence composition-independent binning of the metagenome scaffolds from**
 1287 **graphene oxide (GO) and microbial electrolysis cell (MEC) experiments. (A to D)** Differential
 1288 coverage binning of the genome sequences from the incubation of *Ca. Brocadia* and *Ca. Scalindua*
 1289 with GO (A and C) or working electrode (0.4 V vs Ag/AgCl applied potential) as the sole electron
 1290 acceptor (B and D). Each circle represents a metagenomic scaffold, with size proportional to
 1291 scaffold length; only scaffolds \geq 5 Kbp are shown. Taxonomic classification is indicated by color;
 1292 clusters of similarly colored circles represent potential genome bins. The x and y-axes show the

1293 sequencing coverage in the samples (log-scaled). Extracted anammox genomes are enclosed by

1294 dashed polygons.

1295

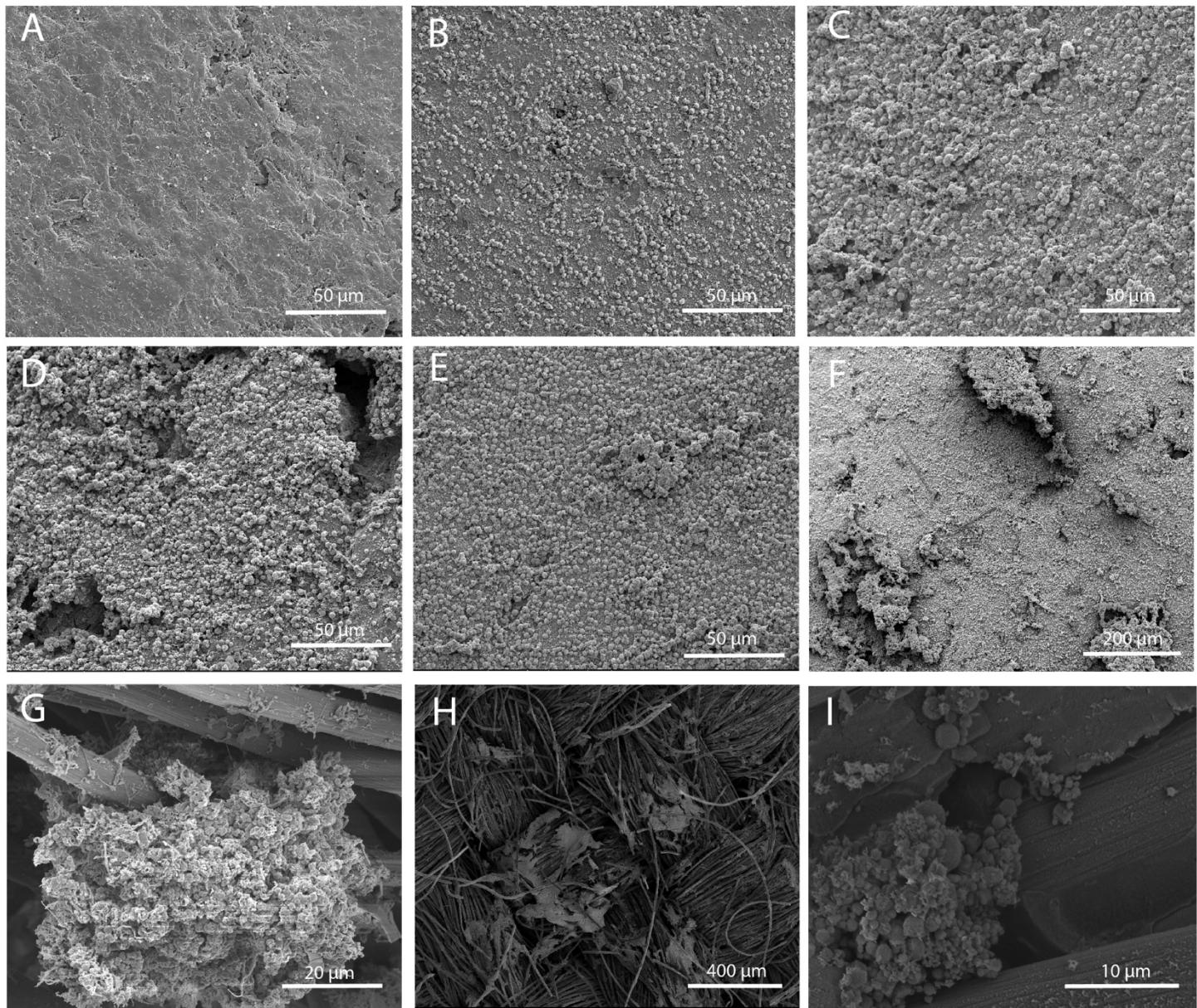
1296

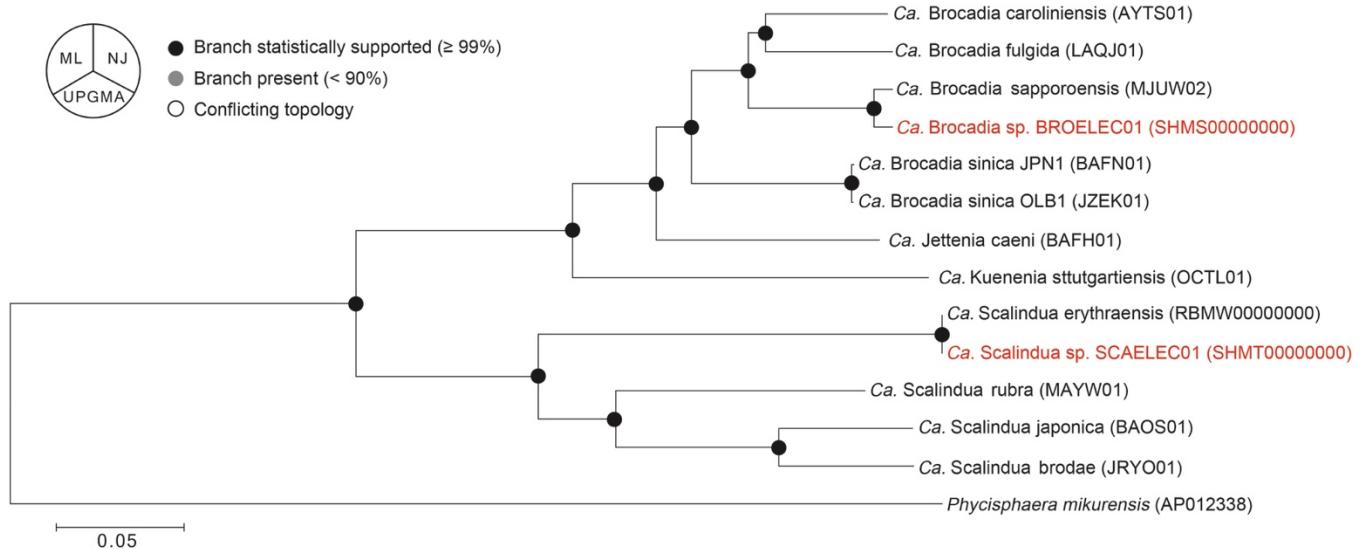

1297

1298 **Figure S3. Ca. Scalindua and *Kuenenia stuttgartiensis* are electrochemically active. (A and B)**

1299 Ammonium oxidation coupled to current generation in chronoamperometry experiment conducted
1300 in (A) single-chamber multiple working electrode MEC inoculated with *Ca. Scalindua* and
1301 operated under different set potentials and (B) single-chamber MECs inoculated with *Kuenenia*
1302 *stuttgartiensis* and operated with a working electrode at 0.4 V vs Ag/AgCl. Red dashed lines
1303 represent a change of batch. The highlighted area with blue refers to the operation of MEC in the
1304 presence of nitrite, which is the preferred electron acceptor for anammox bacteria. The black arrow

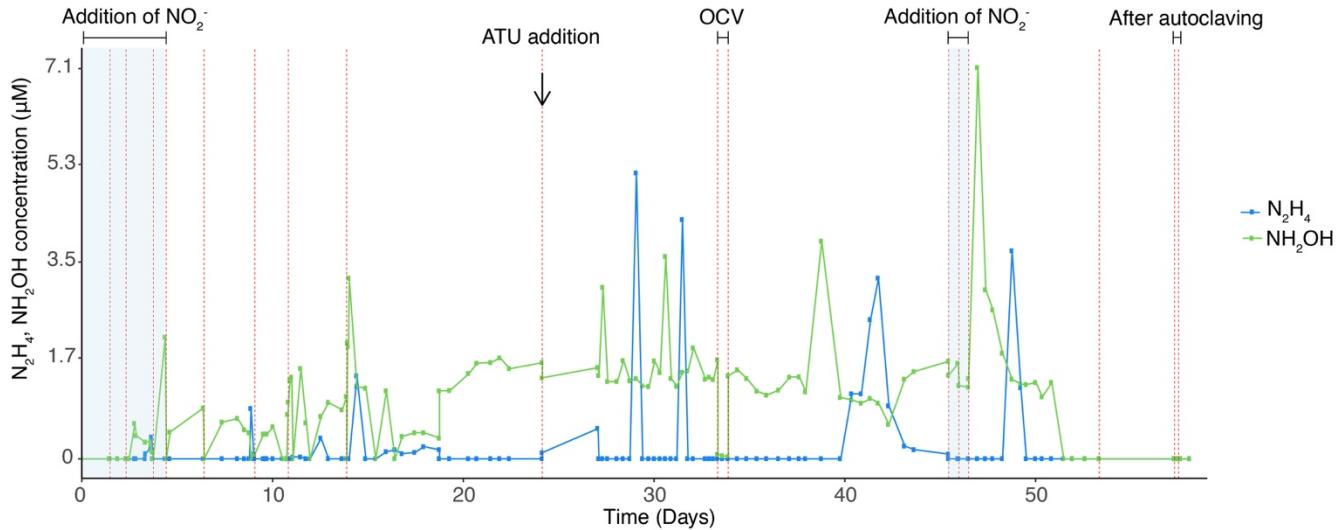
1305 indicates addition of *allylthiourea* (ATU), a compound that selectively inhibits nitrifiers. The black
1306 arrow in plot **(B)** indicates ATU addition in reactor 2 of *Kuenenia stuttgartiensis*. The blue arrow
1307 indicates autoclaving followed by re-connecting of the MECs. The blue arrow in plot **(B)** indicates
1308 autoclaving of reactor 2 of *Kuenenia stuttgartiensis*. **(C and D)** Cyclic Voltammogram (1 mV s⁻¹)
1309 of *Ca. Scalindua* **(C)** and *Kuenenia stuttgartiensis* **(D)** biofilm grown on anode.


1310


1311

1312 **Figure S4. Influence of cathodic reaction (i.e., hydrogen evolution reaction) on electrode-
1313 dependent anaerobic ammonium oxidation by *Ca. Brocadia*.** Ammonium oxidation and
1314 chronoamperometry of single and double-chamber MECs inoculated with *Ca. Brocadia* and
1315 operated at set potential of 0.4 V vs Ag/AgCl. Red dashed lines represent a change of batch. The
1316 black arrow indicates addition of penicillin G to reactor 2. Penicillin G is not active against
1317 anammox bacteria but inhibits the activity of heterotrophs.

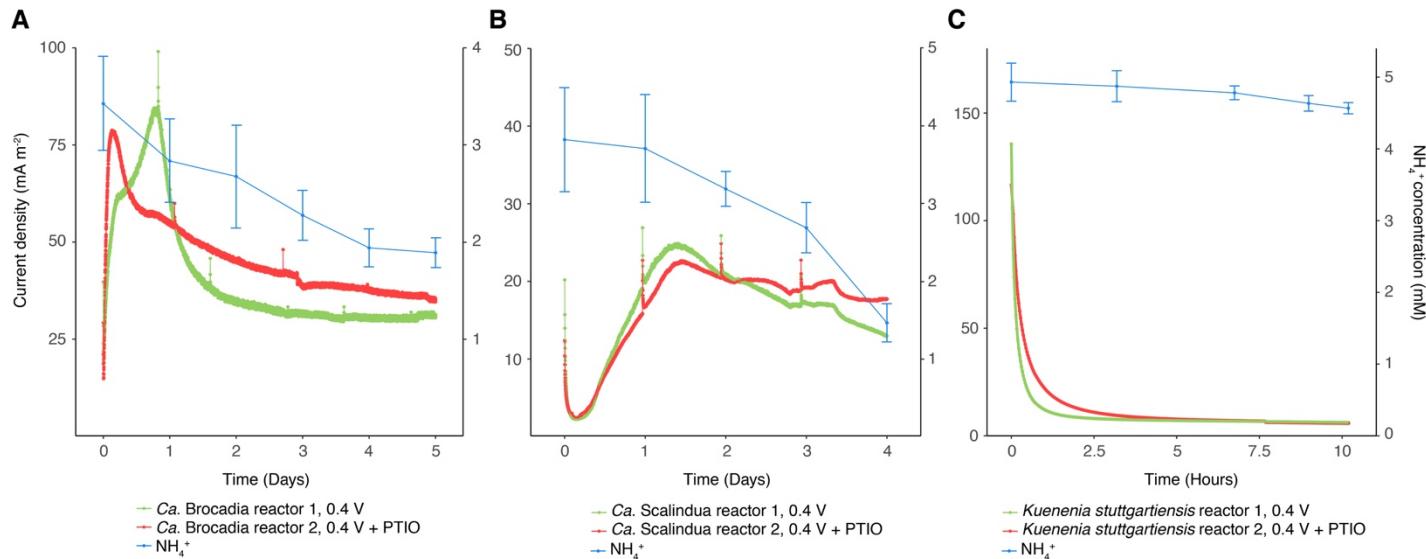
1318


1319 **Figure S5. Micrographs of anammox biofilm on working electrodes. (A to F)** Scanning
1320 electron microscopy (SEM) images of *Ca. Brocadia* biofilm grown on graphite rod anodes after
1321 55 days of operation at set potential of 0 V (A), 0.1 V (B), 0.2 V (C), 0.3 V (D) and 0.4 V (E and
1322 F) vs Ag/AgCl. (G) SEM image showing *Ca. Scalindua* biofilm grown on carbon cloth anode at
1323 set potential of 0.4 V vs Ag/AgCl. (H and I) SEM images of *Kuenenia stuttgartiensis* biofilm
1324 grown on carbon cloth anode at 0.4 V vs Ag/AgCl.

1325

1326 **Figure S6. Phylogenomics analysis of anammox genomes extracted from the working**
1327 **electrodes of *Ca. Brocadia* and *Ca. Scalindua* MECs and closely related genomes downloaded**
1328 **from the NCBI genome repository.** Pie charts at the nodes represent the bootstrap support values
1329 and the bootstrap consensus inferred from 1000 iterations. Support value $\geq 99\%$ is filled with
1330 black. ML, maximum likelihood method; NJ, neighbor joining method; and UPGMA, unweighted
1331 pair group method with arithmetic mean. The anammox genomes extracted from the biofilm
1332 community on the working electrodes are shown in red. GenBank accession numbers for each
1333 genome are provided in parentheses. Sequences of two different strains of *Brocadia sinica* were
1334 used as a reference of same species genomes. Sequence of a member from the phylum
1335 planctomycetes different than anammox bacteria was used as outgroup.

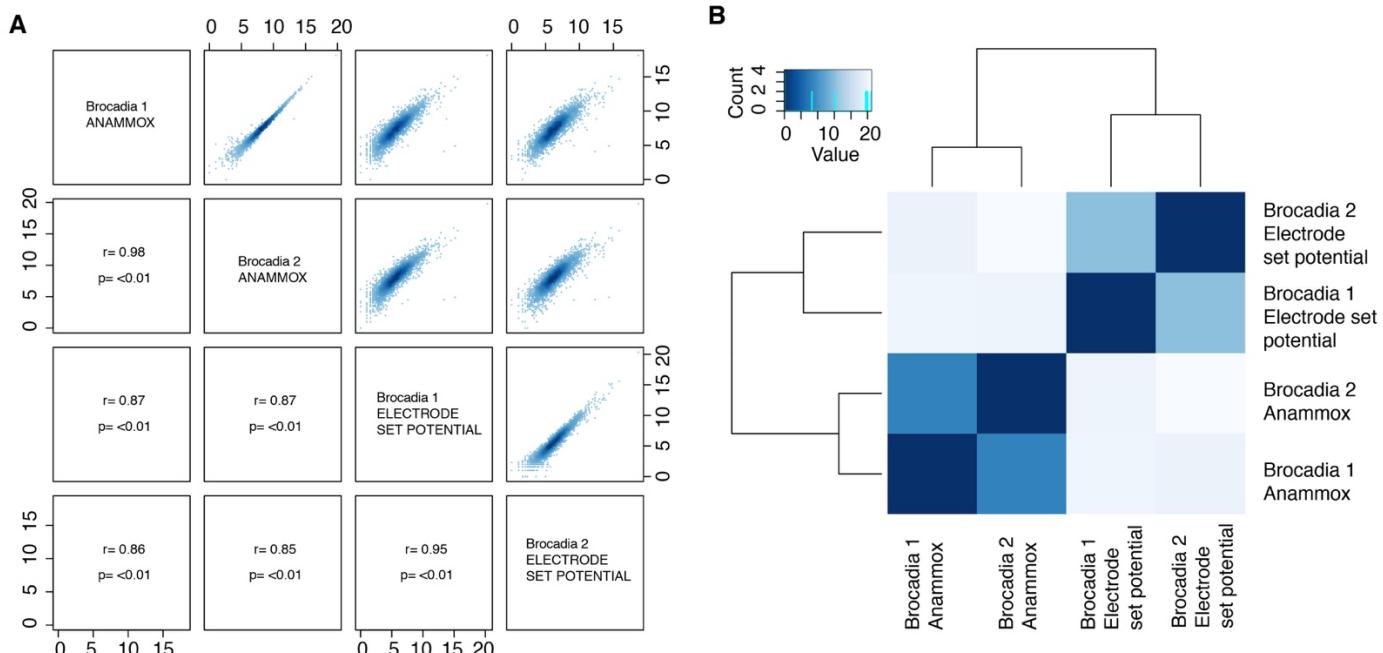
1336
1337



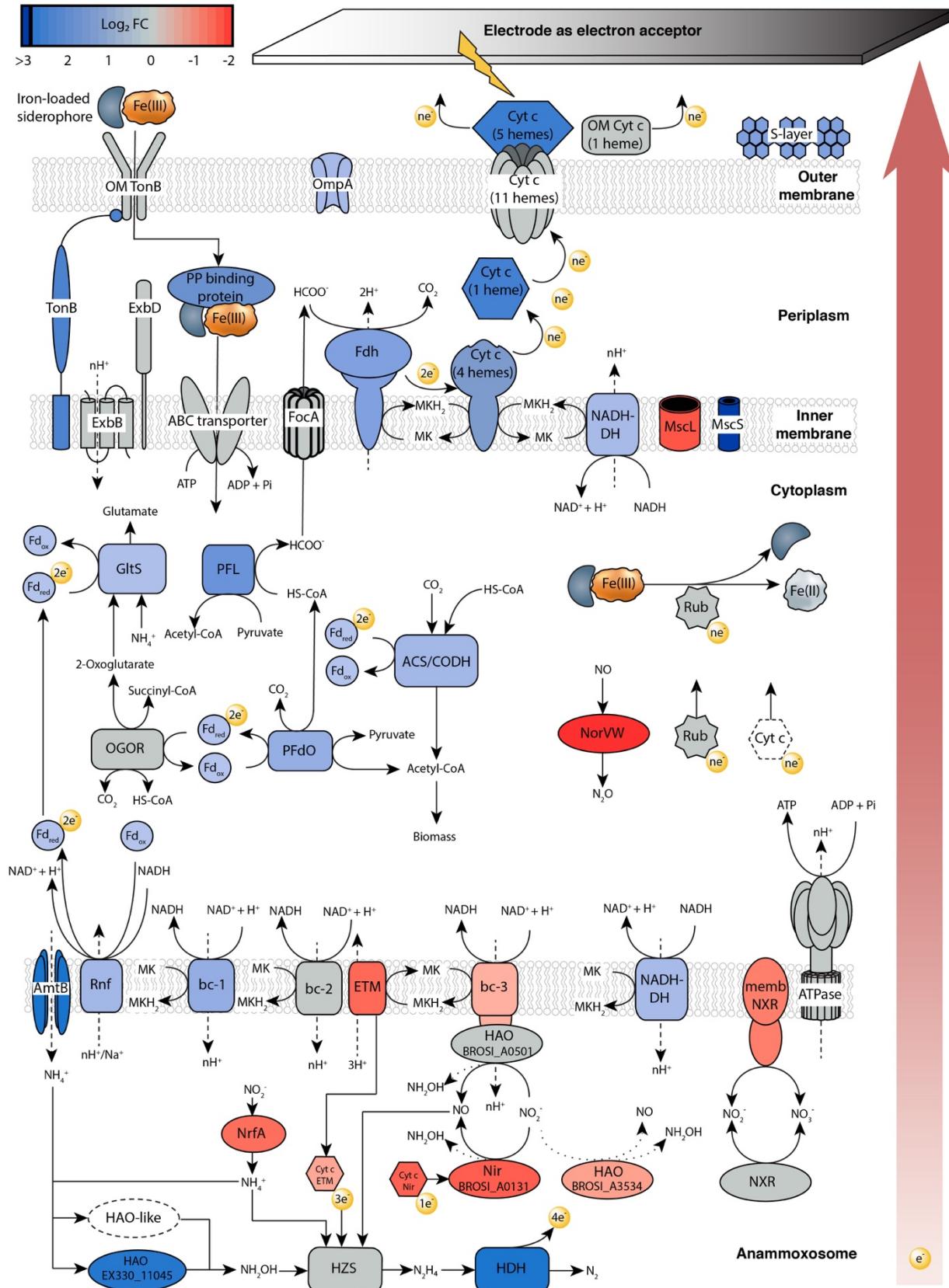
1338

1339 **Figure S7. Time course of the concentration of hydroxylamine (NH_2OH) and hydrazine**
1340 **(N_2H_4) in chronoamperometry experiment conducted in single-chamber multiple working**
1341 **electrode MEC inoculated with *Ca. Brocadia* and operated under different set potentials.**

1342 Red dashed lines represent a change of batch. The highlighted area in blue refers to the operation
1343 of MEC in the presence of nitrite, which is the preferred electron acceptor for anammox bacteria.
1344 The black arrow indicates addition of ATU. OCV indicates MEC operated under open circuit
1345 voltage.


1346
1347

1348


1349 **Figure S8. Influence of PTIO, a NO-scavenger, on electrode-dependent anaerobic**
1350 **ammonium oxidation by different anammox bacteria. (A)** Ammonium oxidation and
1351 chronoamperometry of *Ca. Brocadia* single-chamber MECs with and without PTIO addition. **(B)**
1352 Ammonium oxidation and chronoamperometry of *Ca. Scalindua* single-chamber MECs with and
1353 without PTIO addition. **(C)** Ammonium oxidation and chronoamperometry of *Kuenenia*
1354 *stuttgartiensis* single-chamber MECs with and without PTIO addition.

1355

1356

1357 **Figure S9. Overall transcriptomics similarity between biological replicate samples. (A)**
1358 Pairwise overview of *Brocadia* transcriptomics samples. “*Brocadia Anammox*” corresponds to the
1359 experimental condition where nitrite was used as the sole electron acceptor. “*Brocadia Electrode*
1360 set potential” corresponds to the experimental condition where the working electrode (0.4 V vs
1361 Ag/AgCl) was used as the sole electron acceptor. All counts were normalized to Log2+1 values.
1362 The upper right panel shows the normalized counts while the lower-left panel shows the
1363 corresponding Pearson correlation coefficient between samples and the P-value. The intra-
1364 replicate correlation is high and conversely the inter-replicate correlation is low. This indicates
1365 high similarity between the biological replicates and differentially expressed genes across the
1366 experimental setups. **(B)** Heatmap clustering of the sample-to-sample distances. Hierarchical
1367 clustering shows that anammox (nitrite as electron acceptor) and electrode-dependent anammox
1368 (set potential of 0.4 V vs Ag/AgCl) samples were clearly separated and clustered as independent
1369 groups.

1371 **Figure S10. Molecular model of electrode-dependent anaerobic ammonium oxidation.** The
1372 putative EET metabolic pathway of *Ca. Brocadia* to deliver electrons to an electrode was
1373 constructed with the transcriptional changes of selected marker genes in response to the electrode
1374 as the electron acceptor. Samples for comparative transcriptomic analysis were taken from mature
1375 electrode's biofilm of single-chamber MECs with NO_2^- as sole electron acceptor and after
1376 switching to set potential growth (0.4 V vs Ag/AgCl, electrode as electron acceptor). Log₂ fold
1377 changes (Log₂ FC) in expression are shown as follows; gene and gene clusters are shown in blue
1378 if upregulated or red if downregulated relative to the electrode as the electron acceptor. The color
1379 grey corresponds to genes that were expressed under similar levels in both conditions (i.e.,
1380 electrode or nitrite as electron acceptor). Dashed lines represent proton (H⁺) transport across
1381 membranes. Dashed curves indicate proteins, reactions or processes that have not been established
1382 yet. Genomic identifiers of the proteins used in the model are listed in [Table S5](#). The reactions are
1383 described in the [Supplementary Text](#) of the paper and are catalyzed by the enzymes ABC
1384 transporter: Iron ABC transporter permease and ATP-binding protein; ACS/CODH: Acetyl-CoA
1385 synthase/ CO dehydrogenase; AmtB: Ammonium transport protein; ATPase: ATP synthase; bc-
1386 1: Rieske/cytochrome b complex; bc-2: Rieske/cytochrome b complex; bc-3: Rieske/cytochrome
1387 b complex; Cyt c (1 heme): Periplasmic mono-heme c-type cytochrome; Cyt c (11 hemes):
1388 Membrane-anchored undeca-heme cytochrome c; Cyt c (4 hemes): Membrane-anchored tetraheme
1389 c-type cytochrome; Cyt c (5 hemes): Outer membrane penta-heme c-type cytochrome; Cyt c ETM:
1390 Cytochrome c redox partner of the ETM; Cyt Nir: Cytochrome c; ETM: electron transfer module
1391 for hydrazine synthesis; ExbB: Biopolymer transport protein ExbB/TolQ; ExbD: Biopolymer
1392 transport protein ExbD/TolR; FDH: membrane-bound formate dehydrogenase; Fd_{ox}: Ferredoxin
1393 (oxidized); Fd_{red} Ferredoxin (reduced); FocA: Formate/nitrite transporter; GltS: Glutamate

1394 synthase; HAO BROSI_A0501: Hydroxylamine oxidoreductase; HAO BROSI_A3534:
1395 Hydroxylamine oxidoreductase; HAO EX330_11045: Hydroxylamine oxidoreductase; HDH:
1396 hydrazine dehydrogenase; HZS: hydrazine synthase; membNXR: membrane-bound complex of
1397 the *nxr* gene cluster; MscL: Large mechanosensitive channel; MscS: Pore-forming small
1398 mechanosensitive channel; NADH-DH: NADH dehydrogenase; Nir BROSI_A0131: nitrite
1399 reductase; NorVW: Flavodoxin nitric oxide reductase; NrfA: ammonium-forming nitrite
1400 reductase; NXR: nitrite:nitrate oxidoreductase; OGOR: 2-oxoglutarate ferredoxin oxidoreductase;
1401 OM Cyt *c* (1 heme): Outer membrane lipoprotein mono-heme c-type cytochrome; OM TonB:
1402 TonB-dependent receptor; OmpA: OmpA-like outer membrane protein, porin; PFdO: Pyruvate
1403 ferredoxin oxidoreductase; PFL: Pyruvate formate lyase; PP binding protein: Iron ABC transporter
1404 periplasmic substrate-binding protein; Rnf: RnfABCDGE type electron transport complex; Rub:
1405 Rubredoxin/ferric-chelate reductase; S-layer: S-layer protein; TonB: Energy transducer TonB.
1406