

1 **Running title: Low temperature promotes peel degreening in citrus fruit**

2

3

4 **Low temperature transcriptionally modulates natural peel degreening in lemon (*Citrus*
5 *limon* L.) fruit independently of endogenous ethylene**

6

7 Oscar W. Mitalo¹, Takumi Otsuki¹, Rui Okada¹, Saeka Obitsu¹, Kanae Masuda¹, Yuko Hojo²,
8 Takakazu Matsuura², Izumi C. Mori², Daigo Abe³, William O. Asiche⁴, Takashi Akagi¹,
9 Yasutaka Kubo^{1*}, Koichiro Ushijima^{1*}

10

11 ¹ Graduate School of Environmental and Life Science, Okayama University, Okayama, 700–
12 8530, Japan

13 ² Institute of Plant Science and Resources, Okayama University, Kurashiki, 700–0046, Japan

14 ³ National Agriculture and Food Research Organization, Shikoku Research Station, Zentsuji,
15 765–8508, Japan

16 ⁴ Department of Research and Development, Del Monte Kenya Ltd, Thika, 147–01000,
17 Kenya

18

19 **Email addresses of authors:** Oscar W. Mitalo (omitalo89@gmail.com), Takumi Otsuki
20 (pyx45njb@s.okayama-u.ac.jp), Rui Okada (ph695id9@s.okayama-u.ac.jp), Saeka Obitsu
21 (phkk6pzb@s.okayama-u.ac.jp), Kanae Masuda (masuda_kanae@s.okayama-u.ac.jp), Yuko
22 Hojo (y-hojo@okayama-u.ac.jp), Takakazu Matsuura (matsuura@rib.okayama-u.ac.jp),
23 Izumi C. Mori (imori@okayama-u.ac.jp), Daigo Abe (dabe@affrc.go.jp), William O. Asiche
24 (asiche3@gmail.com), Takashi Akagi (takashia@okayama-u.ac.jp)

25

26 *** Corresponding authors:** Yasutaka Kubo (Email: ykubo@okayama-u.ac.jp, Tel.: +81-86-
27 251-8338); Koichiro Ushijima (Email: ushijima@cc.okayama-u.ac.jp, Tel.: +81-86-251-
28 8355)

29

30 Date of submission: 26 November 2019

31 Number of figures: 8; Colour in print: 8

32 Word count: 6271

33 Supplementary figures: 1

34 Supplementary tables: 11

35 **Highlight:**

36 Citrus peel degreening is promoted by low temperature via modulation of multiple genes
37 associated with chlorophyll degradation, carotenoid biosynthesis, photosystem disassembly,
38 phytohormones and transcription factors without involving ethylene signalling.

39

40 **Abstract**

41 Peel degreening is an important aspect of fruit ripening in many citrus fruit, and earlier
42 studies have shown that it can be advanced either by ethylene treatment or during low
43 temperature storage. However, the important regulators and pathways involved in natural
44 peel degreening remain largely unknown. To understand how natural peel degreening is
45 regulated in lemon (*Citrus limon* L.) fruit, flavedo transcriptome and physiochemical changes
46 in response to either ethylene treatment or low temperature were studied. Ethylene treatment
47 induced rapid peel degreening which was strongly inhibited by the ethylene antagonist, 1-
48 methylcyclopropene (1-MCP). Compared with 25°C, moderately low temperatures (5°C,
49 10°C, 15°C and 20°C) also triggered peel degreening. Surprisingly, repeated 1-MCP
50 treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome
51 analysis revealed that low temperature and ethylene independently regulated genes associated
52 with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone
53 biosynthesis and signalling, and transcription factors. On-tree peel degreening occurred along
54 with environmental temperature drops, and it coincided with the differential expression of
55 low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene
56 showed no significant expression changes during on-tree peel degreening. Based on these
57 findings, we hypothesize that low temperature plays a prominent role in regulating natural
58 peel degreening independently of ethylene in citrus fruit.

59

60 **Keywords:** 1-methylcyclopropene, Carotenoids, Chlorophyll, Citrus, Ethylene, Low
61 temperature, Peel degreening, Phytohormones, Transcriptome

62 **Introduction**

63 Fruit ripening is a multifaceted process comprising various physiochemical and structural
64 changes such as softening, starch degradation to sugars, colour development and aroma
65 volatile production (Cherian *et al.*, 2014; Seymour and Granell, 2014). In citrus fruit, colour
66 development, commonly known as peel degreening, is a critical part of fruit ripening which is
67 characterized by peel colour change from green to yellow/red/orange (Iglesias *et al.*, 2007).
68 Peel degreening is an important aspect for marketability of citrus fruit (Porat, 2008), and thus
69 there is wide interest in unravelling the fundamental regulatory mechanisms involved.

70

71 There are two main pathways that have been linked to citrus peel degreening. One is
72 chlorophyll degradation, which firstly involves dephytination of chlorophyll molecules by
73 chlorophyllase (CLH) and pheophytinase (PPH) followed by removal of the central Mg atom
74 by Mg-dechelatase to form pheophorbide. Pheophorbide is then converted to red chlorophyll
75 catabolites (RCC) by pheophorbide a oxidase (PaO), and RCC is reduced to colourless
76 compounds by RCC reductase (RCCR) (Hörtensteiner, 2006; Shimoda *et al.*, 2016; Yin *et al.*,
77 2016). The other is carotenoid biosynthesis which starts with the condensation of two
78 geranylgeranyl pyrophosphate (GGPP) molecules by phytoene synthase (PSY) to form
79 phytoene. Phytoene desaturase (PDS) and ζ -carotene desaturase (ZDS) successively convert
80 phytoene to lycopene, which is then converted to either α -carotene or β -carotene by lycopene
81 ϵ -cyclase (LCYe) and lycopene β -cyclase (LCYb) respectively. α -carotene is later converted
82 to lutein via sequential hydroxylation by ϵ -ring hydroxylase and β -ring hydroxylase (CHYb),
83 whereas β -carotene is converted to zeaxanthin via β -cryptoxanthin by CHYb (Cunningham *et*
84 *al.*, 1996; Ohmiya *et al.*, 2019). Genes encoding various enzymes for the main steps of
85 chlorophyll degradation and carotenoid metabolism have been isolated and functionally
86 characterized (Rodrigo *et al.*, 2013).

87

88 The phytohormone ethylene has been routinely used for commercial degreening in citrus fruit
89 (Purvis and Barmore, 1981; Porat, 2008; Mayuoni *et al.*, 2011). Exogenous ethylene
90 application was shown to transcriptionally modulate both chlorophyll degradation and
91 carotenoid metabolism (Rodrigo and Zacarias, 2007; Shemer *et al.*, 2008; Yin *et al.*, 2016).
92 Transcription factors (TF) that may be involved in ethylene-induced peel degreening have
93 also been identified and characterized (Yin *et al.*, 2016). Nevertheless, it remains unclear
94 whether ethylene plays a role during natural degreening since citrus fruit are non-climacteric

95 and the amounts of ethylene produced are minute (Eaks, 1970; Sawamura, 1981; Katz *et al.*,
96 2004).

97

98 Temperature has a large impact on a wide range of plant growth and developmental processes,
99 including fruit ripening and maturation. Low temperature is thought to slow most cell
100 metabolic activities, and hence it is the major postharvest technology used to delay fruit
101 ripening and senescence (McGlasson *et al.*, 1979; Hardenburg *et al.*, 1986). However,
102 promotion of fruit ripening by low temperature has been described in various fruit species
103 such as kiwifruit (Kim *et al.*, 1999; Mworia *et al.*, 2012; Asiche *et al.*, 2017; Mitalo *et al.*,
104 2018a), European pears (El-Sharkawy *et al.*, 2003; Nham *et al.*, 2017), and apples (Tacken *et*
105 *al.*, 2010). Recently, transcriptome studies have suggested that low temperature-specific
106 genes might have regulatory roles during fruit ripening in kiwifruit (Asiche *et al.*, 2018;
107 Mitalo *et al.*, 2018b; Mitalo *et al.*, 2019a; Mitalo *et al.*, 2019b) and European pears (Mitalo *et*
108 *al.*, 2019c).

109

110 Citrus fruit are among the species where low temperature has been linked to fruit ripening,
111 especially peel degreening. Typically, as most citrus fruit mature on the tree, the seasonal
112 temperature drops. Multiple studies have thus demonstrated that cold periods below 13°C are
113 required to stimulate on-tree fruit colour development (Manera *et al.*, 2012; Manera *et al.*,
114 2013; Rodrigo *et al.*, 2013; Conesa *et al.*, 2019). During storage, low/intermediate
115 temperatures (6–15°C) have also been shown to promote peel degreening (Matsumoto *et al.*,
116 2009; Van Wyk *et al.*, 2009; Zhu *et al.*, 2011; Carmona *et al.*, 2012a; Tao *et al.*, 2012).
117 Natural peel degreening in citrus fruit has often been attributed to ethylene, on the
118 assumption that the basal system I ethylene levels are physiologically active (Goldschmidt *et*
119 *al.*, 1993; Carmona *et al.*, 2012b). Whether the peel colour changes during on-tree maturation
120 and low temperature storage are caused by basal ethylene, low temperature and/or a
121 synergistic effect of ethylene and low temperature, or because of another mechanism is still
122 not yet clear.

123

124 Here, we examined the peel degreening behaviour of lemon fruit in response to exogenous
125 ethylene and different storage temperatures (0°C, 5°C, 10°C, 15°C, 20°C, and 25°C). We
126 found that both ethylene treatment and moderately low temperatures (0°C, 5°C, 10°C, 15°C
127 and 20°C; hereinafter referred to as low temperature) promoted peel degreening. Further, we
128 explored the role of ethylene in low temperature-triggered peel degreening using repeated

129 treatments with 1-methylcyclopropene (1-MCP), a well-known ethylene antagonist (Watkins,
130 2006; Sisler and Serek, 1997). We found that 1-MCP treatments did not inhibit the
131 accelerated peel colour changes induced by low temperature. Further transcriptome analysis
132 revealed that ethylene and low temperature independently regulated distinct gene sets in the
133 flavedo of lemon fruit. On-tree peel degreening also coincided with a decrease in minimum
134 environmental temperatures and differential expression of low temperature-regulated genes,
135 whereas ethylene-specific genes showed no significant expression changes. These results
136 suggested that low temperature might transcriptionally modulate peel degreening
137 independently of basal endogenous ethylene.

138

139 **Materials and methods**

140 **Plant material and treatments**

141 Lemon fruit (*C. limon* L. cv. ‘Allen Eureka’) grown under standard cultural practices were
142 collected in 2018 from a commercial orchard in Takamatsu (Kagawa, Japan). Sampling was
143 from seven harvests during fruit development: 3 Sep., 27 Sep., 12 Oct., 30 Oct., 14 Nov., 29
144 Nov., and 13 Dec., corresponding to 171, 196, 211, 230, 246, 261 and 276 days after full
145 bloom (DAFB), respectively. To characterize postharvest ethylene effect, lemons (196
146 DAFB) were divided into four lots of 20 fruit each. The first set of fruit contained non-treated
147 fruit (control), while the second set were treated with 1-MCP (2 μLL^{-1}) for 12 h. The third set
148 of fruit were continuously treated with ethylene (100 μLL^{-1}), while the fourth set were
149 initially treated with 1-MCP (2 μLL^{-1}) for 12 h followed by continuous ethylene (100 μLL^{-1})
150 treatment. 1-MCP was released by dissolving SmartFresh™ powder (AgroFresh, PA, United
151 States) in water. All treatments were carried out at 25°C for up to 8 d. For postharvest storage
152 tests, lemons (196 DAFB) were divided into five lots of 40 fruit each, and stored at either 5°C,
153 10°C, 15°C, 20°C or 25°C for up to 42 d. Additionally, three separate sets (40 fruit each) were
154 stored at either 5°C, 15°C or 25°C with repeated (twice a week) 12 h 1-MCP treatments. Fruit
155 peel (flavedo) was sampled, frozen in liquid nitrogen and stored at -80°C for future analysis,
156 each sample containing three biological replicates.

157

158 **Citrus colour index (CCI) determination**

159 The *L*, *a* and *b* Hunter lab parameters were measured on four even equatorial sites on the fruit
160 surface using a Minolta CR-200B chromameter (Konica Minolta, Tokyo, Japan). CCI values
161 were presented as the results of 1000•*a*/(*L*•*b*) transformation, expressed as a mean of five fruit.

162

163 **Determination of chlorophyll and carotenoid content**

164 Chlorophylls were extracted and quantified in triplicate according to the procedure by
165 Rodrigo *et al.* (2003) with slight modifications. Chlorophylls were extracted in 80% acetone
166 and appropriate dilutions were used to quantify absorbance at 646.8 nm and 663.2 nm.
167 Chlorophyll content was calculated from these measurements using Lichtenthaler and
168 Wellburn equations (Wellburn, 1994). Extraction and quantification of carotenoids were
169 conducted in triplicate according to the procedures by Kato *et al.* (2004) and Matsumoto *et al.*
170 (2007) with slight modifications. Briefly, carotenoids were successively extracted with 40%
171 methanol and diethyl ether/methanol (containing 0.1% BHT). After saponification with
172 methanolic potassium hydroxide, the organic layer of the extracts was vacuum-dried and
173 analysed by HPLC. The HPLC analysis was carried out on an Extrema LC-4000 system
174 (Jasco, Tokyo, Japan) equipped with a photo diode-array detector and autosampler. Samples
175 were analysed on a Develosil C30-UG column (3 µm, 150 x 4.6 mm, Nomura Chemicals,
176 Aichi, Japan) set at 20°C and 0.5 mL/min flow rate. The UV-Vis spectra were obtained
177 between 250 and 550 nm, and chromatograms were processed at 450 nm. Carotenoid
178 quantifications were based on standard curves generated using authentic standards.

179

180 **Phytohormone measurements**

181 Phytohormone extraction and analysis were performed according to the method described by
182 Gupta *et al.* (2017), using deuterium-labelled internal standards for indole-3-acetic acid
183 (IAA), abscisic acid (ABA), jasmonic acid (JA), gibberellins (GAs), *trans*-zeatin (tZ), N6-
184 isopentenyladenine (iP) and salicylic acid (SA), and ¹³C-labelled jasmonoyl-L-isoleucine
185 (JA-Ile). Eluted fractions were analysed on an Agilent 1260-6410 Triple Quad LC/MS
186 system equipped with a ZOR-BAX Eclipse XDB-C18 column (Agilent Technologies, CA,
187 USA). Liquid chromatography conditions are described in Table S1, while the multiple-
188 reaction-monitoring mode of the tandem quadrupole mass spectrometer and precursor-
189 product ion transitions for each compound are listed in Table S2.

190

191 **RNA-seq and differential gene expression analysis**

192 Total RNA was extracted in triplicate from the flavedo of ethylene-treated and control (non-
193 treated) lemon fruit after 4 d, as well as fruit after 28 d of storage at 5°C, 15°C and 25°C.
194 Illumina paired-end libraries were constructed using NEBNext® Ultra™ RNA Library Prep

195 Kit for Illumina (New England Biolabs, MA, USA), before being sequenced using Illumina
196 HiSeq 2500 platform (Hokkaido System Co. Ltd., Japan). Trimming was done to obtain ≥ 10
197 million paired reads per sample, and the reads were mapped to the reference *Citrus*
198 *clementina* Genome v1.0 (Wu *et al.*, 2014). Gene expression levels were calculated using the
199 reads by kilobase per million (RPKM) method and differentially expressed genes (DEGs)
200 were identified using the false discovery rates (FDR) analysis (Robinson *et al.*, 2010). DEG
201 selection was based on two criteria: (i) genes with $\text{RPKM} \geq 3.0$ and $\text{FDR} \leq 0.001$, and (ii)
202 fold change ≥ 3.0 in average RPKM for ethylene vs. control, 5°C vs. 25°C and/or 15°C vs.
203 25°C . For co-expression analysis, the WGCNA method (Zhang and Horvath, 2005) was used
204 to generate modules of highly correlated genes based on the RNA-seq expression data. Gene
205 modules were identified by implementing the WGCNA package in R (Langfelder and
206 Horvath, 2008). The soft-thresholding power and tree-cut parameters used for the WGCNA
207 analysis were 12 and 0.15, respectively.

208

209 **Reverse-transcriptase quantitative PCR (RT-qPCR)**

210 Total RNA was extracted from the flavedo of fruit at harvest (0 d), after 4 d for ethylene, 1-
211 MCP + ethylene, and control groups, and after 28 d storage at 5°C , 10°C , 15°C , 20°C and
212 25°C . Total RNA was also extracted from on-tree fruit samples at each of the specified
213 sampling dates. DNase I (Nippon Gene, Tokyo, Japan) treatment followed by clean-up using
214 FavorPrep after Tri-Reagent RNA Clean-up Kit (Favorgen Biotech. Co., Ping-Tung, Taiwan)
215 were carried out to remove genomic DNA contamination from the extracted RNA. For all
216 treatments, 2.4 μg of clean RNA was reverse-transcribed to cDNA using Takara RNA PCR
217 kit (Takara, Kyoto, Japan). Gene-specific primers (Table S3) were designed using Primer3
218 software (version 0.4.0, <http://bioinfo.ut.ee/primer3-0.4.0/>). Gene expression of three
219 biological replicates was examined on MYiQ Single-Color Reverse Transcriptase-
220 Quantitative PCR Detection System (Bio-Rad, Hercules, CA, USA) using TB GreenTM
221 Premix ExTaqTM II (Takara, Kyoto, Japan). *AcActin* (*Ciclev10025866m.g*) was used as the
222 housekeeping gene after examining its constitutive expression pattern from the RNA-seq
223 results. Relative expression values were calculated using 196 DAFB (0 d) fruit.

224

225 **Statistical analysis**

226 Data presented in this study were subjected to statistical analysis using R version 3.4.0
227 software package (R Project). ANOVA followed by post-hoc Tukey's test ($P < 0.05$) were

228 used to detect statistical differences in CCI, pigment and phytohormone contents, and gene
229 expression.

230

231 **Results**

232 **Ethylene-induced peel degreening**

233 To validate the role of ethylene in citrus peel degreening, detached lemon fruit were
234 continuously treated with ethylene and/or its antagonist, 1-MCP. As expected, peel colour of
235 ethylene-treated fruit started to change from green to yellow after 2 d, attaining a full yellow
236 colour after 8 d (Fig. 1A). This change was numerically indicated by a rapid increase in CCI
237 from -14.2 at 0 d to -1.8 after 8 d. Notably, fruit pre-treated with 1-MCP followed by
238 continuous ethylene treatment retained their greenish peel colour and CCI showed no
239 significant changes throughout the experimental period. These findings demonstrated that 1-
240 MCP pre-treatment rendered the fruit insensitive to ethylene, effectively inhibiting ethylene
241 action on the peel colour.

242

243 **Peel degreening behaviour at different storage temperatures and the effect of 1-MCP**

244 Peel colour changes in detached lemon fruit were also investigated during storage at different
245 temperatures. As shown in Fig. 1B, peel colour of fruit at 5°C, 10°C, 15°C and 20°C gradually
246 changed from green to yellow with a concomitant increase in CCI to about -2.3 after 28–42 d.
247 Peel degreening was more pronounced at 15°C followed by 10°C and 20°C, than 5°C at which
248 fruit retained appreciable greenish colour even after 42 d. In contrast, fruit at 25°C retained
249 their greenish peel colour and the CCI changes were minimal throughout the storage period.
250 These observations indicated that moderately low storage temperatures promoted the peel
251 degreening process in lemon fruit.

252

253 To determine whether the basal levels of system I ethylene played a role in the observed low
254 temperature-modulated peel degreening, we treated lemon fruit repeatedly with 1-MCP.
255 Surprisingly, comparable peel degreening was observed in fruit at 5°C and 15°C but not at
256 25°C, notwithstanding the repeated 1-MCP treatments (Fig. 1C). Together, these findings
257 suggested that low temperature may promote peel colour changes in lemon fruit
258 independently of ethylene.

259

260 **Differential expression analysis in lemon fruit flavedo**

261

262 ***Overview of the transcriptome changes***

263 To gain a deeper insight into the mechanisms of low temperature promotion of peel
264 degreening, we conducted a comprehensive transcriptome analysis to compare low
265 temperature-induced responses with those activated by ethylene. Ethylene-induced responses
266 were captured by examining 4 d ethylene-treated and non-treated (control) flavedo samples.
267 To cover low temperature-triggered responses, samples obtained after 28 d of storage at 5°C
268 and 15°C were examined against those at 25°C.

269

270 RNA-seq analysis resulted in the identification of 3105 DEGs (q-value < 0.001), which
271 responded to either ethylene or low temperature (Fig. 2). Ethylene had the largest share,
272 influencing 2329 DEGs as opposed to 5°C and 15°C that influenced 1634 and 597 DEGs,
273 respectively (Fig. 2A). In all treatments, the number of downregulated DEGs was higher than
274 that of upregulated genes. Clustering analysis classified the DEGs into distinct groups that
275 were regulated by either ethylene, 5°C and/or 15°C (Fig. 2B). Ethylene treatment exclusively
276 upregulated and downregulated 592 and 700 genes, respectively (Fig. 2C, D). Likewise, an
277 aggregate of 337 and 439 genes were exclusively upregulated and downregulated,
278 respectively by 5°C and 15°C. The remaining DEGs (420 upregulated and 617
279 downregulated) were jointly influenced by either ethylene, 5°C and/or 15°C. Detailed
280 information about the DEGs showing specific and shared responses to ethylene, 5°C and/or
281 15°C is listed in Tables S4–S10. Altogether, identified DEGs could be pooled into three
282 distinct groups. The first group comprised ethylene-specific genes, the second group included
283 low temperature-specific genes while the third group consisted of genes regulated by either
284 ethylene or low temperature.

285

286 ***Chlorophyll metabolism and associated transcripts***

287 Peel degreening is primarily caused by the degradation of green-coloured chlorophyll
288 pigments to colourless non-fluorescent derivatives (Hortensteiner, 2006). Upon ethylene
289 treatment for 4 d, peel chlorophyll a and b content drastically decreased from about 50 µg g⁻¹
290 at harvest to merely 11 µg g⁻¹ (Fig. 3A). However, ethylene treatment failed to induce
291 chlorophyll reduction in fruit pre-treated with 1-MCP which was in close agreement with the
292 observed colour changes (Fig. 1A). During storage, peel chlorophyll content also decreased
293 in fruit at moderately low temperatures (5°C, 10°C, 15°C and 20°C), whereas they were
294 maintained at high levels in fruit at 25°C. It is noteworthy that peel chlorophyll content also
295 decreased in fruit at 5°C and 15°C despite repeated treatments with 1-MCP.

296

297 The acceleration of chlorophyll loss by ethylene and low temperature was further verified by
298 examining the expression of chlorophyll metabolism genes. Whereas most of the identified
299 DEGs encoding chlorophyll metabolism enzymes were downregulated, we found three that
300 were upregulated (Fig. 3B, Table S11). Among the upregulated genes were *ClCLH1* and
301 *ClPPH*, that had been previously associated with chlorophyll degradation in citrus fruit
302 (Jacob-Wilk *et al.*, 1999; Yin *et al.*, 2016). Interestingly, *ClCLH1* was up-regulated only by
303 ethylene treatment (which was suppressed by 1-MCP treatment), while *ClPPH* was
304 upregulated by both ethylene treatment and low temperature (Fig. 3C). It is however worth
305 noting that repeated 1-MCP treatments did not suppress the increased expression of *ClPPH* at
306 5°C and 15°C.

307

308 ***Carotenoid metabolism and associated transcripts***

309 Citrus peel greening is also complemented by a change in the content and composition of
310 carotenoids having varied colours (Kato, 2012; Ohmiya *et al.*, 2019). Therefore, we sought to
311 determine the changes in peel carotenoid content triggered by ethylene treatment and storage
312 temperature. Lutein, β-carotene and α-carotene were identified as the major carotenoids in the
313 peel of lemon fruit (Fig. S1), which was in close agreement with the findings of Agócs *et al.*
314 (2007). Interestingly, the peel content of all the identified carotenoids showed a substantial
315 decrease upon ethylene treatment for 4 d and storage at moderately low temperatures for 28 d
316 (Fig. 4A). However, while 1-MCP treatment significantly inhibited carotenoid changes
317 induced by ethylene treatment, repeated 1-MCP treatments did not abolish peel carotenoid
318 decrease at 5°C and 15°C.

319

320 By examining the RNA-seq data, we identified 13 DEGs that had been associated with
321 carotenoid metabolism (Fig. 4B, Table S11). Out of these, three genes including *ClPSY1*,
322 *ClLCYb2a* and *ClCHYb1* that showed high RPKM values and unique expression patterns
323 were selected for further analysis by RT-qPCR. This analysis revealed that *ClPSY1* and
324 *ClLCYb2a* were upregulated by both ethylene treatment and low temperature, while
325 *ClCHYb1* was upregulated exclusively by low temperature (Fig. 4C). Additionally, the
326 expression of all the three analysed genes increased in the peel of fruit at 5°C and 15°C
327 despite the repeated 1-MCP treatments.

328

329 ***Transcripts encoding photosystem proteins***

330 Genes encoding photosystem proteins featured prominently among the identified DEGs, and
331 most of them were downregulated by both ethylene treatment and low temperature (Fig. 5A,
332 Table S11). However, ethylene treatment appeared to have a greater influence on their
333 downregulation than low temperature did. Since most of genes in this category showed a
334 similar expression pattern, we selected only one, *light harvesting complex 2 (CILHCB2)* for
335 validation and further analysis by RT-qPCR. Results confirmed that both ethylene treatment
336 and low temperature caused a reduction in the expression of *CILHCB2* (Fig. 5B).
337 Nevertheless, repeated 1-MCP treatments did not suppress the expression decrease induced at
338 5°C and 15°C, suggesting that the influence of low temperature on *CILHCB2* expression was
339 independent of ethylene.

340

341 ***Phytohormone levels and associated transcripts***

342 Another prominent category among the identified DEGs included genes that were associated
343 with the biosynthesis and signalling of phytohormones, especially ethylene, JA, ABA, auxin
344 and GA (Fig. 6A). Most of the ethylene-related genes were up-regulated by ethylene
345 treatment, while low temperature, especially 5°C, only showed a slight effect on their
346 expression. On the other hand, genes that were associated with JA and ABA were mostly
347 upregulated by both ethylene treatment and low temperature. Auxin-related genes showed
348 varied expression patterns, although the general trend was towards a downregulation by both
349 ethylene treatment and low temperature. We also identified three GA-associated DEGs of
350 which one (*CIGA20ox2*), which is associated with GA biosynthesis, was downregulated by
351 both ethylene treatment and low temperature, especially at 5°C. In contrast, *CIGA2ox4* and
352 *CIGA2ox8* that are associated with GA degradation were upregulated by ethylene treatment
353 as well as low temperature. To verify the roles of ethylene and low temperature in the
354 regulation of phytohormone-related genes, *9-cis-epoxycarotenoid dioxygenase (CINCED5)*
355 which is associated with ABA biosynthesis was chosen for further analysis by RT-qPCR.
356 Results confirmed that *CINCED5* was up-regulated both after 4 d of ethylene exposure, and
357 28 d of storage at lower temperatures (5°C, 10°C, 15°C and 20°C) than 25°C (Fig. 6B). There
358 was also a significant increase in *CINCED5* expression in fruit that were repeatedly treated
359 with 1-MCP at 5°C and 15°C. The transcript levels of *CINCED5* were notably higher in low
360 temperature-stored fruit than in ethylene-treated fruit.

361

362 The above changes in expression of phytohormone-associated genes motivated us to
363 determine the phytohormone content in the flavedo of lemon fruit exposed to ethylene and

364 different storage temperatures. The results indicated that both ethylene treatment and low
365 storage temperature caused a significant hike in ABA and JA-Ile levels (Fig. 6C). In
366 particular, both ABA and JA-Ile levels were substantially higher in fruit stored at low
367 temperatures than in ethylene-treated fruit. Unfortunately, we could not detect the other
368 hormones because of their extremely low endogenous levels and severe ion suppression
369 effects during LC/MS analysis.

370

371 ***Transcripts encoding transcription factors***

372 A total of 128 DEGs in the RNA-seq data were found to encode a wide range of putative TF
373 families including AP2/ERF, bHLH, MYB, NAC, GRAS, zinc finger, homeobox, WRKY,
374 MADS and TCP (Fig. 7A, Table S11). This finding underscored the relevance of TF activity
375 in the peel degreening process of lemon fruit. Identified genes were therefore pooled into
376 three distinct groups, which included those that were influenced by (i) ethylene only such as
377 *CiERF114*, (ii) low temperature only such as *CiERF3*, and (iii) both ethylene and low
378 temperature such as *ClbHLH25*. RT-qPCR analysis confirmed that *CiERF114* was
379 exclusively upregulated by ethylene treatment as its expression was maintained at minimal
380 levels during storage (Fig. 7B). In contrast, *CiERF3* was exclusively upregulated by low
381 temperature since marginal expression levels were registered in ethylene-treated fruit (Fig.
382 7C). Finally, *ClbHLH25* expression increased both upon ethylene treatment and after storage
383 at lower temperatures than 25°C (Fig. 7C). It is also noteworthy that repeated 1-MCP
384 treatments failed to abolish the upregulation of *CiERF3* and *ClbHLH25* at 5°C and 15°C (Fig.
385 7B, C).

386

387 **On-tree peel degreening behaviour and expression analysis of associated genes**

388 The roles of ethylene and low temperature in natural peel degreening were further
389 investigated during on-tree maturation of lemon fruit. For this purpose, fruit were harvested
390 at seven progressive stages ranging from 176 to 276 DAFB that occurred between early-
391 September and mid-December. As shown in Fig. 8A, peel colour progressively changed
392 from green on 3rd September to full yellow on 13th December, which was indicated by a
393 concomitant increase in CCI from -16.3 to -1.1 within the same time span. As peel
394 degreening progressed, the average minimum temperatures in the orchard location decreased
395 gradually from 22.5°C on 3rd September to 3.7°C on 13th December. The increase in CCI was
396 initially slow between 3rd September to 12th October from -16.3 to -14.2 when the minimum
397 temperatures were above 13°C. Interestingly, CCI increased rapidly from -14.2 to -1.1

398 between 12th October and 13th December when the minimum temperatures were maintained
399 at below 13°C. The observed loss of green colour during on-tree maturation was in close
400 agreement with a gradual decrease in the peel chlorophyll a and b contents (Fig. 8B). Equally,
401 peel degreening was also accompanied by a gradual decline in the peel content of lutein, β-
402 carotene and α-carotene (Fig. 8C).

403

404 The correlation between peel colour changes and environmental temperature drops was
405 further investigated by examining the expression patterns of selected genes induced by
406 ethylene and/or low temperature from the RNA-seq data. On-tree peel degreening coincided
407 with an upregulation of *CIPPH* and downregulation of *CLHCB2* (Fig. 8D), both of which
408 were earlier shown to be influenced by low temperature (Fig. 3C, 5B). However, the
409 ethylene-specific *CICLHI* did not show any significant changes in expression. On-tree peel
410 degreening was also accompanied by the upregulation of all the three analysed carotenoid
411 metabolism genes *CIPSY1*, *CLCYb2a* and *CLCHYb1* (Fig. 8E), which were earlier shown to
412 be upregulated by low temperature (Fig. 4C). Among the TF-encoding genes, the ethylene-
413 specific *CIERF114* did not show any significant expression changes, whereas both *CIERF3*
414 and *ClbHLH25* were upregulated especially from 30th October when the minimum
415 temperatures were below 13°C (Fig. 8F). Altogether, these observations demonstrated strong
416 similarities between on-tree and low temperature-modulated peel degreening, as well as their
417 dissimilarities with ethylene-induced changes.

418

419 **Discussion**

420 Many studies have shown that ethylene regulates peel degreening in citrus fruit (Purvis and
421 Barmore, 1981; Shemer *et al.*, 2008; Yin *et al.*, 2016), prompting its wide use for commercial
422 degreening purposes (Porat, 2008; Mayuoni *et al.*, 2011). This is consistent with the present
423 study as ethylene treatment induced rapid peel degreening in detached lemon fruit (Fig. 1A).
424 However, the important regulators involved in natural peel degreening remain a mystery
425 since citrus fruit are considered non-climacteric, and thus produce trace levels of endogenous
426 ethylene (system I ethylene) (Katz *et al.*, 2004). Previous studies have demonstrated that
427 there is a close association between low temperature and peel colouration in multiple citrus
428 fruit species (Carmona *et al.*, 2012a; Manera *et al.*, 2012; Manera *et al.*, 2013), but the
429 molecular mechanisms involved are unclear. In the present work, we present conclusive data
430 demonstrating that low temperature can transcriptionally modulate natural peel degreening in
431 lemon fruit independently of the ethylene signal.

432

433 Results obtained in this study demonstrate very clearly that moderately low storage
434 temperatures promoted peel degreening (Fig. 1B). Because of the known involvement of
435 ethylene in citrus degreening (Fig. 1A), peel colour changes that occur during low
436 temperature storage have often been attributed to ethylene signalling, that is, trace levels of
437 physiologically active system I ethylene are thought to be bound in tissues (Goldschmidt *et*
438 *al.*, 1993; Carmona *et al.*, 2012b). Ethylene-induced degreening is completely inhibited by
439 pre-treatment with 1-MCP (Fig. 1A; Jomori *et al.*, 2003; McCollum and Maul, 2007; Li *et al.*,
440 2016). 1-MCP treatment also inhibits the ripening process in fruit that have a strong
441 requirement for ethylene to ripen (Watkins, 2006). In higher plants, ethylene receptors act as
442 negative regulators (Hua and Meyerowitz, 1998), and their binding by ethylene subjects them
443 to degradation via the ubiquitin-proteasome pathway (Kevany *et al.*, 2007). 1-MCP is
444 assumed to irreversibly bind and phosphorylate ethylene receptors (Kamiyoshihara *et al.*,
445 2012), with a higher affinity than ethylene (Jiang *et al.*, 1999), resulting in relatively stable
446 complexes that suppress ethylene signalling even in the presence of ethylene. If endogenous
447 ethylene was physiologically active, then its action should be suppressed by the application
448 of ethylene antagonists such as 1-MCP. However, it is surprising that peel degreening elicited
449 by low temperature was not abolished by repeated 1-MCP treatments (Fig. 1C), which
450 indicated that it most likely occurred in an ethylene-independent manner.

451

452 Further evidence for this conclusion is the identification of distinct gene sets that are
453 regulated by either ethylene or low temperature in the flavedo of lemon fruit (Fig. 2).
454 Ethylene-specific genes such as *ClCLH1* and *ClERF114* were not differentially expressed
455 during low temperature storage (Fig. 3C, 7B), which implies that ethylene signalling was
456 non-functional in stored fruit. Additionally, ethylene treatment did not show any significant
457 effect on the expression of another distinct gene set that were influenced by low temperature,
458 including *ClCHYb1* and *ClERF3* (Fig. 4C, 7C). This is perhaps the most direct evidence for
459 an ethylene-independent modulation of peel degreening by low temperature. Although the
460 third gene set, including *ClPPH*, *ClLHCB2*, *ClPSY1*, *ClLCYb2a*, *CINCED5* and *ClbHLH25*
461 were differentially regulated by either ethylene or low temperature (Fig. 3C, 4C, 5B, 6B, 7D),
462 their stimulation by low temperature was not altered by repeated 1-MCP treatments,
463 excluding any likelihood of ethylene involvement during storage.

464

465 The degreening observed in lemon fruit exposed to ethylene is, in all likelihood, due to a
466 reduction in peel chlorophyll content (Fig. 3A), which could be attributed to the upregulation
467 of *CiCLH1* and *CIPPH* (Fig. 3C). Ethylene-induced peel chlorophyll degradation in citrus
468 fruit has also been linked to increased transcript levels of homologues of *CiCLH1* (Jacob-
469 Wilk *et al.*, 1999; Shemer *et al.*, 2008; Yin *et al.*, 2016), and *CIPPH* (Yin *et al.*, 2016).
470 During storage, however, the minimal expression levels of *CiCLH1* excluding any possibility
471 that it might be involved in low temperature-triggered chlorophyll degradation. Instead, the
472 degradation of chlorophylls caused by low temperature can be attributed to the ethylene-
473 independent upregulation of *CIPPH*, which is known to encode an enzyme with a similar
474 dephytilation activity as CLH (Schelbert *et al.*, 2009).

475

476 The peel carotenoid content decreased upon degreening in response to both ethylene and low
477 temperature (Fig. 4A). This decrease is not uncommon as previous studies have also
478 demonstrated that the peel content of carotenoids, especially lutein, in lemon fruit decreased
479 during maturation (Kato, 2012; Conesa *et al.*, 2019). Nevertheless, the yellowish appearance
480 of degreened lemon fruit (Fig. 1) could be attributed to the small but significant levels of
481 lutein, β -carotene and α -carotene (Fig. 4A), which might be intensified by their unmasking
482 brought about by the loss of chlorophyll. Changes in peel carotenoid content are initiated by
483 the expression of various carotenoid metabolism-related genes which can be stimulated by
484 either ethylene or low temperature (Fig. 4B; Matsumoto *et al.*, 2009; Rodrigo and Zacarias,
485 2007). In this study, however, it appears that carotenoid metabolism-associated genes such as
486 *CIPSY1*, *CILCYb2a* and *CICHYb1* are also transcriptionally modulated by low temperature
487 independently of ethylene.

488

489 The degradation of chlorophylls caused by exposure to either ethylene or low temperature
490 could also be facilitated by changes in photosystem proteins. The disruption of pigment-
491 protein complexes is thought to be a crucial step in the chlorophyll degradation pathway
492 (Barry, 2009). Consequently, the stay-green protein (SGR), which encodes a Mg-dechelatase
493 (Shimoda *et al.*, 2016), has been shown to aid the dis-aggregation of photosystem proteins,
494 particularly the light-harvesting chlorophyll a/b binding (CAB) complex (Jiang *et al.*, 2011;
495 Sakuraba *et al.*, 2012). Because photosystem proteins bind pigments, a large drop in their
496 transcripts caused by ethylene or low temperature (Fig. 5) would possibly favour the
497 accumulation of free chlorophylls that can easily be accessed by degradatory enzymes. Peng
498 *et al.* (2013) also reported that the transcript levels of *CitCAB1* and *CitCAB2* drastically

499 decreased during ethylene-induced and natural peel degreening in ‘Ponkan’ mandarins.
500 However, the results of the present study suggest that the decrease in the expression of
501 photosystem-encoding genes during natural peel degreening could be stimulated by low
502 temperature independently of ethylene.

503

504 Besides ethylene, various phytohormones such as ABA, GA and JA have been implicated in
505 the peel colour changes that occur during citrus fruit maturation. Peel degreening was shown
506 to be accompanied by an increase in ABA content (Goldschmidt *et al.*, 1973), as well as in
507 the expression of ABA biosynthetic and signalling elements (Rodrigo *et al.*, 2006; Kato *et al.*,
508 2006). In addition, exogenous ABA accelerated fruit ripening and enhanced fruit colour
509 development (Wang *et al.*, 2016), while ABA-deficient citrus mutants showed a delay in the
510 rate of peel degreening (Rodrigo *et al.*, 2003). In this study, ABA levels increased in
511 ethylene-treated and low temperature-stored fruit (Fig. 6C), accompanied by an increase in
512 the expression of ABA biosynthetic and signalling genes (Fig. 6A, B). These findings,
513 together with previous reports, suggest that ABA has a positive regulatory role in either
514 ethylene-induced or low temperature-modulated peel degreening in lemon fruit. GA, on the
515 other hand, is known to retard peel colour change. GA application on green citrus fruit was
516 shown to cause a significant delay in peel colour break (Alós *et al.*, 2006; Rodrigo and
517 Zacarias, 2007; Rios *et al.*, 2010). It is therefore logical that the transcript levels of the GA
518 biosynthetic gene (*ClGA20ox2*) would decrease, whereas those of GA degradatory genes
519 (*ClGA2ox4* and *GA2ox8*) would increase during peel degreening caused by either ethylene or
520 low temperature (Fig. 6A). JAs have thus far been studied in the context of plant adaptive
521 responses to various biotic and abiotic stresses (Zhang *et al.*, 2019). However, JA has also
522 been shown to promote fruit ripening in citrus (Zhang *et al.*, 2014), strawberry (Concha *et al.*,
523 2013) and tomato (Liu *et al.*, 2012). This is consistent with the present findings as lemon fruit
524 degreening was accompanied by an increase in the levels of JA-Ile (Fig. 6C), which is the
525 active conjugate of JA. Additionally, the expression of a large number of JA biosynthetic and
526 signalling-related genes were independently upregulated by either ethylene treatment or low
527 temperature (Fig. 6A).

528

529 Developmentally regulated plant processes such as peel degreening are typically influenced
530 by TFs. Various TFs such as AtNAC046, AtPIF4, AtPIF5, AtORE1 and AtEIN3 were shown
531 to significantly enhance leaf senescence in Arabidopsis by promoting the activity of
532 chlorophyll degradation-related genes (Song *et al.*, 2014; Qiu *et al.*, 2015; Zhang *et al.*, 2015;

533 Oda-Yamamizo *et al.*, 2016). In broccoli, MYB, bHLH, and bZIP gene families were
534 associated with chlorophyll metabolism while NACs and ERFs regulated carotenoid
535 biosynthesis (Luo *et al.*, 2019). CitERF6 and CitERF13 have also been associated with
536 chlorophyll degradation during ethylene-induced and natural peel degreening in citrus (Yin *et*
537 *al.*, 2016; Li *et al.*, 2019). In the present work, the expression patterns of genes encoding a
538 wide range of TF families suggested that ethylene-induced and low temperature-modulated
539 peel degreening pathways were distinct in lemon fruit (Fig. 7). Therefore, ethylene-induced
540 degreening is most likely to be regulated by ethylene-specific TFs such as *CiERF114* (Fig.
541 7B) and shared TFs such as *ClbHLH25* (Fig. 7D). In contrast, low temperature-modulated
542 degreening could be regulated by specific TFs such as *CiERF3* (Fig. 7C), as well as shared
543 ones such as *ClbHLH25* (Fig. 7D).

544

545 In this study, low temperature appears to also play a prominent role in natural peel
546 degreening during on-tree lemon fruit maturation. Peel degreening and the associated
547 reduction in the content of chlorophylls and carotenoids coincided with gradual drops in
548 minimum environmental temperatures, to below 13°C (Fig. 8A–C). Similar to our study,
549 previous studies have also demonstrated that peel degreening in most citrus fruit progresses
550 as the environmental temperature decreases (Manera *et al.*, 2012; Manera *et al.*, 2013;
551 Rodrigo *et al.*, 2013; Conesa *et al.*, 2019). It is intriguing that *CiCLH1* and *CiERF114*, which
552 were earlier shown to exhibit an ethylene-specific pattern (Fig. 3C, 7B) did not show any
553 significant changes in expression during on-tree peel degreening (Fig. 8D, F). Earlier studies
554 have also demonstrated that *CiCLH1* homologues in other citrus fruit exhibit a dramatic
555 induction in response to ethylene treatment, yet lack a measurable expression increase during
556 natural degreening (Jacob-Wilk *et al.*, 1999; Yin *et al.*, 2016). Here, we suggest that this
557 discrepancy could be due to a lack of a functional ethylene signalling during on-tree
558 maturation, given that *CiCLH1* is only upregulated in the presence of ethylene (Fig. 3C). In
559 contrast, genes that responded to low temperature during storage such as *ClPPH*, *CILHCB2*,
560 *CIPSY1*, *CILCYb2a*, *CiCHYb1*, *CiERF3*, *ClbHLH25* also exhibited similar expression
561 patterns during on-tree maturation (Fig. 7D–F), indicating that they were involved in the on-
562 tree peel degreening processes. These similarities between low temperature-induced and on-
563 tree gene expression patterns, coupled with their dissimilarities to ethylene-induced changes,
564 provide clear evidence to suggest that on-tree peel degreening responses are modulated by
565 low temperature independently of ethylene in lemon fruit.

566

567 It is also important to note that many genes were differentially expressed in fruit at 5°C, yet
568 the peel degreening rate was significantly slower than in fruit at 10°C, 15°C and 20°C. This is
569 probably due to low activity of peel degreening-associated enzymes at 5°C, as low
570 temperature is known to decrease enzyme activity in plants (Jin *et al.*, 2009; Yun *et al.*, 2012).

571

572 The regulation of fruit ripening by low temperature is not unique to citrus fruit. Previous
573 studies have also demonstrated a role for low temperature, either independently or in concert
574 with ethylene, in the regulation of fruit ripening in multiple fruit species such as kiwifruit
575 (Mworia *et al.*, 2012; Asiche *et al.*, 2017; Asiche *et al.*, 2018; Mitalo *et al.*, 2018a; Mitalo *et*
576 *al.*, 2019a; Mitalo *et al.*, 2019b), pears (El-Sharkawy *et al.*, 2003; Mitalo *et al.*, 2019c) and
577 apples (Tacken *et al.*, 2010). From an ecological perspective, the primary purpose of fruit
578 ripening is to make fruit attractive to seed-dispersing organisms. To ensure their future
579 survival, most temperate fruit are faced with the challenge of dispersing their seeds in time
580 before the onset of harsh winter conditions. Therefore, environmental temperature drops
581 associated with autumn might provide an alternative stimulus for fruit ripening induction in
582 fruits that lack a functional ethylene signalling pathway during maturation, like citrus.

583

584 In conclusion, the present work provides a comprehensive overview of ethylene- and low
585 temperature-induced peel degreening responses during maturation in lemon fruit by
586 comparing physiochemical changes and corresponding transcriptome changes. Both ethylene
587 and low temperature promote peel degreening by inducing transcriptome changes associated
588 with chlorophyll degradation, carotenoid metabolism, photosystem disassembly,
589 phytohormones and TFs. However, blocking ethylene signalling by repeated 1-MCP
590 treatments does not eliminate low temperature-induced changes. On-tree peel degreening,
591 which typically occurs as minimum environmental temperature drops, corresponds with the
592 differential regulation of low temperature-regulated genes whereas genes that uniquely
593 respond to ethylene do not exhibit any significant expression changes. These data suggest
594 that low temperature plays a prominent role in promoting natural peel degreening both on and
595 off the tree. In our further studies, we aim to identify the direct and indirect targets of low
596 temperature-regulated transcripts that have been uncovered in this study towards elaboration
597 of the molecular bases for low temperature modulation of peel degreening and fruit ripening
598 in general.

599

600 **Supplementary data**

601 Fig. S1: Chromatograms showing the identified carotenoids.
602 Table S1: Liquid chromatography conditions for phytohormone analysis.
603 Table S2: Parameters for LC-ESI-MS/MS analysis of phytohormones.
604 Table S3: Primer sequences used for RT-qPCR.
605 Table S4: DEGs exclusively responding to ethylene.
606 Table S5: DEGs responding to ethylene and 5°C.
607 Table S6: DEGs responding to ethylene and 15°C.
608 Table S7: DEGs responding to ethylene, 5°C and 15°C.
609 Table S8: DEGs exclusively influenced by 5°C.
610 Table S9: DEGs influenced only by 5°C and 15°C.
611 Table S10: DEGs exclusively influenced by 15°C.
612 Table S11: Selected DEGs associated with peel degreening.
613

614 **Acknowledgements**

615 This study was supported in part by a Grant-in-Aid for Scientific Research (grant no.
616 24380023 and 16H04873) from the Japan Society for the Promotion of Science, and by the
617 Joint Usage/Research Centre, Institute of Plant Science and Resources, Okayama University.

References

Agócs A, Nagy V, Szabó Z, Márk L, Ohmacht R, Deli J. 2007. Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. *Innovative Food Science and Emerging Technologies* **8**, 390–394.

Alós E, Cercós M, Rodrigo MJ, Zacarías L, Talón M. 2006. Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. *Journal of Agricultural and Food Chemistry* **54**, 4888–4895.

Asiche WO, Mitalo OW, Kasahara Y, Tosa Y, Mworia EG, Owino WO, Ushijima K, Nakano R, Yano K, Kubo Y. 2018. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit. *BMC Plant Biology* **18**, 47. doi: 10.1186/s12870-018-1264-y.

Asiche WO, Mitalo OW, Kasahara Y, Tosa Y, Mworia EG, Ushijima K, Nakano R, Kubo Y. 2017. Effect of storage temperature on fruit ripening in three kiwifruit cultivars. *The Horticulture Journal* **86**, 403–410.

Barry CS. 2009. The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants. *Plant Science* **176**, 325–333.

Carmona L, Rodrigo MJ, Zacarías L. 2012b. Exploring the involvement of ethylene in the regulation of color changes in citrus fruit. *Acta Horticulturae* **934**, 879–885.

Carmona L, Zacarías L, Rodrigo MJ. 2012a. Stimulation of colouration and carotenoid biosynthesis during postharvest storage of ‘Navelina’ orange fruit at 12°C. *Postharvest Biology and Technology* **74**, 108–117.

Cherian S, Figueroa CR, Nair H. 2014. ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. *Journal of Experimental Botany* **65**, 4705–4722.

Concha CM, Figueroa NE, Poblete LA, Oñate FA, Schwab W, Figueroa CR. 2013. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in *Fragaria chiloensis* fruit. *Plant Physiology and Biochemistry* **70**, 433–444.

Conesa A, Manera FC, Brotons JM, Fernandez-Zapata JC, Simón I, Simón-Grao S, Alfosea-Simón M, Nicolás JJM, Valverde JM, García-Sánchez F. 2019. Changes in the content of chlorophylls and carotenoids in the rind of ‘Fino 49’ lemons during maturation and their relationship with parameters from the CIELAB color space. *Scientia Horticulturae* **243**, 252–260.

Cunningham FX, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E. 1996. Functional analysis of the beta and epsilon lycopene cyclase enzymes of *Arabidopsis* reveals a mechanism for control of cyclic carotenoid formation. *The Plant Cell* **8**, 1613–1626.

Eaks IL. 1970. Respiratory response, ethylene production, and response to ethylene of citrus fruit during ontogeny. *Plant Physiology* **45**, 334–338.

El-Sharkawy I, Jones B, Li ZG, Lelièvre JM, Pech JC, Latché A. 2003. Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (*Pyrus communis* L.) with/without cold requirement. *Journal of Experimental Botany* **54**, 1615–1625.

Goldschmidt EE, Goren R, Even-Chen Z, Bittner S. 1973. Increase in free and bound abscisic acid during natural and ethylene-induced senescence of citrus fruit peel. *Plant Physiology* **51**, 879–882.

Goldschmidt EE, Huberman M, Goren R. 1993. Probing the role of endogenous ethylene in the degreening of citrus fruit with ethylene antagonists. *Plant Growth Regulation* **12**, 325–329.

Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Snthil-Kumar M. 2017. Global profiling of phytohormone dynamics during combined drought and pathogen stress in *Arabidopsis thaliana* reveals ABA and JA as major regulators. *Scientific Reports* **7**, 4017. doi: 10.1038/s41598-017-03907-2.

Hardenburg RE, Watada AE, Wang CY. 1986. The commercial storage of fruits, vegetables, and florist and nursery stocks. Washington: USDA Agriculture Handbook **66**.

Hörtенsteiner S. 2006. Chlorophyll degradation during senescence. *Annual Review of Plant Biology* **57**, 55–77.

Hua J, Meyerowitz EM. 1998. Ethylene responses are negatively regulated by a receptor gene family in *Arabidopsis thaliana*. *Cell* **94**, 261–271.

Iglesias DJ, Cercós M, Colmenero-Flores JM, et al. 2007. Physiology of citrus fruiting. *Brazilian Journal of Plant Physiology* **19**, 333–362.

Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y. 1999. Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated citrus fruit and its regulation during development. *The Plant Journal* **20**, 653–661.

Jiang H, Chen Y, Li M, Xu X, Wu G. 2011. Overexpression of SGR results in oxidative stress and lesion-mimic cell death in rice seedlings. *Journal of Integrative Plant Biology* **53**, 375–387.

Jiang Y, Joyce DC, Macnish AJ. 1999. Extension of the shelf life of banana fruit by 1-methylcyclopropene in combination with polyethylene bags. *Postharvest Biology and Technology* **16**, 187–193.

Jin WW, Xu CJ, Li X, Zhang B, Wang P, Allan AC, Chen KS. 2009. Expression of ROP/RAC GTPase genes in postharvest loquat fruit in association with senescence and cold regulated lignification, *Postharvest Biology and Technology* **54**, 9–14.

Jomori MLL, Kluge RA, Jacomino AP. 2003. Cold storage of 'Tahiti' lime treated with 1-methylcyclopropene. *Scientia Agricola* **60**, 785–788.

Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ. 2012. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. *Plant Physiology* **160**, 488–497.

Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. 2004. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. *Plant Physiology* **134**, 824–837.

Kato M, Matsumoto H, Ikoma Y, Okuda H, Yano M. 2006. The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. *Journal of Experimental Botany* **57**, 2153–2164.

Kato M. 2012. Mechanism of carotenoid accumulation in citrus fruit. *Journal of the Japanese Society for Horticultural Science* **81**, 219–233.

Katz E, Lagunes PM, Riov J, Weiss D, Goldschmidt EE. 2004. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric citrus fruit. *Planta* **219**, 243–252.

Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ. 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. *The Plant Journal* **51**, 458–467.

Kim HO, Hewett EW, Lallu N. 1999. The role of ethylene in kiwifruit softening. *Acta Horticulturae* **498**, 255–262.

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics* **9**, 559. doi: 10.1186/1471-2105-9-559.

Li L, Licherter A, Chalupowicz D, Gamrasni D, Goldberg T, Nerya O, Ben-Arie R, Porat R. 2016. Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. *Postharvest Biology and Technology* **111**, 322–329.

Li SJ, Xie XL, Liu SC, Chen KS, Yin XR. 2019. Auto-and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. *Food Chemistry* **299**, 125163. doi: 10.1016/j.foodchem.2019.125163.

Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q. 2012. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. *Journal of Experimental Botany* **63**, 5751–5761.

Manera FJ, Brotons JM, Conesa A, Porras I. 2012. Influence of temperature on the beginning of degreening in lemon peel. *Scientia Horticulturae* **145**, 34–38.

Manera FJ, Brotons JM, Conesa A, Porras I. 2013. Relation between temperature and the beginning of peel color change in grapefruit (*Citrus paradisi* Macf.). *Scientia Horticulturae* **160**, 292–299.

Matsumoto H, Ikoma Y, Kato M, Kuniga T, Nakajima N, Yoshida T. 2007. Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. *Journal of Agricultural and Food Chemistry* **55**, 2356–2368.

Matsumoto H, Ikoma Y, Kato M, Nakajima N, Hasegawa Y. 2009. Effect of postharvest temperature and ethylene on carotenoid accumulation in the flavedo and juice sacs of Satsuma mandarin (*Citrus unshiu* Marc.) fruit. *Journal of Agricultural and Food Chemistry* **57**, 4724–4732.

Mayuoni L, Tiel Z, Patil BS, Porat R. 2011. Does ethylene degreening affect internal quality of citrus fruit?. *Postharvest Biology and Technology* **62**, 50–58.

McCollum G, Maul P. 2007. 1-Methylcyclopropene inhibits degreening but stimulates respiration and ethylene biosynthesis in grapefruit. *HortScience* **42**, 120–124.

McGlasson WB, Scott KJ, Mendoza Jr, DB. 1979. The refrigerated storage of tropical and subtropical products. *International Journal of Refrigeration* **2**, 199–206.

Mitalo OW, Asiche WO, Kasahara Y, Tosa Y, Owino WO, Mworia EG, Ushijima K, Nakano R, Kubo Y. 2018b. Characterization of ripening-related genes involved in ethylene-independent low temperature-modulated ripening in ‘Rainbow Red’ kiwifruit during storage and on-vine. *The Horticulture Journal* **87**, 421–429.

Mitalo OW, Asiche WO, Kasahara Y, Tosa Y, Tokiwa S, Ushijima K, Nakano R, Kubo Y. 2019a. Comparative analysis of fruit ripening and associated genes in two kiwifruit cultivars (‘Sanuki Gold’ and ‘Hayward’) at various storage temperatures. *Postharvest Biology and Technology* **147**, 20–28.

Mitalo OW, Tokiwa S, Kasahara Y, et al. 2018a. Determination of optimum temperature for long-term storage and analysis of ripening-related genes in ‘Rainbow Red’ kiwifruit. *Acta Horticulturae* **1218**, 517–524.

Mitalo OW, Tokiwa S, Kondo Y, et al. 2019b. Low temperature storage stimulates fruit softening and sugar accumulation without ethylene and aroma volatile production in kiwifruit. *Frontiers in Plant Science* **10**, 888. doi: 10.3389/fpls.2019.00888.

Mitalo OW, Tosa Y, Tokiwa S, et al. 2019c. ‘Passe Crassane’ pear fruit (*Pyrus communis* L.) ripening: Revisiting the role of low temperature via integrated physiological and transcriptome analysis. *Postharvest Biology and Technology* **158**, 110949. doi: 10.1016/j.postharvbio.2019.110949.

Mworia EG, Yoshikawa T, Salikon N, Oda C, Asiche WO, Yokotani N, Abe D, Ushijima K, Nakano R, Kubo Y. 2011. Low-temperature-modulated fruit ripening is independent of ethylene in ‘Sanuki Gold’ kiwifruit. *Journal of Experimental Botany* **63**, 963–971.

Nham NT, Macnish AJ, Zakharov F, Mitcham EJ. 2017. ‘Bartlett’ pear fruit (*Pyrus communis* L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. *Plant Science* **260**, 8–18.

Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A. 2016. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in *Arabidopsis* leaves. *Scientific Reports* **6**, 23609. doi: 10.1038/srep23609.

Ohmiya A, Kato M, Shimada T, Nashima K, Kishimoto S, Nagata M. 2019. Molecular Basis of Carotenoid Accumulation in Horticultural Crops. *The Horticulture Journal* **88**, 135–149.

Peng G, Xie XL, Jiang Q, Song S, Xu CJ. 2013. Chlorophyll a/b binding protein plays a key role in natural and ethylene-induced degreening of Ponkan (*Citrus reticulata* Blanco). *Scientia Horticulturae* **160**, 37–43.

Porat R. 2008. Degreening of citrus fruit. *Tree and Forestry Science and Biotechnology* **2**, 71–76.

Purvis AC, Barmore CR. 1981. Involvement of ethylene in chlorophyll degradation in peel of citrus fruits. *Plant Physiology* **68**, 854–856.

Qiu K, Li Z, Yang Z, et al. 2015. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in *Arabidopsis*. *PLoS Genetics* **11**, e1005399. doi: 10.1371/journal.pgen.1005399.

Ríos G, Naranjo MA, Rodrigo MJ, Alós E, Zacarías L, Cercós M, Talón M. 2010. Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants. *BMC Plant Biology* **10**, 276. doi: 10.1186/1471-2229-10-276.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140.

Rodrigo MJ, Alquézar B, Alós E, Lado J, Zacarías L. 2013. Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit. *Scientia Horticulturae* **163**, 46–62.

Rodrigo MJ, Alquezar B, Zacarías L. 2006. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (*Citrus sinensis* L. Osbeck). *Journal of Experimental Botany* **57**, 633–643.

Rodrigo MJ, Marcos JF, Alférez F, Mallen MD, Zacarías L. 2003. Characterization of Pinalate, a novel *Citrus sinensis* mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. *Journal of Experimental Botany* **54**, 727–738.

Rodrigo MJ, Zacarias L. 2007. Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (*Citrus sinensis* L. Osbeck) fruit. *Postharvest Biology and Technology* **43**, 14–22.

Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andrès CB, Kessler F, Hörtensteiner S, Paek NC. 2012. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in *Arabidopsis*. *The Plant Cell* **24**, 507–518.

Sawamura M. 1981. Levels of endogenous ethylene in attached citrus fruits. *Agricultural and Biological Chemistry* **45**, 2935–2937.

Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S. 2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in *Arabidopsis*. *The Plant Cell* **21**, 767–785.

Seymour GB, Granell A. 2014. Fruit development and ripening. *Journal of Experimental Botany* **65**, 4489–4490.

Shemer TA, Harpaz-Saad S, Belausov E, Lovat N, Krokkin O, Spicer V, Standing KG, Goldschmidt EE, Eyal Y. 2008. Citrus chlorophyllase dynamics at ethylene-induced fruit

color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and *in situ* intracellular localization. *Plant Physiology* **148**, 108–118.

Shimoda Y, Ito H, Tanaka A. 2016. Arabidopsis STAY-GREEN, Mendel's green cotyledon gene, encodes magnesium-dechelatase. *The Plant Cell* **28**, 2147–2160.

Sisler EC, Serek M. 1997. Inhibitors of ethylene responses in plants at the receptor level: recent developments. *Physiologia Plantarum* **100**, 577–582.

Song Y, Yang C, Gao S, Zhang W, Li L, Kuai B. 2014. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. *Molecular Plant* **7**, 1776–1787.

Tacken E, Ireland H, Gunaseelan K, et al. 2010. The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. *Plant Physiology* **153**, 294–305.

Tao N, Wang C, Xu J, Cheng Y. 2012. Carotenoid accumulation in postharvest "Cara Cara" navel orange (*Citrus sinensis* Osbeck) fruits stored at different temperatures was transcriptionally regulated in a tissue-dependent manner. *Plant Cell Reports* **31**, 1667–1676.

Van Wyk AA, Huysamer M, Barry GH. 2009. Extended low-temperature shipping adversely affects rind colour of 'Palmer Navel' sweet orange [*Citrus sinensis* (L.) Osb.] due to carotenoid degradation but can partially be mitigated by optimising post-shipping holding temperature. *Postharvest Biology and Technology* **53**, 109–116.

Wang X, Yin W, Wu J, Chai L, Yi H. 2016. Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening. *Scientia Horticulturae* **201**, 175–183.

Watkins CB. 2006. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. *Biotechnology Advances* **24**, 389–409.

Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. *Journal of Plant Physiology* **144**, 307–313.

Wu GA, Prochnik S, Jenkins J, et al. 2014. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. *Nature Biotechnology* **32**, 656–662.

Yin XR, Xie XL, Xia XJ, Yu JQ, Ferguson IB, Giovannoni JJ, Chen KS. 2016. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. *The Plant Journal* **86**, 403–412.

Yun Z, Jin S, Ding Y, Wang Z, Gao H, Pan Z, Xu J, Chen Y, Deng X. 2012. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. *Journal of Experimental Botany* **63**, 2873–2893.

Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. *Statistical Applications in Genetics and Molecular Biology* **4**, 17. doi: 10.2202/1544-6115.1128.

Zhang Y, Bouwmeester HJ, Kappers IF. 2019. Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (*Capsicum annuum*). *Journal of Experimental Botany*. doi: 10.1093/jxb/erz422.

Zhang Y, Liu Z, Chen Y, He JX, Bi Y. 2015. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in *Arabidopsis*. *Plant Science* **237**, 57–68.

Zhang YJ, Wang XJ, Wu JX, Chen SY, Chen H, Chai LJ, Yi HL. 2014. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. *PLoS One* **9**, e116056. doi: 10.1371/journal.pone.0116056.

Zhu A, Li W, Ye J, Sun X, Ding Y, Cheng Y, Deng X. 2011. Microarray expression profiling of postharvest Ponkan mandarin (*Citrus reticulata*) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. *Journal of Integrative Plant Biology* **53**, 358–374.

Figure legends

Fig. 1. Promotion of peel degreening in detached lemon fruit by ethylene and low temperature. (A) Peel colour changes in response to ethylene and 1-methylcyclopropene (1-MCP) treatments. Control: non-treated; ET: continuously treated with $100 \mu\text{L L}^{-1}$ ethylene; 1-MCP: treated with $2 \mu\text{L L}^{-1}$ 1-MCP twice a week; 1-MCP+ET: pre-treated with $2 \mu\text{L L}^{-1}$ 1-MCP for 12 h before continuous treatment with $100 \mu\text{L L}^{-1}$ ethylene. All treatments were carried out at 25°C . (B) Peel colour changes during storage at 5°C , 10°C , 15°C , 20°C and 25°C in an ethylene-free environment. (C) Effect of 1-MCP treatment on peel colour changes during storage at 5°C , 15°C and 25°C . Treatments with 1-MCP ($2 \mu\text{L L}^{-1}$) were carried out twice a week to block endogenous ethylene action. Data points in represent the mean ($\pm\text{SE}$) of five fruit and different letters indicate significant differences in ANOVA (Tukey's test, $p < 0.05$).

Fig. 2. Global transcriptome changes induced by ethylene treatment and low temperature in the flavedo of detached lemon fruit. (A) Number of genes differentially expressed in response to ethylene treatment and low temperature storage. (B) Clustering analysis and heatmap of expression measures of DEGs detected in each of the experimental conditions. (C) and (D) Venn diagrams showing the number of shared and unique genes up- and down-regulated by ethylene, 5°C and/or 15°C . ET – ethylene.

Fig. 3. Changes in chlorophyll content and associated gene expression upon exposure to ethylene or different storage temperatures. (A) Effect of ethylene and storage temperature on the content of chlorophyll a and chlorophyll b. (B) Heatmap showing identified DEGs associated with chlorophyll metabolism in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C . (C) RT-qPCR analysis of *chlorophyllase 1* (*ClCLH1*) and *pheophytinase* (*ClPPH*) selected from (B) in fruit exposed to ethylene and different storage temperatures. Data are means ($\pm\text{SE}$) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

Fig. 4. Changes in the content of carotenoids and expression of associated metabolism genes upon exposure to ethylene and different storage temperatures. (A) Effect of ethylene and storage temperature on the content of lutein, β -carotene and α -carotene. (B) Heatmap of identified DEGs associated with carotenoid metabolism in fruit exposed to

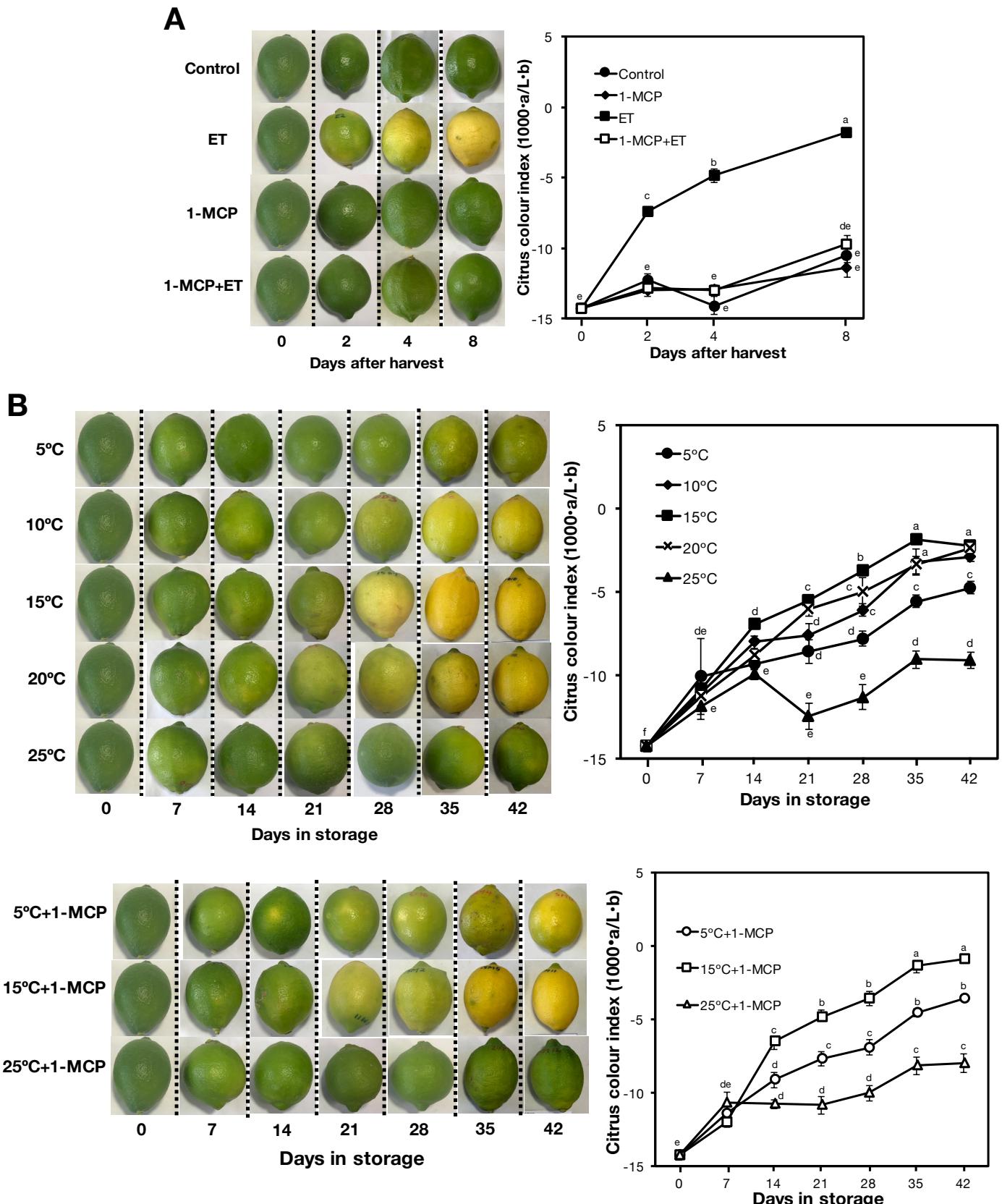

ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (C) RT-qPCR analysis of *phytoene synthase 1* (*ClPSY1*), *lycopene cyclase 2a* (*ClLCYb2a*) and β -*carotene hydroxylase 1* (*ClCHYb1*) selected from (B) in fruit exposed to ethylene and different storage temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

Fig. 5. Changes in the expression of genes encoding photosystem proteins in response to ethylene and different storage temperatures. (A) Heatmap of identified DEGs encoding photosystem proteins in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (B) RT-qPCR analysis of *light harvesting complex 2* (*ClLHC2*) selected from (A) in fruit exposed to ethylene and different storage temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

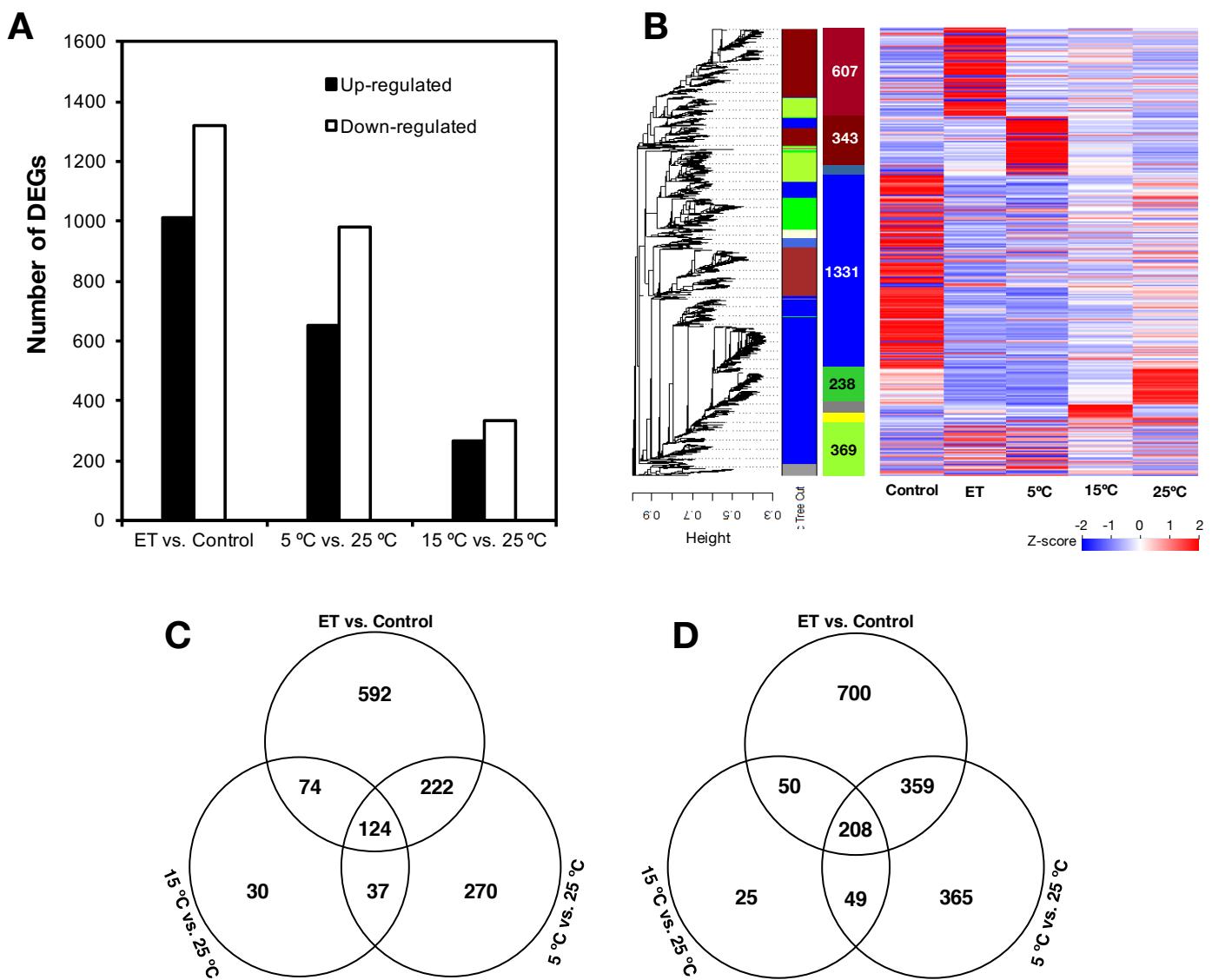
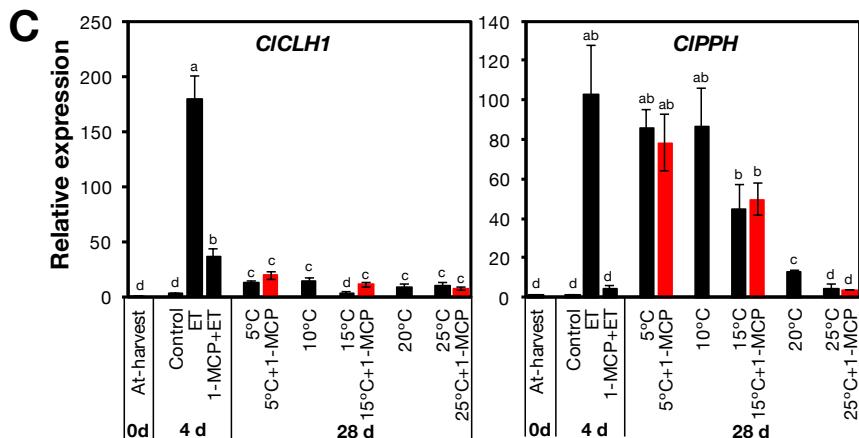
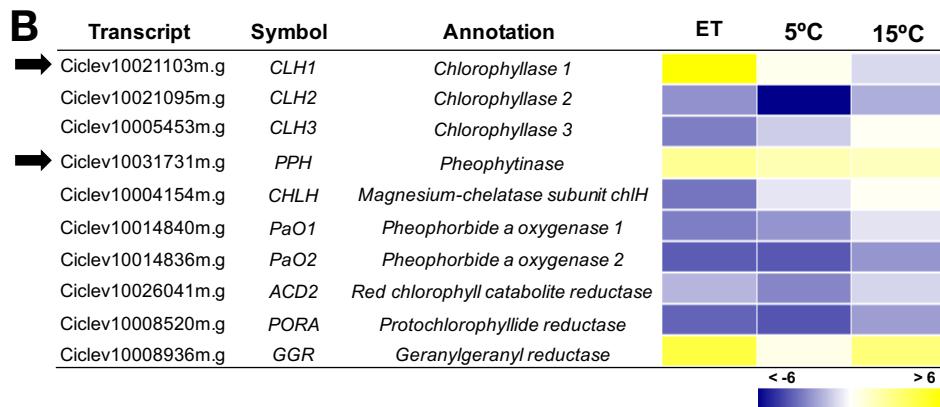
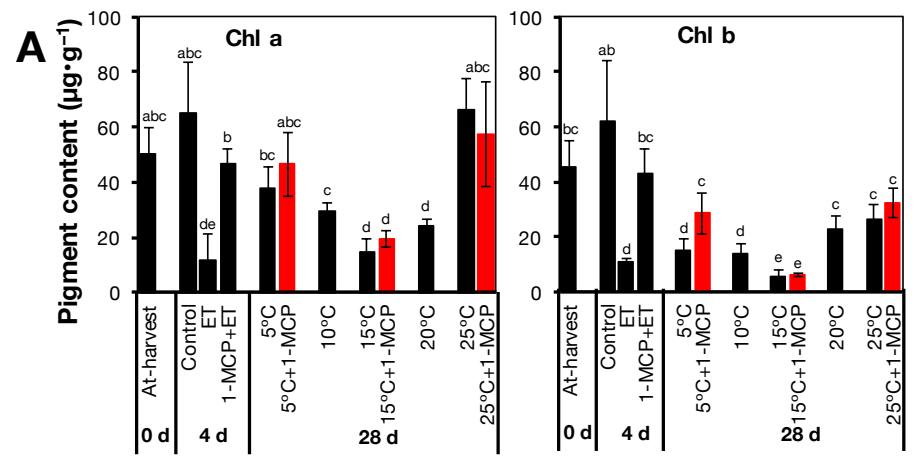
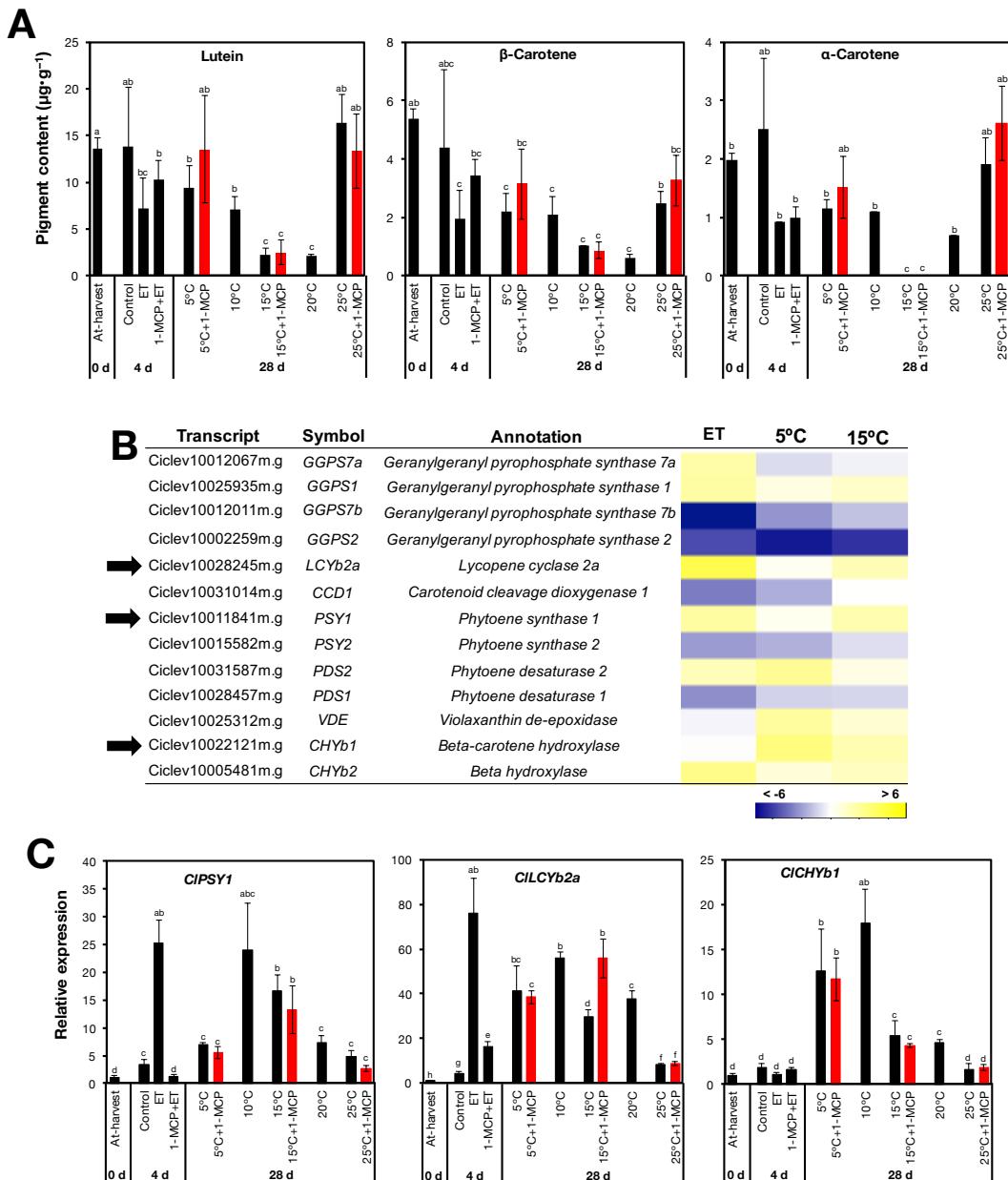
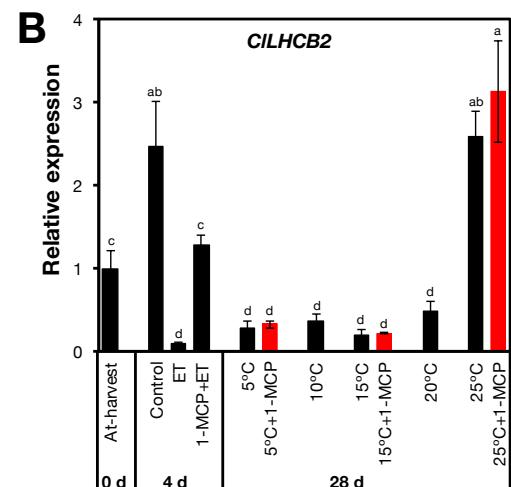
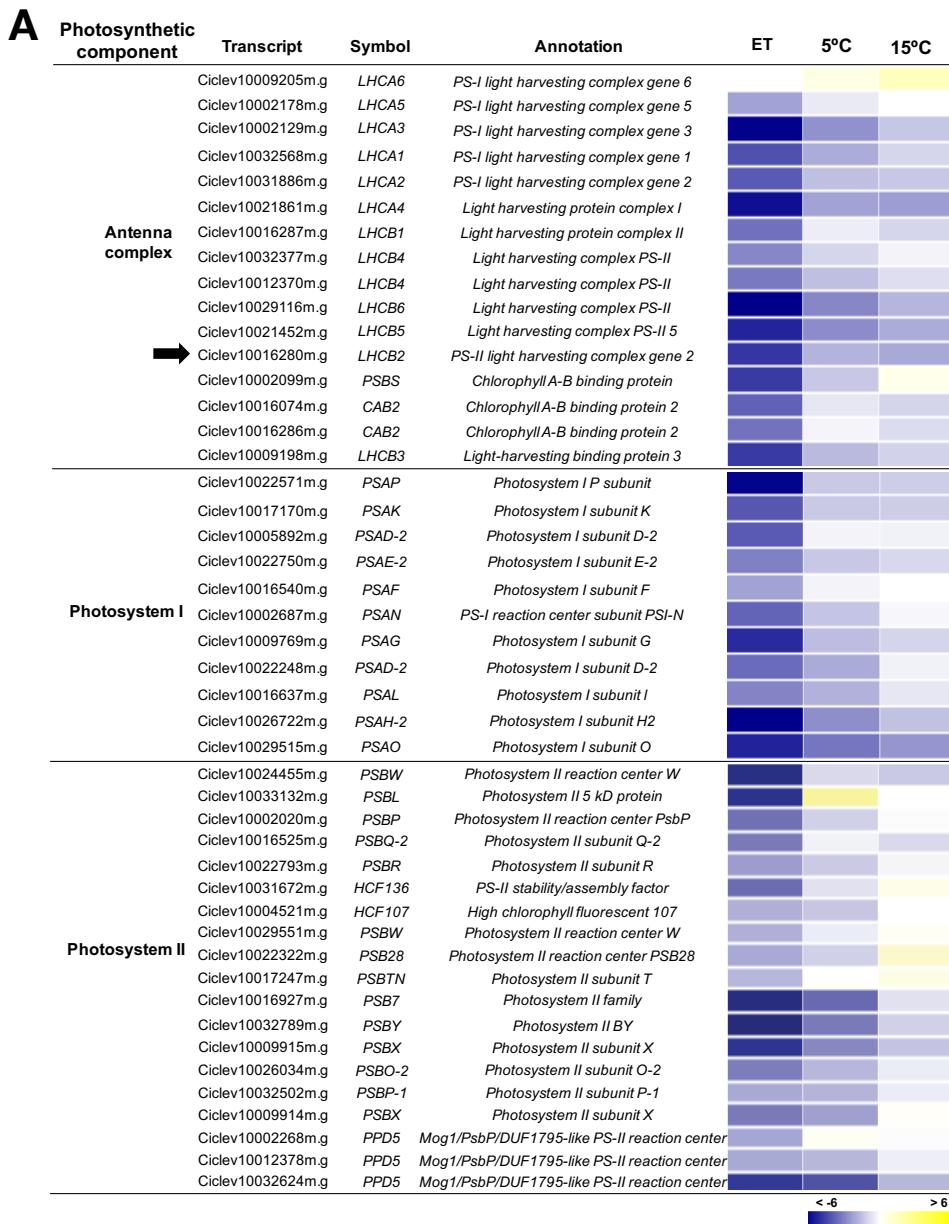

Fig. 6. Levels of phytohormones and the expression of associated genes in the flavedo of detached lemon fruit. (A) Heatmap showing DEGs encoding proteins associated with phytohormone biosynthesis and signalling in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (B) RT-qPCR analysis of the ABA biosynthetic gene, *9-cis-epoxycarotenoid dioxygenase 5* (*CINCED5*), selected from (A) in fruit exposed to ethylene and different storage temperatures. (C) Levels of ABA and JA-Ile in lemon fruit treated with ethylene and after storage at specified temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

Fig. 7. Changes in expression of transcription factor-encoding genes. (A) Heatmap showing identified DEGs encoding various transcription factors in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (B), (C) and (D) RT-qPCR analysis of *ClERF114*, *ClERF3* and *ClbHLH25* in response to exogenous ethylene and different storage temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).




Fig. 8. Peel colour changes and gene expression analysis in lemon fruit during on-tree maturation. (A) Appearance and citrus colour index of representative fruit at different developmental stages alongside changes in minimum environmental temperatures. Data for minimum temperature were accessed from the website of Japan Meteorological Agency (http://www.data.jma.go.jp/obd/stats/etrn/view/daily_s1.php?prec_no=72&block_no=47891&year=2014&month=12&day=&view=p1). (B) Chlorophyll a and chlorophyll b contents at different developmental stages. (C) Levels of lutein, α -carotene and β -carotene at different developmental stages. RT-qPCR analysis of selected genes associated with chlorophyll metabolism and photosystem proteins (D), carotenoid metabolism (E), and transcription factors (F) at different developmental stages. Data points represent the mean (\pm SE) of five fruit and different letters indicate significant differences in ANOVA (Tukey's test, $p < 0.05$).


Fig. 1. Promotion of peel degreening in detached lemon fruit by ethylene and low temperature. (A) Peel colour changes in response to ethylene and 1-methylcyclopropene (1-MCP) treatments. Control: non-treated; ET: continuously treated with $100 \mu\text{L L}^{-1}$ ethylene; 1-MCP: treated with $2 \mu\text{L L}^{-1}$ 1-MCP twice a week; 1-MCP+ET: pre-treated with $2 \mu\text{L L}^{-1}$ 1-MCP for 12 h before continuous treatment with $100 \mu\text{L L}^{-1}$ ethylene. All treatments were carried out at 25°C . (B) Peel colour changes during storage at 5°C , 10°C , 15°C , 20°C and 25°C in an ethylene-free environment. (C) Effect of 1-MCP treatment on peel colour changes during storage at 5°C , 15°C and 25°C . Treatments with 1-MCP ($2 \mu\text{L L}^{-1}$) were carried out twice a week to block endogenous ethylene action. Data points in represent the mean ($\pm\text{SE}$) of five fruit and different letters indicate significant differences in ANOVA (Tukey's test, $p < 0.05$).



Fig. 2. Global transcriptome changes induced by ethylene treatment and low temperature in the flavedo of detached lemon fruit. (A) Number of genes differentially expressed in response to ethylene treatment and low temperature storage. (B) Clustering analysis and heatmap of expression measures of DEGs detected in each of the experimental conditions. (C) and (D) Venn diagrams showing the number of shared and unique genes up- and down-regulated by ethylene, 5°C and/or 15°C. ET – ethylene.

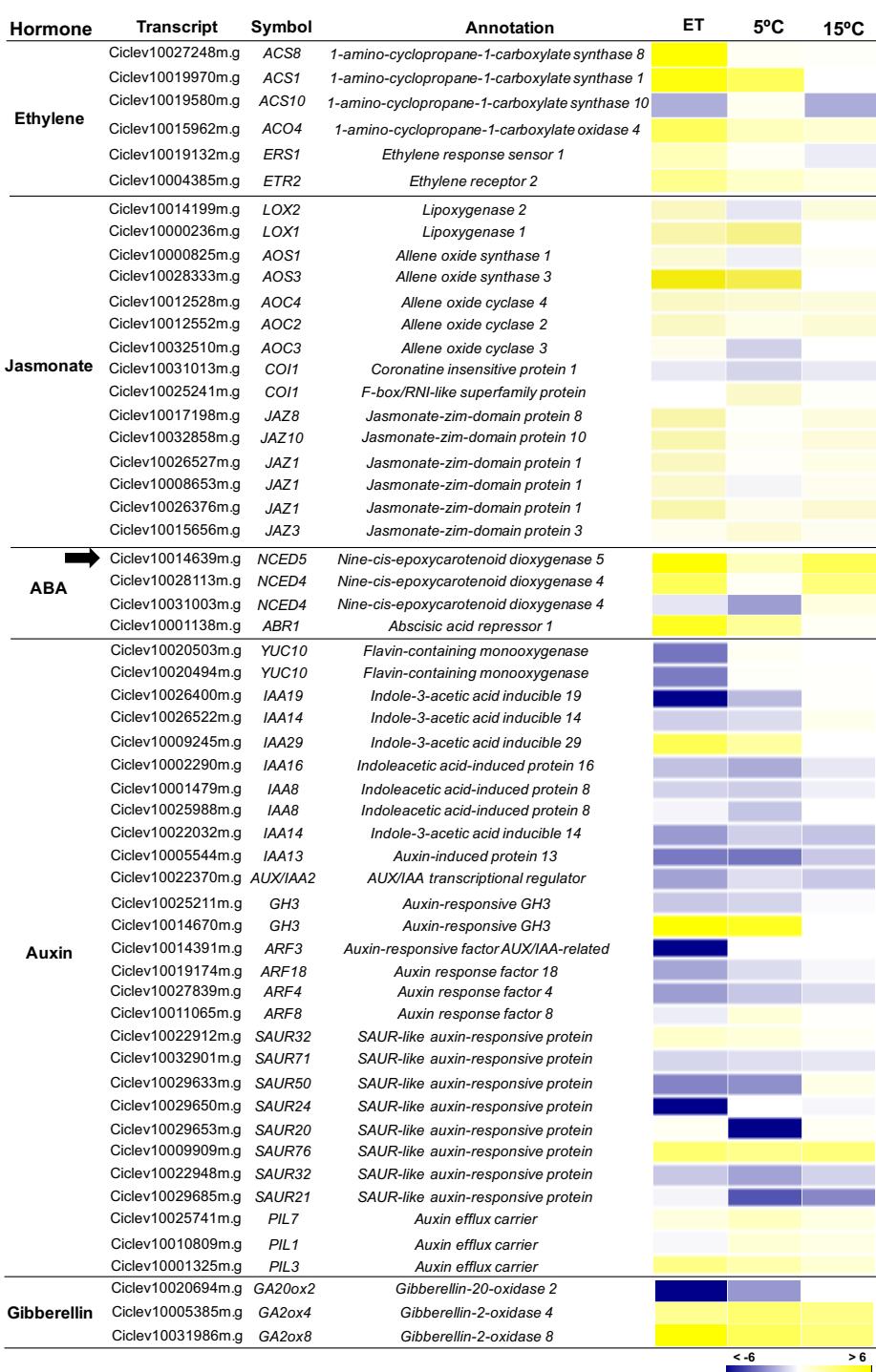
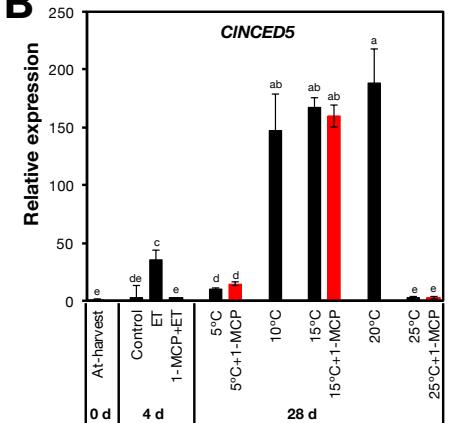
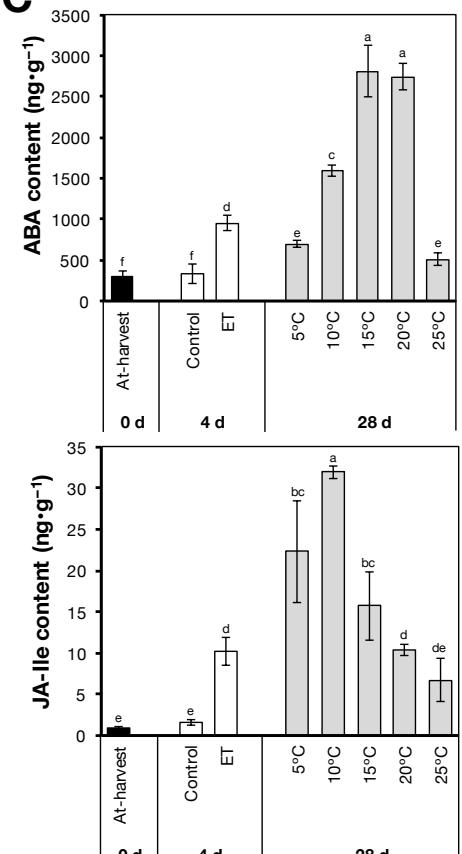



Fig. 3. Changes in chlorophyll content and associated gene expression upon exposure to ethylene or different storage temperatures. (A) Effect of ethylene and storage temperature on the content of chlorophyll a and chlorophyll b. (B) Heatmap showing identified DEGs associated with chlorophyll metabolism in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (C) RT-qPCR analysis of *chlorophyllase 1* (*CICLH1*) and *pheophytinase* (*CIPPH*) indicated by black arrows in (B) in fruit exposed to ethylene and different storage temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

Fig. 4. Changes in the content of carotenoids and expression of associated metabolism genes upon exposure to ethylene and different storage temperatures. (A) Effect of ethylene and storage temperature on the content of lutein, β -carotene and α -carotene. (B) Heatmap of identified DEGs associated with carotenoid metabolism in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (C) RT-qPCR analysis of *phytoene synthase 1* (*CIPSY1*), *lycopene cyclase 2a* (*CILCYb2a*) and β -carotene hydroxylase 1 (*CICHYb1*) selected from (B) in fruit exposed to ethylene and different storage temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

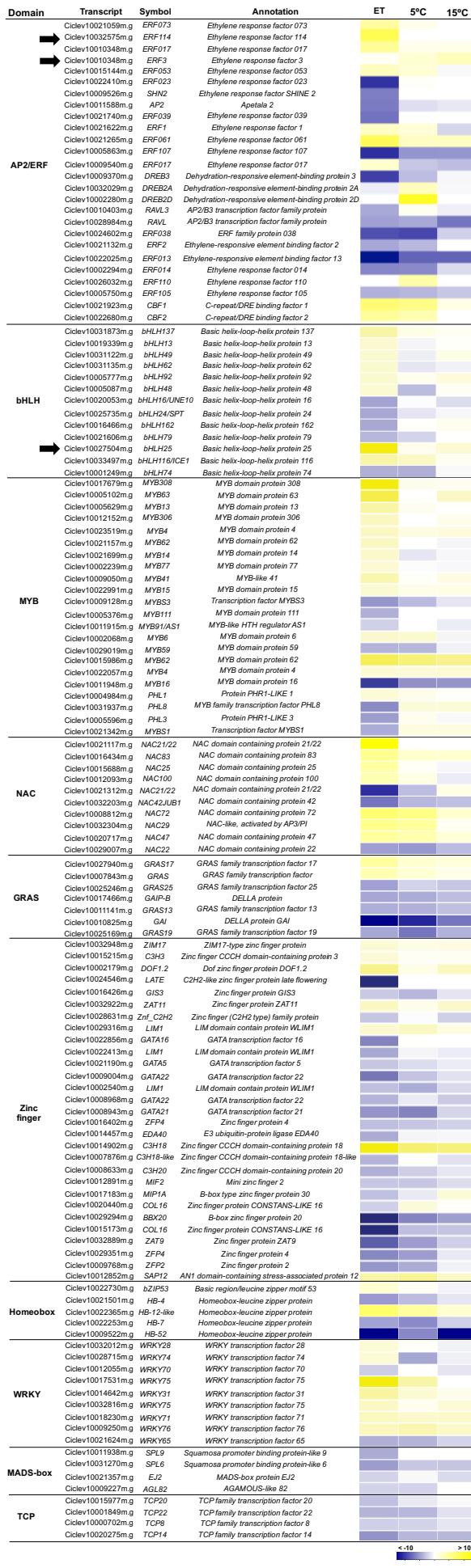


Fig. 5. Changes in the expression of genes encoding photosystem proteins in response to ethylene and different storage temperatures. (A) Heatmap of identified DEGs encoding photosystem proteins in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (B) RT-qPCR analysis of *light harvesting complex 2* (*CILHCB2*) indicated by a black arrow in (A) in fruit exposed to ethylene and different storage temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

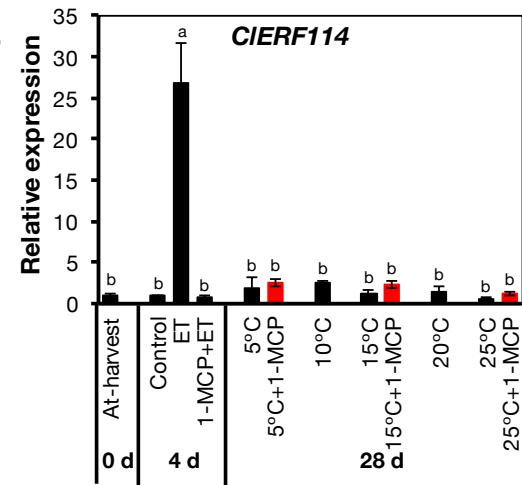
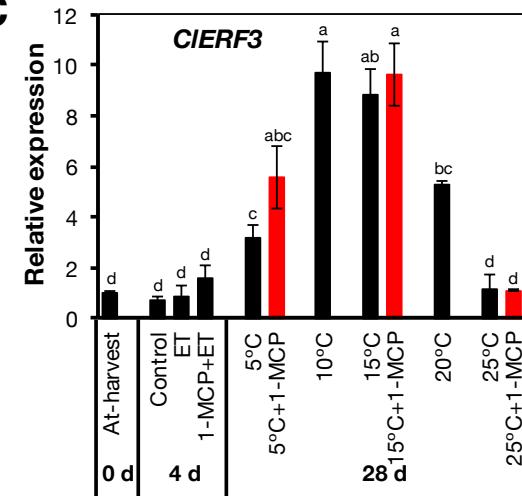
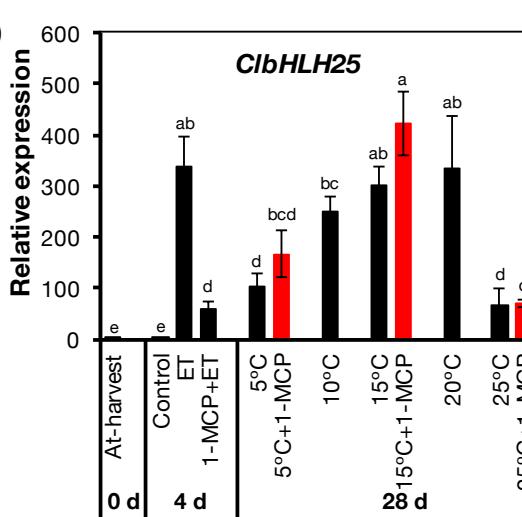
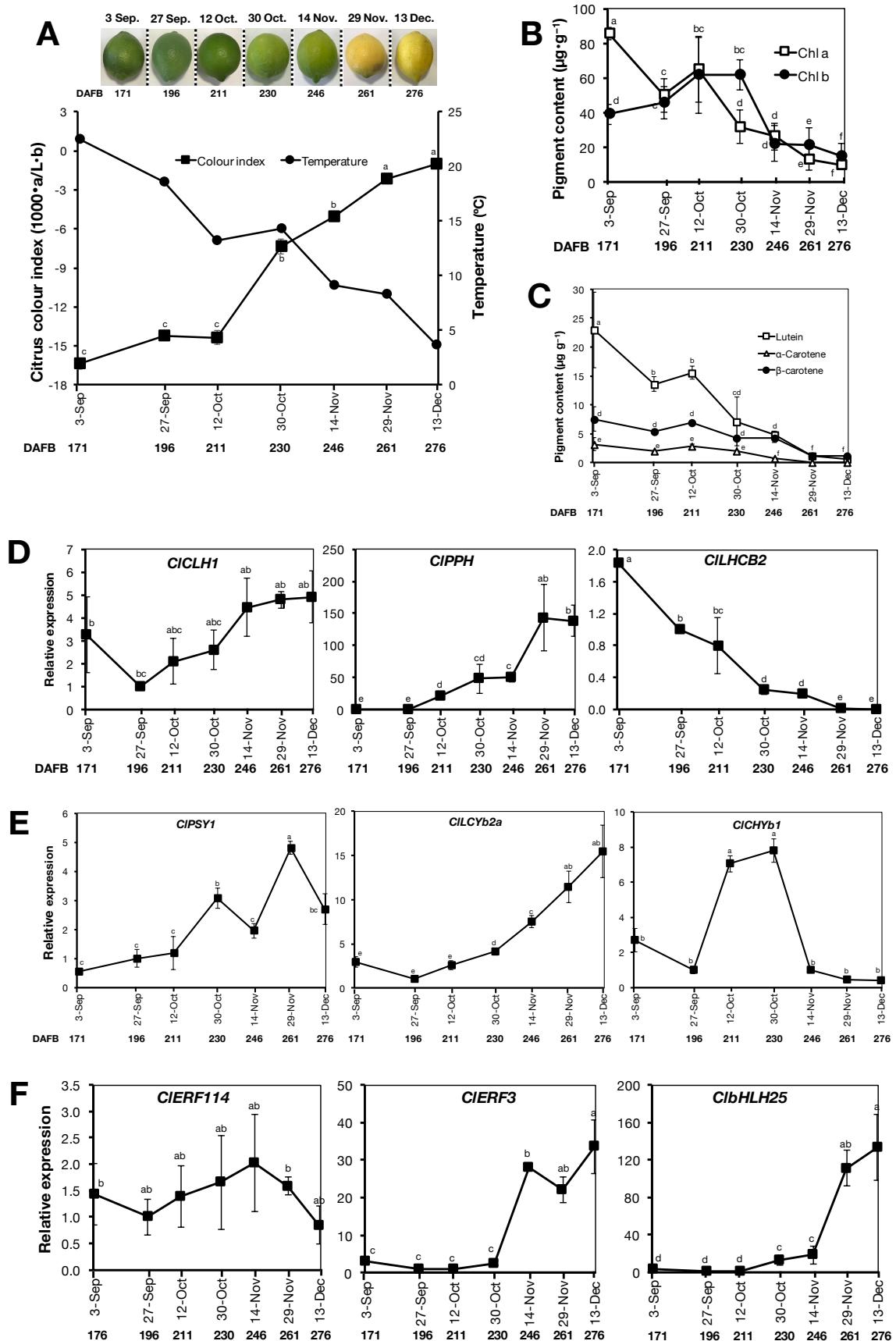

A**B****C**

Fig. 6. Levels of phytohormones and the expression of associated genes in the flavedo of detached lemon fruit. (A) Heatmap showing DEGs encoding proteins associated with phytohormone biosynthesis and signalling in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (B) RT-qPCR analysis of the ABA biosynthetic gene, 9-cis-epoxycarotenoid dioxygenase 5 (*CINCED5*), indicated by a black arrow in (A) in fruit exposed to ethylene and different storage temperatures. (C) Levels of ABA and JA-Ile in lemon fruit treated with ethylene and after storage at specified temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).


A


B


C

D

Fig. 7. Changes in expression of transcription factor-encoding genes. (A) Heatmap showing identified DEGs encoding various transcription factors in fruit exposed to ethylene and low temperature. Colour panels indicate the \log_2 value of fold change for ET (ethylene vs. control), 5°C vs. 25°C and 15°C vs. 25°C. (B), (C) and (D) RT-qPCR analysis of *CIERF114*, *CIERF3* and *ClbHLH25* in response to exogenous ethylene and different storage temperatures. Data are means (\pm SE) of three biological replicates (three fruit). Different letters indicate significant differences in ANOVA (Tukey test, $p < 0.05$).

Fig. 8. Peel colour changes and gene expression analysis in lemon fruit during on-tree maturation. (A) Appearance and citrus colour index of representative fruit at different developmental stages alongside changes in minimum environmental temperatures. Data for minimum temperature were accessed from the website of Japan Meteorological Agency (http://www.data.jma.go.jp/obd/stats/etrn/view/daily_s1.php?prec_no=72&block_no=47891&year=2014&month=12&day=&view=p1). (B) Chlorophyll a and chlorophyll b contents at different developmental stages. (C) Levels of lutein, α -carotene and β -carotene at different developmental stages. RT-qPCR analysis of selected genes associated with chlorophyll metabolism and photosystem proteins (D), carotenoid metabolism (E), and transcription factors (F) at different developmental stages. Data points represent the mean ($\pm\text{SE}$) of five fruit and different letters indicate significant differences in ANOVA (Tukey's test, $p < 0.05$).