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Abstract 

Because of lacking of the systematic investigation of correlations between the physical examination 

indicators (PEIs), currently most of them are independently used for disease warning. This results in 

very limited diagnostic values of general physical examination. Here, we first systematically analyzed 

the correlations between 221 PEIs in healthy and in 34 unhealthy states in 803,614 peoples in China. 

We revealed rich relevant between PEIs in healthy physical status (7,662 significant correlations, 

31.5% of all). However, in disease conditions, the PEI correlations changed. We further focused on the 

difference of these PEIs between healthy and 35 unhealthy physical status, 1,239 significant PEI 

difference were discovered suggesting as candidate disease markers. Finally, we established machine 

learning algorithms to predict the health status by using 15%-16% PEIs by feature extraction, which 

reached 66%-99% precision predictions depending on the physical state. This new encyclopedia of PEI 

correlation provides rich information to chronic disease diagnosis. Our developed machine learning 

algorithms will have fundamental impact in practice of general physical examination. 
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The comprehensive primary healthcare system has had a broader impact on human health compared to 

clinical medical treatment1-4. Health examinations help those who are healthy to improve their 

understanding of their own physical functions and maintain their health status, and inform those as to 

the health benefits conferred by changing unhealthy habits and avoiding risk factors that can lead to 

disease5. Physical examinations can help minimize the distress of diseases6. With the population size 

grows and ages, people's healthcare needs are constantly increasing, and health-care provisions are 

becoming more sophisticated and in parallel, more costly7.  

Health examinations are common elements of healthcare in developed countries8. These checks 

consist of general blood examination, urine examination, blood glucose examination, blood lipid 

examination, renal function examination and so on. However, currently, the physical examination 

report is assessed mainly based on one or two independent physical examination indicators (PEIs), 

which can only provide very limited information for physical examiners about their healthy condition 

or disease diagnosis9-11. The correlations between PEI in different physical states (i.e. healthy, 

hypertension, diabetes) have not been systematically investigated, even though they are expected to 

provide valuable information for public health care, for example by defining a small set of easily 

measurable PEIs that can be used in the accurate diagnosis of a disease before the disease 

phenogenesis. 

The recent explosion of available health data promises to transform healthcare by improving care 

quality and as such, improving population health while constraining escalating costs12. Health 

examination centers generate systematic big data that has the capacity to reveal otherwise undetected 

underlying health issues13-14. In clinical, there is growing investment in developing big data 

applications for medical care, such as those based on artificial intelligence (AI) to diagnosis diseases 

based on clinical images15-17. Although AI can save cost and improve efficiency, especially for early 

diagnosis and prevention of chronic diseases18, because of insufficient systematic analysis of PEIs in 

physical status, currently no prediction models were generated for physical status predictions based on 

PEIs. 

As China’s 2009 health-care reform has made impressive progress in expansion of insurance 

coverage, now general physical examination industry accumulates big data19. By using a large dataset 

of general health examination of Chinese population, the present study had three main aims: to 
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determine the correlations among PEIs in healthy and unhealthy (namely, those with underlying 

chronic disease) patients; to elucidate the relationship between chronic disorders and normal 

individuals for these PEIs to discovery candidate disease markers; to develop machine learning models 

that can predict individual health status using a refined set of PEIs. To address these points, we 

included physical examination data from 80,3614 individuals who visited one health examination 

center between 2013 and 2018 in China. We included data from 221 PEIs associated with 35 physical 

conditions, with the majority unhealthy physical states being due to chronic disease. 

 

Results 

Study population 

The study population was mainly from the Chengdu Plain, Sichuan, P.R. China (102.54°E ~104.53°E 

and 30.05°N ~31.26°N). We included 803,614 individuals who attended the Health Management 

Center & Physical Examination Center of Sichuan Provincial People's Hospital in China between 2013 

and 2018. The participants represented 35 healthy states based on either a healthy status or the presence 

of an underlying disease condition (unhealthy status). Specifically, the study population included 

711,928 healthy participants, 46,981 patients with hypertension, 11,745 patients with diabetes and 

32,960 with other unhealthy status (mainly are chronic disease) (Table 1). We included 221 PEIs in our 

analyses, which comprised patient demographic information (age and sex) and life-style indicators 

(alcohol consumption, tobacco use, etc.) (Extended data Table 1). 

PEI correlations in participants with a healthy physical status 

We first aimed to explore the PEI correlations in healthy status to give a landscape. Among 221 PEIs, 

we found 7,662 significant correlations (P<0.05/ 24,322 PEI pairs=2×10-6) in all 24,322 PEI pairs 

correlations (31.5%) (Table 1, Supplementary Table 1) in those with a healthy physical status 

(N=711,928, mean age 41.4, female=45.7%). This finding suggests a wide range of correlations 

between PEIs (Fig.1). The top 50 correlated PEIs included sex, age, red blood cell count, prealbumin 

(PAB), history of alcohol intake (alcohol consumption, drinking), alkaline phosphatase level (ALP), 

tobacco use (smoking) and so on (Fig. 1a). Among the 221 PEIs, the number of significantly correlated 

PEIs also suggested rich correlations between PEIs (Fig. 1b). Of these identified correlations among 

PEIs in healthy status, some of them are consistent with the reported literatures, but most of them are 

newly discovered in this study. 
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General inspection PEIs showed rich relevance to each other or to other PEIs. For example, sex 

showed the richest PEI correlations (151 PEI pairs, males vs. females), including hemoglobin (Hb), 

creatinine, uric acid (UA), drinking, smoking, body mass index (BMI) and etc., which reflect the 

differences in body shape, physique and living habits between males and females (Fig. 1, Fig. 2, 

Supplementary Table 1). Age also showed strong PEI correlations (125 PEI pairs), such as estimated 

glomerular filtration rate (eGFB), systolic pressure (SBP), diastolic pressure (DBP), albumin (Alb), and 

low-density lipoprotein (LDL-C). These findings suggest that with increasing age, body functions 

systematically change (Fig. 1, Fig. 2, Supplementary Table 1). We also found 124 PEI correlations 

with BMI which reflects the strong influence of body shape on PEIs, including UA, high-density 

lipoprotein (HDL-C), SBP, and DBP (Fig. 1, Fig. 2, Supplementary Table 1). Blood pressure (BP), 

which has many physiological meanings, we identified a set of PEIs that correlated with blood pressure 

(BP), including 125 PEIs for DBP and 124 PEIs for SBP (Fig. 1, Fig. 2, Supplementary Table 1). 

Intraocular pressure (IOP) is an important factor for the diagnosis of glaucoma8-9. We found 79 PEIs 

that were weakly correlated with IOP of the left eye (IOP-L), including IOP of the right eye (IOP-R) 

SBP, DBP, Alb, BMI, TG, ApoB, drinking, and TC. Similar to IOP-L, 73 PEIs were weakly correlated 

with IOP-R (Fig. 1, Fig. 2, Supplementary Table 1). 

As expected, blood lipid PEIs display many correlations. For example, 119 PEIs correlated with 

triglyceride (TG) (Fig. 1, Fig. 3, Supplementary Table 1). We found 122 PEIs that correlated with 

HDL-C, with many negative correlations, including TG, UA, and BMI (Fig. 1, Fig. 2, Supplementary 

Table 2). The correlation patterns between LDL and HDL showed a specific opposite trend (Fig. 1, Fig. 

2, Supplementary Table 1). Out of expected, living habits have a profound impact on our body. 

Consistently we detected 130 PEIs that correlated with drinking, such as sex, smoking, Hb and UA (Fig. 

1, Fig. 2, Supplementary Table 1). Similarly, 128 PEIs were correlated with smoking, including 

drinking, sex and age (Fig. 1, Fig. 2, Supplementary Table 1). We also detected 58 PEIs that weakly 

correlated with exercise habits (e-habits), including age, eGFB, and SBP (Fig. 1, Fig. 2, Supplementary 

Table 1). Tumor marker expression can indicate the occurrence and development of tumors. We 

detected weak correlations between several tumor markers and PEIs. For example, 88 PEIs were 

correlated with cytokeratin-19-fragment CYFRA21-1 (CYFRA 21-1); 83 PEIs were correlated with 

tumor-supplied group factors (TSGF); 64 PEIs were correlated with neuron-specific enolase (NSE); 
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and 64 PEIs were correlated with complexed prostate special antigen (C-PSA) (Fig. 1, Fig. 2, 

Supplementary Table 1). 

PEI correlations in individuals with an unhealthy physical status 

Next, we examined the PEI correlations in 34 unhealthy physical states. In this analysis, we also 

identified rich correlations in these unhealthy physical states (Table 1). Compared with the healthy 

physical state, we found fewer significant correlations in PEIs in those with an unhealthy physical 

status, which might be caused by sample size effect (Table 1, Supplementary Table 2-S35). Each 

unhealthy physical state has its only correlation spectrum and most of them are newly discovered in 

this study. For example, in the hypertension population, we found 4,413 significant correlations in the 

221 PEIs of 24,322 PEI pairs (18.3%) (Supplementary Table 2). The PEI with increased correlations 

included monocytes (MON) (70 in hypertension vs six in healthy physical state, the same below), 

quantitative detection of hepatitis B virus DNA (HBV-DNA) (76 vs 33), quantitative detection of 

hepatitis C virus RNA (HCV-RNA) (49 vs 8), etc. (Supplementary Table 2). Those with both 

hypertension and coronary heart disease (hypertension+coronary) had an increased correlation of RH 

blood group compared with the healthy cohort (41 vs 9 in normal). Conversely, the numbers of 

correlations in homocysteine (Hcy) were greatly reduced in unhealthy versus healthy patients (2 vs 

120). In diabetes, 10 PEI pairs increased while the remaining 195 PEI pairs decreased; the increased 

PEIs including MON (41 vs 6), HCV-RNA (42 vs 8), anti-Sc70 (59 vs 31) and HCV-cAg (35 vs 10) 

(Supplementary Table 17). These results suggest that under the unhealthy status, the PEIs have 

changed systematically. Each disease has its own specific PEI spectrum. 

We next explored the correlation networks among the PEIs using a qgraph8,10, which would show the 

LinkMode among PEIs. In the healthy status, we found that the PEIs showed rich interactions with 

both positive and negative directions (Fig. 3). In the unhealthy physical states, each of them showed its 

unique interaction networks with PEIs (Extended Data Figure 2 showed the network of hypertension 

and diabetes). These results show that there is a dependency relationship between multiple indicators in 

each physical state, which can be used with combination in the assessment of physical health. 

Candidate PEI markers for unhealthy physical status 
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To verify and discovery new candidate biomarkers or the impact of living habits for disease early 

diagnosis, we next calculated the difference of each of the 221 PEIs between healthy and unhealthy 

physical states. In total, we found 1,239 significantly different PEI pairs between healthy and 34 

unhealthy physical status (P<0.05/34=0.0014, adjust for 34 unhealthy physical status) (Table 1, Fig. 4, 

Supplementary Table 36). For example, 112 PEIs were significantly different between patients with 

hypertension and healthy people, 100 PEIs were different between hypertension+diabetes and healthy 

people, and 91 PEIs were different between diabetes and the healthy people. Some of them are 

consistent with previous findings and the rest of them are newly discovered. 

For many of the 221 PEI, we detected difference between healthy and unhealthy physical status, 

especially in PEIs involved in physique, lifestyles, blood lipids (Fig. 4, Supplementary Table 36). For 

example - BMI, we found differences between healthy and unhealthy physical status in 16 of the 34 

unhealthy physical status, including in patients with hypertension (P=0) and gout (P=6.48×10-90). 

Exercise habits (E-habits) showed 19 differences between healthy and unhealthy status, including in 

hyperlipidemia (P=1.28×10-277) and diabetes (P=4.20×10-29). Dietary habits also showed differences in 

10 unhealthy status, including in chronic pharyngitis (P=2.59×10-19) and cholecystolithiasis 

(P=9.43×10-18). We detected differences for alcohol intake habits in 20 unhealthy status, including 

hyperlipidemia (P=0), coronary heart disease (P=4.06×10-24), diabetes (P=1.09×10-22) and Parkinson's 

syndrome (P=1.43×10-17). We also observed differences for smoking habits in 18 unhealthy status 

when compared to the unhealthy condition, including in hypertension (P=2.74×10-114), hyperlipidemia 

(P=2.69×10-62) and Parkinson's syndrome (P=5.12×10-29). We found differences for IOP-R in five 

unhealthy status compared with healthy, including in hypertension (P=3.63×10-85) and diabetes 

(P=2.01×10-73); similar findings were produced for IOP-L (Fig. 4, Supplementary Table 36). For lipids 

PEIs, we also observed differences between 34 unhealthy and healthy status. For example, LDL-C was 

detected in 21 unhealthy status, including hypertension (P=0) and diabetes (P=2.95×10-212). HDL-C 

was detected in 17 unhealthy status, including in diabetes (P=1.92×10-177) (Fig. 4, Supplementary 

Table 36). We further conducted a detailed analysis of HDL-C and diabetes and found those with low 

HDL-C showed a significantly higher risk of developing diabetes than those with average values 

(1.26-1.75 mmol/L) in this population. Of note, those with high HDL-C levels also showed elevated 

risk of developing diabetes (Extended data Fig. 2). 
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Tumor-associated antigens also display significant differences between the healthy and unhealthy 

status. For example, CYFRA 21-1 was detected in 10 unhealthy status, including 

hypertension+diabetes (P=3.71×10-97) and diabetes (P=4.52×10-70). CEA1 was detected in 12 unhealthy 

status, including hypertension+coronary (P=9.59×10-29) and diabetes (P=1.73×10-18). Alpha-fetoprotein 

(AFP) was detected in hepatopathy (P=1.08×10-28). C-PSA was detected in hypertension+coronary 

(P=8.38×10-20). Finally, the carbohydrate antigen CA724 (CA 72-4) was detected in asthma 

(P=9.92×10-13), gout (P=3.53×10-7) and coronary+diabetes (P=4.06×10-5) (Fig. 4, Supplementary Table 

36). Among other PEIs, we also detected significant differences between the healthy and unhealthy 

status. For example, we found differences in urine sugar levels (U-GLU) in nine unhealthy status, 

including in diabetes and its associated diseases. The eosinophil rate (eo%), was found in five 

unhealthy status, including asthma (P=1.38×10-129) and rhinallergosis (P=4.05×10-18). Whole blood 

iron levels (WB-Fe) was found in 11 unhealthy status, including hypertension (P=2.52×10-69). We 

detected PH in 11 unhealthy status, including diabetes (P=1.97×10-239), hypertension (P=2.41×10-166), 

hypertension+diabetes (P=9.90×10-32) and gout (P=9.82×10-15). We found potassium (K+) in five 

unhealthy status, including hypertension (P=1.98×10-119) and hepatitis B (P=3.13×10-10). We also 

detected differences in magnesium (Mg2+) in hypertension+diabetes (P=3.14×10-58) and diabetes 

(P=5.10×10-52). Hcy (an indicator of cardiovascular disease) was detected in eight unhealthy status, 

including hypertension (P=1.97×10-136) and Parkinson's syndrome (P=1.76×10-7) (Fig. 4, 

Supplementary Table 36). These results provide a set of candidate markers for chronic diseases early 

diagnosis. 

Machine learning to predict healthy and unhealthy physical status from PEIs 

A key objective of this study was to apply PEI data and machine learning technology to develop 

algorithms that can predict the onset of common disease based on general physical examination. We 

tried three machine learning models, including kernelized support vector machine (SVM), multilayer 

perceptron (MLP) and random forests. Because SVM and MLP prediction models only gave very low 

accuracy and sensitivity in our initial training data, we excluded these models for further training. 

Random forests showed better performance than SVM and MLP in the initial training. However, it 

could not give good performance in the multi-class classification of all the physical status. Finally, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/855809doi: bioRxiv preprint 

https://doi.org/10.1101/855809
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

tried to use binary classification to classify each pair of healthy and unhealthy physical status (e.g. 

hypertension and healthy people; Parkinson's syndrome and healthy people) and we obtained relatively 

better performance than the multi-class classification. Then we tried to optimize this prediction 

algorithm. Because the data were characterized by serious category imbalance, a random 

under-sampling method, was adopted that balances the data by randomly selecting the data subset of 

the target class. In each physical status, the top 15% or 16% representative PEIs were extracted for 

prediction by feature extraction. The advantage of this method is that it is usually very fast and 

completely independent of the model applied after feature selection. 

Finally, in the random forests algorithm prediction of each pair of healthy and unhealthy physical status, 

the area under curve (AUC) of receiver operating characteristic curve reached 66%~99% depending on 

the unhealthy physical status (average 87.6%) (Fig.5, Extended data Table 2, Extended data Table 3 

and Supplementary Table 37). For classification, AUC values more than 90% indicated excellent 

performance, and values from 80% to 90% indicated good performance. Our algorithm provided 

high-precision predictions in 18 of the 34 unhealthy physical status (AUC>90%), good performance for 

another 9 of the unhealthy physical status (90% >AUC>80%). In our algorithm, patients with 

heart-related diseases showed excellent performance. For example, by extraction 30 PEI features (age, 

leukocyte count, monocytes, Mon%, mean corpuscular volume, red blood cell count, red cell 

distribution width, lymphocyte rate, platelet count, low-density lipoprotein, high-density lipoprotein, 

total cholesterol, carcinoembryonic antigen 1, albumin, albumin-globulin, cystatin c, glucose, urine 

sugar, urine creatinine, estimated glomerular filtration rate, creatinine, urea, waistline, aaist-hip Ratio, 

body mass index, operation history, systolic pressure, height, neck size and anamnesis, Extended data 

Table 2), Hypertensive+Diabetes+Coronary Heart Disease provides 99% AUC just using 909 training 

samples and 387 validation samples (f1-score (95%CI), 0.96(0.95-0.96); accuracy (95%CI): 

0.95(0.94-0.97) ; specificity (95%CI): 0.95(0.94-0.95); recall (sensitivity) (95%CI): 0.95(0.94-0.97). In 

our algorithm, patients with Parkinson's syndrome provides 97% AUC using 192 training samples and 

83 validation samples (f1-score (95%CI), 0.91(0.90-0.91); accuracy (95%CI): 0.90(0.89-0.90) ; 

specificity (95%CI): 0.87(0.79-0.94); recall (95%CI): 0.90(0.89-0.91). For hepatic adipose infiltration, 

our algorithm also provided good prediction performance using 803 training samples and 115 

validation samples (f1-score (95%CI), 0.82(0.78-0.87); accuracy (95%CI): 0.81(0.76-0.86) ; 
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specificity (95% CI): 0.75(0.67-0.82); recall (95% CI): 0.82(0.77-0.87) and AUC (95% CI): 

0.92(0.89-0.94). For chronic rhinitis, we got the lowest prediction performance in this study 

(AUC(95%CI):0.66(0.60-0.72)). When all unhealthy physical status were classified as one “unhealthy” 

status together, our algorithm also provided good predictions: f1-score (95%CI): 0.83 (0.83-0.83); 

accuracy (95%CI): 0.82 (0.82-0.82); specificity (95%CI): 0.81(0.81-0.81); sensitivity (95%CI): 0.84 

(0.84-0.84) and AUC (95%CI): 0.9 (0.90-0.90). These results suggested that by using feature extraction 

of the PEIs (15-16% of all 221 PEIs) just by using small number of samples, our random forests 

algorithms provided good performance for majority unhealthy physical status predictions. 

Discussion 

This study has produced correlation maps of 221 routine PEIs using physical examination data 

obtained from a Chinese population of 803,614 individuals of 35 healthy or unhealthy physical status 

(mainly chronic diseases). We detected a large number of correlations among PEIs in healthy or 

unhealthy physical states; furthermore, these correlations differed according to the 34 unhealthy 

physical conditions analyzed. Most of the correlations are newly observed in this study. We found that 

a wide range of correlations among PEIs, such as sex, age, BMI, blood lipids, blood pressures, 

cancer-related indicators, lifestyles including drinking, smoking, e-habits. Improving our understanding 

these PEI interactions will help explain disease mechanisms and pathogenesis. Our results fill the gap 

of systematic PEI analysis and provide rich information about how PEIs might reflect underlying 

health conditions. These findings provide rich information to further improve healthcare researches and 

clinical practice.  

One of the unexpected finding from our analysis was that patients with hypertension showed more 

correlations between HBV-DNA and HCV-RNA to other PEIs than healthy cohort. Similarly, we 

found a strong correlation between hepatitis C virus and other PEIs in diabetes, suggesting that patients 

infected with hepatitis C may be more susceptible to diabetes. This finding implicates a phenomenon 

whereby viral infection can make an individual more susceptible to developing a chronic disease. For 

these people, antiviral therapy might be taken into consideration while treating hypertension and 

diabetes. 
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Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in 

clinical trials are key areas of medicine and healthcare6. In this study, we presented many candidate 

markers for chronic disease. For example, we found that IOP indicators, which are considered to be a 

relatively independent marker for glaucoma20, are closely associated to hypertension, diabetes, and 

hypertension with diabetes. These results suggest that IOP might be affected, to some extent, by 

systemic diseases and might be used as one of the clinical marker of these diseases early diagnosis. Our 

results confirmed that low HDL-C level is a risk factor for diabetes21, especially in women. This result 

suggests that improving HDL-C level through dietary supplementation might be an effective way to 

prevent diabetes in patients with low HDL-C levels. However, based on our results, excessive HDL-C 

supplementation is also a risk factor; therefore, HDL-C supplementation should aim to bring HDL-C 

levels within a normal range22. We detected a significant increase in AFP in hepatopathy when 

comparing healthy cohort, which confirms AFP increase is an increased risk factor for primary liver 

cancer in hepatopathy14-15. K+ has significant effects on hypertension23 and Cl-, and Mg2+ has 

significant effects on diabetes, suggesting that modulation of these ions might have effects on these 

conditions. Living habits, such as exercise, smoking and drinking, have a more profound impact on the 

body than we had expected. For example, exercise, drinking or smoking history have a strong impact 

on hyperlipidemia24-25, as evidenced by comparision to healthy status. This finding suggests that by 

adjusting these living habits, hyperlipidemia should improve. 

Because the current physical examination conclusion is generally based on a relatively independent 

single or several prior indicators to give advice on the results of physical examination, many of the 

results given are ambiguous, and the value of judging the health status of the examinees is very 

limited10,26-27. There is an urgent need for a more accurate index system and method to judge the health 

status of physical examinees. In the final part of our study, we developed random forest machine 

learning algorithms that can predict diseases through 15%-16% of all 221 PEIs with good performance 

of prediction (AUC:66%~99%; average 86%). For each disease, we defined about 30 contributed PEIs 

by feature extraction. In most of our prediction algorithms, only a few hundreds of samples were 

needed to give good prediction performance for many chronic diseases. This finding suggests machine 

learning on PEI data can be used to help predict the true condition of the examers, identify “at-risk” 

patients and indicate the most relevant follow-up physical examinations for affected individuals.  
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In summary, we systematically explored the correlation between various PEIs and their relationship 

with chronic diseases and established machine learning prediction models to predict health status. This 

study provides abundant information to better understand the physiological and pathological 

characteristics of the human body as a system. Importantly, we have identified modifiable factors and 

directions for disease prediction, diagnosis and treatment. Our developed machine learning algorithms 

can be immediately applied to clinical practice to assistant the judgment of physical examination 

results.   

Methods 

Study approval 

The study was approved by the institutional ethics committee of Sichuan Provincial People’s Hospital 

and was conducted according to the Declaration of Helsinki principles. Informed consent was obtained 

from the participants when possible. 

Study Participants 

PEI data were obtained from 803,614 Han Chinese patients visiting the Health Management Center & 

Physical Examination Center of Sichuan Provincial People's Hospital in China between 2013 and 2018. 

The total cohort captured participants with 35 different reported health conditions, including 711,928 

reported healthy participants and 91,686 unhealthy participants. The unhealthy cohort included 46,981 

patients with hypertension, 11,745 with diabetes and 32,960 with other unhealthy status (Table 1). 

Detected PEIs 

Only the PEIs that were recorded by the same methods were included in this study. In total, 229 PEIs 

were initially collected: eight PEIs that were detected in few individuals were excluded, leaving 221 

PEIs for further analysis (Extended data Table 1). These PEIs included the levels of biochemical 

indicators and the results of blood tests. Patient lifestyles and disease conditions were also investigated 

during the physical examination. 

Data processing 

The PEIs with string variables were converted to integer variables for data analysis. Categorized 

variables were digitally coded for further calculation. The mean value imputation method was used for 

missing data. For individuals who participated in more than one physical check, average values of each 

PEI were used for data analysis. 
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Statistical Analyses 

The Pearson correlation coefficient (PCC) method was used to calculate the correlations between two 

PEIs (for example, x and y) in R; this method measures the linear dependence between two variables. 

PCC correlation (r) (1) and P values (2) were calculated using the following formulae28-30: 

（1） 

 

 

（2）                       P = 1 - F.DIST( ((n-2)*r^2)/(1-r^2), 1, n-2 ) 

df = n - 2 

n = number of x-y data pairs 

Total sample size required when using the correlation coefficient (r), when two-sieded α=0.05, β=0.20. 

If r=0.05, we need 3,134 samples; if r=0.10, we need 782 samples; if r=0.25, we need 123 samples; if 

r=0.5, we need 29 samples. The general formula for the correlation sample calculating is listed as 

the following (3)31: 

(3)                       r = expected correlation coefficient 

C = 0.5 × ln [(l + r)/( l – r)] 

N = Total number of subjects required 

Then 

N = [(Z+ Z) ÷ C]2 + 3. 

 

A linear regression model (lm) was used to compare PEIs between the reported healthy status and 

unhealthy status adjusted for sex and age in the R package21-23. The odds ratio of HDL-C level was 

calculated by using generalized linear models (glm) adjusted for age in the R package24-25. The 

correlation interaction network was conducted using qgraph10-11.  

Machine learning 

Three machine learning models, including kernelized support vector machine (SVM)28-29, multilayer 

perceptron (MLP)30-32 and random forest33 were tested to get the prediction performance of the PEIs. 

By using MLP algorithm prediction in neural network to predict health and each of the 34 unhealthy 

status (multi classification), it could not achieve good results. We further tried prediction the healthy 

from each unhealthy statues by the binary classification method, the F1 value of the prediction each 
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result is very close to zero. By using SVM algorithm prediction for making multi classification 

prediction, the highest F1 value of cholecystolithias is 0.70, but that of most other types of diseases is 

0.00. We also tried the binary classification method, but all the results were relatively poor. When 

random forest algorithm is used for prediction for multi classification (health and each of the 34 

unhealthy status), the F1 value of healthy status can reach 0.80-0.90, but the F1 value of unhealthy 

sattus is about 0.00-0.40. Then, we further chosen forest algorithm and optimized the random forest 

algorithm. First, due to the uneven distribution of the sample numbers of healthy and non-healthy status, 

and the law of large numbers32, we used downsampling strategy for sample randomly used. Because 

the data were characterized by serious category imbalance, a random under-sampling method, was 

adopted that balances the data by randomly selecting the data subset of the target class. Second, we 

used PEI feature extraction strategy to extract the most contributed PEI for each healthy and unhealthy 

status. Feature extraction adopts the strategy of univariate statistics in automatic feature selection. 

Univariate statistics select features with high confidence according to the statistical significance of the 

relationship between each feature and the target. This process can be achieved by using 

feature_selection in scikit-learn. Finally, in each healthy and non-healthy status, the top 15% or 16% 

representative PEIs were extracted for prediction by feature extraction. The advantage of this method is 

that it is usually very fast and completely independent of the model applied after feature selection. 

Then, the data were randomly divided such that 30% constituted the test set, and the remaining 70% 

were randomly divided again, with 70% as the training set for the training model and 30% as the 

validation set for the evaluation model. In the process of improving the generalization performance of 

the model by adjusting parameters, a cross-validation method with a grid search was adopted, which 

can be implemented by GridSearchCV provided by scikit-learn (Supplementary Table 37 and 

Supplementary code). 
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Table 1. Summary of the study samples, detected correlations and the different PEIs between healthy status and unhealthy states 

Body status Sample (N) Age (Range) Female % Sig. Correlation (a) Sig. Correlation % (b) Different PEIs (c) 

Normal condition 711928 41.4（4~105） 45.7 7662 31.5 - 

Cholecystolithiasis 993 50.09（19~97） 47.8 1622 6.9 28 

Hypertension 46981 62.0（20~102） 36.1 4413 18.3 112 

Hypertension+Diabetes 8586 67.3（34~99） 67.1 3008 12.6 100 

Hypertension+Coronary 2074 74.0(34~98) 40.4 1920 7.7 53 

Hypertensive+Diabetes+Coronary 928 73.5(37~98) 35 2014 8.7 56 

Hyperlipidemia 1722 65.0(29~96) 33 2256 9.5 51 

Coronary heart disease 1325 68.7(27~93) 24.6 1925 8.3 36 

Coronary+Diabetes 280 70(44~89) 20.4 1335 6.2 40 

Rhinallergosis 156 39（18~92） 39.7 1278 6.1 12 

Hypothyroidism 1661 46.7(16~94) 84.6 1703 7.1 33 

Hyperthyroidism 767 45.2（15~89） 66.6 1234 5.2 16 

Cervical spondylopathy 318 53.7（27~87） 48.7 1589 7 14 

Rheumatoid arthritis 396 55.0（24~86） 74.7 1039 4.5 29 

Chronic rhinitis 320 38.6（21~85） 30.6 969 4.5 8 

Nephropathy 76 48.6（23~91） 42 1771 7.8 31 

Diabetes 11745 59.3(14~96) 24.9 2972 12.3 91 

Gout 2138 51.8（20~97） 2 1813 7.8 52 

Parkinson's syndrome 197 70.4（40~92） 26.4 1659 8.1 28 

Stomach trouble 1296 49.5（19~95） 39.2 1523 6.5 37 

Chronic pharyngitis 782 40.2（18~90） 32.7 1487 6.2 14 

Lumbar disc protrusion 385 56.8（25~91） 35.6 982 4.3 12 

Hepatitis B 706 45.3（22~82） 22.8 1084 4.5 34 

Hypertension+other diseases 2409 64.6（28~94） 38.1 1750 7.1 67 
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Coronary+others 101 69.3(36~92) 33.7 569 3.3 12 

Diabetes+others 373 63（29~90） 26.8 1045 4.6 35 

Bronchial disease 574 60.7（19~95） 33.2 1276 5.6 19 

Other disease conditions 2777 51.4(17~100) 43.8 2066 8.5 38 

Brain diseases 257 69.9（27~98） 29.5 1023 4.7 25 

Hepatic adipose infiltration 274 44.1（21~77） 12.4 1139 5.3 36 

Asthma 280 51.0（12~91） 57.9 1388 5.9 23 

Other Cardiac diseases 344 60.0（26~90） 55.9 749 3.6 19 

Heart disease 229 69.7（26~96） 42.6 698 3.5 28 

Hepatopathy 180 51.6（25~83） 38.7 702 3.6 25 

Pregnant 56 29.7(24~36) 100 1015 8.5 25 

 

(a) Significant correlations, the number of correlations with P values calculated by PCC adjusted by all the correlations (P<0.05/ 24,322 PEI pairs=2×10-6). 

(b) Significant correlation %, which is the percentage of significant correlations in all the correlation pairs.  

Detailed information on the correlations described in (a-b) is provided in Supplementary Table 1-35. 

(c) The number of PEIs was significantly different between normal physical status and nonnormal physical states (P<0.05/34 nonnormal states=1.4×10-3). A linear regression 

model (lm) was used to compare PEIs between normal physical status and nonnormal physical states adjusted for gender and age. Detailed information for this summary is 

provided in Supplementary Table 36.
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Figure legends: 

Figure 1. The PEI correlations detected in the healthy cohort. a, A correlation map of the top 50 

correlated PEIs, each of which had >114 significant correlations with other PEIs (FDR<0.05). b, The 

number of statistically significant correlations detected in the healthy population of each PEI. 
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Figure 2. The correlation directions of typical PEIs in healthy physical conditions. The r values 

were calculated by the PCC method. See Extended data Table 1 for detailed PEI information. 
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Figure 3. PEI networks in healthy physical status. In the weighted graphs, the green edges indicate 

positive weights, and the red edges indicate negative weights. The color saturation and the width of the 

edges correspond to the absolute weight and scale relative to the strongest weight in the graph, 

respectively. The circular layout shows how well the data conforms to the model while the 

force-oriented layout shows how each node (connected and unconnected) repulses the other, and how 

connected nodes attract each other. See also Supplementary Figures. 
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Figure 4. Representative candidate markers for unhealthy physical status. A linear regression 

model was used to compare PEIs between healthy physical states and unhealthy physical states after 

adjusting for sex and age. Significantly different PEIs (P <0.05) after Bonferroni adjustment 

(P<0.05/34 unhealthy states=1.4×10-3) are shown. See also Supplementary Table 36. 
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Figure 5. Machine learning prediction of the 35 physical status by the random forest algorism. 

The receiver operating characteristic curve takes the false positive rate (FPR) as the horizontal axis and 

the true positive rate (TPR) as the vertical axis. The horizontal axis represents the proportion of the 

actual negative instances in the positive class predicted by the classifier to all the negative instances, 

while the vertical axis represents the proportion of the actual positive instances in the positive class 

predicted by the classifier to all the positive instances. The AUC is the area under the ROC curve. 
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Extended data Table 1. PEIs used in this study 

 

Code PEI Name PEI Name abbreviation  Unit  

B1 Gender Gender - 

B2 Age Age years 

B3 Homocysteine Hcy umol/L 

B4 Whole Blood Calcium WB-Ca mmol/L 

B5 Whole Blood Magnesium WB-Mg mmol/L 

B6 Iron Of Whole Blood WB-Fe mmol/L 

B7 Whole Blood Copper WB-Cop umol/L 

B8 Zinc In Whole Blood WB-Zinc umol/L 

B9 Rh Blood Group RH - 

B10 Pepsinogen I PGⅠ ug/L 

B11 PgⅠ/PgⅡ PGI/PGII - 

B12 Pepsinogen Ⅱ PGⅡ ug/L 

B14 Gastrin-17 G-17 pmol/l  

B15 Cd3-Cd19+(B Cell) CD3-CD19+(B cell) - 

B16 Cd3+ Total T Lymphocyte CD3+T - 

B17 Cd3+Cd16+Cd56+Nk CD3+CD16+CD56+NK - 

B18 Cd3+Cd4+Helper(Inducer)T Cells CD3+CD4+helper(inducer)T - 

B19 Cd3+Cd4+/Cd3+Cd8+ CD3+CD4+/CD3+CD8+ - 

B20 Cd3+Cd4+Cd8+ CD3+CD4+CD8+ - 

B21 Cd3+Cd4-Cd8- CD3+CD4-CD8- - 

B22 Cd3+Cd8+(T) CD3+CD8+(T) - 

B23 Cd3-Cd16+Cd56+(Nk) CD3-CD16+CD56+(NK) - 

B24 α Hydroxybutyrate Dehydrogenas αHBDH U/L 

B25 Creatine Kinase CK U/L 

B26 Creatine Kinase Isoenzyme CKMB U/L 

B27 Lactic Dehydrogenase LDH U/L 

B28 Pituitary Prolactin PRL mIU/L 

B29 Estradiol E2 E2 pmol/L 

B30 Luteinizing Hormone LH mIU/ml 

B31 Follicle Stimulating Hormone FSH mIU/ml 

B32 Testosterone Testo nmol/L 

B33 Progesterone Prog nmol/L 

B34 Thymidine Kinase TK PM/L 

B35 Blood Beta-Microglobulin β2-MG - 

B36 Variant Lymphocyte Rate V-Lym% - 

B37 Band Cell BAND 10E-9/L 

B38 Band Cell% BAND% - 

B39 Other Cell Types Other cells - 

B40 Leukocyte Count WBC 10E-9/L 

B41 Monocytes MON - 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/855809doi: bioRxiv preprint 

https://doi.org/10.1101/855809
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

B42 Monocytes % MON % 10E-9/L 

B43 Mean Corpuscular Volume MCV fl 

B44 Mean Corpuscular Hemoglobin MCH pg 

B45 Mean Corpuscular Hemoglobin Concentration MCHC g/l 

B46 Red Blood Cell Count RBC Count 10E-12/L 

B47 Red Cell Distribution Width RDW fl 

B48 Lymphocyte Rate LYM% - 

B49 Basophilic Granulocyte Rate baso% - 

B50 Eosinophil Rate eo% - 

B51 Hemoglobin Hb g/L 

B52 Platelet Count PLT/BPC 10E-9/L 

B53 Granulocyte Rate GR% - 

B54 Erythrocyte Sedimentation Rate ESR mm/60min 

B55 Erythrocyte Deformation Index TK - 

B56 The Index Of Rigidity Of Erythrocyte IR - 

B57 Erythrocyte Aggregation Indices RBCAI - 

B58 Hematocrit HCT - 

B59 Whole Blood Reduced Viscosity WBRV - 

B60 Whole Blood Reduced Viscosity Index WBRVI - 

B61 Whole Blood High Shear Reduced Viscosity WBHSRV - 

B62 Whole Blood High Shear Reduced Viscosity Index WBHSRVI - 

B63 Shear Rate Of Whole Blood Viscosity_Mpas_1 (200) WBRSR(mPas_200) - 

B64 Shear Rate Of Whole Blood Viscosity_Mpas_3 (5) WBRSR(mPas_5) - 

B65 Shear Rate Of Whole Blood Viscosity_Mpas_4 (1) WBRSR(mPas_1) - 

B66 Shear Rate Of Whole Blood Viscosity_Mpas (100) WBRSR(mPas_100) - 

B67 Shear Rate Of Whole Blood Viscosity_Mpas (50) WBRSR(mPas_50) - 

B69 Plasma Viscosity PV - 

B70 Low-Density Lipoprotein LDL-C mmol/L 

B71 Triglyceride TG mmol/L 

B72 High-Density Lipoprotein HDL-C mmol/L 

B73 Apolipoprotein A ApoA mg/L 

B74 Apolipoprotein A1 ApoA1 g/L 

B75 Apolipoprotein A1/B ApoA1/B g/L 

B76 Apolipoprotein B ApoB g/L 

B77 Total Cholesterol TC mmol/L 

B78 Hepatitis B Virus Core Im Antibod HBcAb - 

B79 Quantitative Detection Of Hepatitis B Virus Dna  hbⅤ-dna IU/ml 

B80 Helicobacter Pylori Antibody-Igg anti-HP IgG - 

B81 Tumor Supplied Group Of Factors TSGF U/ML 

B82 Carcinoembryonic Antigen CEA ng/ml 

B83 Alpha-Fetoprotein AFP ng/ml 

B84 Complexed Prostate Special Antigen C-PSA ng/ml 

B85 Squamous Cell Carcinoma Antigen SCC ng/ml 

B86 Chorionic Gonadotropin TBhCG mIU/ml 
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B87 Neuron-Specific Enolase NSE ng/ml 

B88 Carbohydrate Antigen，Ca242 CA 242 U/ml 

B89 Carbohydrate Antigen，Ca72_4 CA 72-4 U/ml 

B90 Cytokeratin-19-Fragment Cyfra21-1 CYFRA 21-1 ng/ml 

B91 Total Protein TP g/L 

B92 Aldh2-Glu504Glu ALDH2-Glu504Glu - 

B93 Aldh2-Glu504Lys ALDH2-Glu504Lys - 

B94 Aldh2-Lys504Lys ALDH2-Lys504Lys - 

B95 Anti-Cenpb anti-cenpb - 

B96 Dsdna (Iif) dsDNA (IIF) - 

B97 Anti-Dsdna Antibody dsDNA - 

B98 Jo-1 Antibody anti-Jo-1 - 

B99 Anti-Pm-Scl anti-PM-Scl - 

B100 Anti-Ro52 anti-Ro52 - 

B101 Anti-Sc70 anti-Sc70 - 

B102 Anti Sm Antibody anti-Sm - 

B103 Anti-Ssa/Ro Antibody anti-SSA/Ro - 

B104 Anti Ssb Antibody anti-SSB - 

B105 Anti-U1Rnp Antibody anti-U1RNP - 

B106 Anti-Ribosomal P Protein Antibody anti-P - 

B107 Anti-Nucleosome Antibody Systemic AnuA - 

B108 Anti-Cyclin Antibody Anti-Cyclin - 

B109 Antimitochondrial Antibody M2 AMA-M2 - 

B110 Anti-Histone Antibody AHA - 

B111 Thyroid-Stimulating Hormon TSH mIU/L 

B112 Free Thyroxine FT4 pmol/L 

B113 Free Triiodothyronine FT3 pmol/L 

B114 Total Thyroxine TSH TT3 TT4(TT4) nmol/L 

B115 Total Triiodothyronine TSH TT3 TT4(TT3) nmol/L 

B116 Total Triiodothyronine TT3 nmol/L 

B117 Total Thyroxine TT4 nmol/L 

B118 Carcinoembryonic Antigen 1 CEA1 ng/ml 

B119 Quantitative Detection Of Hepatitis C Virus Rna Hcv-rna - 

B120 Hcv Core Antigen HCV-cAg - 

B121 Complement C3 C3 - 

B122 Complement C4 C4 - 

B123 High Sensitivity C-Reactive Protein 1 hs-CRP1 mg/L 

B124 Adrenocorticotropic Hormone ACTH pg/ml 

B125 Cortisol Cor ug/dl 

B126 Albumin Alb g/L 

B127 Albumin-Globulin A-G ratio - 

B128 Alanine Aminotransferase ALT U/L 

B129 Indirect Bilirubin IBIL umol/L 

B130 Globulin GLB g/L 
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B131 Aspartate Transaminase AST U/L 

B132 Direct Bilirubin Dbil umol/L 

B133 Total Bilirubin TBIL umol/L 

B134 Cholinesterases CHE KU/L 

B135 Total Bile Acid TBA umol/L 

B136 5-Nucleotidase 5'NT U/L 

B137 Alpha-L-Fucosidase AFU U/L 

B138 Prealbumin PAB mg/L 

B139 Adenosine Deaminase ADA U/L 

B140 R-Glutamyl Transpeptidase r-GT U/L 

B141 Ast/Alt AST/ALT - 

B142 25-Hydroxyvitamin D 25-(OH)D ng/mL 

B143 β-Crosslaps β-CTx pg/mL 

B144 Total-Pinp Total-PINP ng/mL 

B145 Osteocalcin BGP ng/mL 

B146 Cystatin C CysC mg/L 

B148 Antithyroperoxidase Antibody Anti_TPO IU/ml 

B149 Anti-Thyroglobulin Antibodies TGAb IU/ml 

B150 Alkaline Phosphatase ALP U/L 

B151 Anti-Cyclic Peptide Containing Citrulline Anti-CCP Ru/ml 

B152 Anti Cardiolipin Antibodyig(G-A-M) ACA-Ig(G-A-M) u/ml 

B153 Glucose Glu mmol/L 

B154 Rheumatoid Factor RF IU/ml 

B155 Immunoglobulin A IgA g/l 

B156 Immunoglobulin E IgE IU/ml 

B157 Immunoglobulin G IgG g/l 

B158 Immunoglobulin M IgM g/l 

B159 Urine Beta-Microglobulin β2-MG - 

B160 Ph PH - 

B161 Leucocyte LEU /ul 

B163 Specific Gravity SG - 

B164 Calcium Oxalate Crystals COM HPF 

B165 Bilirubin bilirubin - 

B166 Protein Pro - 

B167 Phosphate Crystals PC - 

B168 Urinary Nuclear Matrix Protein 22 NMP22 - 

B169 Urate Crystal U-CRY - 

B170 Urine Sugar U-GLU - 

B171 Epithelial Cell EC HPF 

B172 Ketone Body KB - 

B173 Nitrous Acid NTT - 

B174 Urea Creatinine Urea/Cr - 

B175 Microalbuminuria ALB-U mg/L 

B176 Urine Creatinine Ucr umol/L 
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B177 Ratio Of Urinary Microalbumin To Creatinin ACR ug/mg 

B178 Urinary Immunoglobulin G Ig-U mg/L 

B179 Urine Alpha-Microglobulin α1-MG mg/L 

B180 Urine Transferrin Tf mg/L 

B181 Activated Partial Thromboplastin Time APTT s 

B182 Thrombin Time TT s 

B183 Percentage Activity Of Prothrombin In Plasma PTA - 

B184 International Normalized Ratio INR - 

B185 Prothrombin Time PT s 

B186 Plasma Fibrinogen Concentration PFC g/l 

B187 Neuron-Specific Enolase NSE ng/ml 

B188 Calcium Ca mmol/L 

B189 Estimated Glomerular Filtration Rate eGFB ml/min 

B190 Creatinine Cre umol/L 

B191 Urea Urea mmol/L 

B192 Uric Acid UA umol/L 

B193 Kalium K mmol/L 

B194 Chlorine Cl mmol/L 

B195 Sodium Na mmol/L 

B196 Blood Carbon Dioxide TCO2 mmol/L 

B197 Anion Gap AG mmol/L 

B198 Phosphorus P mmol/L 

B199 Magnesium Mg mmol/L 

B200 Osmotic Pressure OP mOsm/L 

B201 Exercise Habits e-habits - 

B202 Frequency Of Exercises e-times - 

B203 Dietary Habits 1 DH - 

B204 History Of Alcohol Intake Drinking - 

B205 Known Of Drug Allergy KDA - 

B206 Waistline Waist cm 

B207 Waist-Hip Ratio WHR - 

B209 Smoking History Smoking - 

B210 Hipline Hip cm 

B211 Intra-Ocular Tension Of The Right Eye IOP-R mmHg 

B212 Intra-Ocular Tension Of The Left Eye IOP-L mmHg 

B213 Corrected Visual Acuity The Right Eye CVA-R - 

B214 Corrected Visual Acuity The Left Eye CVA-L - 

B215 Body Mass Index BMI - 

B216 Body Mass BMI kg 

B218 Diastolic Pressure DBP mmHg 

B219 Operation History OT - 

B220 Systolic Pressure SBP mmHg 

B221 Height Hei cm 

B222 Neck Size NS cm 
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B223 Family History FH - 

B224 Anamnesis pmh - 

B225 Hourly Postprandial Blood Sugar hPBG mmol/L 

B227 Vision Of The Right Eye OD - 

B228 Vision Of The Left Eye OS - 
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Extended data Table 2. List of the 15% or 16% representative PEIs were extracted for machine learning prediction by feature extraction. 

 

Healthy status PEI features 

Cholecystolithiasis age， estimated glomerular filtration rate， systolic pressure， glucose， high-density lipoprotein， anamnesis， waistline， body mass index， exercise 

habits， neck size， hipline， low-density lipoprotein， urinary nuclear matrix protein 22， urine creatinine， thyroid-stimulating hormon， quantitative 

detection of hepatitis C virus RNA， specific gravity， dietary habits 1， pepsinogen Ⅱ， osmotic pressure， creatine kinase isoenzyme， pepsinogen 

I， PH， anion gap， erythrocyte aggregation Indices， immunoglobulin A， osteocalcin， sodium， tumor supplied group of factors， whole blood 

reduced viscosity 

Hypertension age， estimated glomerular filtration rate， systolic pressure， glucose， high-density lipoprotein， waistline， body mass index， neck size， hipline， 

albumin， red cell distribution width， urea， monocytes， creatinine， height， diastolic pressure， uric acid， lymphocyte rate， cystatin c， 

albumin-globulin， operation history， body mass， monocytes %， waist-hip ratio， exercise habits， gender， smoking history， triglyceride， 

globulin， aspartate transaminase， lactic dehydrogenase， total cholesterol 

Hypertension+Diabetes age， estimated glomerular filtration rate， systolic pressure， glucose， high-density lipoprotein， waistline， body mass index， neck size， hipline， 

albumin， red cell distribution width， urea， monocytes， creatinine， height， diastolic pressure， uric acid， lymphocyte rate， cystatin c， 

albumin-globulin， operation history， body mass， monocytes %， waist-hip ratio， anamnesis， PH， platelet count， urine sugar， red blood 

cell count， hemoglobin， leukocyte count， urea creatinine 

Hypertension+Coronary heart disease age， albumin， albumin-globulin， anamnesis， body mass index， creatinine， cystatin c， direct bilirubin， estimated glomerular filtration rate， 

glucose， height， hemoglobin， known of drug allergy， lactic dehydrogenase， low-density lipoprotein， mean corpuscular volume， monocytes， 

monocytes %， neck size， operation history， platelet count， red blood cell count， red cell distribution width， specific gravity， systolic pressure， 

total cholesterol， urea， uric acid， waist-hip ratio， waistline 

Hypertensive+Diabetes+Coronary Heart 

Disease 

age， albumin， albumin-globulin， anamnesis， body mass index， creatinine， cystatin c， estimated glomerular filtration rate， glucose， height， 

low-density lipoprotein， mean corpuscular volume， monocytes， monocytes %， neck size， operation history， platelet count， red blood cell count， 

red cell distribution width， systolic pressure， total cholesterol， urea， waist-hip ratio， waistline， carcinoembryonic antigen 1， high-density 

lipoprotein， leukocyte count， lymphocyte rate， urine creatinine， urine sugar 

Hyperlipidemia age， albumin， anamnesis， body mass index， creatinine， estimated glomerular filtration rate， glucose， low-density lipoprotein， mean corpuscular 

volume， monocytes， neck size， operation history， platelet count， red blood cell count， red cell distribution width， systolic pressure， urea， 
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waist-hip ratio， waistline， carcinoembryonic antigen 1， high-density lipoprotein， urine creatinine， known of drug allergy， specific gravity， uric 

acid， exercise habits， gender， history of alcohol intake， mean corpuscular hemoglobin， smoking history， total Protein， triglyceride 

Coronary heart disease age， albumin， anamnesis， body mass index， creatinine， estimated glomerular filtration rate， glucose， low-density lipoprotein， mean corpuscular 

volume， monocytes， neck size， operation history， platelet count， red blood cell count， red cell distribution width， systolic pressure， urea， 

waist-hip ratio， waistline， carcinoembryonic antigen 1， known of drug allergy， gender， mean corpuscular hemoglobin， total Protein， cystatin 

c， monocytes %， total cholesterol， direct bilirubin， lactic dehydrogenase， calcium， dietary habits 1， eosinophil rate 

Coronary heart disease+Diabetes age， albumin， anamnesis， body mass index， creatinine， estimated glomerular filtration rate， glucose， low-density lipoprotein， mean corpuscular 

volume， monocytes， neck size， operation history， platelet count， red blood cell count， red cell distribution width， systolic pressure， urea， 

waist-hip ratio， waistline， carcinoembryonic antigen 1， gender， mean corpuscular hemoglobin， monocytes %， total cholesterol， urine sugar， 

adenosine deaminase， alpha-l-fucosidase， CD3+CD16+CD56+NK， pepsinogen I， PH 

Rhinallergosis albumin， anamnesis， mean corpuscular volume， platelet count， waist-hip ratio， mean corpuscular hemoglobin， CD3+CD16+CD56+NK， known 

of drug allergy， total Protein， dietary habits 1， eosinophil rate， uric acid， exercise habits， triglyceride， 5-nucleotidase， alkaline phosphatase， 

AST/ALT， blood carbon dioxide， carcinoembryonic antigen， cholinesterases， erythrocyte sedimentation rate， free triiodothyronine， hematocrit， 

immunoglobulin M， Indirect bilirubin， total bilirubin， urinary nuclear matrix protein 22， vision of the left eye， vision of the right eye， whole 

blood high shear reduced viscosity index 

Hypothyroidism albumin， anamnesis， uric acid， AST/ALT， free triiodothyronine， age， creatinine， monocytes， neck size， red blood cell count， red cell 

distribution width， waistline， gender， monocytes %， high-density lipoprotein， specific gravity， history of alcohol intake， smoking history， 

albumin-globulin， height， leukocyte count， hemoglobin， alanine aminotransferase， anti-thyroglobulin antibodies， antithyroperoxidase antibody， 

body mass， diastolic pressure， mean corpuscular hemoglobin concentration， protein， r-glutamyl transpeptidase， thyroid-stimulating hormon， total 

Triiodothyronine， urea creatinine 

Hyperthyroidism albumin， anamnesis， age， creatinine， neck size， gender， high-density lipoprotein， specific gravity， history of alcohol intake， height， 

hemoglobin， anti-thyroglobulin antibodies， antithyroperoxidase antibody， body mass， protein， r-glutamyl transpeptidase， urea creatinine， mean 

corpuscular volume， dietary habits 1， triglyceride， immunoglobulin M， Indirect bilirubin， body mass index， operation history， carcinoembryonic 

antigen 1， urine creatinine， free thyroxine， hipline， PGⅠ/PGⅡ， plasma fibrinogen concentration， total thyroxine， urine transferri 

Cervical spondylopathy albumin， anamnesis， age， high-density lipoprotein， specific gravity， height， body mass， operation history， urine creatinine， hipline， 

plasma fibrinogen concentration， alanine aminotransferase， known of drug allergy， exercise habits， 5-nucleotidase， erythrocyte sedimentation rate， 
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estimated glomerular filtration rate， glucose， systolic pressure， urea， urine sugar， alpha-fetoprotein， anti-cyclic peptide containing citrulline， 

apolipoprotein A， CD3+ Total T lymphocyte， corrected visual acuity the left eye， gastrin-17， hourly postprandial blood sugar， intra-ocular tension 

of the left eye， kalium， magnesium， neuron-specific enolase 

Rheumatoid arthritis albumin， anamnesis， age， high-density lipoprotein， specific gravity， height， body mass， hipline， known of drug allergy， estimated glomerular 

filtration rate， systolic pressure， gastrin-17， neck size， gender， history of alcohol intake， hemoglobin， protein， urea creatinine， body mass 

index， uric acid， monocytes， red blood cell count， red cell distribution width， albumin-globulin， mean corpuscular hemoglobin concentration， 

vision of the left eye， vision of the right eye， lactic dehydrogenase， lymphocyte rate， globulin， leucocyte， α hydroxybutyrate dehydrogenas 

Chronic rhinitis albumin， anamnesis， age， high-density lipoprotein， height， estimated glomerular filtration rate， systolic pressure， gender， hemoglobin， 

protein， urea creatinine， uric acid， albumin-globulin， mean corpuscular hemoglobin concentration， lactic dehydrogenase， 5-nucleotidase， 

creatinine， dietary habits 1， triglyceride， total thyroxine， free triiodothyronine， diastolic pressure， eosinophil rate， alkaline phosphatase， total 

cholesterol， apolipoprotein B， erythrocyte aggregation Indices， granulocyte rate， helicobacter pylori antibody-IgG， hepatitis B virus core IM 

antibod， quantitative detection of hepatitis B virus DNA  

Nephropathy albumin， anamnesis， age， estimated glomerular filtration rate， systolic pressure， hemoglobin， protein， urea creatinine， uric acid， 

albumin-globulin， lactic dehydrogenase， creatinine， eosinophil rate， known of drug allergy， monocytes， red blood cell count， red cell distribution 

width， lymphocyte rate， operation history， erythrocyte sedimentation rate， urea， Indirect bilirubin， waistline， monocytes %， leukocyte count， 

total Protein， pepsinogen I， cystatin c， calcium， adrenocorticotropic hormone， ALDH2-Glu504Lys， creatine kinase， pepsinogen Ⅱ 

Diabetes albumin， anamnesis， age， estimated glomerular filtration rate， systolic pressure， urea creatinine， red cell distribution width， lymphocyte rate， 

operation history， urea， waistline， monocytes %， leukocyte count， high-density lipoprotein， gender， triglyceride， free triiodothyronine， 

diastolic pressure， body mass， neck size， body mass index， exercise habits， glucose， urine sugar， AST/ALT， smoking history， platelet 

count， waist-hip ratio， PH， cytokeratin-19-fragment CYFRA21-1， ketone body， osmotic pressure 

Gout anamnesis， age， estimated glomerular filtration rate， systolic pressure， urea creatinine， lymphocyte rate， waistline， monocytes %， leukocyte 

count， high-density lipoprotein， gender， triglyceride， diastolic pressure， body mass， neck size， body mass index， exercise habits， glucose， 

AST/ALT， smoking history， waist-hip ratio， PH， hemoglobin， uric acid， creatinine， red blood cell count， cystatin c， height， hipline， 

history of alcohol intake， alanine aminotransferase， r-glutamyl transpeptidase， aspartate transaminase 

Parkinson's syndrome anamnesis， age， estimated glomerular filtration rate， systolic pressure， lymphocyte rate， waistline， monocytes %， leukocyte count， gender， 

glucose， AST/ALT， waist-hip ratio， hemoglobin， creatinine， red blood cell count， history of alcohol intake， albumin， red cell distribution 
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width， urea， platelet count， monocytes， total Protein， calcium， mean corpuscular hemoglobin concentration， total cholesterol， granulocyte 

rate， urine creatinine， urine transferrin， low-density lipoprotein， anti-Sc70， anti-U1RNP antibody， CD3+CD4+CD8+ 

Stomach trouble anamnesis， age， estimated glomerular filtration rate， monocytes %， leukocyte count， waist-hip ratio， red blood cell count， red cell distribution 

width， platelet count， total cholesterol， urine creatinine， low-density lipoprotein， high-density lipoprotein， body mass， body mass index， 

exercise habits， uric acid， height， hipline， operation history， protein， known of drug allergy， specific gravity， anti Sm antibody， anti-cenpb， 

anti-cyclin antibody， anti-dsDNA antibody， anti-histone antibody， antimitochondrial antibody M2， anti-nucleosome antibody Systemic， 

anti-ribosomal p protein antibody， nitrous acid， rheumatoid factor 

Chronic pharyngitis anamnesis， red blood cell count， body mass， exercise habits， height， anti Sm antibody， anti-dsDNA antibody， anti-nucleosome antibody 

Systemic， anti-ribosomal p protein antibody， waistline， gender， hemoglobin， creatinine， history of alcohol intake， albumin， mean corpuscular 

hemoglobin concentration， urine transferrin， urea creatinine， neck size， albumin-globulin， dietary habits 1， globulin， leucocyte， whole blood 

high shear reduced viscosity index， bilirubin， CD3-CD19+(B cell)， percentage activity of prothrombin in plasma， shear rate of whole blood 

viscosity_mPas (100)， shear rate of whole blood viscosity_mPas (50)， shear rate of whole blood viscosity_mPas_1 (200)， the Index of Rigidity of 

Erythrocyte， total bile acid， whole blood high shear reduced viscosity 

Lumbar disc protrusion anamnesis， body mass， exercise habits， waistline， gender， creatinine， albumin， neck size， age， estimated glomerular filtration rate， waist-hip 

ratio， red cell distribution width， platelet count， total cholesterol， urine creatinine， low-density lipoprotein， body mass index， hipline， operation 

history， known of drug allergy， glucose， urea， total Protein， smoking history， eosinophil rate， mean corpuscular volume， carcinoembryonic 

antigen 1， free thyroxine， anion gap， basophilic granulocyte rate， homocysteine， ratio of urinary microalbumin to creatinin 

Hepatitis B anamnesis， body mass， waistline， gender， creatinine， neck size， age， estimated glomerular filtration rate， waist-hip ratio， platelet count， 

total cholesterol， body mass index， hipline， smoking history， eosinophil rate， basophilic granulocyte rate， ratio of urinary microalbumin to 

creatinin， height， hemoglobin， leukocyte count， AST/ALT， monocytes， calcium， granulocyte rate， cystatin c， alanine aminotransferase， 

aspartate transaminase， vision of the right eye， kalium， adenosine deaminase， direct bilirubin， microalbuminuria， prealbumin 

Hypertension+other diseases anamnesis， body mass， waistline， creatinine， neck size， age， estimated glomerular filtration rate， waist-hip ratio， body mass index， hipline， 

eosinophil rate， height， cystatin c， aspartate transaminase， exercise habits， albumin， red cell distribution width， operation history， known 

of drug allergy， glucose， urea， mean corpuscular volume， red blood cell count， albumin-globulin， globulin， monocytes %， uric acid， specific 

gravity， systolic pressure， triglyceride， diastolic pressure， lactic dehydrogenase 

Coronary heart disease+other diseases anamnesis， body mass， age， estimated glomerular filtration rate， waist-hip ratio， hipline， cystatin c， albumin， red cell distribution width， 
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operation history， urea， red blood cell count， specific gravity， systolic pressure， platelet count， total cholesterol， hemoglobin， AST/ALT， 

monocytes， calcium， alanine aminotransferase， vision of the right eye， urine creatinine， low-density lipoprotein， total Protein， carcinoembryonic 

antigen 1， history of alcohol intake， protein， apolipoprotein B， vision of the left eye， apolipoprotein A， apolipoprotein a1/b 

Diabetes+other diseases anamnesis， age， estimated glomerular filtration rate， cystatin c， albumin， red cell distribution width， operation history， urea， systolic pressure， 

platelet count， urine creatinine， carcinoembryonic antigen 1， vision of the left eye， waistline， neck size， body mass index， known of drug allergy， 

glucose， mean corpuscular volume， gender， smoking history， dietary habits 1， high-density lipoprotein， lymphocyte rate， PH， urine sugar， 

cytokeratin-19-fragment CYFRA21-1， mean corpuscular hemoglobin， complexed prostate special antigen， follicle stimulating hormone， luteinizing 

hormone， pituitary prolactin 

Bronchial disease anamnesis， age， estimated glomerular filtration rate， albumin， red cell distribution width， operation history， urea， systolic pressure， urine 

creatinine， waistline， neck size， known of drug allergy， mean corpuscular volume， gender， lymphocyte rate， mean corpuscular hemoglobin， 

AST/ALT， apolipoprotein A， creatinine， eosinophil rate， height， exercise habits， albumin-globulin， globulin， monocytes %， lactic 

dehydrogenase， adenosine deaminase， bilirubin， ketone body， intra-ocular tension of the right eye 

Other disease conditions anamnesis， age， estimated glomerular filtration rate， albumin， red cell distribution width， operation history， urea， systolic pressure， waistline， 

neck size， known of drug allergy， mean corpuscular volume， exercise habits， albumin-globulin， platelet count， body mass index， glucose， 

urine sugar， red blood cell count， specific gravity， total cholesterol， hemoglobin， monocytes， calcium， total Protein， diastolic pressure， 

mean corpuscular hemoglobin concentration， Indirect bilirubin， pepsinogen I， pepsinogen Ⅱ， total bilirubin， alpha-l-fucosidas 

Brain diseases anamnesis， age， estimated glomerular filtration rate， albumin， red cell distribution width， operation history， urea， systolic pressure， waistline， 

exercise habits， albumin-globulin， red blood cell count， hemoglobin， monocytes， calcium， total Protein， lymphocyte rate， AST/ALT， 

creatinine， monocytes %， lactic dehydrogenase， carcinoembryonic antigen 1， cytokeratin-19-fragment CYFRA21-1， follicle stimulating hormone， 

waist-hip ratio， vision of the right eye， whole blood high shear reduced viscosity index， adrenocorticotropic hormone， creatine kinase isoenzyme， 

epithelial cell， other cell types， progesterone 

Hepatic adipose infiltration anamnesis， albumin， systolic pressure， waistline， red blood cell count， hemoglobin， AST/ALT， creatinine， monocytes %， waist-hip ratio， 

neck size， mean corpuscular volume， body mass index， diastolic pressure， mean corpuscular hemoglobin concentration， alpha-l-fucosidase， 

gender， mean corpuscular hemoglobin， height， dietary habits 1， high-density lipoprotein， body mass， hipline， alanine aminotransferase， 

low-density lipoprotein， history of alcohol intake， aspartate transaminase， uric acid， triglyceride， leukocyte count， r-glutamyl transpeptidase， 

testosterone 
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Asthma anamnesis， albumin， systolic pressure， waistline， red blood cell count， hemoglobin， waist-hip ratio， neck size， mean corpuscular hemoglobin 

concentration， gender， height， high-density lipoprotein， body mass， alanine aminotransferase， low-density lipoprotein， r-glutamyl transpeptidase， 

age， estimated glomerular filtration rate， red cell distribution width， albumin-globulin， total Protein， carcinoembryonic antigen 1， known of drug 

allergy， platelet count， specific gravity， total cholesterol， eosinophil rate， smoking history， basophilic granulocyte rate， PGⅠ/PGⅡ， 

CD3+CD16+CD56+NK， urinary nuclear matrix protein 22 

Other Cardiac diseases anamnesis， albumin， systolic pressure， waistline， red blood cell count， hemoglobin， waist-hip ratio， mean corpuscular hemoglobin concentration， 

gender， height， age， estimated glomerular filtration rate， red cell distribution width， albumin-globulin， known of drug allergy， platelet count， 

specific gravity， dietary habits 1， operation history， urea， monocytes， glucose， pepsinogen Ⅱ， vision of the left eye， luteinizing hormone， 

direct bilirubin， urea creatinine， osmotic pressure， α hydroxybutyrate dehydrogenas， alpha-fetoprotein， magnesium， carbohydrate antigen，

CA242 

Heart disease anamnesis， albumin， systolic pressure， waistline， red blood cell count， hemoglobin， waist-hip ratio， age， estimated glomerular filtration 

rate， red cell distribution width， albumin-globulin， platelet count， operation history， urea， monocytes， luteinizing hormone， carcinoembryonic 

antigen 1， creatinine， mean corpuscular volume， mean corpuscular hemoglobin， aspartate transaminase， lactic dehydrogenase， 

cytokeratin-19-fragment CYFRA21-1， progesterone， urine creatinine， anti-cenpb， antimitochondrial antibody M2， CD3+CD4+CD8+， anti-cyclic 

peptide containing citrulline， thyroid-stimulating hormon， prothrombin time， quantitative detection of hepatitis C virus RNA 

Hepatopathy anamnesis， albumin， waistline， red blood cell count， waist-hip ratio， age， estimated glomerular filtration rate， red cell distribution width， 

albumin-globulin， operation history， mean corpuscular volume， mean corpuscular hemoglobin， aspartate transaminase， anti-cenpb， direct 

bilirubin， basophilic granulocyte rate， urinary nuclear matrix protein 22， body mass index， exercise habits， other cell types， apolipoprotein a1/b， 

anti Sm antibody， anti-nucleosome antibody Systemic， anti-ribosomal p protein antibody， erythrocyte sedimentation rate， corrected visual acuity the 

left eye， anti-PM-Scl， corrected visual acuity the right eye， high sensitivity C-reactive protein 1 

Pregnant albumin， red blood cell count， age， estimated glomerular filtration rate， red cell distribution width， basophilic granulocyte rate， systolic pressure， 

hemoglobin， urea， monocytes， creatinine， gender， height， glucose， high-density lipoprotein， low-density lipoprotein， total Protein， smoking 

history， diastolic pressure， history of alcohol intake， uric acid， leukocyte count， lymphocyte rate， Indirect bilirubin， total bilirubin， cystatin 

c， protein， granulocyte rate， leucocyte， rheumatoid factor， quantitative detection of hepatitis B virus DNA ， CD3+ Total T lymphocyte， anti 

cardiolipin antibodyIg(G-A-M) 

Helathy or combined disease s albumin， age， estimated glomerular filtration rate， red cell distribution width， systolic pressure， urea， monocytes， creatinine， gender， height， 
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glucose， high-density lipoprotein， smoking history， diastolic pressure， uric acid， lymphocyte rate， cystatin c， anamnesis， waistline， 

albumin-globulin， operation history， body mass index， exercise habits， platelet count， known of drug allergy， neck size， body mass， 

monocytes %， hipline， triglyceride， urine sugar， globulin 
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Extended data Table 3. Predictive Validity of Models. The number of training set and valid set samples was obtained after undersampling and data random splitting. 

Normal condition or disease was used to classify all kinds of diseases into disease states, undersampling with samples of healthy people, and then data division. Abbreviation: 

receiver operating characteristic, ROC; AUC, area under the curve. 

 
Training set (sample 

size) 
Validation set (sample size) F1-score (95%CI) Accuracy (95%CI) Specificity (95%CI) Recall (sensitivity)(95%CI) ROC(AUC)(95%CI) 

Cholecystolithiasis 963 413 0.69(0.66-0.71) 0.69(0.68-0.71) 0.73(0.70-0.76) 0.70(0.67-0.72) 0.77(0.75-0.79) 

Hypertension 46171 17987 0.86(0.86-0.86) 0.85(0.85-0.86) 0.82(0.82-0.82) 0.85(0.85-0.86) 0.92(0.92-0.93) 

Hypertension+Diabetes 8414 3065 0.92(0.92-0.92) 0.92(0.92-0.92) 0.90(0.90-0.90) 0.92(0.92-0.92) 0.97(0.97-0.98) 

Hypertension+Coronary heart disease 2032 871 0.93(0.92-0.93) 0.93(0.92-0.93) 0.90(0.90-0.91) 0.93(0.92-0.93) 0.97(0.97-0.98) 

Hypertensive+Diabetes+Coronary Heart Disease 909 389 0.96(0.95-0.96) 0.95(0.94-0.97) 0.95(0.94-0.95) 0.95(0.94-0.97) 0.99(0.98-0.99) 

Hyperlipidemia 1687 722 0.86(0.85-0.86) 0.85(0.84-0.86) 0.82(0.81-0.83) 0.85(0.84-0.86) 0.94(0.93-0.94) 

Coronary heart disease 1298 557 0.90(0.89-0.92) 0.90(0.88-0.91) 0.87(0.84-0.89) 0.90(0.88-0.91) 0.96(0.96-0.97) 

Coronary heart disease+Diabetes 274 118 0.93(0.93-0.94) 0.94(0.92-0.96) 0.91(0.88-0.95) 0.94(0.92-0.95) 0.98(0.97-1.00) 

Rhinallergosis 152 66 0.71(0.64-0.79) 0.69(0.61-0.79) 0.80(0.73-0.86) 0.70(0.64-0.76) 0.79(0.73-0.84) 

Hypothyroidism 1627 698 0.77(0.76-0.78) 0.76(0.75-0.76) 0.73(0.71-0.74) 0.76(0.75-0.76) 0.84(0.83-0.86) 

Hyperthyroidism 751 322 0.72(0.71-0.72) 0.73(0.71-0.74) 0.73(0.71-0.75) 0.73(0.71-0.74) 0.79(0.77-0.81) 

Cervical spondylopathy 311 134 0.71(0.66-0.75) 0.71(0.69-0.73) 0.73(0.64-0.81) 0.71(0.69-0.73) 0.78(0.78-0.80) 

Rheumatoid arthritis 387 167 0.79(0.78-0.81) 0.78(0.77-0.78) 0.76(0.71-0.81) 0.78(0.77-0.79) 0.86(0.83-0.89) 

Chronic rhinitis 313 135 0.61(0.58-0.64) 0.60(0.58-0.62) 0.57(0.56-0.57) 0.61(0.58-0.63) 0.66(0.60-0.72) 

Nephropathy 564 242 0.73(0.72-0.74) 0.77(0.75-0.80) 0.81(0.79-0.84) 0.76(0.75-0.78) 0.84(0.82-0.85) 

Diabetes 11545 4949 0.90(0.90-0.90) 0.90(0.90-0.90) 0.90(0.89-0.90) 0.90(0.90-0.90) 0.96(0.96-0.96) 

Gout 2095 898 0.88(0.88-0.88) 0.87(0.87-0.87) 0.85(0.84-0.87) 0.86(0.83-0.88) 0.94(0.94-0.94) 

Parkinson's syndrome 192 83 0.91(0.90-0.91) 0.90(0.89-0.90) 0.87(0.79-0.94) 0.90(0.89-0.91) 0.97(0.95-0.98) 

Stomach trouble 1269 545 0.68(0.68-0.69) 0.70(0.70-0.70) 0.71(0.70-0.73) 0.70(0.70-0.70) 0.77(0.75-0.78) 

Chronic pharyngitis 765 329 0.63(0.62-0.65) 0.67(0.65-0.69) 0.66(0.65-0.66) 0.67(0.65-0.68) 0.72(0.69-0.75) 
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Lumbar disc protrusion 377 162 0.77(0.72-0.81) 0.77(0.73-0.80) 0.70(0.63-0.77) 0.75(0.70-0.79) 0.85(0.82-0.88) 

Hepatitis B 691 297 0.73(0.70-0.77) 0.75(0.73-0.77) 0.79(0.77-0.80) 0.75(0.72-0.77) 0.83(0.81-0.85) 

Hypertension+other diseases 2360 1012 0.86(0.85-0.88) 0.85(0.85-0.86) 0.82(0.81-0.83) 0.86(0.85-0.86) 0.93(0.93-0.94) 

Coronary heart disease+other diseases 98 43 0.88(0.84-0.92) 0.87(0.84-0.89) 0.83(0.76-0.90) 0.86(0.83-0.88) 0.94(0.91-0.97) 

Diabetes+other diseases 365 157 0.90(0.87-0.94) 0.90(0.87-0.94) 0.89(0.84-0.94) 0.90(0.86-0.94) 0.96(0.93-0.98) 

Bronchial disease 562 241 0.76(0.70-0.83) 0.77(0.70-0.83) 0.80(0.76-0.84) 0.77(070-0.83) 0.83(0.79-0.88) 

Other disease conditions 2720 1167 0.68(0.67-0.70) 0.69(0.67-0.71) 0.69(0.66-0.73) 0.69(0.67-0.71) 0.75(0.74-0.77) 

Brain diseases 251 108 0.86(0.81-0.90) 0.86(0.82-0.91) 0.83(0.75-0.90) 0.87(0.82-0.91) 0.93(0.91-0.95) 

Hepatic adipose infiltration 803 115 0.82(0.78-0.87) 0.81(0.76-0.86) 0.75(0.67-0.82) 0.82(0.77-0.87) 0.92(0.89-0.94) 

Asthma 1640 803 0.75(0.74-0.76) 0.74(0.73-0.76) 0.77(0.69-0.84) 0.75(0.74-0.76) 0.88(0.84-0.92) 

Other Cardiac diseases 336 145 0.79(0.78-0.81) 0.78(0.76-0.80) 0.80(0.75-0.86) 0.78(0.76-0.80) 0.88(0.84-0.92) 

Heart disease 224 96 0.89(0.87-0.90) 0.89(0.85-0.92) 0.91(0.87-0.94) 0.89(0.86-0.92) 0.94(0.90-0.99) 

Hepatopathy 176 76 0.71(0.65-0.76) 0.72(0.66-0.78) 0.78(0.68-0.87) 0.73(0.68-0.78) 0.80(0.74-0.85) 

Pregnant 54 24 0.83(0.76-0.90) 0.82(0.76-0.88) 0.85(0.79-0.92) 0.82(0.77-0.86) 0.91(0.90-0.93) 

Normal or non-normal condition 91028  39012  0.83(0.83-0.83) 0.82(0.82-0.82) 0.81(0.81-0.81) 0.84(0.84-0.84) 0.9(0.90-0.90) 
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Extended data Figure 1. PEI networks in hypertension (a) and diabetes (b). In weighted graphs, 

green edges indicate positive weights, and red edges indicate negative weights. The color 

saturation and the width of the edges correspond to the absolute weight and scale relative to the 

strongest weight in the graph. At a minimum, the edge with absolute weight at this value is 

omitted. The circular layout is convenient to see how well the data conform to a model, but in 

order to show how the data clusters, another layout is more appropriate. A force-oriented layout 

was created by specifying layout = "spring". In principle, what this function does is that each node 

(connected and unconnected) repulses each other, and connected nodes also attract each other. The 

full view of these figures is provided in Supplementary Figures. 
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Extended data Figure 2. Odds ratios for HDL-C concentration in plasma from those with a 

normal physical status and those with diabetes. Both male and female subjects were included in this 

study. 
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Supplementary Tables 

Supplementary Table 1. PEI Correlations in Healthy status 

Supplementary Table 2. PEI Correlations in Cholecystolithiasis 

Supplementary Table 3. PEI Correlations in Hypertension 

Supplementary Table 4. PEI Correlations in Hypertension+Diabetes 

Supplementary Table 5. PEI Correlations in Hypertension+Coronary 
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Supplementary Table 7. PEI Correlations in Hyperlipidemia 

Supplementary Table 8. PEI Correlations in Coronary heart disease 

Supplementary Table 9. PEI Correlations in Coronary+Diabetes 

Supplementary Table 10. PEI Correlations in Rhinallergosis 

Supplementary Table 11. PEI Correlations in Hypothyroidism 

Supplementary Table 12. PEI Correlations in Hyperthyroidism 

Supplementary Table 13. PEI Correlations in Cervical spondylopathy 

Supplementary Table 14. PEI Correlations in Rheumatoid arthritis 

Supplementary Table 15. PEI Correlations in Chronic rhinitis 

Supplementary Table 16. PEI Correlations in Nephropathy 

Supplementary Table 17.PEI Correlations in Diabetes 

Supplementary Table 18. PEI Correlations in Gout 

Supplementary Table 19. PEI Correlations in Parkinson's syndrome 

Supplementary Table 20. PEI Correlations in Stomach trouble 

Supplementary Table 21. PEI Correlations in Chronic pharyngitis 
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Supplementary Table 23. PEI Correlations in Hepatitis B 

Supplementary Table 24. PEI Correlations in Hypertension+other diseases 

Supplementary Table 25. PEI Correlations in Coronary+others 

Supplementary Table 26. PEI Correlations in Diabetes+others 

Supplementary Table 27. PEI Correlations in Bronchial disease 

Supplementary Table 28. PEI Correlations in Other disease conditions 

Supplementary Table 29. PEI Correlations in Brain diseases 
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Supplementary Table 30. PEI Correlations in Hepatic adipose infiltration 

Supplementary Table 31. PEI Correlations in Asthma 

Supplementary Table 32. PEI Correlations in Other Cardiac diseases 

Supplementary Table 33. PEI Correlations in Heart disease 

Supplementary Table 34. PEI Correlations in Hepatopathy 

Supplementary Table 35. PEI Correlations in Pregnant 

Supplementary Table 36. P values of PEIs in healthy physical status vs 34 unhealthy physical status 

adjusted for age and sex. 

Supplementary Table 37. Optimal parameter combination of machine learning 
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