

1 **Neuro-functional correlates of protective effects of wheel-running exercise against cocaine**
2 **locomotor sensitization in mice: a [¹⁸F]fallypride microPET study**

3
4 Guillaume Becker^{1,3,§,*}, Louis-Ferdinand Lespine^{2, §}, Mohamed Ali Bahri¹, Maria Elisa
5 Serrano¹, Christian Lemaire¹, André Luxen¹, Ezio Tirelli² and Alain Plenevaux¹

6
7 ¹ GIGA – Cyclotron Research Center – In Vivo Imaging, University of Liège.

8 ² Department of Psychology, University of Liège.

9 ³ Radiobiology Unit, SCK•CEN, Belgian Nuclear Research Centre, Mol, Belgium.

10
11
12 § These auhtors contributed equally to this work.

13
14 * Corresponding author:

15 Guillaume Becker

16
17 Radiobiology Unit, SCK•CEN, Belgian Nuclear Research Centre.

18 Boeretang 200,

19 2400Mol, Belgium.

20 Tel: +32 14 33 21 08

21 Email: gbecker@sckcen.be

22
23 GIGA – Cyclotron Research Center – In Vivo Imaging, University of Liège.

24 Quartier Agora – B30, Allée du 6 Août, 8.

25 4000 Liège, Belgium.

26 Tel: +32 4 366 23 28 Fax: +32 4 366 29 46

27 Email: g.becker@uliege.be

28

29

30

31

32

33

34

35 **ABSTRACT**

36 Wheel-running exercise in laboratory rodents (animal model useful to study the neurobiology
37 of aerobic exercise) decreases behavioral markers of vulnerability to addictive properties of
38 various drugs of abuse including cocaine. However, neurobiological mechanisms underpinning
39 this protective effect are far from being fully characterized and understood. Here, 28-day-old
40 female C57BL/6J mice were housed with (n=48) or without (n=48) a running wheel for 6 weeks
41 before being tested for acute locomotor responsiveness and initiation of locomotor sensitization
42 to intraperitoneal injections of 8 mg/kg cocaine. The long-term expression of sensitization took
43 place 3 weeks after the last session. On the day after, all mice underwent a microPET imaging
44 session with [¹⁸F]fallypride radiotracer (dopamine 2/3 receptor (D2/3R) antagonist). Exercised
45 mice were less sensitive to acute and sensitized cocaine hyperlocomotor effects, such
46 attenuation being particularly well-marked for long-term expression of sensitization ($\eta^2p =$
47 0.262). Additionally, we found that chronic administrations of cocaine was associated with a
48 clear-cut increase of [¹⁸F]fallypride binding potential in mouse striatum ($\eta^2p = 0.170$),
49 presumably reflecting an increase in postsynaptic D2/3R density in this region. Finally, we
50 found evidence that wheel-running exercise was associated with a moderate decrease in D2/3R
51 density in striatum ($\eta^2p = 0.075$), a mechanism that might contribute to protective properties of
52 such form of exercise against drugs of abuse vulnerability.

53

54

55

56 **KEY WORDS**

57 Wheel-running; exercise; cocaine sensitization; mice; dopamine; microPET

58

59

60

61

62

63

64

65

66

67

68

69 **INTRODUCTION**

70 By the end of the 90's, society's perspective on addiction changed, promoted in a certain extent
71 by a new pathophysiological vision of addictive disorders, dubbed as the Brain Model Disease
72 of Addiction¹. Although the concept of addiction as a brain's disease is still being questioned^{2,3},
73 in vivo neuro-imaging has greatly impacted our pathophysiological understanding of the
74 chronic brain state of addiction⁴⁻⁸. Imaging studies have evidenced a decreased dopamine D2
75 receptors availability in the dorsal striatum of patients suffering from cocaine addiction^{9,10}.
76 Preclinical imaging investigations on non-human primates have shown similar results following
77 cocaine self-administration^{11,12}.

78 The actual trend in public healthcare policies combating drug abuse is to promote prevention
79 strategies to reduce the risks of substance addiction development¹³. In this context, physical
80 exercise has been promoted as its benefits are supported by cross-sectional and longitudinal
81 studies conducted on adolescents and young adults reporting negative association between
82 physical exercise or sports participation and the initiation of drugs of abuse consumption¹⁴⁻¹⁶.
83 Additionally, physical activity has been shown to exert curative effects by attenuating relapse
84 rates in alcohol, nicotine and illicit drugs abusers^{15,17}. However, the neurobiological
85 mechanisms that underlie this relationship are still needed to be uncovered. Preclinical studies
86 using animal models useful for the study of addiction have provided evidence for both
87 preventive-like and curative-like effects of physical activity on drugs of abuse vulnerability. In
88 rodents studies, physical exercise is often modelled by the use of a freely available running
89 wheel place in the housing cages. With such a paradigm, exercised rats exhibited reduced rates
90 of acquisition, motivation or escalation of self-administration of cocaine, heroin,
91 methamphetamine or speedball, as compared to sedentary animals¹⁸⁻²³. Consistent with self-
92 administration reports, wheel-running exercise has also been shown to be effective at reducing
93 the acute and chronic locomotor-stimulating effects of cocaine as well as the expression of
94 sensitization to those effects^{24,25}. This phenomenon, associated with major neurochemical
95 changes in dopaminergic and glutamatergic systems notably²⁶, is thought to play an integral
96 role in craving and relapse^{27,28}.

97 Behavioral sensitization (e.g. locomotor sensitization) has been define as a progressive and
98 enduring augmentation in the locomotor activating and reinforcing effect of a psychostimulant,
99 consecutively to repeated exposure to these drugs. This phenomenon, and the underlying
100 neuropathological processes, has been thought to be useful for studying the neuronal
101 adaptations that leads to compulsive drug craving related to the induction and expression of
102 sensitization.

103 As a consequence, one of the most challenging issue in the biology of addiction rises from
104 preclinical evidences consistently reporting that psychostimulant-treated rodents (cocaine and
105 amphetamine), after a withdrawing period, are hypersensitive to the psychomotor activating
106 and incentive motivational effects of these drugs²⁹. More strikingly, in such sensitization
107 experimental protocols, rodents are sensitized to the psychomotor effects of direct-acting D2
108 agonists^{30,31}. In rodents, the effect of repeated exposure to cocaine on the D2 receptor
109 availability remains unclear, with reports of increases^{32,33}, decreases³⁴ or unchanged^{35,36}. Some
110 of these discrepancies may be due to differences in experimental designs and protocols (e.g.
111 doses and routes of injection, duration of drug withdrawal and timing of the expression of
112 sensitization), as well as lack of statistical power³⁷. It has been hypothesized that chronic
113 amphetamine or cocaine administration could results in an increase in D2 high affinity state
114 receptors density, whereas the total amount of receptors (low and high affinity states) may be
115 unchanged^{38,39}. These phenomenon, also described for nicotine chronic administration, may
116 explain the hypersensitivity of psychostimulant-treated rodents⁴⁰.

117 In our previous work, we reported in C57Bl6 mice that the effectiveness of wheel-running
118 exercise at attenuating cocaine locomotor sensitization not only resisted to exercise cessation
119 but was also unambiguously persistent⁴¹. Further on, we found that early-life period such as
120 early adolescence (vs early adulthood) may be particularly sensitive to protective properties of
121 this form of exercise against vulnerability to cocaine-induced locomotor sensitization⁴².

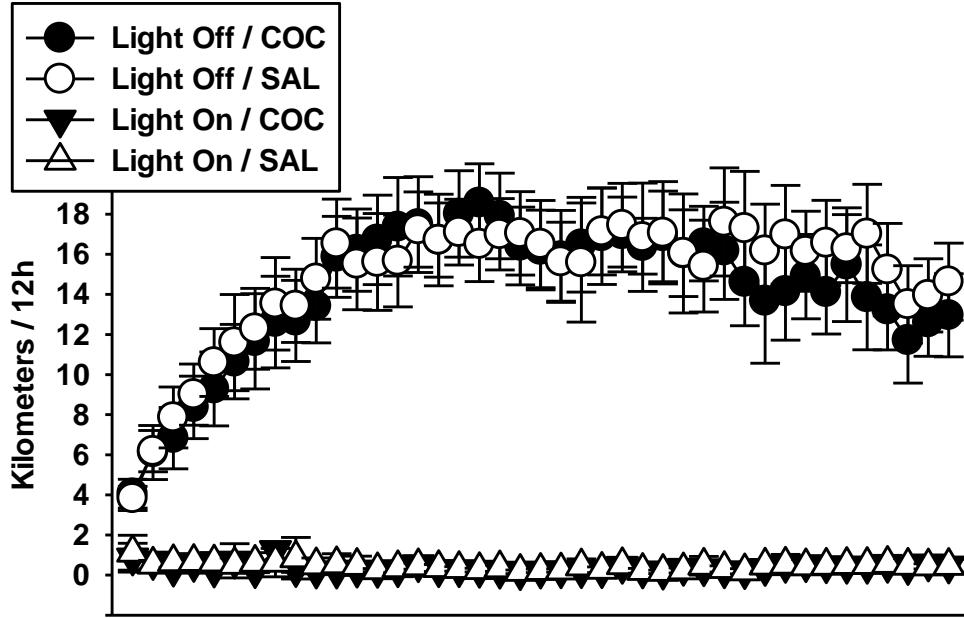
122 The purpose of the present study was twofold. First we aimed to replicate our previous
123 behavioral results in female C57Bl6 mice. Second, we aimed to investigate the neuro-functional
124 correlates of protective properties of wheel-running exercise on cocaine locomotor sensitization
125 by assessing dopamine D2/3 receptors (D2/3R) availability with [¹⁸F]fallypride microPET. We
126 ambitioned to test whether the positive effect of exercise was linked to a decreased D2/3R
127 availability.

128

129 **METHODS**

130 **Subjects**

131 Ninety-six 21-day-old females C57BL/6J mice were obtained from JANVIER, Le-Genest-
132 Saint-Isle, France. The choice of C57BL/6J strain was based on its extensive use in addiction
133 research and previous experiments performed in our laboratory. Given available resources, we
134 did not investigate sex-related difference in the interaction between exercise and cocaine
135 responsiveness in favor of statistical power (i.e. higher sample size). We tested female as they
136 may receive more benefits from exercise than males⁴²⁻⁴⁴. Upon arrival, mice were housed in


137 groups of eight in large transparent polycarbonate cages (38.2 x 22 cm surface x 15 cm height;
138 TECHNIPLAST, Milano, Italy) for one week of acclimation. On the following day, they were
139 housed individually according to the experimental housing conditions (exercise or sedentary
140 receiving cocaine or saline during testing, see section “Experimental Design and Procedure”)
141 in smaller TECHNIPLAST transparent polycarbonate cages (32.5 x 17 cm surface x 14 cm
142 height) with pine sawdust bedding, between-animal visual, olfactory and acoustic interactions
143 remaining possible. Tap water and food (standard pellets, CARFIL QUALITY, Oud-Turnhout,
144 Belgium) were continuously available. The animal room was maintained on a 12:12 h light-
145 dark cycle (lights on at 07.00 a.m.) and at an ambient temperature of 20-23°C. All experimental
146 treatments and animal maintenance were reviewed by the University of Liège Animal Care and
147 Experimentation Committee (animal subjects review board), which gave its approval according
148 to the Belgian implementation of the animal welfare guidelines laid down by the European
149 Union (“Arrêté Royal relatif à la protection des animaux d’expérience” released on 23 May
150 2013, and “Directive 2010/63/EU of the European Parliament and of the Council of 22
151 September 2010 on the protection of animals used for scientific purposes”). All efforts were
152 made to minimize the number of animals used and their suffering. Moreover, the ARRIVE
153 guidelines (Animal Research Reporting In Vivo Experiments), which have been developed to
154 improve quality of experimenting and reporting in animals studies, were followed as closely as
155 possible⁴⁵.

156

157 **Aerobic Voluntary Exercise**

158 A running wheel was made of an orange polycarbonate saucer-shaped disk (diameter 15 cm,
159 circumference 37.8 cm; allowing an open running surface) mounted (bearing pin) on a plastic
160 cup-shaped base (height 4.5 cm) and tilted at a 35° angle from the vertical plane (ENV-044,
161 Med Associates; St Albans, VT, USA). The base was fixed on a stable transparent acryl-glass
162 plate. Running was monitored and recorded continuously during the 42-day pre-testing period
163 via a wireless system, each wheel being connected to a USB interface hub (DIG-804, Med
164 Associates) which relayed data to a Wheel Manager Software (SOF-860, Med Associates). Data
165 dealing with wheel-running activity are shown in Fig. 1.

166

167

168 **Figure 1. Wheel-running activity recorded prior to the testing period.** Nocturnal (light off) and
169 diurnal (light on) wheel-running activity of mice randomly assigned to exercise conditions. Since at this
170 stage of the experiment mice from the cocaine (COC, n=24) and saline (SAL, n=24) groups were still
171 undistinguishable, no inferential statistics were conducted on these data. All mice showed a rapid
172 increase in wheel-running over the two first weeks until reaching a plateau. Bars represent 95%
173 confidence intervals.

174

175 Drug Treatments

176 (-)-Cocaine hydrochloride (BELGOPIA, Louvain-La-Neuve, Belgium), dissolved in an
177 isotonic saline solution (0.9% NaCl), was injected intraperitoneally at a dose of 8 mg/kg in a
178 volume of 0.01 ml/g of body weight, the control treatment consisting of an equal volume of
179 isotonic saline solution. The dose and route of administration were selected on the basis of our
180 previous studies^{41,42}, these parameters being known to also induce rewarding-like effects in
181 mice as measured by conditioned place preference⁴⁶.

182

183 Behavioral Test Chambers

184 A battery of eight chambers, connected to a custom written software for data collection, was
185 used to measure mice locomotor activity, one mouse being tested in each chamber. Each activity
186 chamber was constituted of a removable transparent polycarbonate tub (22 x 12 cm surface x
187 12 cm height), embedded onto a black-paint wooden plank serving as a stable base. The lid was
188 made of a transparent perforated acryl-glass tablet. Two photocell sources and detectors were
189 mounted on the plank such that infrared light-beams were located on the two long sides of the
190 tub at 2-cm heights from the floor, 8-cm apart and spaced 6.5 cm from each end of the tub.
191 Locomotor activity was measured in terms of crossings detected by the beams, one crossing

192 count being recorded every time an ambulating mouse broke successively the two parallel
193 beams. The activity chambers were individually encased in sound-attenuated shells that were
194 artificially ventilated and illuminated by a white light bulb during testing. Each shell door
195 comprised a one-way window allowing periodic surveillance during testing.

196

197 **[¹⁸F]fallypride radiosynthesis**

198 The radiotracer [¹⁸F]fallypride was synthetized according to a method previously reported by
199 Brichard *et al.* with slight modifications⁴⁷. Briefly, the no-carrier-added synthesis of
200 [¹⁸F]fallypride was conducted by nucleophilic substitution with [¹⁸F]fluoride of the p-
201 toluenesulfonyl group of the commercially available precursor (ABX, Advanced Biochemical
202 Compounds, Radeberg, Germany). After the labelling reaction that was conducted in
203 acetonitrile (1 mL) with 3.5 mg of the substrate at 120 °C for 5 min, the crude reaction mixture
204 was diluted with water (6 mL) and the resulting solution injected on a semi-preparative HPLC
205 column. The purification was carried out at 254 nm using a Phenomenex Luna C18 column (5
206 µm, 250 × 15 mm) at a flow rate of 7 mL/min with an isocratic eluent of
207 water/acetonitrile/triethylamine (45:55:0.1%; retention time of 22 min). The subsequent
208 formulation step⁴⁸ was realized by passing the HPLC collection solution, previously diluted
209 with sodium chloride 0.9% (30 mL) and sodium ascorbate (30 mg) through a tC18 cartridge
210 (360 mg, Waters). [¹⁸F]fallypride was then eluted from the support with ethanol (1 mL) and
211 diluted with an isotonic solution (6 mL) containing sodium ascorbate (10 mg) as stabilizer.
212 Based on the starting activity recovered from the cyclotron (111 GBq), this process afforded
213 batches of [¹⁸F]fallypride ready for subsequent dilution for animal injection. The radiochemical
214 yield was of 32 ± 5% (mean ± SD, decay corrected; n=24). At the end of beam, the averaged
215 specific activity was 49 ± 20.4 Ci/µmol (1813.6 ± 755.6 GBq/µmol, decay corrected, n=24) and
216 the synthesis duration of about 50 min. All the process was automated on a FASTlab synthesizer
217 from GE Healthcare with single use components.

218

219 **[¹⁸F]fallypride microPET imaging data acquisition and processing**

220 Twenty-four [¹⁸F]fallypride microPET imaging sessions were completed and all necessary
221 efforts were made to systematically repeat the same procedure. Anesthesia was induced with
222 4% of isoflurane, afterward the mice were placed prone in a dedicated bed. Anesthesia was
223 maintained with 1–2% isoflurane in a mixture of air and oxygen (30%) at 0.6 l/min. A
224 stereotaxic holder (Minerve, Esternay, France) was systematically used to reduce head
225 movements. Respiratory rate and rectal temperature were permanently measured using a

226 physiological monitoring system (Minerve, Esternay, France). Temperature was maintained at
227 $37 \pm 0.5^\circ \text{C}$, using an air warming system.

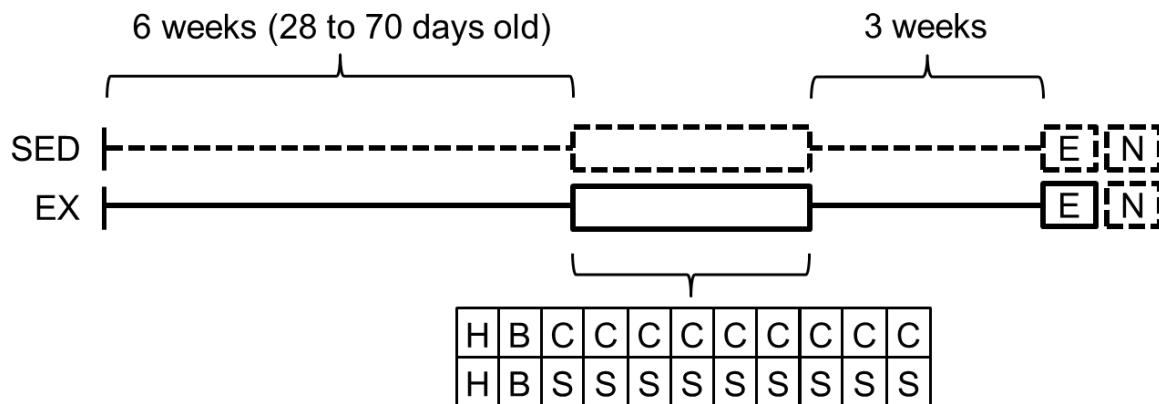
228 $[^{18}\text{F}]$ fallypride was administered as bolus intravenous injection in the lateral tail vein over 20
229 seconds with a mean injected activity of $12.4 \pm 3 \text{ MBq}$ (range: $4.9 - 19.1 \text{ MBq}$). The mean
230 injected mass of fallypride was $0.29 \pm 0.35 \mu\text{g}$ (range: $0.02 - 2.51 \mu\text{g}$). At the time of injection,
231 dynamic microPET scans over 60 minutes were acquired in list-mode using a Siemens
232 Concorde Focus 120 microPET (Siemens, Munich, Germany) and followed by 10 minutes
233 transmission measurement with ^{57}Co point source. The list-mode emission data were
234 histogrammed into three-dimensional (3D) sinograms by Fourier rebinning and reconstructed
235 by filtered backprojection with a ramp filter cutoff at the Nyquist frequency. All Corrections
236 were applied except for scatter events⁴⁹. No partial volume correction was performed on the
237 acquired data. A set of 3D images was reconstructed in a $256 \times 256 \times 95$ matrix and a zoom
238 factor of 2. The reconstructed voxel size was $0.4 \times 0.4 \times 0.8 \text{ mm}^3$. The dynamic time framing
239 was set as follows: $6 \times 5 \text{ s}$, $6 \times 10 \text{ s}$, $3 \times 20 \text{ s}$, $5 \times 30 \text{ s}$, $5 \times 60 \text{ s}$, $8 \times 150 \text{ s}$, $6 \times 300 \text{ s}$, and all data
240 were decay corrected to the beginning of each individual frame.

241 Immediately after PET acquisition, the anesthetized mice were transferred into a 9.4 Tesla MRI
242 DirectDrive VNMRS horizontal bore system with a shielded gradient system (Agilent
243 Technologies, Palo Alto, CA, USA). A 72-mm inner diameter volumetric coil and a 2-channels
244 head surface coil (Rapid Biomedical GmbH, Würzburg, Germany) were used as transmitter and
245 receiver coils, respectively. The 3D anatomical T2-weighted brain images were acquired with
246 a fast spin echo multislice sequence using the following parameters: $\text{TR/TE}_{\text{eff}} = 2500/40 \text{ ms}$,
247 matrix = $128 \times 128 \times 64$, $\text{FOV} = 20 \times 20 \times 10.5 \text{ mm}^3$, voxel size: $0.156 \times 0.156 \times 0.164 \text{ mm}^3$,
248 and a total acquisition time of 21 min.

249 Imaging data were processed with PMOD software (version 3.7, PMOD Technologies Ltd.,
250 Zurich, Switzerland). The processing includes a manual rigid co-registration of individual MRI
251 images to its corresponding PET images, a spatial normalization of the co-registered MRI onto
252 the PMOD MRI template, and the extraction of the PET time-activity curves of the left and
253 right striatum as well as the cerebellum. Briefly, the inverse deformations parameters obtained
254 during the spatial normalization of the individual MRI images onto the PMOD template were
255 used to bring the mouse brain atlas^{50,51} into the native dynamic PET space and then extract the
256 TACs based on the atlas predefined structures. The extracted TACs were then transferred into
257 the kinetic modelling module of PMOD in order to estimate the $[^{18}\text{F}]$ fallypride binding. The
258 non-displaceable binding potential (BP_{ND}) parameter⁵² was calculated using the multi-linear
259 reference tissue model (MRTM2) with the cerebellum as reference tissue⁵³. We controlled the

260 homogeneity of the TACs in the reference region (i.e. cerebellum) between each group, to rule
261 out any bias from radiotracer inputs variations in the reference region. The statistical analysis
262 revealed no difference between the four groups of the study for the cerebellum [¹⁸F]fallypride
263 TACs expressed as area under the curve (Supp.1).

264


265 **Experimental Design and Procedure**

266 Experimental timeline and design are presented in Fig.2. Ninety-six mice were housed in
267 exercised (n=48) or sedentary (n=48) conditions from 28 days of age (early adolescence; ref
268 needed) and were kept in these conditions until the end of behavioral experimentation. Since
269 mice from the two housing environments received cocaine or saline during testing, a basic 2
270 (housing conditions: EX vs SED) x 2 (pharmacological treatment: COC vs SAL) factorial
271 design was generated with N=96, n=24 per group based on preliminary results indicating
272 increasing and decreasing effects of cocaine (vs saline, $\eta^2 p = 0.162$) and exercise (vs sedentary,
273 $\eta^2 p = 0.093$) respectively on [¹⁸F]fallypride BP_{ND}. Note that experimental procedures and
274 parameters associated with psychopharmacological tests were similar to those used in Lespine
275 and Tirelli⁴² where continuously exercised females C57BL6/J were found to be less vulnerable
276 than their sedentary counterparts to acute and sensitized locomotor responsiveness to cocaine.
277 Testing included the following five phases. (1) A pre-test habituation session to familiarize
278 animals to novelty of the test context without neither injection nor measurements. (2) A 2nd
279 drug-free session evaluating baseline locomotor activity under saline. (3) Nine once-daily
280 injections of cocaine or saline, with the measurement of locomotor-activating effect of cocaine
281 after each injection, initiating locomotor sensitization after the baseline session. (4) Taking
282 place 21-23 days after the last cocaine injection, a session assessing expression of sensitization
283 on which animals received their previous respective pharmacological treatment. Throughout
284 psychopharmacological testing, mice were weighed and received their pharmacological
285 treatment right before being placed in the test chamber, recording of crossings lasting 30 min
286 in all sessions. Experimental blinding was not realized because the unique experimenter
287 inevitably knew the housing condition and the pharmacological treatment of each mouse. (5)
288 Twenty-four hours after the test of expression of sensitization, mice underwent [¹⁸F]fallypride
289 microPET scan. Note that the wheels (for exercised mice) were removed 24h before
290 neuroimaging measurement to avoid any potential effect of overnight wheel-running exercise
291 on neuro-functional measures.

292 Due to practical reasons, the whole experiment was organized into twelve lots purchased and
293 tested successively (each lot consisting of 8 mice). In each lot, two mice were assigned to one

294 of the four experimental group by means of a computer-generated randomization schedule, the
295 eight mice housed in acclimation cages contributing to theses four possible groups
296 (sedentary/cocaine, sedentary/saline, exercised/cocaine, and exercised/saline). Therefore, the
297 four groups were systematically represented within each lot by 2 mice to take into account any
298 between-lot variability as well as that due to time and circumstances of testing (i.e. randomized
299 block design, Supp.2). Additionally, due to impracticality to test 8 mice in a row on the same
300 micro-PET scanning session, each block (n=8) was further split into 2 blocks (n=4) for the test
301 for expression of sensitization and microPET imaging procedures. Again, the four groups were
302 systematically represented within each block by one mouse (Supp.2). Therefore, mice were
303 tested for expression of sensitization either 21 (half) or 23 (other half) days after the last cocaine
304 injection, while all mice underwent neuroimaging scan 24h after this test. Note that the order
305 of neuroimaging session was counterbalanced across subjects to avoid potential bias due to the
306 specific activity variations. Experimenters conducting neuroimaging testing and analysis were
307 blinded to experimental groups.

308

309

310 **Figure 2. Experimental timeline and design.** At 28 days of age, 96 mice were housed individually
311 either in the presence (EX, n=48) or the absence (SED, n=48) of a running wheel. Testing began after 6
312 weeks in these housing conditions (from 28 to 70 days old). The experiment comprised four groups,
313 mice from each housing group (EX or SED) receiving either cocaine or saline (with n=24 per group).
314 Solid lines represent the presence of a running wheel in the home-cage and dotted lines its absence. H:
315 habituation session (to familiarize animals to the novelty of the test context without neither injection nor
316 measures); B: baseline session; the 2nd once-daily session assessing the baseline activity under saline;
317 C: cocaine intraperitoneal administration (9 once-daily sessions); S: control animals receiving saline
318 intraperitoneal administration (9 once-daily sessions). E: session on which the expression of the
319 sensitization was assessed 21-23 days after the last sensitizing injection, and under the previous
320 pharmacological treatments. N: neuro-functional measures 24 h after the test of expression (microPET).

321

322 Data Analysis

323 Inferential statistics were computed on the following data. (1) Acute responsiveness to
324 locomotor-activating effects of cocaine scored as the difference between values derived from

325 the first cocaine session and those of the baseline session. (2) Overall responsiveness to
326 locomotor-activating effects of cocaine over the initiation of sensitization (9 sessions) scored
327 as the area under the curve with respect to zero (AUC ground; calculation formula are based on
328 and detailed by Pruessner and coll.⁵⁴). (3) Locomotor activity exhibited during the expression
329 of sensitization. (4) The bilateral [¹⁸F]fallypride BP_{ND} from left and right striatum of each
330 subject were averaged to give a single [¹⁸F]fallypride BP_{ND} value per subject.
331 Each set of data was treated according to a randomized block design with a fixed-model 2 x 2
332 ANOVA incorporating the housing condition (EX or SED; 2 levels) and pharmacological
333 treatment (COC or SAL; 2 levels) as between-group factors, and with the lot as a blocking
334 factor (with 12 or 24 levels for the behavioral and neuro-functional measures respectively, see
335 Supplement 1) followed by planned crossed or simple contrasts⁵⁵. Each contrast was derived
336 from the mean-square error term (MSE) provided by the ANOVA. Based on previous
337 experiments or preliminary results, exercised mice were expected to display (1) lower cocaine
338 locomotor responsiveness than sedentary mice (crossed contrasts) and (2) lower values of BP_{ND}
339 (simple contrast). Cocaine-receiving mice were expected to show (1) greater locomotor activity
340 and (2) higher BP_{ND} values than control saline mice (simple contrasts). Correlations were also
341 computed to (1) determine whether the amount of wheel-running displayed before testing was
342 associated with cocaine behavioral or neuro-functional outcomes, and (2) determine whether
343 behavioral cocaine outcomes were associated with neuro-functional measures. Nocturnal
344 distances over the 42-day pre-testing period were averaged for each (exercised) mouse, the
345 resulting individual value serving as the measure of the overall distance travelled on the wheel.
346 Effect sizes were given by $\eta^2 p$, Pearson correlation coefficient r , and probability of superiority
347 (PS) where appropriate⁵⁶. Statistical significance threshold was set at 0.05.
348

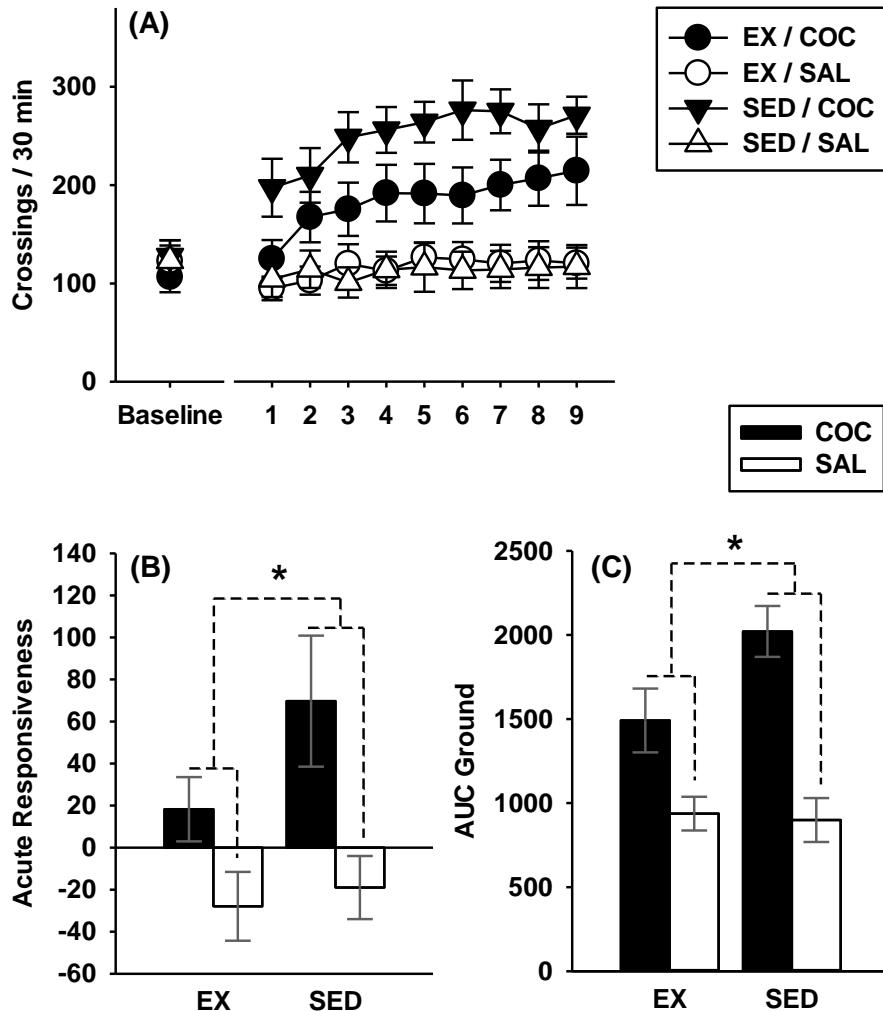
349 **RESULTS**

350 **Psychopharmacological Measures**

351 Fig. 3 Panel A depicts results dealing with baseline locomotor activity and initiation of cocaine
352 locomotor sensitization over 9 once-daily sessions in mice housed either with or without a
353 running wheel during adolescence (from 28 days of age) and tested 6 weeks later from 71 days
354 of age. Panel B presents scores of acute responsiveness. Planned contrasts indicate that acute
355 locomotor responsiveness to the 1st administration of cocaine in sedentary animals was
356 moderately attenuated in exercised mice ($\eta^2 p = 0.073$, $t_{(81)} = 2.51$, $p = 0.007$). As secondary
357 outcomes, cocaine locomotor effect (vs saline, i.e. hyperlocomotor effect) was strong in each
358 housing group ($ts_{(81)} = 3.85$ and 7.39, with a probability of superiority (PS) of 72 and 88 in

359 exercised and sedentary groups respectively). In other words, the score of acute responsiveness
360 from a cocaine-receiving mouse would be higher than that from a saline-receiving mouse for
361 72% of random pairs in exercised animals, and for 88% of random pairs in sedentary animals.
362 Panel C depicts overall responsiveness during the initiation of sensitization scored as AUC
363 ground. The pattern of results was comparable to that found for acute responsiveness with a
364 more pronounced effect ($\eta^2 p = 0.162$, $t_{(81)} = 3.96$, $p < 0.001$). Cocaine effect was clear-cut in
365 each housing group ($t_{(81)} = 5.47$ and 11.07 with PS of 80 and 96 in exercised and sedentary
366 groups respectively). Fig. 4 presents locomotor activity on the last (9th) session of sensitization
367 (panel A, descriptive statistics) and on the test for expression of sensitization (panels B and C).
368 Consistent with previous experimental stages, long-term expression of the sensitized locomotor
369 responsiveness was largely reduced in exercised mice ($\eta^2 p = 0.262$, $t_{(81)} = 5.37$, $p < 0.001$).
370 Again, cocaine effect was unambiguous in each housing group ($t_{(81)} = 5.48$ and 13.08 with PS
371 of 80 and 98 in exercised and sedentary groups respectively). Table 1 reports relationships
372 between amounts of exercise and behavioral outcomes and [¹⁸F]fallypride BP_{ND}, with
373 correlation coefficients rs varying from -0.03 to 0.43 (p -values ranging from 0.89 to 0.035).
374 Wheel-running exercise was strongly and positively associated with AUC ground in cocaine-
375 receiving mice ($r = 0.43$). However, we think that this result should be (cautiously) interpreted
376 in the context of other correlations results, number of tests performed, and sample size.
377 Importantly, AUC ground was strongly and positively associated with expression of
378 sensitization (found here at $r = 0.55$). The fact that wheel-running distances strongly correlate
379 to AUC ground yet weakly to expression of sensitization (found here at $r = 0.15$), questions the
380 nature of relationships reported between exercise and AUC ground (*i.e.* risk of false-positive).

381


382

383

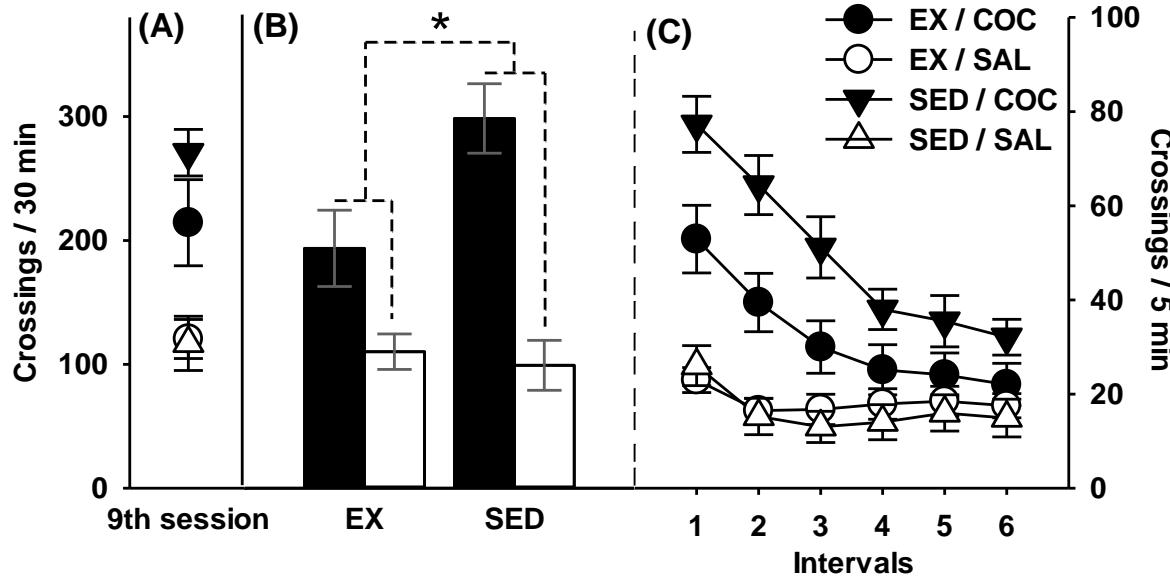
384

385

386

387

388 **Fig 3. Acute responsiveness and initiation of sensitization.** (A) Baseline locomotor activity (under
389 saline) and initiation of locomotor sensitization over 9 once-daily sessions. (B) Acute responsiveness
390 scored as the difference between values from the 1st and baseline sessions. (C) Overall locomotor
391 responsiveness over the initiation of sensitization scored as AUC ground. *significant interaction-related
392 difference between the cocaine effect observed in exercised mice (EX/COC, n=24 vs EX/SAL, n=24)
393 and that measured in sedentary mice (SED/COC, n=24 vs SED/SAL, n=24) taken at a threshold of 0.05.
394 Bars represent 95% confidence intervals.


395

396 **Table 1. Relationships between averaged pre-testing running distances and behavioral**
397 **and neuro-imaging outcomes (Pearson correlation coefficient (p-values)).**

	Acute Responsiveness	AUC ground	Expression of Sensitization	[¹⁸ F]fallypride BP _{ND}
CO	-0.17 (0.43)	0.43 (0.035)	0.15 (0.50)	-0.24 (0.33) ^a
SA	-0.11 (0.61)	-0.10 (0.66)	-0.03 (0.89)	-0.09 (0.75) ^b

398 ^a n=19, ^b n=16, n=24 otherwise.

399

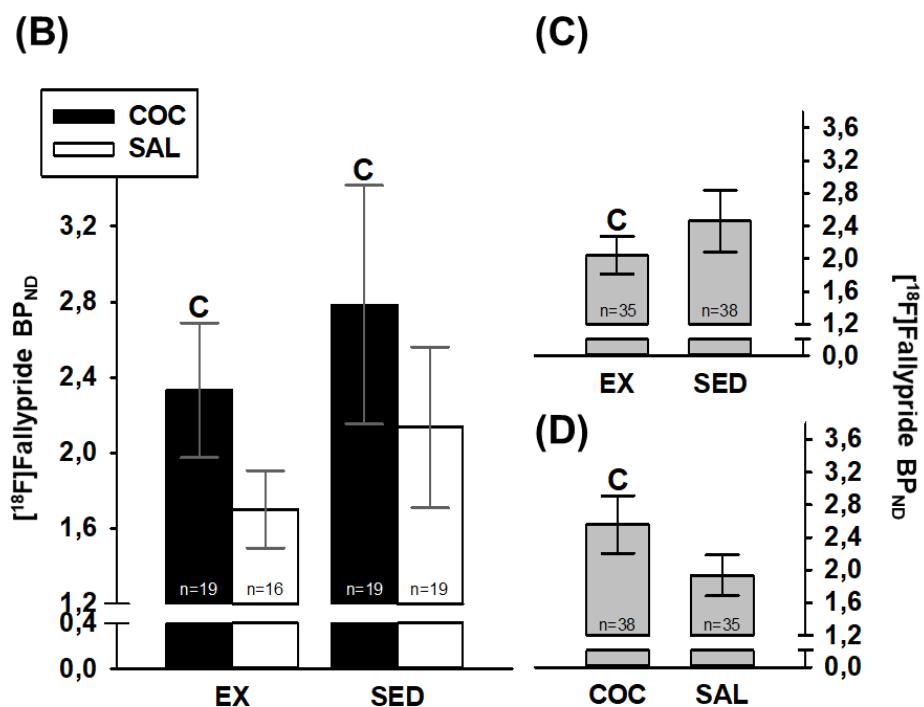
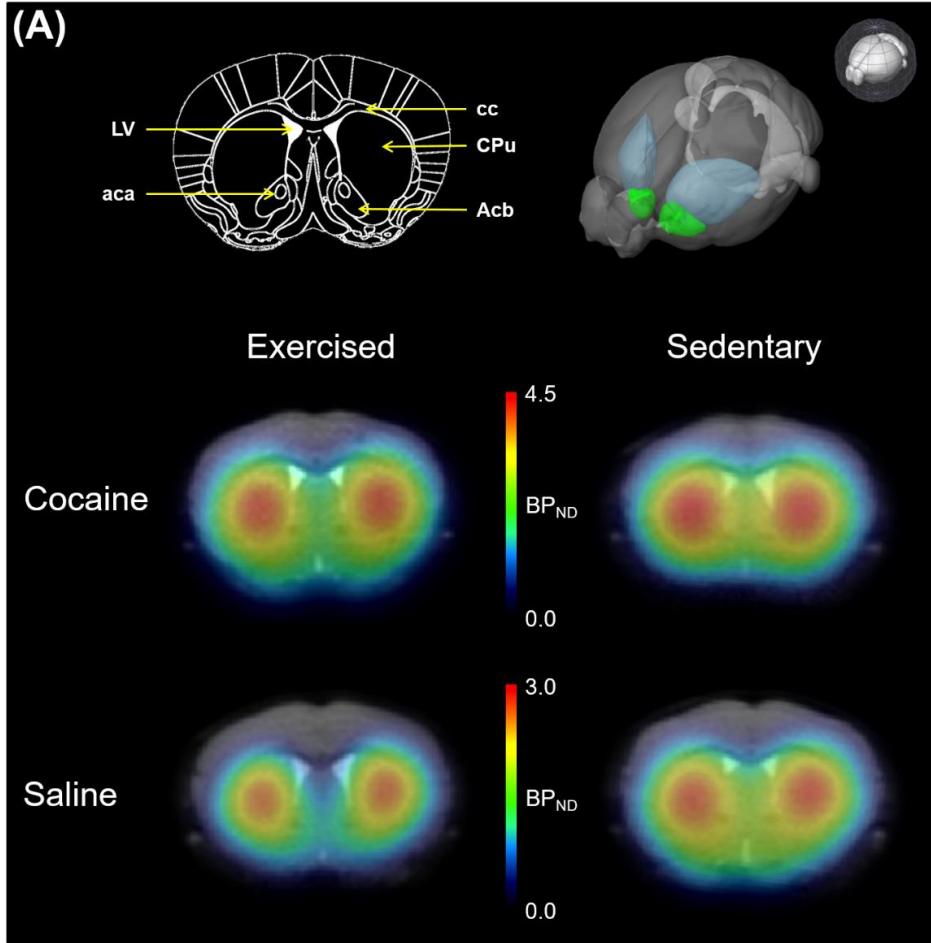



Fig 4. Long-term expression of sensitization. (A) Locomotor responsiveness on the last (9th) once-daily session (descriptive statistics). (B) Locomotor responsiveness on the test for expression of sensitization. *significant housing conditions x pharmacological treatment interaction: cocaine effect measured in sedentary mice (SED/COC, n=24 vs. SED/SAL, n=24) is greater than that observed in exercised mice (EX/COC, n=24 vs EX/SAL, n=24). (C) Time-course of locomotor responsiveness during the test for expression of sensitization (descriptive, no inferential statistics were conducted on these data). Bars represent 95% confidence intervals.

[¹⁸F]fallypride microPET neuroimaging

Fig. 5 panel A displays representative [¹⁸F]fallypride BP_{ND} images of mice of the four groups. Panel B presents [¹⁸F]fallypride BP_{ND} measured in the striatum 24h after the expression of sensitization in exercised (EX/COC and EX/SAL) and sedentary (SED/COC and SED/SAL) mice. Due to technical problems (*i.e.* fails in proper intravenous radiotracer delivery at injection time), data from 23 mice (over 96) were not acquired or useable (EX/COC: n=5; EX/SAL: n=8; SED/COC: n=5; and SED/SAL: n=5). Panels C and D present the marginal means associated with main effects of housing conditions (EX: n=35; SED: n=38) and pharmacological treatment (COC: n=38; SAL: n=35) respectively. We found evidence for a moderate attenuating effect of aerobic exercise on [¹⁸F]fallypride BP_{ND} ($\eta^2 p = 0.075$, PS = 65, $t_{(50)} = 2.01$, $p = 0.024$). Additionally, cocaine-receiving mice exhibited higher [¹⁸F]fallypride BP_{ND} in striatum than their saline counterparts as supported by a large effect of pharmacological treatment ($\eta^2 p = 0.170$, PS = 74, $t_{(50)} = 3.20$, $p = 0.001$). However, crossed contrasts indicate that the interaction between housing conditions and the pharmacological treatment was clearly negligible ($\eta^2 p < 0.005$, $t_{(50)} = 0.20$, $p = 0.42$). Table 2 reports relationships between behavioral outcomes and [¹⁸F]fallypride BP_{ND}. There was no evidence for association between behavioral outcomes and

426 BPND values, with correlation coefficients rs varying from 0.005 to 0.37 (p -values ranging from
427 0.98 to 0.12).

430 **Fig 5. Neuroimaging outcomes.** (A) Left upper panel: coronal slice image of the mouse brain
431 at Bregma 0.8 mm, based on the mouse Atlas of Franklin and Paxinos⁵⁷. (A) Right upper panel:
432 3D depiction of regions of interest showing the Caudate Putamen (in blue) and the Nucleus
433 Accumbens (in green). (A) Bottom: representative [¹⁸F]fallypride BP_{ND} images of mice of the
434 four groups, co-registered to their corresponding individual anatomical MRI. Note the
435 difference in scales between the cocaine groups and the saline groups. (B) microPET-derived
436 [¹⁸F]Fallypride BP_{ND} measured 24 h after expression of sensitization in exercised and sedentary
437 mice. (C) Marginal means associated with the effect of housing conditions. (D) Marginal means
438 associated with the effect of pharmacological treatment. Cs indicate significant difference
439 compared to the corresponding control group. Bars represent 95% confidence intervals.
440

441 **Table 2. Relationships between behavioral outcomes and neuro-imaging outcomes**
442 **expressed as [¹⁸F]fallypride BP_{ND} (Pearson correlation coefficients (p-values)).**

	EX/COC ^a	EX/SAL ^b	SED/COC ^a	SED/SAL ^a
Acute Responsiveness	-0.28 (0.25)	-0.26 (0.34)	0.05 (0.85)	-0.28 (0.25)
AUC ground	-0.17 (0.48)	0.17 (0.52)	0.28 (0.24)	0.37 (0.12)
Expression of Sensitization	0.20 (0.41)	0.06 (0.81)	0.005 (0.98)	0.27 (0.27)

443 ^a n=19, ^b n=16.

444

445 DISCUSSION

446 The main findings of the present study can be summarized as follows. (1) Previous results
447 obtained in our laboratory were replicated by showing that free wheel running, a useful model
448 for the study of voluntary aerobic exercise, induced preventive effects against acute and chronic
449 locomotor responsiveness to a rewarding-like dose of cocaine (8 mg/kg) in female C57BL/6J
450 mice. (2) The cocaine sensitized mice brain, at the time of long term expression, revealed a
451 striatal increase in dopamine D2/3 receptors availability measured by [¹⁸F]fallypride microPET.
452 (3) Voluntary wheel running was associated with attenuated dopamine D2/3 receptors
453 availability measured by [¹⁸F]fallypride microPET.

454 Wheel-running, allowed throughout experimentation, mitigated acute locomotor
455 responsiveness and both the initiation and the expression of locomotor sensitization to a
456 representative (and hedonistic) dose of cocaine⁴⁶. These results reproduce previous findings
457 obtained in our laboratory^{25,41}. This set of observations are consistent with those reported by
458 Renteria Diaz and colleagues²⁴, whose male Wistar rats continuously housed with a wheel for
459 at least 5 weeks expressed little or no sensitized locomotor activity 15 days after 5 once-daily
460 injections of 10 mg/kg cocaine. Smith and Witte⁵⁸ also showed that continuous wheel-running
461 exercise was effective at reducing the locomotor-activating effects of 3 and 10 mg/kg cocaine
462 in Long-Evans females. Such attenuating effect was also observed in C57BL/6J mice housed

463 in large home-cages comprising a running wheel as part of a composite housing environment
464 made of inanimate objects and conspecifics^{59,60}. More generally, our results add to extensive
465 preclinical literature reporting preventive consequences of wheel-running exercise on
466 behavioral markers of sensitivity to addictive properties of drugs of abuse¹⁵. Thus, the reliability
467 of our model make it relevant for biological study of addiction, especially for the DA system
468 which shows cross-species homologies between humans and well conserved neuroanatomy and
469 circuit function⁶¹.

470
471 Physical exercise is known to act on DA system and to possess rewarding properties, like
472 cocaine and other drugs of abuse^{62,63}. For example, Greenwood and co-workers⁶³ reported that
473 Fischer344 rats exercising with a running wheel for 6 weeks preferred a compartment paired
474 with the aftereffect of exercise (conditioning on alternate days) whereas no preference for the
475 paired compartment appeared when the rats used the wheel for 2 weeks. They also showed that
476 a 6-week continuous access to wheels resulted in increases in ΔFosB/FosB immunoreactivity
477 in the nucleus accumbens (Acb), tyrosine hydroxylase (TH) mRNA levels in the ventral
478 tegmental area (VTA) and delta opioid receptor mRNA levels in the Acb shell, whereas
479 dopamine receptor D2 mRNA is reduced in the Acb core. It is thus tempting to ascribe the
480 exercise-induced protective effects against the cocaine-induced locomotor sensitization (and its
481 rewarding properties, since we used a rewarding dose of the drug) to its neuroplastic effects on
482 dopaminergic neurotransmission.

483
484 To our knowledge, this is the first study reporting *in vivo* PET imaging of mouse striatum
485 D2/3R under aerobic exercise in the context of cocaine sensitization. The first line of our
486 imaging results suggests that the long term expression of cocaine sensitization is associated to
487 an increase of D2/3R availability in the mouse striatum, as demonstrated by the large-sized
488 main effect of cocaine on the [¹⁸F]fallypride BP_{ND}. Those results are in line with studies
489 suggesting that psychomotor sensitization to psychostimulant is linked to enhanced D2/3R
490 availability^{32,33,64} which may explain the high locomotor response of psychostimulant sensitized
491 mice to direct-acting D2 agonists³⁰. Although previous reports, using either amphetamine or
492 cocaine as well as nicotine, hypothesized that the behavioral sensitization could occur through
493 an increase of the dopamine D2 high affinity state receptors availability (*i.e.* actively coupled
494 to G-proteins)³⁸⁻⁴⁰, the [¹⁸F]fallypride radiotracer is not able to discriminate between the two
495 affinity states of D2 receptors. Therefore our results seem not to rely on the proportion of high
496 versus low affinity state but rather on the total amount of available receptors. Our work could

497 be interpreted in light of the supposed enhanced activity of DA neurons in the VTA during
498 cocaine sensitization⁶⁵ where the increased D2/3R availability in the striatum may contribute to
499 the enhanced locomotor response induced by repeated cocaine injections.
500 The most innovative outcome of our study is the decreased D2/3R availability in the striatum
501 of exercised mice, compare to their sedentary counterparts as highlighted by the medium-sized
502 main effect of the housing condition on the [¹⁸F]fallypride BP_{ND}. This is in line with previously
503 reported results were wheel-running has been shown to provoke a reduction of D2R mRNA in
504 Fisher 344 rats Acb core⁶³. The authors also reported an increased TH mRNA level in the VTA
505 leading them to propose that voluntary exercise can increase the synthetic capacity of DA in
506 the striatum^{63,66}. It seems that these modifications could be related to neuroplastic events
507 induced by an enhanced expression of ΔFosB transcription factor in the Acb nucleus⁶³.
508 Interestingly, a sustained accumulation of ΔFosB in the Acb nucleus was also described
509 following chronic cocaine exposure, as well as for others drugs of abuse⁶⁷⁻⁶⁹. This common
510 feature led Greenwood and coll. to the assumption that neuroplasticity induced by voluntary
511 exercise could alter DA neurotransmission in the mesolimbic reward pathway which may
512 contribute then to the beneficial effects of exercise on cocaine sensitization⁶³. This is supported
513 by data reporting that chronically exercised Sprague Dawley rats displayed a lower DA release,
514 and a hampered DA reuptake, under amphetamine challenge⁷⁰. Although, our work revealed
515 the absence of any significant interaction between the housing conditions and the
516 pharmacological treatment, meaning that there was no specific biological action of free wheel
517 running on cocaine-sensitized mice (cf. previous paragraph), our data add evidences to the
518 previously mention hypothesis. Moreover, physical exercise has been shown to reduce the basal
519 level of DA in the rat striatum, which accord to the hypothesis of a reduced DA tone resulting
520 from chronic physical exercise despite an enhanced synthetic capacity⁷¹. We suggest that
521 voluntary physical exercise acts on DA mesolimbic reward pathway partly through a reduced
522 D2/3R availability in the mouse striatum, which trait makes exercised mice more resilient to
523 psychomotor effects of cocaine.

524
525 Some limitations of this study warrant mention, in particular those related to intrinsic limitations
526 of in vivo microPET imaging in mice. First of all, the [¹⁸F]Fallypride radiotracer displays a nearly
527 equal affinity for D2 and D3 dopamine receptors in vivo⁷² and cannot therefore distinguish
528 between them. Thus, [¹⁸F]Fallypride BP_{ND} parameter primarily reflect a combination of signals
529 from D2 and D3 receptors. It has been suggested that up to 20% of the [¹⁸F]Fallypride binding
530 may be due to D3R in vivo⁷³. This is of relevance considering that D3R are highly expressed

531 in the mesolimbic DA system and involved in the pathophysiology of addiction⁸. Strikingly,
532 their expression seemed to be increased in nicotine behavioral sensitization⁷⁴. Determining the
533 respective proportion of D2R and D3R in our present results would definitely need further
534 investigations. The second technical limitation in in vivo microPET investigation is related to
535 the spatial resolution of the microPET scanner, which is about 1.5 mm² in our setup (*i.e.*
536 Siemens Focus 120)⁴⁹. This has of course to be taken into account when attempting to achieve
537 in vivo molecular imaging of mouse brain. The mouse brain atlas implemented in Pmod 3.7,
538 derived from the work of Mirrione and coll., didn't allow to analyze separately the ventral and
539 the dorsal parts of the striatum, the Accumbens nucleus (Acb) and the Caudate-Putamen (CPu)
540 respectively⁵¹. As a consequence the ROI analyzed to compute the [¹⁸F]fallypride BP_{ND} is
541 constituted by the entire striatum. This is of interest as the DA inputs within the Acb nucleus
542 hail from the Ventral Tegmental Area (VTA) whereas the DA afferences throughout the CPu
543 originate from the Substantia Nigra (SN). On one hand, DA neurons of the VTA are known to
544 play a major role into the reward and motivation processes⁷⁵, and to their pathological
545 counterpart that is addiction. On the other hand, DA neurons lying in the SN are controlling
546 motor functions. Intuitively, one would think that the [¹⁸F]fallypride BP_{ND} modifications we
547 are describing here are primarily located in the Acb nucleus. However, D2R are involved in
548 locomotor activity and may be implicated in [¹⁸F]fallypride BP_{ND} variations induced by
549 physical exercise⁷⁶. Our results may be conflicting with those of Vuckovic and coll., reporting
550 an increased [¹⁸F]fallypride BP_{ND} in a mouse model relevant for the study of Parkinson's
551 disease under exercise condition. However, the pathophysiological paradigm shift prevents any
552 direct comparison of the data, as the increase in the [¹⁸F]fallypride BP_{ND} there were reporting
553 was seen in the DA terminals depleted group, whereas they report no differences between saline
554 and saline plus exercise mice⁷⁶.

555 Clinical assessment of D2/3R in methamphetamine users under behavioral intervention with
556 exercise training has been achieved using [¹⁸F]fallypride PET imaging⁷⁷. Interestingly, they
557 reported an increased [¹⁸F]fallypride BP_{ND} in the whole striatum of patients included into the
558 exercise group in comparison to those of the control group (*i.e.* methamphetamine users under
559 behavioral intervention with educational training). Thus, the authors suggest that under depleted
560 striatal D2/3R availability, as shown by the methamphetamine users, physical exercise may
561 increase the availability of these receptors. However, they tempered themselves their results
562 given the relatively small size of the samples. Besides, the absence of healthy control in the study
563 design precludes conclusions drawing on the effect of physical exercise on striatal D2/3R
564 availability in physiological conditions. Moreover, we stress here that our results focused on

565 the sensitization process (and the associated long term expression) which is thought to be a
566 useful model to investigate early events in the natural history of addiction pathophysiology (e.g.
567 recreational use). On the contrary, the work of Robertson and coll. included patients under
568 DSM-IV-TR criteria for methamphetamine dependence, meaning that they already have a long
569 history of methamphetamine abuse. Furthermore, the included patients are under complete
570 withdrawal which could impact by itself DA neurochemical processes and makes a clear
571 difference with our study design.

572 In conclusion, we report a replication study of a protective effect of wheel-running exercise on
573 both induction and expression of cocaine locomotor sensitization in female C57/BL6J mice.
574 Our findings show that exercise-induced neuroplasticity within mesolimbic DA pathway
575 include a reduced D2/3R availability in the striatum, while cocaine locomotor sensitization is
576 associated with an increased D2/3R availability in this brain area. While, further investigations
577 are required to unravel molecular mechanisms by which exercise affects dopaminergic
578 signaling, our work contributes to the neurobiological understanding of physical exercise and
579 its positive impact on addictive behaviors.

580

581 REFERENCES

- 582 1. Leshner, A. I. Addiction Is a Brain Disease, and It Matters. *Science* (80-). **278**, 45–47
583 (1997).
- 584 2. Hall, W., Carter, A. & Forlini, C. The brain disease model of addiction: is it supported
585 by the evidence and has it delivered on its promises? *The Lancet Psychiatry* **2**, 105–110
586 (2015).
- 587 3. Volkow, N. D. & Koob, G. Brain disease model of addiction: why is it so
588 controversial? *The Lancet Psychiatry* **2**, 677–679 (2015).
- 589 4. Volkow, N. D. *et al.* Imaging endogenous dopamine competition with [11C]raclopride
590 in the human brain. *Synapse* **16**, 255–262 (1994).
- 591 5. Volkow, N. D. Is Methylphenidate Like Cocaine? *Arch. Gen. Psychiatry* **52**, 456
592 (1995).
- 593 6. Volkow, N. D. *et al.* Reinforcing effects of psychostimulants in humans are associated
594 with increases in brain dopamine and occupancy of D2 receptors. *J. Pharmacol. Exp.*
595 *Ther.* (1999).
- 596 7. Wang, G. J. *et al.* Decreased dopamine activity predicts relapse in methamphetamine
597 abusers. *Mol. Psychiatry* **17**, 918–925 (2012).
- 598 8. Volkow, N. D. & Morales, M. The Brain on Drugs: From Reward to Addiction. *Cell*

599 162, 712–725 (2015).

600 9. Volkow, N. D. *et al.* Effects of chronic cocaine abuse on postsynaptic dopamine
601 receptors. *Am. J. Psychiatry* **147**, 719–724 (1990).

602 10. Volkow, N. D., Fowler, J. S., Wang, G.-J. & Swanson, J. M. Dopamine in drug abuse
603 and addiction: results from imaging studies and treatment implications. *Mol. Psychiatry*
604 **9**, 557–569 (2004).

605 11. Nader, M. A. *et al.* PET imaging of dopamine D2 receptors during chronic cocaine
606 self-administration in monkeys. *Nat. Neurosci.* **9**, 1050–1056 (2006).

607 12. Nader, M. A. & Czoty, P. W. PET Imaging of Dopamine D2 Receptors in Monkey
608 Models of Cocaine Abuse: Genetic Predisposition Versus Environmental Modulation.
609 *Am. J. Psychiatry* **162**, 1473–1482 (2005).

610 13. Thompson, T. P. *et al.* Physical activity and the prevention, reduction, and treatment of
611 alcohol and/or substance use across the lifespan (The PHASE review): protocol for a
612 systematic review. *Syst. Rev.* **7**, 9 (2018).

613 14. Lisha, N. E. & Sussman, S. Relationship of high school and college sports participation
614 with alcohol, tobacco, and illicit drug use: A review. *Addict. Behav.* **35**, 399–407
615 (2010).

616 15. Lynch, W. J., Peterson, A. B., Sanchez, V., Abel, J. & Smith, M. A. Exercise as a novel
617 treatment for drug addiction: A neurobiological and stage-dependent hypothesis.
618 *Neurosci. Biobehav. Rev.* **37**, 1622–1644 (2013).

619 16. De La Garza, R. *et al.* Treadmill exercise improves fitness and reduces craving and use
620 of cocaine in individuals with concurrent cocaine and tobacco-use disorder. *Psychiatry*
621 *Res.* **245**, 133–140 (2016).

622 17. Wang, D., Wang, Y., Wang, Y., Li, R. & Zhou, C. Impact of Physical Exercise on
623 Substance Use Disorders: A Meta-Analysis. *PLoS One* **9**, e110728 (2014).

624 18. Smith, M. A., Schmidt, K. T., Iordanou, J. C. & Mustroph, M. L. Aerobic exercise
625 decreases the positive-reinforcing effects of cocaine. *Drug Alcohol Depend.* **98**, 129–
626 135 (2008).

627 19. Smith, M. A., Walker, K. L., Cole, K. T. & Lang, K. C. The effects of aerobic exercise
628 on cocaine self-administration in male and female rats. *Psychopharmacology (Berl).*
629 **218**, 357–369 (2011).

630 20. Smith, M. A. & Pitts, E. G. Access to a running wheel inhibits the acquisition of
631 cocaine self-administration. *Pharmacol. Biochem. Behav.* **100**, 237–243 (2011).

632 21. Smith, M. A. & Pitts, E. G. Wheel running decreases the positive reinforcing effects of

633 heroin. *Pharmacol. Reports* **64**, 960–964 (2012).

634 22. Engelmann, A. J. *et al.* Chronic wheel running reduces maladaptive patterns of
635 methamphetamine intake: regulation by attenuation of methamphetamine-induced
636 neuronal nitric oxide synthase. *Brain Struct. Funct.* **219**, 657–672 (2014).

637 23. Lacy, R. T., Strickland, J. C., Brophy, M. K., Witte, M. A. & Smith, M. A. Exercise
638 decreases speedball self-administration. *Life Sci.* **114**, 86–92 (2014).

639 24. Renteria Diaz, L., Siontas, D., Mendoza, J. & Arvanitogiannis, A. High levels of wheel
640 running protect against behavioral sensitization to cocaine. *Behav. Brain Res.* **237**, 82–
641 85 (2013).

642 25. Geuzaine, A. & Tirelli, E. Wheel-running mitigates psychomotor sensitization
643 initiation but not post-sensitization conditioned activity and conditioned place
644 preference induced by cocaine in mice. *Behav. Brain Res.* **262**, 57–67 (2014).

645 26. Vanderschuren, L. J. M. J. & Kalivas, P. W. Alterations in dopaminergic and
646 glutamatergic transmission in the induction and expression of behavioral sensitization:
647 a critical review of preclinical studies. *Psychopharmacology (Berl.)* **151**, 99–120
648 (2000).

649 27. Robinson, T. E. & Berridge, K. C. Addiction. *Annu. Rev. Psychol.* **54**, 25–53 (2003).

650 28. Anderson, S. . & Pierce, R. C. Cocaine-induced alterations in dopamine receptor
651 signaling: Implications for reinforcement and reinstatement. *Pharmacol. Ther.* **106**,
652 389–403 (2005).

653 29. Robinson, T. The neural basis of drug craving: An incentive-sensitization theory of
654 addiction. *Brain Res. Rev.* **18**, 247–291 (1993).

655 30. De Vries, T. Relapse to Cocaine- and Heroin-Seeking Behavior Mediated by Dopamine
656 D2 Receptors Is Time-Dependent and Associated with Behavioral Sensitization.
657 *Neuropsychopharmacology* **26**, 18–26 (2002).

658 31. Edwards, S., Whisler, K. N., Fuller, D. C., Orsulak, P. J. & Self, D. W. Addiction-
659 Related Alterations in D1 and D2 Dopamine Receptor Behavioral Responses
660 Following Chronic Cocaine Self-Administration. *Neuropsychopharmacology* **32**, 354–
661 366 (2007).

662 32. Peris, J. *et al.* Persistence of neurochemical changes in dopamine systems after
663 repeated cocaine administration. *J. Pharmacol. Exp. Ther.* **253**, 38–44 (1990).

664 33. Sousa, F. C. F., Gomes, P. B., Mace^do, D. S., Marinho, M. M. F. & Viana, G. S. B.
665 Early Withdrawal From Repeated Cocaine Administration Upregulates Muscarinic and
666 Dopaminergic D2-Like Receptors in Rat Neostriatum. *Pharmacol. Biochem. Behav.*

667 62, 15–20 (1999).

668 34. Maggos, C. Sustained Withdrawal Allows Normalization of In Vivo [¹¹C]N-

669 Methylspiperone Dopamine D2 Receptor Binding after Chronic Binge Cocaine A

670 Positron Emission Tomography Study in Rats. *Neuropsychopharmacology* **19**, 146–

671 153 (1998).

672 35. Stanwood, G. D., Lucki, I. & McGonigle, P. Differential regulation of dopamine D2

673 and D3 receptors by chronic drug treatments. *J. Pharmacol. Exp. Ther.* (2000).

674 36. Claye, L. H., Akunne, H. C., Duff Davis, M., DeMattos, S. & Soliman, K. F. A.

675 Behavioral and neurochemical changes in the dopaminergic system after repeated

676 cocaine administration. *Mol. Neurobiol.* **11**, 55–66 (1995).

677 37. Button, K. S. *et al.* Power failure: Why small sample size undermines the reliability of

678 neuroscience. *Nat. Rev. Neurosci.* **14**, 365–376 (2013).

679 38. Briand, L. A., Flagel, S. B., Seeman, P. & Robinson, T. E. Cocaine self-administration

680 produces a persistent increase in dopamine D2 High receptors. *Eur.*

681 *Neuropsychopharmacol.* **18**, 551–6 (2008).

682 39. Seeman, P., Tallerico, T., Ko, F., Tenn, C. & Kapur, S. Amphetamine-sensitized

683 animals show a marked increase in dopamine D2 high receptors occupied by

684 endogenous dopamine, even in the absence of acute challenges. *Synapse* **46**, 235–239

685 (2002).

686 40. Novak, G., Seeman, P. & Foll, B. Le. Exposure to nicotine produces an increase in

687 dopamine D2 High receptors: A possible mechanism for dopamine hypersensitivity.

688 *Int. J. Neurosci.* **120**, 691–697 (2010).

689 41. Lespine, L. F. & Tirelli, E. The protective effects of free wheel-running against cocaine

690 psychomotor sensitization persist after exercise cessation in C57BL/6J mice.

691 *Neuroscience* **310**, 650–664 (2015).

692 42. Lespine, L. F. & Tirelli, E. Evidence for a long-term protection of wheel-running

693 exercise against cocaine psychomotor sensitization in adolescent but not in adult mice.

694 *Behav. Brain Res.* **349**, 63–72 (2018).

695 43. Lespine, L. F., Plenevaux, A. & Tirelli, E. Wheel-running exercise before and during

696 gestation against acute and sensitized cocaine psychomotor-activation in offspring.

697 *Behav. Brain Res.* **363**, 53–60 (2019).

698 44. Zhou, Y., Zhao, M., Zhou, C. & Li, R. Sex differences in drug addiction and response

699 to exercise intervention: From human to animal studies. *Front. Neuroendocrinol.* **40**,

700 24–41 (2016).

701 45. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving
702 Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal
703 Research. *PLoS Biol.* **8**, e1000412 (2010).

704 46. Brabant, C., Quertemont, E. & Tirelli, E. Evidence that the relations between novelty-
705 induced activity, locomotor stimulation and place preference induced by cocaine
706 qualitatively depend upon the dose: a multiple regression analysis in inbred C57BL/6J
707 mice. *Behav. Brain Res.* **158**, 201–210 (2005).

708 47. Brichard, L., Ferrari, V., Smith, R. & Aigbirhio, F. I. Synthesis of [18 F]-Fallypride. in
709 *Radiochemical Syntheses* 95–102 (John Wiley & Sons, Inc., 2012).
710 doi:10.1002/9781118140345.ch11

711 48. Lemaire, C. *et al.* Solid phase extraction—an alternative to the use of rotary
712 evaporators for solvent removal in the rapid formulation of PET radiopharmaceuticals.
713 *J. Label. Compd. Radiopharm.* **42**, 63–75 (1999).

714 49. Bahri, M. A., Plenevaux, A., Warnock, G., Luxen, A. & Seret, A. NEMA NU4-2008
715 image quality performance report for the microPET focus 120 and for various
716 transmission and reconstruction methods. *J. Nucl. Med.* **50**, 1730–1738 (2009).

717 50. Ma, Y. *et al.* A three-dimensional digital atlas database of the adult C57BL/6J mouse
718 brain by magnetic resonance microscopy. *Neuroscience* **135**, 1203–1215 (2005).

719 51. Mirrione, M. M. *et al.* A novel approach for imaging brain–behavior relationships in
720 mice reveals unexpected metabolic patterns during seizures in the absence of tissue
721 plasminogen activator. *Neuroimage* **38**, 34–42 (2007).

722 52. Innis, R. B. *et al.* Consensus Nomenclature for in vivo Imaging of Reversibly Binding
723 Radioligands. *J. Cereb. Blood Flow Metab.* **27**, 1533–1539 (2007).

724 53. Ichise, M. *et al.* Linearized reference tissue parametric imaging methods: Application
725 to [11C]DASB positron emission tomography studies of the serotonin transporter in
726 human brain. *J. Cereb. Blood Flow Metab.* **23**, 1096–1112 (2003).

727 54. Pruessner, J. C., Kirschbaum, C., Meinlschmid, G. & Hellhammer, D. H. Two formulas
728 for computation of the area under the curve represent measures of total hormone
729 concentration versus time-dependent change. *Psychoneuroendocrinology* **28**, 916–931
730 (2003).

731 55. Rosnow, R. L. & Rosenthal, R. Effect Sizes. *Zeitschrift für Psychol. / J. Psychol.* **217**,
732 6–14 (2009).

733 56. Fritz, C. O., Morris, P. E. & Richler, J. J. Effect size estimates: Current use,
734 calculations, and interpretation. *J. Exp. Psychol. Gen.* **141**, 2–18 (2012).

735 57. Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates Third Edition
736 by. *Acad. Press* (2008).

737 58. Smith, M. A. & Witte, M. A. The effects of exercise on cocaine self-administration,
738 food-maintained responding, and locomotor activity in female rats: Importance of the
739 temporal relationship between physical activity and initial drug exposure. *Exp. Clin.*
740 *Psychopharmacol.* (2012). doi:10.1037/a0029724

741 59. Bezard, E. *et al.* Enriched Environment Confers Resistance to 1-Methyl-4-Phenyl-
742 1,2,3,6-Tetrahydropyridine and Cocaine: Involvement of Dopamine Transporter and
743 Trophic Factors. *J. Neurosci.* **23**, 10999–11007 (2003).

744 60. Solinas, M., Thiriet, N., Rawas, R. El, Lardeux, V. & Jaber, M. Environmental
745 Enrichment During Early Stages of Life Reduces the Behavioral, Neurochemical, and
746 Molecular Effects of Cocaine. *Neuropsychopharmacology* **34**, 1102–1111 (2009).

747 61. Bale, T. L. *et al.* The critical importance of basic animal research for neuropsychiatric
748 disorders. *Neuropsychopharmacology* **44**, 1349–1353 (2019).

749 62. Belke, T. W. Running and responding reinforced by the opportunity to run: effect of
750 reinforcer duration. *J. Exp. Anal. Behav.* **67**, 337–351 (1997).

751 63. Greenwood, B. N. *et al.* Long-term voluntary wheel running is rewarding and produces
752 plasticity in the mesolimbic reward pathway. *Behav. Brain Res.* **217**, 354–362 (2011).

753 64. Trulson, M. E. & Ulissey, M. J. Chronic cocaine administration decreases dopamine
754 synthesis rate and increases [³H] spiroperidol binding in rat brain. *Brain Res. Bull.* **19**,
755 35–38 (1987).

756 65. Liu, C. L., Wang, Y. K., Jin, G. Z., Shi, W. X. & Gao, M. Cocaine-induced locomotor
757 sensitization associates with slow oscillatory firing of neurons in the ventral tegmental
758 area. *Sci. Rep.* **8**, 1–11 (2018).

759 66. Foley, T. E. & Fleshner, M. Neuroplasticity of Dopamine Circuits After Exercise:
760 Implications for Central Fatigue. *NeuroMolecular Med.* **10**, 67–80 (2008).

761 67. Kelz, M. B. *et al.* Expression of the transcription factor deltaFosB in the brain controls
762 sensitivity to cocaine. *Nature* **401**, 272–276 (1999).

763 68. Merlo Pich, E. Common Neural Substrates for the Addictive Properties of Nicotine and
764 Cocaine. *Science (80-.).* **275**, 83–86 (1997).

765 69. Atkins, J. B. *et al.* Region-specific induction of ?FosB by repeated administration of
766 typical versus atypical antipsychotic drugs. *Synapse* **33**, 118–128 (1999).

767 70. Marques, E. *et al.* Influence of Chronic Exercise on the Amphetamine-Induced
768 Dopamine Release and Neurodegeneration in the Striatum of the Rat. *Ann. N. Y. Acad.*

769 *Sci.* **1139**, 222–231 (2008).

770 71. Meeusen, R. *et al.* Endurance training effects on neurotransmitter release in rat
771 striatum: an in vivo microdialysis study. *Acta Physiol. Scand.* **159**, 335–41 (1997).

772 72. Mukherjee, J. *et al.* Preliminary assessment of extrastriatal dopamine d-2 receptor
773 binding in the rodent and nonhuman primate brains using the high affinity radioligand,
774 18F-fallypride. *Nucl. Med. Biol.* **26**, 519–527 (1999).

775 73. Mukherjee, J. *et al.* Dopamine D3 receptor binding of 18 F-fallypride: Evaluation using
776 in vitro and in vivo PET imaging studies. *Synapse* **69**, 577–591 (2015).

777 74. Le Foll, B., Diaz, J. & Sokoloff, P. Increased dopamine D3 receptor expression
778 accompanying behavioral sensitization to nicotine in rats. *Synapse* **47**, 176–183 (2003).

779 75. Salamone, J. D. & Correa, M. The Mysterious Motivational Functions of Mesolimbic
780 Dopamine. *Neuron* **76**, 470–485 (2012).

781 76. Vućković, M. G. *et al.* Exercise elevates dopamine D2 receptor in a mouse model of
782 Parkinson’s disease: In vivo imaging with [18F]fallypride. *Mov. Disord.* **25**, 2777–
783 2784 (2010).

784 77. Robertson, C. L. *et al.* Effect of Exercise Training on Striatal Dopamine D2/D3
785 Receptors in Methamphetamine Users during Behavioral Treatment.
786 *Neuropsychopharmacology* **41**, 1629–1636 (2015).

789 ACKNOWLEDGEMENTS

790 The present work was supported by grants from the “Fonds National de la Recherche
791 Scientifique” (FNRS) and the University of Liège “Fonds Spéciaux pour la Recherche”
792 obtained by Ezio TIRELLI and Alain PLENEVAUX.

794 DECLARATIONS OF INTEREST

795 None.

797 AUTHOR CONTRIBUTIONS.

798 G.B. contributed to the conception of the study, acquired and analyzed the imaging data,
799 interpreted the data and wrote the paper. L-F.L contributed to the design of the study, acquired
800 and analyzed the behavioral data, interpreted the data and wrote the paper. M.A.B. contributed
801 to the acquisition and analysis of the imaging data and wrote the paper. M.E.S. contributed to
802 the acquisition and analysis of the imaging data. C.L. performed all the radiosyntheses and have

803 drafted the paper. A.L. contributed to the conception of the study and substantially revised the
804 work. A.P. and E.T. have funded this work, contributed to the conception of the study,
805 interpreted the data and substantially revised the work.