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Abstract

Genome-enabled approaches to molecular epidemiology have become essential to public health agencies
and the microbial research community. We developed the algorithm STing to provide turn-key solutions
for molecular typing and gene detection directly from next-generation sequence data of microbial
pathogens. Our implementation of STing uses an innovative k-mer search strategy that eliminates the
computational overhead associated with the time consuming steps of quality control, assembly, and
alignment required by more traditional methods. We compared STing to six of the most widely used
programs for genome-based molecular typing and demonstrate its ease of use, accuracy, speed, and
efficiency. STing shows superior accuracy and performance for standard multilocus sequence typing
schemes, along with larger genome-scale typing schemes, and it enables rapid automated detection of
antimicrobial resistance and virulence factor genes. We hope that the adoption of STing will help to
democratize microbial genomics and thereby maximize its benefit for public health.

Main

Molecular typing entails the identification of distinct evolutionary lineages (i.e. types) within species of
bacterial pathogens; it is an essential element of both outbreak investigation and routine infectious disease
surveillance 2. Multilocus sequence typing (MLST) was developed as the first sequence-based approach
to molecular typing in 19983, Initially, MLST schemes relied on Sanger sequencing of PCR amplicons from
fragments of 7-9 housekeeping genes spread throughout the genome. While this approach truly
revolutionized molecular epidemiology, it is time consuming and costly compared to current next-
generation sequencing (NGS) methods. Nevertheless, MLST remains widely used for molecular typing,
particularly in light of valuable legacy data relating sequence types (STs) to epidemiological information.

Public health agencies increasingly couple NGS characterization of microbial genomes with downstream
bioinformatics analysis methods to perform molecular typing. The overhead associated with the
bioinformatics methods used for this purpose, in terms of both the required human expertise and
computational resources, represents a critical bottleneck that continues to limit the potential impact of
microbial genomics on public health. This is particularly true for local public health agency laboratories,
which are typically staffed with microbiologists who may not have substantial bioinformatics expertise or
ready access to high-performance computational resources. In light of this ongoing challenge, our group
is working to develop turn-key solutions for genome-enabled molecular epidemiology, including both
molecular typing and the detection of critical antimicrobial resistance (AMR) and virulence factor (VF)
genes. Methods of this kind must be easy to use, computationally efficient, fast, and most importantly,
highly accurate.

We previously developed stringMLST as an alternative approach to genome-enabled molecular typing of
bacterial pathogens®. stringMLST relied on k-mer matching between NGS sequence reads and a database
of MLST allele sequences, thereby eliminating the need for the sequence quality control, genome assembly,
and alignment steps that the first generation of genome-enabled typing algorithms used. It proved to be
accurate and fast for traditional MLST schemes, but it did not scale well to the larger genome-scale typing
schemes, such as ribosomal MLST (rMLST) or core-genome MLST (cgMLST), which are increasingly used in
molecular epidemiology’ °>. Here, we present our new approach to this problem — STing. The STing
algorithm is distinguished from its predecessor in several important ways: the efficiency of its code base,
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the underlying data structure that is uses, and the scope of its applications. These innovations provide for
superior accuracy and performance compared to both stringMLST and other widely used programs for
genome-enabled molecular typing. Below, we provide a high-level overview of the STing algorithm, details
of which can be found in the Online Methods, and we report on its use across several typing schemes and
for automated gene detection.
The STing algorithm breaks down (k-merizes) NGS reads into k-mers and then compares read k-mers against
an indexed reference sequence database (Figure 1). The speed and efficiency of the algorithm are derived
from the nature of the k-mer search strategy used along with the structure of the reference sequence
database. For each individual read/ a single Sequence Variant Detection Database Indexing
central k-mer is initially compared against the
sequence database. Reads are only fully k- Reads Genes/loci  a s I
merized if there is an initial match between the ———————= Obsaeilrglgg = =
central k-mer and the database. If there is no Smmma—
match, which occurs for the vast majority of ) l k-merization l ESA indexing
reads, the read is discarded. This results in —
substantial savings in terms of both the number e
of reads that need to be k-merized and the
number of database search steps. The reference k k-mer searching J
H H e
sequence database is indexed as an enhanced Take the "E
suffix array (ESA)® this enables the efficient next read
representation of entire sequences, as opposed \ l k-mer match
counting
to other k-mer based methods that employ k-
merized sequences in hash tables. The ESA data 58
structure allows for a single sequence index, E;v,
independent of k-mer size, whereas the hash
. . Alleles 12345 1234 123 1234
table approach necessitates independent Genesfoci a b
indices for each k-mer size. Finally, the ESA data
- . Selection of
structure facilitates rapid exact k-mer matches ( probable sequences w
between input reads and the indexed database. , )
Sequence Typing Gene Detection
. Tap alleles per locus Genes with matches
Figure 1. Schematic representation of the STing algorithm. 1) a3 ba a1a2a3a4 bib3bd

The STing algorithm comprises two main phases: Database 2) at b
indexing (shaded box) — user supplied reference sequences

k-mer depth

(allele or gene sequences) are transformed into an k‘ False positive removal with )
during the sequence variant detection phase; and

Sequence variant detection —reads are k-merized and each

k-mer is searched within the database. For each match

. . L Sequence length

maintained for the matched sequence within the database.

These frequencies are then utilized to select candidate Prediction and reporting
alleles/genes to be present in the samples analyzed. False

enhanced suffix array (ESA) index for rapid k-mer search k-mer depth and coverage
located in the database, a table of frequencies is
positive alleles/genes are filtered out by calculating and

analyzing k-mer depth and sequence length coverage from Allelic profile Present
the selected candidate sequences. Lastly, predictions of ~ 2° b4Y , aladad bib4
allelic profile and ST, and presence/absence of genes, are

ST 11 Absent

made and reported. A more detailed flowchart of the

. . . a2a5 b2b3 c3 did3
algorithm can be seen in Supplementary Figure 1.
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86  STing can be run in two modes — sequence typing or gene detection — and typing can be run in fast or
87  sensitive modes.

A
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Figure 2. Performance comparison of STing with 6 other sequence typing applications. The fast and sensitive modes of STing are
compared to 6 other contemporary typing applications to measure the accuracy and runtime performance, using three different
typing schemes: (A) the traditional MLST (loci=7) on 40 samples from four bacterial species (10 samples per species: C. jejuni, C.
trachomatis, N. meningitidis, and S. pneumoniae); (B) the ribosomal MLST (rMLST) scheme (loci=53) on 20 samples of N.
meningitidis, and (C) the core genome MLST (cgMLST) scheme (loci=1,605) on 20 samples of N. meningitidis. The typing
applications are color coded based on the algorithmic paradigms that they utilize for performing sequence typing. Performance
is measured in terms of the percentage of correct alleles predicted, the average runtime across each dataset measured in seconds
(displayed in log-scale), and average peak RAM utilization across each dataset measured in megabytes (MB) for MLST, and
gigabytes (GB) for rMLST and cgMLST (both displayed in log-scale).
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88  We compared STing to six of the most widely used programs for genome-enabled molecular typing,
89 including its predecessor stringMLST (Figure 2). The programs were evaluated for accuracy in terms of the
90 percentage of correct allele predictions, speed in terms of average run time, and efficiency in terms of
91  average maximum RAM consumption. Genome-enabled typing programs can be classified according to
92 the algorithmic paradigm that they use: k-mer only, k-mer plus alignment, read-to-genome mapping,
93 mapping with local assembly, and full assembly (see Supplement for more information). STing uses the
94 minimalist k-mer only approach. STing was run in the fast and sensitive modes for the traditional
95 housekeeping MLST scheme and two larger-scale typing schemes, rMLST and cgMLST. Allele databases for
96  all three typing schemes were taken from the PubMLST database (https://pubmlst.org/). The STing fast
97 mode uses a k-mer matching only strategy, and the sensitive mode includes an additional step whereby
98  false positive matches are excluded based on gaps in the coverage profiles of k-mer matches to allele
99 sequences.

100 Comparisons were performed for 10 samples each across four species that are widely used in MLST and
101  accordingly have diverse MLST databases: Campylobacter jejuni, Chlamydia trachomatis, Neisseria
102 meningitidis, and Streptococcus pneumoniae. STing shows 100% accuracy, in both the fast and sensitive
103 modes, as well as the fastest run time and lowest memory use of any program for MLST (Figure 2A). The
104 results of the same comparisons are broken down for each of the four individual species in Supplementary
105 Figure 2. We also ran STing for MLST across a range of sequence coverage levels in an effort to assess its
106  detection limits and multi-core performance (Supplementary Figure 3). STing performs best at 40x
107  coverage, but it maintains accuracy at 20x with a marginal drop-off at 10x. While STing is designed as a
108 single core application, we found that executing multiple threads of the program allows it to maintain run
109  time up to 40x coverage. This provides for a straightforward way to run STing on numerous genome
110 samples; the MLST accuracy and speed metrics for STing run on a larger dataset of 1,000 N. meningitidis
111 samples are shown in Supplementary Table 1. When this large scale analysis was performed, STing was
112 able to uncover seven samples that were initially scored as erroneous predictions but actually turned out
113  to be mis-annotated on the PubMLST database (Supplementary Table 2).

114  STing also shows the highest accuracy, speed, and efficiency for the four programs that are capable of
115  genome-enabled rMLST typing (Figure 2B). Programs that show as ‘X" in these comparisons were unable
116 to run for a variety of reasons related to their initial design, the runtime, and database indexing limitations.
117  The program MentaLiST shows marginally higher accuracy, run time, and efficiency for cgMLST compared
118  to STing, which shows the second best metrics for these categories (Figure 2C). However, the utility of
119 MentaliST, which was designed specifically for cgMLST, is limited by the size of the database that can be
120 indexed. For that reason, it could not be run on the latest rMLST database available from PubMLST.

121 In addition to molecular sequence typing, STing can also be used for automated gene detection directly
122 from NGS reads. The gene detection mode uses a database of genes of interest, and we used databases of
123 AMR and VF genes given their public health relevance. The Comprehensive Antibiotic Resistance Database
124 (CARD https://card.mcmaster.ca/) of 1,434 AMR genes and the Virulence Factors of Pathogenic Bacteria
125  database (VFDB http://www.mgc.ac.cn/VFs/) of 1,443 VF genes were used for this purpose” 8. STing was
126 used to query the AMR and VF databases with 71 NGS genome datasets for 25 bacterial pathogen species
127  taken from the World Health Organization (WHO) global priority list of antibiotic-resistant bacteria®. STing
128  shows very high accuracy metrics for both AMR and VF detection (Figure 3A), along with fast and efficient
129 performance (Figure 3B). STing can be run in in this way to rapidly detect any genes of interest, which
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extends its utility beyond public health genomics. This could be particularly useful for large scale
environmental genomics samples, including amplicon-based and metagenome studies.

A . . . ,
Antimicrobial Resistance Virulence Factor
Seq. Depth: 20x 40x 20x 40x
STing STing
Present Absent Present Absent Present Absent Present Absent
g Present 132 0 132 0 1,166 4 1,170 0
2
X Absent 3 101,679 4 101,678 10 101,273 10 101,273
Sensitivity: 1.000 1.000 0.996 1.000
Specificity: 1.000 1.000 1.000 1.000
Precision: 0.978 0.971 0.991 0.992
Accuracy: 1.000 1.000 1.000 1.000
B Test? Seq. Depth Avg. Time® (s) Avg. RAM® (MB) Total Timed (s)
20x 3.7 71.8 200.1
Antimicrobial Resistance
imicrobi i 40x 8.0 72.4 400.4
Virdl Fact 20x 3.9 79.0 460.3
ruenee ractor 40x 12.7 134.0 900.4
a Type of gene detection test executed
b Average time in seconds required to process each genome read sample
¢ Average maximum RAM required to process each genome read sample
d Total time in seconds required to process the entire read dataset
C
Feature STing  stringMLST MentaLiST BIGE ] SRST2 ARIBA  Offline CGE
Assembly- & alignment-free v v v
Standalone v v v
MLST support v v v v v v v
Larger schemes support v v v v v
Runtime < 1 hour for larger schemes v v Vi
Big DBs support (> 2% alleles per locus) v v v
k-mer size independent DB v — — —
Gene detection v v v
Confidence information v v
Automated DB download v v v v v

v Feature included

_ Not applicable Algorithmic paradigm [l k-mer [] k-mer + alignment [I] Mapping [] Mapping + assembly [] Assembly

Figure 3. Performance comparison of STing's Gene Detection program. STing’s Gene Detection program was run on 71 WHO
designated high-priority bacterial genomes (simulated at a read depth of 20x and 40x) that contained gene annotations for 1,434
antimicrobial resistance (AMRs) and 1,443 virulence factors (VFs). (A) Confusion matrices for the detection of AMR genes from
the CARD dataset, and VF genes from the VFDB dataset are shown. (B) The table demonstrates the accuracy and average runtime
performance comparison of STing’s Gene Detection at each sequencing read depth. (C) Feature comparison between STing and
the six applications tested for sequence typing.

STing was developed to provide turn-key solutions for NGS analysis in support of public health. Despite its
lightweight computational footprint, STing is able to perform accurate and ultrafast molecular typing and
gene detection. We summarize the features and utility of STing compared to related programs for genome-
enabled typing in Figure 3C. In addition to its superior accuracy and performance, STing is distinguished by
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136  its streamlined algorithmic design, its broad applicability across typing schemes, its ability to support large
137  databases, and its broad use as an automated gene detection utility.

138 Data availability

139  Whole genome sequencing samples used for sequence typing, assemblies used for the limit of detection
140  and multicore performance test, and genomes used for gene detection, are listed with accession numbers
141 in the Supplementary Data.

142 Code availability

143  The source code of STing is available at https://github.com/jordanlab/STing. The modified script
144  implementing the Offline CGE MLST method is available at
145  https://github.com/hspitia/binf_scripts/blob/master/run_MLST.single thread.py.

146  References

147 1. Maiden, M.C.J. et al. MLST revisited: The gene-by-gene approach to bacterial genomics. Nature
148 Reviews Microbiology 11, 728--736 (2013).

149 2. Espitia-Navarro, H.F., Rishishwar, L., Mavyer, L. W., Jordan, . K. in Microbial Forensics, Edn. 3rd. (ed.
150 B.a.S. Budowle, S. and Morse, S.) (Academic Press, 2019, in press).

151 3. Maiden, M.C. et al. Multilocus sequence typing: a portable approach to the identification of clones
152 within populations of pathogenic microorganisms. Proceedings of the National Academy of
153 Sciences of the United States of America 95, 3140--3145 (1998).

154 4. Gupta, A., Jordan, |.K. & Rishishwar, L. stringMLST: a fast k-mer based tool for multilocus sequence
155 typing. Bioinformatics 33, 119-121 (2017).

156 5. Jolley, K.A. et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from
157 domain to strain. Microbiology 158, 1005-1015 (2012).

158 6. Abouelhoda, M.I., Kurtz, S. & Ohlebusch, E. Replacing suffix trees with enhanced suffix arrays.
159 Journal of Discrete Algorithms 2, 53--86 (2004).

160 7. Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic
161 resistance database. Nucleic Acids Res 45, D566-D573 (2017).

162 8. Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: a comparative pathogenomic platform with
163 an interactive web interface. Nucleic Acids Res 47, D687-D692 (2019).

164 9. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list
165 of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18, 318-327 (2018).

166


https://doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/855478; this version posted November 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

167  Online Methods

168  Algorithm overview. Given an input sequence read file from a microbial isolate, STing can accurately
169 identify the specific sequence type (ST), e.g. multilocus sequence type (MLST) or its variants, for the isolate,
170 and what genes of interest are present in its genome. STing accomplishes these tasks by using an exact k-
171 mer matching and frequency counting paradigm. STing is implemented in C++ and utilizes two libraries:
172 the SegAn library® for the Enhanced Suffix Array (ESA)® data structure and the gzstream
173 (https://www.cs.unc.edu/Research/compgeom/gzstream/) library for working with gz files. Additionally,
174  STing is prepackaged with an R script for visualization of the results and a Python script for downloading
175  database sequences from PubMLST. The ESA data structure is used for k-mer look-up and comparison
176 purposes. ESAs are a lexicographically sorted array-based data structure, which represent space efficient
177  implementation of the Suffix Trees data structure. For a given set of sequences with a total length of n
178 base pairs (summation of the length of all sequences), an ESA index can be constructed in linear time O(n).
179 ESAs can also be queried for k-mer matches (or substring matches) in linear time. Given a k-mer of length
180 k, we can determine its presence/absence in the database in O(k) time and find all of its z occurrences in
181 O(k+z) time. While Suffix Trees achieve the same time complexity for index construction and k-mer lookup,
182  they take five times more storage space than ESAs. An efficient implementation of a Suffix Tree can use up
183 to 20 bytes per input database character, whereas an equivalent ESA consumes 4 bytes per input database
184  character. Using ESAs for k-mer lookup and comparison allows STing to efficiently scale with large sequence
185  databases. The STing algorithm is divided into three steps: (1) database indexing, (2) sequence typing, and
186  (3) gene detection (Supplementary Figure 1). Each step is described in the following sections.

187 Database indexing. In this step, STing constructs an ESA index that is used during the sequence typing and
188 gene detection modes. For sequence typing, the indexer requires a multi-fasta file with all the observed
189  alleles in a typing scheme and an additional allelic profile file that contains combinations of allele numbers
190  (alsoreferredto as allelic profiles) uniquely mapped to distinct STs. The indexer constructs two ESA indices,
191  one for the allelic sequences (allele index) and one for the profile definitions (profile index). For gene
192  detection, the indexer requires a multi-fasta file with the gene sequences that are to be screened in the
193 input samples. Then, the indexer constructs a single ESA index of all the gene sequences provided (gene
194  index).

195  Sequence typing. In this mode, the typer identifies the ST of a given isolate by using a gene-by-gene
196  approach. The typer utility operates in fast or sensitive execution modes. The sequence typing step
197 comprises six algorithmic steps: (1) read filtering, (2) k-mer counting, (3) candidate sequence selection, (4)
198  depth and coverage calculation, (5) allele calling and ST prediction, and (6) reporting. In the read filtering
199  step (1), the middle k-mer of each sequence is searched within the allele index database. If the middle k-
200 mer is not found in the allele index, the read is discarded, otherwise the read is passed on to the next step.
201  The size of the k-mer is chosen in such a way as to minimalize the possibility that using the middle k-mer
202  only results in the loss of useful sequence reads (default k=30); users can change the k-mer size. In the k-
203 mer counting step (2), the typer k-merizes each read that passed the filter matching step, and then searches
204  each k-mer from the read against the allele sequence index. For each k-mer match in the allele index, the
205 typer increments a k-mer counter for the matched alleles/loci. Once all of the reads are processed, the
206  typer normalizes the k-mer frequencies by the length of the corresponding allele. In the candidate
207  sequence selection step (3), the algorithm selects the top N alleles that have the maximum normalized k-
208 mer frequency for each locus. For the fast execution mode, the default value of Nis 1, and for the sensitive
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209  execution mode the default value is 3 and can be configured by the user. In the depth and coverage
210 calculation step (4; only applicable in sensitive mode), the typer reduces the false positives by identifying
211 regions of the candidate alleles that are not covered by any k-mer, and identifying any sharp valleys in the
212 k-mer depth distribution across the candidate allele. This step calculates the number of k-mers that had a
213 match at each base of the top N alleles in each locus. To speed-up this calculation, the typer constructs a
214 smaller index consisting of only the top N candidate alleles, and parses the subset of reads that passed the
215 initial k-mer filter (useful reads). The typer k-merizes the useful reads and records the location (base) of
216 each k-mer in the matched allele of the smaller index. The algorithm calculates the k-mer depth at each
217 base along each allele using the match start positions. The typer then looks for discontinuities in the k-mer
218 depth by checking the k-mer depth ratio of each adjacent position. The application detects a discontinuity
219 if the ratio is outside the range of [1/\/2 \/7] and sets the k-mer depth as zero for those positions. Finally,
220  thetool calculates the allele coverage as the percentage of allele (i.e., the allele sequence length) that has
221  anon-zero k-mer depth. In the allele calling and ST prediction step (5), STing generates the allelic profile
222 and predicts the corresponding ST of the sample. For the fast mode, the allelic profile is generated from
223 the candidate sequences selected in the previous step (step 3). For the sensitive mode, the allele with the
224 maximum allele coverage for each locus is predicted to be the allele present within the isolate. Here, there
225 are three special cases: (a) in the event that the allele coverage is less than 100%, the detector appends a
226 * character to denote a possible novel allele; (b) in the event of having ties in coverage between alleles,
227 STing calls the allele that has the most uniform k-mer coverage by selecting the one with the minimum k-
228 mer depth standard deviation; (c) if a locus has no matching k-mers, the locus is assumed to be absent and
229  an NA allele is assigned as its call. At this step, all the allele calls have been made and an allelic profile has
230 been generated. A look-up operation is performed in the profile index to identify the ST corresponding to
231  the predicted allelic profile. Finally, in the reporting step (6), STing reports the allelic profile, associated ST,
232 and the total number of k-mer matches and reads processed, along with optional information about each
233 allele: normalized counts of k-mer matches, coverage, and average and per-base k-mer depth.

234 Gene detection. The algorithm for this mode is a variant of the sequence typing mode and follows the
235  steps described above closely. The gene detection mode differs from the sequence typing mode in how it
236  selects the candidate sequences. This mode can be divide into five conceptual steps: (1) read filtering, (2)
237  k-mer counting, (3) candidate sequence selection, (4) depth and coverage calculation, and (5) reporting. In
238  the k-mer filtering step (1), the detector searches the middle k-mer of each read within the gene index. If
239  the k-mer fails to match any sequence within the index, the read is discarded, otherwise it is passed on to
240  the next step. In the k-mer counting step (2), the utility proceeds to k-merize the read in its entirety and
241  searches each k-mer in the gene index. A gene-specific k-mer match counter is incremented for each k-
242 mer that matches the corresponding gene(s). In addition, the detector also records the start position of
243 the k-mer in the matching gene(s). In the candidate sequence selection step (3), STing selects the gene
244 sequences that have at least one k-mer match as probable genes present in the sample analyzed. In the
245 depth and coverage calculation step (4), similar to the sequence typing mode, STing looks for discontinuities
246  in the k-mer depth by inspecting the (a) the number of bases not covered by any k-mer, and (b) any sharp
247  valleys within the k-mer distribution. Finally, in the reporting step (5), STing determines the
248 presence/absence of genes with k-mer hits along with the percent sequence coverage of each gene
249 identified in the sample. A gene is predicted to be present if its coverage is equal to or greater than a user
250  specified threshold (default = 75%). Otherwise, the gene is predicted to be absent in the sample. STing
251 reports the presence (reported as 1) or absence (reported as 0) of each gene with k-mer matches and the
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252 total number of k-mer matches and reads processed, along with optional information about each gene:
253 normalized counts of k-mer matches, coverage, and average and per-base k-mer depth.

254  Genomic data for sequence typing. We used 1,050 lllumina sequencing read sets of isolates from four
255 bacterial species (Campylobacter jejuni, Chlamydia trachomatis, Neisseria meningitidis, and Streptococcus
256  pneumoniae) retrieved from the PubMLST (https://pubmist.org/)/EBI ENA (https://www.ebi.ac.uk/ena)
257  database to execute the experiments (Supplementary Data). Using the isolate metadata available on
258 PubMLST, we selected 40 samples from the four species (10 samples each) for the MLST comparative test,
259 and 20 samples of N. meningitidis isolates for the larger typing schemes (rMLST and cgMLST) comparative
260  test. We selected these two datasets trying to capture the diversity of the most common STs of each
261 species in the PubMLST database and preferring recently sequenced isolates. For the large-scale accuracy
262 test, we used a dataset of 1,000 N. meningitidis isolates.

263 Computational environment. We used a machine provided with RedHat Linux SO, 24 cores, and 64 GB of
264 RAM to perform the experiments described in this study.

265 MLST comparative test design. To measure the performance of our application on the traditional seven
266 loci MLST analysis, we compared STing (v0.24.2) in two execution modes, fast and sensitive, along with six
267  applications able to perform sequence typing (stringMLST* MentaLiST?, Kestrel*?, SRST2%3, ARIBA, and
268  Offline CGE/DTU; Supplementary Table 3). These applications can be classified into five groups depending
269 on the strategy (algorithmic paradigm) used to predict the sequence types of whole genome sequencing
270  data samples from bacterial isolates: k-mer, k-mer plus alignment, mapping, mapping plus local assembly,
271  and assembly (Supplementary Table 3). For the Offline CGE/DTU application, we used the script
272 runMLST.py® (https://github.com/widdowquinn/scripts/blob/master/bioinformatics/run_MLST.py), an
273 offline implementation of the original alignment-based MLST method from the Center of Genomic
274 Epidemiology®®. This implementation uses multithread BLAST searching for the MLST analysis, as opposed
275 to STing, which is a single thread application. To fairly compare STing with the Offline CGE/DTU
276  implementation, we modified the script runMLST. py to use only one thread for BLAST searches. For each
277  application, we measured the accuracy in terms of the percentage of alleles correctly predicted from the
278  total samples analyzed and the performance in terms of average run time and average peak of RAM
279 required to analyze each of the 40 samples in the dataset. We reported the average run time and average
280 max RAM as the average of three executions of each application per sample analyzed. Kestrel requires the
281  generation of a k-mer counts file before it can be run to predict STs. For this purpose, we used the
282  application KAnalyzel” (v2.0.0) with the parameters as described 2. We reported the average run time of
283 Kestrel as the sum of the average times of KAnalyze and Kestrel for processing each sample and the average
284 RAM consumption as the maximum average peak of RAM consumed by the two applications on each
285  sample. Since the Offline CGE/DTU application requires complete assemblies to predict STs, we assembled
286 each isolate read sample using the application SPAdes®® (v3.13.0) with default parameters. We reported
287  the average runtime as the sum of the average times of SPAdes and Offline CGE/DTU to process each
288  sample, and the average RAM consumption as the maximum average peak of RAM consumed between the
289 two applications during the analysis of each sample. The commands used with each application tested are
290 listed in the supplementary material (Supplementary Table 4).

291 Large-scale MLST accuracy test design. To measure the accuracy of our application using the MLST scheme
292 on a large-scale dataset, we ran STing in fast mode on 1,000 samples of N. meningitidis. We measured the
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293  accuracy in terms of the percentage of STs correctly predicted from the total samples analyzed, and the
294 performance in terms of average run time and average peak RAM required to analyze each of the 1,000
295  samples of the dataset. We reported the average run time and average maximum RAM as the average of
296  five executions of the application per sample analyzed.

297  Limit of detection and performance on single and multicore environments test design. We evaluated the
298 minimum sequencing depth required for correctly predicting STs on whole genome sequencing samples
299 from bacterial isolates. We retrieved 1,306 assemblies of Campylobacter jejuni (n=581) and Neisseria
300 meningitidis  (n=725) with  known  MLST information from the GenBank database
301  (https://www.ncbi.nlm.nih.gov/genbank/) (Supplementary File 1). Then, we simulated lllumina paired-end
302 reads — HiSeq 2500, 2x150 bp, 500bp of average fragment length, with 10 as the fragment size standard
303 deviation — from each genome at seven sequencing depths (1, 3, 5, 10, 15, 20, and 40x) using the software
304  ART® (v2.5.8). We executed STing (fast mode) over each generated sample to measure the accuracy in
305 terms of the percentage of correct STs and alleles predicted from the total samples at each sequencing
306  depth. We also evaluated the performance of STing in multicore environments. We executed 20 parallel
307 instances of STing to analyze the 1,306 samples and measured the average time required to process the
308 complete dataset at each sequencing depth.

309 Large-scale sequence type schemes comparison test design. To evaluate the scalability, accuracy, and
310 performance of our application on large-scale sequence typing schemes, we compared STing (fast and
311  sensitive modes) on 20 samples of N. meningitidis against other sequence typing applications using the
312 rMLST (loci=53) and the cgMLST (loci=1,605) schemes. We used three applications (stringMLST, SRST2, and
313 Offline CGE) for rMLST, and three applications (stringMLST, MentaliST, and Offline CGE) for cgMLST, which
314  were able to execute the sequence typing analysis successfully using these larger schemes. For each
315  application and typing scheme, we measured the accuracy in terms of the percentage of correct allele
316 predictions from the total alleles of the tested samples and the performance in terms of the average of run
317  time and maximum peak of RAM required to process each sample from the dataset.

318  Gene detection test design. We evaluated the ability of STing to predict the presence/absence of
319  sequences of interest in NGS read samples by detecting antimicrobial resistance (AMR) genes and virulence
320  factor (VF) genes in simulated Illumina read datasets. We retrieved 71 assemblies from the GenBank
321  database that correspond to 25 species listed in the World Health Organization priority list of antibiotic-
322 resistant bacteria and tuberculosis® (Supplementary Data). Then, we simulated Illumina paired-end reads
323  —HiSeq 2500, 2x150bp, 500bp of average fragment size, with 10 as the fragment size standard deviation —
324  from each genome at 20x and 40x sequencing depth, using the software ART. For the AMR gene detection
325 test, we used 1,434 AMR genes available in the Comprehensive Antibiotic Resistance Database (CARD,
326 v2.0.2)’. For the VF gene detection test, we used 1,443 genes from the virulence factor database (VFDB,
327 release date 03-22-2019)%. In both tests, we first defined the presence/absence of each gene in each
328  genome using BLASTN (v2.2.28+)%, as a ground-truth for assessing STing’s performance. To perform a fair
329  comparison with STing’s gene detection, which is based is based on exact pattern matching, we defined a
330  cutoff of 100% for identity and query (gene) coverage in BLASTn to consider a gene as present in a genome,
331 i.e., if the gene is perfectly contained in the genome. Then, we built databases on STing for each gene set
332  ofinterest (CADR and VFDB), and executed the respective gene detection analysis on each genome-derived
333 read set at each sequencing depth, using a threshold of 100% for gene coverage to consider a gene as
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334 present in a sample. Finally, we evaluated the performance of detection in terms of sensitivity, specificity,
335 precision, and accuracy, which are defined as follows:

TP
TP+FN’

TP+TN

i TN . TP
Specificity = ——; Precision = ——; Accuracy = ————;
TP+TN+FP+FN

336 Sensitivity = TNLFP TP+FP’

337 where, TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives.
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