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ABSTRACT 22 

While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-23 

neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 24 

basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for 25 

homologs of 59 genes within ten CNVs and 20 neurodevelopmental genes in Drosophila. Using 26 

wing-specific knockdown of 136 RNA interference lines, we identified qualitative and 27 

quantitative phenotypes in 72/79 homologs, including six lines with lethality and 21 lines with 28 

severe wing defects. Assessment of 66 lines for tissue-specific effects showed no correlation 29 

between the severity of wing and eye-specific defects. We observed disruptions in cell 30 

proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog 31 

and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and 32 

KIF11/Klp61F. These findings were further validated with differences in human tissue-specific 33 

expression and network connectivity of CNV genes. Our findings suggest that multiple genes 34 

within each CNV differentially affect both global and tissue-specific developmental processes 35 

within conserved pathways, and that their roles are not restricted to neuronal functions.  36 
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INTRODUCTION 37 

Rare copy-number variants (CNV), or deletions and duplications in the genome, are associated 38 

with neurodevelopmental disorders such as autism, intellectual disability (ID), and schizophrenia 39 

[1,2]. While dosage alteration of CNV regions contribute predominantly to defects in nervous 40 

system development, several CNV-associated disorders also lead to early developmental features 41 

involving other organ systems [3,4], including cardiac defects [5,6], kidney malformations[7], 42 

craniofacial features [3], and skeletal abnormalities [8]. For example, the 1q21.1 deletion causes 43 

variable expression of multiple neuronal and non-neuronal phenotypes, including developmental 44 

delay, autism, and schizophrenia as well as craniofacial features, cataracts, cardiac defects, and 45 

skeletal abnormalities [9–11]. Additionally, while the 7q11.23 deletion associated with 46 

Williams-Beuren syndrome (WBS) causes neuropsychiatric and behavioral features, other non-47 

neuronal phenotypes, including supravalvular aortic stenosis, auditory defects, hypertension, 48 

diabetes mellitus, and musculoskeletal and connective tissue anomalies, are also observed among 49 

the deletion carriers [12].  50 

 Despite the notable prevalence of non-neuronal phenotypes in CNV carriers, functional 51 

studies of CNV genes have primarily focused on detailed assessments of neuronal and behavioral 52 

phenotypes in model systems. For example, mouse models for the 16p11.2 deletion exhibited 53 

post-natal lethality, reduced brain size and neural progenitor cell count, motor and habituation 54 

defects, synaptic defects, and behavioral defects [13–15]. Similarly, mouse models for the 3q29 55 

deletion showed decreased weight and brain size, increased locomotor activity and startle 56 

response, and decreased spatial learning and memory [16,17]. However, fewer studies have 57 

focused on detailed evaluation of non-neuronal phenotypes in functional models of CNV 58 

disorders. For example, Arbogast and colleagues evaluated obesity and metabolic changes in 59 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


4 
 

 

16p11.2 deletion mice, which showed reduced weight and impaired adipogenesis [18]. While 60 

Haller and colleagues showed that mice with knockdown of MAZ, a gene within the 16p11.2 61 

deletion region, contribute to the genitourinary defects observed in individuals with the deletion 62 

[19], mouse studies on other homologs of 16p11.2 genes, including TAOK2, KCTD13, and 63 

MAPK3, have only focused on assessing neuronal defects [20–24]. Furthermore, Dickinson and 64 

colleagues reported a high-throughput analysis of essential genes in mice and identified both 65 

neuronal and non-neuronal phenotypes for individual gene knockouts, including more than 400 66 

genes that lead to lethality [25]. While these efforts aided in implicating novel genes with human 67 

disease, our understanding of how genes associated with neurodevelopmental disorders 68 

contribute towards non-neuronal phenotypes is still limited. Therefore, a large-scale analysis of 69 

non-neuronal phenotypes is necessary to identify specific candidate genes within CNV regions 70 

and associated biological mechanisms that contribute towards these phenotypes.  71 

 Drosophila melanogaster is an excellent model system to evaluate homologs of 72 

neurodevelopmental genes, as many developmental processes and signaling pathways are 73 

conserved between humans and flies [26]. In fact, over 75% of human disease genes have 74 

homologs in Drosophila, including many genes involved in cellular signaling processes [27,28]. 75 

We recently examined the contributions of individual Drosophila homologs of 28 genes within 76 

the 16p11.2 and 3q29 deletion regions towards specific neurodevelopmental phenotypes, 77 

including rough eye phenotypes and defects in climbing ability, axon targeting, neuromuscular 78 

junction, and dendritic arborization [29,30]. While these findings implicated multiple genes 79 

within each CNV region towards conserved cellular processes in neuronal tissues, the conserved 80 

role of these genes in non-neuronal tissues is not well understood. The Drosophila wing is an 81 

effective model system to evaluate such developmental defects, as key components of conserved 82 
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signaling pathways, such as Notch, epidermal growth factor receptor (EGFR), Hegdehog, and 83 

Wnt pathways, were identified using fly wing models [31–37]. Although fly wing phenotypes 84 

cannot be directly translated to human phenotypes, defects observed in fly wings can be used to 85 

assess how homologs of human disease genes alter conserved cellular and developmental 86 

mechanisms. For example, Wu and colleagues showed that overexpression of the Drosophila 87 

homolog for UBE3A, associated with Angelman syndrome, leads to abnormal wing and eye 88 

morphology defects [38]. Furthermore, Drosophila mutant screens for developmental 89 

phenotypes, including wing defects, were used to identify conserved genes for several human 90 

genetic diseases, including Charcot-Marie-Tooth disease and syndromic microcephaly [39]. 91 

Kochinke and colleagues also recently performed a large-scale screening of ID-associated genes, 92 

and found an enrichment of wing trichome density and missing vein phenotypes in ID genes 93 

compared to control gene sets [40]. Hence, the fly wing provides a model system that is ideal for 94 

evaluating the contributions of individual homologs of CNV genes towards cellular and 95 

developmental defects.  96 

In this study, we tested tissue-specific and cellular phenotypes of 79 fly homologs of 97 

human genes within ten pathogenic CNV regions and genes associated with neurodevelopmental 98 

disorders. Particularly, we used the adult fly wing to evaluate phenotypes in a non-neuronal 99 

tissue, and observed a wide range of robust qualitative and quantitative wing phenotypes among 100 

the 136 RNA interference (RNAi) lines tested in our study, including size defects, ectopic and 101 

missing veins, severe wrinkling, and lethality. Further analysis of cellular phenotypes revealed 102 

disruptions in conserved developmental processes in the larval imaginal wing disc, including 103 

altered levels of cell proliferation and apoptosis as well as altered expression patterns in the Wnt, 104 

Hedgehog, and Notch signaling pathways. However, we found no correlation in the severity of 105 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


6 
 

 

phenotypes observed with wing and eye-specific knockdown. Our findings were further 106 

supported by differences in expression patterns and network connectivity of human CNV genes 107 

across different tissues. Our analysis emphasizes the importance of multiple genes within each 108 

CNV region towards both global and tissue-specific developmental processes.   109 
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RESULTS 110 

Knockdown of fly homologs of CNV genes contribute to a range of wing defects  111 

Using an RNAi based analysis driven by the bxMS1096-GAL4 wing-specific driver, we tested a 112 

total of 136 RNAi lines for 59 homologs of genes within pathogenic CNV regions (chromosomal 113 

locations 1q21.1, 3q29, 7q11.23, 15q11.2, 15q13.3, 16p11.2, distal 16p11.2, 16p12.1, 16p13.11, 114 

and 17q12)  and 20 homologs of genes associated with neurodevelopmental disorders (Supp. 115 

Data 1). Fly homologs of these genes were identified using the DIOPT orthology prediction tool 116 

[41]. We list both the human gene name and the fly gene name for each tested gene as HUMAN 117 

GENE/Fly gene (i.e. KCTD13/CG10465) as well as the human CNV region for context at first 118 

instance. We scored 20-25 adult wings for five distinct wing phenotypes in each non-lethal 119 

RNAi line, including wrinkled wing, discoloration, ectopic veins, missing veins, and bristle 120 

planar polarity phenotypes (Fig. 1A; Supp. Data 2). We first categorized each wing phenotype 121 

based on their severity and performed k-means clustering analysis to categorize each RNAi line 122 

by their overall phenotype severity (Fig. 1B-C). We observed four clusters of RNAi lines: 75 123 

lines with no observable qualitative phenotypes (55.2%), 24 lines with mild phenotypes (17.7%), 124 

10 lines with moderate phenotypes (7.4%), 21 lines with severe phenotypes (15.4%), and 6 lines 125 

with lethal phenotypes (4.4%), including ACACA/ACC within 17q12, DLG1/dlg1 within 3q29, 126 

and STX1A/Syx1A within 7q11.23 (Fig. 1B-D; Supp. Data 2). We observed severe wrinkled 127 

wing phenotypes for 13/79 fly homologs, including PPP4C/Pp4-19C within 16p11.2, 128 

ATXN2L/Atx2 within distal 16p11.2, AATF/Aatf within 17q12, and MFI2/Tsf2 within 3q29 (Fig. 129 

2A-B, Supp. Data 3). Interestingly, seven out of ten CNV regions contained at least one 130 

homolog that showed lethality or severe wing phenotypes, and five CNV regions (3q29, 16p11.2, 131 

distal 16p11.2, 16p12.1, and 17q12) had multiple homologs showing lethality or severe wing 132 
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phenotypes (Fig. 2A, Supp. Data 3). For example, RNAi lines for both UQCRC2/UQCR-C2 and 133 

POLR3E/Sin within 16p12.1 showed lethality. Within the 3q29 region, NCBP2/Cbp20 and 134 

MFI2/Tsf2 showed severe phenotypes while DLG1/dlg1 showed lethality. In contrast, 12/20 135 

known neurodevelopmental genes showed no observable wing phenotypes, suggesting that these 136 

genes could be responsible for neuronal-specific phenotypes (Fig. 2B, Supp. Data 3). We note 137 

that 18/79 fly homologs showed discordant phenotypes between two or more RNAi lines for the 138 

same gene, which could be due to differences in expression of the RNAi construct among these 139 

lines (Supp. Data 3).  140 

Certain qualitative phenotypes exhibited higher frequency in males compared to females. 141 

For example, discoloration (87 lines in males compared to 56 lines in females; p=1.315×10-4, 142 

two-tailed Fisher’s exact test) and missing vein phenotypes (92 lines in males compared to 29 143 

lines in females; p=2.848×10-16, two-tailed Fisher’s exact test) at any degree of severity were 144 

more commonly observed in males than females (Supp. Data 2). In particular, 25/92 lines in 145 

males (compared to 1/29 in females) showed a total loss of the anterior crossvein (ACV) (Supp. 146 

Data 2). We further identified 17 RNAi lines that were lethal in males with wing-specific 147 

knockdown of fly homologs. While higher frequencies of wing phenotypes in males could be 148 

due to a sex-specific bias of developmental phenotypes, the increased severity we observed in 149 

males is most likely due to a stronger RNAi knockdown caused by an X-linked dosage 150 

compensation, as the bxMS1096-GAL4 driver is inserted on the fly X chromosome [42,43]. 151 

Next, we measured the total adult wing area and the lengths of six veins (longitudinal L2, 152 

L3, L4, L5, ACV, and posterior crossvein or PCV) in the adult wing for each of the tested RNAi 153 

lines that did not show lethality (or severe wrinkled phenotypes for vein length measurements) 154 

(Fig. 3A). Overall, we identified significant wing measurement changes for 89 RNAi lines 155 
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compared to controls, which included lines that did not have an observable qualitative wing 156 

phenotype (Fig. 1D). A summary of L3 vein lengths is presented in Fig. 3B, and the 157 

measurements for the remaining five veins are presented in Supp. Figure 1 and Supp. Data. 2. 158 

We found that 33/61 of the homologs (54%) showed significant changes in L3 vein length, 159 

including 20 homologs with longer vein lengths and 13 homologs with shorter vein lengths 160 

(Supp. Data 3). Additionally, 41/74 of the fly homologs (55%) showed changes in wing area 161 

(Supp. Data 3), including 36 homologs which showed smaller wing areas and five homologs 162 

showed larger wing areas compared to controls (Supp. Data 3). For example, both homologs of 163 

genes within 1q21.1 region, BCL9/lgs and FMO5/Fmo-2, showed decreased wing area and vein 164 

length, potentially mirroring the reduced body length phenotype observed in mouse models of 165 

the deletion [44] (Fig. 3B-C). In addition, PAK2/Pak within 3q29, TBX1/org-1 within 22q11.2, 166 

autism-associated CHD8/kis, and microcephaly-associated ASPM/asp also showed smaller wing 167 

areas and vein lengths (Fig. 3B-C). In contrast, TRPM1/Trpm within 15q13.3 and the cell 168 

proliferation gene PTEN/Pten [45] both showed larger wing areas and vein lengths (Fig. 3B-C). 169 

Furthermore, we identified eight homologs that showed no qualitative wing phenotypes but had 170 

significant changes in wing areas and vein lengths (Supp. Data 3), including CCDC101/Sgf29 in 171 

distal 16p11.2, FMO5/Fmo-2, TRPM1/Trpm, DHRS11/CG9150 in 17q12, and NSUN5/Nsun5 in 172 

7q11.23 (Fig. 3B-C; Supp. Data 3). These results indicate that homologs of certain CNV genes 173 

may influence variations in size without causing adverse wing phenotypes, and may be 174 

specifically implicated towards cellular growth mechanisms.  175 

 176 

 177 

 178 
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Homologs of CNV genes show global and tissue-specific effects during development 179 

We previously showed that many of the same fly homologs of CNV genes that showed wing 180 

defects in the current study also contributed towards neuronal phenotypes in the fly eye [29,30], 181 

suggesting a role for these genes in global development. We therefore performed ubiquitous and 182 

eye-specific knockdown of fly homologs to assess tissue-specific effects in comparison to the 183 

wing phenotypes. First, we used the da-GAL4 driver at 25°C to drive ubiquitous knockdown of 184 

RNAi lines for 31 homologs of CNV genes, including 19 that were previously published [29,30], 185 

and observed complete or partial lethality at larval and pupal stages with knockdown of 10/31 186 

homologs (32.3%) (Fig. 4A). Lethal phenotypes have also been documented for 43/130 187 

knockout mouse models of individual CNV genes as well as for the entire deletion (Supp. Data 188 

4). For example, mouse models heterozygous for the 16p11.2 deletion showed partial neonatal 189 

lethality, while knockout mouse models of four individual genes within the 16p11.2 region, 190 

including Ppp4C-/- and Kif22-/-, showed embryonic lethality [13,46,47]. In our study, the 191 

DLG1/dlg1 line that showed lethality with wing-specific knockdown also exhibited larval 192 

lethality with ubiquitous knockdown, indicating its role in global development (Fig. 4A). In 193 

addition, six homologs that showed severe wing phenotypes also showed larval or pupal lethality 194 

with ubiquitous knockdown, including ALDOA/Ald and PPP4C/Pp4-19C within 16p11.2 and 195 

ATXN2L/Atx2 and TUFM/mEFTu1 within distal 16p11.2 (Fig. 4A). The remaining homologs 196 

that showed lethality with ubiquitous knockdown showed at least a mild qualitative or 197 

quantitative wing phenotype. 198 

 We next compared the phenotypes observed with wing-specific knockdown of fly 199 

homologs to their corresponding eye-specific knockdowns to evaluate tissue-specific effects. To 200 

quantitatively assess the phenotypic severity of cellular defects with eye-specific knockdown of 201 
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fly homologs, we developed a tool called Flynotyper [48] that determines the degree of 202 

disorganization among the ommatidia in the adult eye. We analyzed phenotypic scores obtained 203 

from Flynotyper for 66 RNAi lines of 45 fly homologs, including from previously-published 204 

datasets [29,30,48]. We found that 37/45 homologs (82.2%) exhibited both eye and wing-205 

specific defects (Fig. 4B, Supp. Fig. 2, Supp. Data 5). Two homologs with significant eye 206 

phenotypes did not show any wing phenotypes, including SPNS1/spin within distal 16p11.2 and 207 

microcephaly-associated SLC25A19/Tpc1 [49], while five homologs only showed wing-specific 208 

phenotypes, including CDIPT/Pis and YPEL3/CG15309 within 16p11.2, FBXO45/Fsn and 209 

OSTalpha/CG6836 within 3q29, and UQCRC2/UQCR-C2 (Fig. 4B, Supp. Fig. 2). In particular, 210 

UQCRC2/UQCR-C2 showed lethality with wing-specific knockdown, suggesting potential 211 

tissue-specific effects of this gene in non-neuronal cells (Fig. 4B). While most homologs 212 

contributed towards both eye and wing-specific phenotypes, we observed a wide range of 213 

severity in eye phenotypes that did not correlate with the severity of quantitative or qualitative 214 

wing phenotypes (Fig. 4C). For example, TUFM/mEFTu1 showed a severe wing phenotype but 215 

only a mild increase in eye phenotypic score, while SH2B1/Lnk, also within the distal 16p11.2 216 

region, showed severe rough eye phenotypes but only a mild increase in wing size (Fig. 4D). 217 

Similarly, BCL9/lgs also showed opposing tissue-specific effects with mild qualitative wing 218 

phenotype and severe eye phenotype, suggesting that the role of these homologs towards 219 

development differs across tissue types. 220 

 221 

CNV genes show variable expression across different tissues in flies and humans 222 

To assess how expression levels of CNV genes vary across different tissues, we first examined 223 

the expression patterns of fly homologs in larval and adult tissues using the FlyAtlas Anatomical 224 
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Microarray dataset [50]. We found that 76/77 homologs with available data were expressed in at 225 

least one larval and adult tissue (Supp. Fig. 3, Supp. Data 6). In general, we did not observe a 226 

correlation between wing phenotype severity and expression patterns of homologs in larval or 227 

adult tissues (Fig. 5A). For example, 58/77 homologs (75.3%) showed ubiquitous larval 228 

expression, including both fly homologs that showed no qualitative wing phenotypes, such as 229 

KCTD13/CG10465 within 16p11.2 and FBXO45/Fsn, and those with severe wing phenotypes, 230 

such as PPP4C/Pp4-19C and NCBP2/Cbp20 (Fig. 5A, Supp. Fig. 3). Furthermore, 30/39 231 

homologs (76.9%) that showed eye phenotypes also had ubiquitous larval expression, providing 232 

further support to the observation that genes causing neuronal phenotypes may also contribute to 233 

developmental phenotypes in other tissues (Supp. Data 5). Of note, 9/77 homologs (11.7%) did 234 

not have any expression in the larval central nervous system, including FMO5/Fmo-2, 235 

BDH1/CG8888 within 3q29, and TBX6/Doc2 within 16p11.2 (Fig. 5A, Supp. Fig. 3). However, 236 

we observed wing phenotypes for 8/9 of these homologs, suggesting that they may contribute to 237 

tissue-specific phenotypes outside of the nervous system. Except for the epilepsy-associated 238 

SCN1A/para [51], which was exclusively expressed in both the larval central nervous system 239 

(CNS) and adult brain tissues, other tested neurodevelopmental genes were also expressed in 240 

non-neuronal tissues (Fig. 5A).  241 

We further used the GTEx Consortium dataset [52] to examine tissue-specific expression 242 

of 150 human CNV and known neurodevelopmental genes across six tissues including brain, 243 

heart, kidney, lung, liver, and muscle. We found 121 genes that were expressed in at least one 244 

adult tissue, including 49 genes (32.7%) that showed ubiquitous expression across all six tissues 245 

(Supp. Data 6). Of the 112 genes expressed in non-neuronal tissues, 34 did not have any 246 

neuronal expression, including TBX1, FMO5 and GJA5 within 1q21.1, and ATP2A1 within distal 247 
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16p11.2 (Fig. 5B, Supp. Data 6). FMO5 and TBX1 also showed non-neuronal expression in 248 

Drosophila tissues, suggesting that their tissue-specific expression is highly conserved (Fig. 5A). 249 

Other genes showing ubiquitous expression also had preferentially high expression for specific 250 

non-neuronal tissues, including ALDOA and UQCRC2 for muscle and heart (Fig. 5B). In 251 

contrast, we found nine genes that were expressed only in the adult brain, including FAM57B 252 

and DOC2A within 16p11.2, as well as SCN1A, which showed similar CNS-only expression in 253 

Drosophila tissues (Fig. 5B, Supp. Data 6). 254 

 255 

Knockdown of fly homologs of CNV genes lead to disruption of cellular processes 256 

The disruption of basic cellular processes in neuronal cells, such as cell proliferation and 257 

apoptosis, have been implicated in neurodevelopmental disorders [53–55]. We previously 258 

identified defects in cell proliferation among photoreceptors neurons in larval eye discs with 259 

knockdown of 16p11.2 homologs, as well as increased apoptosis with knockdown of a subset of 260 

3q29 homologs [29,30]. Here, we explored how these basic cellular processes are altered in non-261 

neuronal cells, specifically in the developing wing disc, with knockdown of homologs of CNV 262 

genes. We targeted 27 fly homologs that showed a range of adult wing phenotypes for changes in 263 

cell proliferation and apoptosis, using anti-phospho-Histone H3 Ser10 (pH3) and anti-264 

Drosophila caspase-1 (dcp1), respectively, in the third instar larval wing discs. We identified 265 

23/27 homologs that showed significant increases in apoptotic cells compared to controls, 266 

including seven homologs, such as PPP4C/Pp4-19C, ATXN2L/Atx2, and AATF/Aatf , which 267 

showed dcp1 staining across the entire larval wing pouch (Fig. 6A-B, Supp. Figs. 4-5, Supp. 268 

Data 7). In addition, 16/27 genes showed decreased levels of proliferation, including eight 269 

homologs which also showed apoptosis defects, such as CYFIP1/Sra-1 within 15q11.2, 270 
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SH2B1/Lnk, and the microcephaly gene KIF11/Klp61F (Fig. 6A and 6C, Supp. Figs. 4-5, Supp. 271 

Data 7). All six of the tested homologs with severe adult wing phenotypes showed both 272 

increased apoptosis and decreased proliferation (Supp. Data 7). Similarly, 3/4 homologs of 273 

genes showing lethality with wing-specific knockdown also showed defects in apoptosis or 274 

proliferation, with the exception of ACACA/ACC (Supp. Figure 4, Supp. Data 7). As bxMS1096-275 

GAL4 is located on the X-chromosome, we expected to see more severe defects in males 276 

compared with females with knockdown of homologs due to the X-linked dosage compensation 277 

[42,43]. However, knockdown of 3/11 tested homologs with sex-specific differences in adult 278 

wing phenotypes, including BCL9/lgs, CYFIP1/Sra-1, and DNAJC30/CG11035 within 7q11.23, 279 

showed significantly decreased levels of cell proliferation in females but no change for males 280 

compared to their respective controls, suggesting a sex-specific effect of these genes for cell 281 

proliferation (Supp. Fig. 5, Supp. Data 7). Overall, our results suggest that cell proliferation and 282 

apoptosis are disrupted by reduced expression of homologs of CNV genes in both neuronal and 283 

non-neuronal tissues. 284 

 285 

Knockdown of homologs of CNV genes disrupt conserved signaling pathways  286 

Several conserved signaling pathways that are active in a spatial and temporal manner in the 287 

larval wing disc, such as Wnt, Hedgehog, BMP, and Notch signaling, regulate the anterior-288 

posterior (A/P) and dorsal-ventral (D/V) boundaries to determine accurate morphology and vein 289 

patterning in the adult wing [36,37,56–58]. For example, Wnt and Notch signaling pathways 290 

both act along the D/V boundary to determine cell fate [59,60], while Hedgehog signaling is 291 

dependent upon expression of both engrailed in the posterior compartment and patched along the 292 

A/P border [61,62]. Furthermore, O’Roak and colleagues showed that genes identified from de 293 
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novo mutations in patients with autism are linked to β-catenin/Wnt pathway [63]. In addition, 294 

familial loss-of-function mutations in the human hedgehog signaling pathway gene PTCH1 are 295 

implicated in basal cell nevus syndrome, leading to basal cell carcinoma [64,65]. 296 

Based on adult wing phenotypes and disruptions to cellular processes, we next tested 297 

whether knockdown of 14 fly homologs disrupt conserved signaling pathways in the third instar 298 

larval wing disc (Supp. Data 7). In particular, we evaluated the role of Wnt, Hedgehog, and 299 

Notch signaling pathways by testing the expression patterns of four key proteins within these 300 

pathways, including wingless (Wnt), patched (Hedgehog), engrailed (Hedgehog), and delta 301 

(Notch). We found that 9/14 homologs, including 8/10 homologs showing severe wing 302 

phenotypes or lethality, exhibited disruptions in at least one signaling pathway. For example, five 303 

homologs with severe or lethal phenotypes showed disruptions of all four signaling pathways, 304 

including AATF/Aatf, NCBP2/Cbp20, POLR3E/Sin, PPP4C/Pp4-19C, and KIF11/Klp61F (Fig. 305 

7, Supp. Data 7). Our observations are in concordance with previous findings by Swarup and 306 

colleagues, who showed that PPP4C/Pp4-19C is a candidate regulator of Wnt and Notch 307 

signaling pathways in Drosophila larval wing discs [66]. Furthermore, two genes from the 3q29 308 

region, DLG1/dlg1 and MFI2/Tsf2, showed altered expression patterns for delta and patched but 309 

not for engrailed, indicating that they selectively interact with the Hedgehog as well as Notch 310 

signaling pathway (Supp. Fig. 6). In fact, Six and colleagues showed that Dlg1 directly binds to 311 

the PDZ-binding domain of Delta1 [67]. In contrast, ACACA/ACC and UQCRC2/UQCR-C2 312 

showed no changes in expression patterns for any of the four signaling proteins tested, 313 

suggesting that the observed lethality could be due to other cellular mechanisms (Supp. Fig. 6). 314 

We conclude that several homologs disrupt the expression of key proteins in signaling pathways 315 
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in the developing larval wing discs, potentially accounting for the developmental defects 316 

observed in the adult wings. 317 

 318 

Connectivity patterns of CNV genes vary across human tissue-specific networks 319 

We examined patterns of connectivity for the nine candidate genes, based on the disruptions of 320 

signaling pathways identified in the developing Drosophila wing discs, within the context of 321 

human brain, heart, and kidney-specific gene interaction networks [68]. These tissue-specific 322 

networks were constructed using Bayesian classifier-generated probabilities for pairwise genetic 323 

interactions based on co-expression data [68]. We calculated the lengths of the shortest paths 324 

between each candidate gene and 267 Wnt, Notch, and Hedgehog pathway genes in each 325 

network as a proxy for connectivity (Supp. Data 8). In all three networks, each of the candidate 326 

genes were connected to a majority of the tested signaling pathway genes (Fig. 8A, Supp. Fig. 327 

7). Interestingly, we observed a higher connectivity (i.e. shorter path distances) between 328 

candidate genes and Wnt and Hedgehog pathway genes in the brain-specific network compared 329 

to the heart and kidney-specific networks (Fig. 8B). We further identified enrichments for genes 330 

involved in specific biological processes among the connector genes that were located in the 331 

shortest paths within neuronal and non-neuronal tissue-specific networks (Fig. 8C, Supp. Data 332 

8). For example, axon-dendrite transport, dopaminergic signaling, and signal transduction 333 

functions were enriched among connector genes only for the brain-specific network, while 334 

organelle organization and protein ubiquitination were enriched among connector genes only for 335 

kidney and heart networks (Fig. 8C). However, several core biological processes, such as cell 336 

cycle, protein metabolism, transcriptional regulation, and RNA processing/splicing, were 337 

enriched among connector genes within all three tissue-specific networks (Fig. 8C). Our analysis 338 
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highlights that human CNV genes potentially interact with developmental signaling pathways in 339 

a ubiquitous manner, but may affect different biological processes in neuronal and non-neuronal 340 

tissues.  341 
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DISCUSSION  342 

We used the Drosophila wing as a model to assess how homologs of key CNV genes contribute 343 

towards non-neuronal phenotypes. We tested fly homologs of 79 genes and identified multiple 344 

homologs within each CNV region that exhibited strong phenotypes indicative of developmental 345 

disruptions. Several themes have emerged from our study highlighting the importance of fly 346 

homologs of CNV genes towards both global and tissue-specific phenotypes. 347 

First, we found that fly homologs of CNV genes contribute towards developmental 348 

phenotypes through ubiquitous roles in neuronal and non-neuronal tissues. Although we did not 349 

study models for the entire CNV, nearly all individual fly homologs of CNV genes contribute to 350 

wing-specific developmental defects. It is likely that these genes may also contribute to 351 

additional phenotypes in other tissues that we did not assess. In fact, a subset of these homologs 352 

also showed early lethality with ubiquitous knockdown in addition to severe or lethal wing-353 

specific phenotypes. However, we found no correlation between the severity of the eye and wing 354 

phenotypes, suggesting tissue-specific effects of these homologs towards developmental defects. 355 

In contrast, fly homologs of known neurodevelopmental genes generally showed milder wing 356 

phenotypes compared with eye phenotypes, indicating a more neuronal role for these genes. 357 

While our study only examined a subset of CNV genes with Drosophila homologs, phenotypic 358 

data from knockout mouse models also support a global developmental role for individual CNV 359 

genes. In fact, 44/130 knockout models of CNV genes within the Mouse Genome Informatics 360 

(MGI) database [69] exhibited non-neuronal phenotypes, including 20 homologs of CNV genes 361 

that showed both neuronal and non-neuronal phenotypes (Supp. Data 4). For example, knockout 362 

mouse models of Dlg1-/- show defects in dendritic growth and branching in the developing 363 

nervous system, in addition to craniofacial features and multiple kidney and urinary tract defects 364 
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[70–73]. Furthermore, Chapman and colleagues showed that knockout of Tbx6-/- caused defects 365 

in mesodermal and neuronal differentiation early in development, leading to abnormal vascular, 366 

tail bud, and neural tube morphology [74]. These observations further support our findings that 367 

most fly homologs of CNV genes have a global role in development that could account for the 368 

observed non-neuronal defects.  369 

 Second, based on tissue-specific phenotypes, we identified fly homologs of CNV genes 370 

that are key regulators of conserved cellular processes important for development.  For example, 371 

9/10 homologs with severe or lethal adult wing phenotypes also exhibited defects in cell 372 

proliferation and apoptosis during development. In fact, we found concordance between cellular 373 

processes affected by wing and eye-specific knockdown of homologs of genes within 16p11.2 374 

and 3q29 regions, including decreased proliferation for MAPK3/rl and increased apoptosis for 375 

NCBP2/Cbp20 and DLG1/dlg1 [29,30]. While eye-specific knockdown of BDH1/CG8888 376 

showed decreased cell proliferation in larval eye discs [30], we found increased cell proliferation 377 

with wing-specific knockdown, suggesting a tissue-specific effect for this gene. Notably, at least 378 

one fly homolog per CNV region showed defects in cell proliferation or apoptosis, suggesting 379 

these cellular processes are important for development in both neuronal and non-neuronal 380 

tissues. For example, ATXN2L/Atx2, SH2B1/Lnk, and CCDC101/Sgf29 each showed decreased 381 

proliferation and increased apoptosis, suggesting a potential shared cellular mechanism for 382 

several genes within the distal 16p11.2 deletion. Furthermore, a subset of these genes also 383 

disrupted multiple signaling pathways, indicating a potential role for these homologs as key 384 

regulators of developmental processes. We specifically identified five homologs whose 385 

knockdown caused disruptions of Wnt, Notch, and hedgehog signaling pathways. Each of these 386 

genes have important roles in cell cycle regulation, apoptosis, transcription, or RNA processing, 387 
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based on Gene Ontology annotations [75,76]. In fact, we found that the RNA transport protein 388 

NCBP2/Cbp20 [77], which we recently identified as a key modifier gene for the 3q29 deletion 389 

[30], interfaced with all three signaling pathways. Furthermore, AATF disrupts apoptosis and 390 

promotes cell cycle progression through displacement of HDAC1 [78–80], while PPP4C 391 

promotes spindle organization at the centromeres during mitosis [81]. While we only evaluated 392 

the role of these genes towards development in a single fly tissue, our additional analysis of 393 

human gene interaction networks showed strong connectivity between the CNV genes and 394 

signaling pathways in multiple neuronal and non-neuronal human tissues. In fact, cell cycle 395 

genes were enriched among the connector genes in all three tissue-specific networks, further 396 

emphasizing the role of cell cycle processes towards developmental phenotypes. Notably, we 397 

also observed certain biological processes enriched among connector genes that were specific to 398 

neuronal or non-neuronal tissues, indicating that genes within CNV regions may affect different 399 

biological processes in a tissue-specific manner.  400 

Overall, we show that fly homologs of most CNV genes contribute towards global 401 

developmental phenotypes, although exactly how they contribute toward such phenotypes varies 402 

between neuronal and non-neuronal tissues. Previous functional studies for CNV disorders have 403 

focused primarily on identifying candidate genes for the observed neuronal phenotypes. In this 404 

study, we identified several homologs of CNV genes that are responsible for non-neuronal 405 

defects, as well as novel associations between these homologs and conserved biological 406 

processes and pathways. We therefore propose that multiple genes within each CNV region 407 

differentially disrupt conserved cellular pathways and biological processes in neuronal versus 408 

non-neuronal tissues during development (Fig. 9). These results are in line with a multigenic 409 

model for CNV disorders, as opposed to models where individual causative genes are 410 
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responsible for specific phenotypes [29,30,82]. Our study further exemplifies the utility of 411 

evaluating non-neuronal phenotypes in addition to neuronal phenotypes in functional models of 412 

individual genes and CNV regions associated with developmental disorders, including future 413 

studies in mammalian or cellular model systems. Further studies exploring how CNV genes 414 

interact with each other and with other developmental pathways could more fully explain the 415 

conserved mechanisms underlying global developmental defects and identify potential 416 

therapeutic targets for these disorders.  417 

  418 
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MATERIALS AND METHODS 419 

Fly stocks and genetics 420 

We tested 59 Drosophila homologs for 130 human genes that span across 10 pathogenic CNV 421 

regions associated with neurodevelopmental disorders (1q21.1, 3q29, 7q11.23, 15q11.2, 15q13.3, 422 

16p11.2, distal 16p11.2, 16p12.1, 16p13.11, and 17q12) [83] (Supp. Data 1). In addition, we 423 

evaluated fly homologs of 20 human genes known to be in involved in neurodevelopmental 424 

disorders [48,84] (Supp. Data 1). These include genes involved in beta-catenin signaling 425 

pathway (5 genes), core genes implicated in neurodevelopmental disorders (8 genes), and genes 426 

associated with microcephaly (7 genes) [85]. We used the DRSC Integrative Ortholog Prediction 427 

Tool (DIOPT, v.7.1) to identify the fly homologs for each human gene [41]  (Supp. Data 1).  428 

To knockdown individual genes in specific tissues, we used RNA interference (RNAi) 429 

and the UAS-GAL4 system (Fig. 1A), a well-established tool that allows for tissue-specific 430 

expression of a gene of interest [86]. RNAi lines were obtained from Vienna Drosophila 431 

Resource Center (VDRC) that include both GD and KK lines. We tested a total of 136 lines in 432 

our final data analysis (Supp. Data 9), after eliminating KK lines with additional insertion that 433 

drives the overexpression of the Tiptop (tio) transcription factor [87,88]. A complete list of stock 434 

numbers and full genotypes for all RNAi lines used in this study is presented in Supp. Data 9. 435 

We used the bxMS1096-GAL4/FM7c;;UAS-Dicer2/TM6B driver for wing-specific knockdown and 436 

w1118;GMR-GAL4;UAS-Dicer2 driver (Claire Thomas, Penn State University) for eye-specific 437 

knockdown of RNAi lines. Ubiquitous knockdown experiments were performed using the w;da-438 

GAL4;+ driver (Scott Selleck, Penn State University). For all experiments, we used appropriate 439 

GD (w1118, VDRC# 60000) or KK (y,w1118; P{attP,y+,w3`}, VDRC# 60100) lines as controls to 440 

compare against lines with knockdown of individual homologs. All fly lines were reared on 441 
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standard yeast Drosophila medium at room temperature. All crosses were set and maintained at 442 

25°C, except for the eye knockdown experiments which were maintained at 30°C.  443 

 444 

Phenotypic analysis of adult wing images 445 

Adult progeny were isolated from crosses between RNAi lines and bxMS1096-GAL4 driver shortly 446 

after eclosion, and kept at 25°C until day 2-5 (Fig. 1A). At that point, the progeny were frozen at 447 

-80°C, and were then moved to -20°C prior to imaging and storage. Approximately 20-25 448 

progeny, both male and female, were collected for each RNAi line tested. The adult wings were 449 

plucked from frozen flies and mounted on a glass slide. The slides were covered with a coverslip 450 

and sealed using clear nail polish. Adult wing images were captured using a Zeiss Discovery 451 

V20 stereoscope (Zeiss, Thornwood, NY, USA), with a ProgRes Speed XT Core 3 camera and 452 

CapturePro v.2.8.8 software (Jenoptik AG, Jena, Germany) at 40X magnification. 453 

For each non-lethal RNAi line, we scored the adult wing images for five qualitative 454 

phenotypes, including wrinkled wing, discoloration, missing veins, ectopic veins, and bristle 455 

planar polarity defects, on a scale of 1 (no phenotype) to 5 (lethal) (Fig. 2C). Lines showing 456 

severely wrinkled wings or lethality were scored as 4 (severe) or 5 (lethal) for all five 457 

phenotypes. We calculated the frequency of each phenotypic score (i.e. mild bristle polarity, 458 

moderate discoloration) across all of the wing images for each line (Fig. 2A-B), and then 459 

performed k-means clustering of these values to generate five clusters for overall wing 460 

phenotypes (Fig. 1C). For quantitative analysis of wing phenotypes, we used the Fiji ImageJ 461 

software [89] to calculate the wing area using the Measure Area tool, and calculated the lengths 462 

of longitudinal veins L2, L3, L4, and L5 as well as the anterior and posterior crossveins (ACV 463 

and PCV), by tracing individual veins using the Segmented Line tool (Fig. 3A, Supp. Data 2). 464 
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We determined discordant homologs when RNAi lines for the same homologs showed 465 

inconsistent wing phenotypes. For each homolog with multiple RNAi lines, we checked 466 

discordance among RNAi lines for no phenotype versus any qualitative or quantitative 467 

phenotypes, followed by discordance for small or large wing measurement phenotypes (Supp. 468 

Data 3). 469 

 470 

Phenotypic analysis of adult eye images 471 

We crossed RNAi lines with GMR-GAL4 to achieve eye-specific knockdown of homologs of 472 

CNV and known neurodevelopmental genes. Adult 2-3-day old female progenies from the 473 

crosses were collected, immobilized by freezing at -80°C, and then moved to -20°C prior to 474 

imaging and storage. Flies were mounted on Blu-tac (Bostik Inc, Wauwatosa, WI, USA) and 475 

imaged using an Olympus BX53 compound microscope with LMPLan N 20X air objective using 476 

a DP73 c-mount camera at 0.5X magnification (Olympus Corporation, Tokyo, Japan). CellSens 477 

Dimension software (Olympus Corporation, Tokyo, Japan) was used to capture the eye images, 478 

which were then stacked using the Zerene Stacker software (Zerene Systems LLC, Richland, 479 

WA, USA). All eye images presented in this study are maximum projections of 20 consecutive 480 

optical z-sections, at a z-step size of 12.1μm. Finally. we used our computational method called 481 

Flynotyper (https://flynotyper.sourceforge.net) to quantify the degree of rough eye phenotypes 482 

present due to knockdown of homologs of CNV or neurodevelopmental genes [48]. Flynotyper 483 

scores for homologs of 16p11.2 and 3q29, as well as select core neurodevelopmental genes, were 484 

derived from our previous studies [29,30,48]. 485 

 486 

 487 
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Immunohistochemistry 488 

Wing imaginal discs from third instar larvae were dissected in 1X PBS. The tissues were fixed 489 

using 4% paraformaldehyde and blocked using 1% bovine serum albumin (BSA). The wing discs 490 

were incubated with primary antibodies using appropriate dilutions overnight at 4°C. We used 491 

the following primary antibodies: mouse monoclonal anti-pHistone3 (S10) (1:100 dilutions, Cell 492 

Signaling 9706L), rabbit polyclonal anti-cleaved Drosophila Dcp1 (Asp216) (1:100 dilutions, 493 

Cell Signaling 9578S), mouse monoclonal anti-Wingless (1:200 dilutions, DSHB, 4D4), mouse 494 

monoclonal anti-Patched (1:50 dilutions, DSHB, Drosophila Ptc/APA1), mouse monoclonal 495 

anti-Engrailed (1:50 dilutions, DSHB, 4D9), and mouse monoclonal anti-Delta (1:50 dilutions, 496 

DSHB, C594.9B). Following incubation with primary antibodies, the wing discs were washed 497 

and incubated with secondary antibodies at 1:200 dilution for two hours at room temperature. 498 

We used the following secondary antibodies: Alexa Fluor 647 dye goat anti-mouse (A21235, 499 

Molecular Probes by Invitrogen/Life Technologies), Alexa Fluor 568 dye goat anti-rabbit 500 

(A11036, Molecular Probes by Invitrogen/Life Technologies), and Alexa Fluor 568 dye goat 501 

anti-mouse (A11031, Molecular Probes by Invitrogen/Life Technologies).  All washes and 502 

antibody dilutions were made using 0.3% PBS with Triton-X.  503 

Third instar larvae wing imaginal discs were mounted in Prolong Gold antifade reagent 504 

with DAPI (Thermo Fisher Scientific, P36930) for imaging using an Olympus Fluoview FV1000 505 

laser scanning confocal microscope (Olympus America, Lake Success, NY). Images were 506 

acquired using FV10-ASW 2.1 software (Olympus, Waltham, MA, USA). Composite z-stack 507 

images were analyzed using the Fiji ImageJ software [89]. To calculate the number of pH3 508 

positive cells within the wing pouch area of the wing discs, we used the AnalyzeParticles 509 

function in ImageJ, while manual counting was used to quantify Dcp1 positive cells. We note 510 
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that cell proliferation and apoptosis staining for NCBP2/Cbp20, DLG1/dlg1, BDH1/CG8888, and 511 

FBXO45/Fsn were previously published[30]. 512 

 513 

Statistical analysis 514 

Significance for the wing area and vein length measurements, cell counts for proliferation and 515 

apoptosis, and Flynotyper scores were compared to appropriate GD or KK controls using one-516 

tailed or two-tailed Mann-Whitney tests. P-values for each set of experiments were corrected for 517 

multiple testing using Benjamini-Hochberg correction. All statistical and clustering analysis was 518 

performed using R v.3.6.1 (R Center for Statistical Computing, Vienna, Austria). Details for the 519 

statistical tests performed for each dataset are provided in Supp. Data 10. 520 

 521 

Expression data analysis 522 

We obtained tissue-specific expression data for fly homologs of CNV genes from the FlyAtlas 523 

Anatomical Microarray dataset [50]. Raw FPKM (fragments per kilobase of transcript per 524 

million reads) expression values for each tissue were categorized as follows: <10, no expression; 525 

10-100, low expression; 100-500, moderate expression; 500-1000, high expression; and >1000, 526 

very high expression (Supp. Data 6). The median expression among midgut, hindgut, 527 

Malpighian tube, and (for adult only) crop tissues was used to represent the overall gut 528 

expression. We similarly obtained human tissue-specific expression data for CNV genes from 529 

the GTEx Consortium v.1.2 RNA-Seq datasets [52]. Median TPM (transcripts per million reads) 530 

expression values for each tissue were categorized as follows: <3, no expression; 3-10, low 531 

expression; 10-25, moderate expression; 25-100, high expression; and >100, very high 532 

expression (Supp. Data 6). The median expression among all brain and heart sub-tissues was 533 
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used to represent brain and heart expression, while the median expression among all colon, 534 

esophagus, small intestine, and stomach sub-tissues was used to represent digestive tract 535 

expression. Preferential gene expression for a particular tissue within the GTEx dataset was 536 

determined if the expression values for that tissue were greater than the third quartile of all tissue 537 

expression values for that gene, plus 1.5 times the interquartile range. Venn diagrams were 538 

generated using the Venny webtool (http://bioinfogp.cnb.csic.es/tools/venny) (Supp. Fig. 3). 539 

 540 

Network analysis 541 

We obtained human tissue-specific gene interaction networks for brain, heart, and kidney tissues 542 

from the GIANT network database [68] within HumanBase (https://hb.flatironinstitute.org). 543 

These networks were built by training a Bayesian classifier based on tissue-specific gene co-544 

expression datasets, which then assigned a posterior probability for interactions between each 545 

pair of genes within the genome for a particular tissue. We downloaded the “Top edge” version 546 

of each tissue-specific network, and extracted all gene pairs with posterior probabilities >0.2 to 547 

create sub-networks containing the top ~0.5% tissue-specific interactions. Next, we identified the 548 

shortest paths in each sub-network between human CNV genes whose fly homologs disrupted 549 

signaling pathways in the larval wing disc and human genes within each disrupted pathway, 550 

using the inverse of the posterior probability as weights for each edge in the network. Gene sets 551 

from the human Notch (KEGG:map04330), Wnt (KEGG:map04310) and Hedgehog pathways 552 

(KEGG:map04340) were curated from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 553 

pathway database [90]. Using the NetworkX Python package [91], we calculated the shortest 554 

distance between each CNV gene and pathway gene, and identified connecting genes that were 555 

within each of the shortest paths for the three tissue-specific networks. We further tested for 556 
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enrichment of Gene Ontology (GO) terms (PantherDB GO-Slim) among the connector genes 557 

using the PantherDB Gene List Analysis tool [92]. Lists of the shortest paths and connector 558 

genes in each tissue-specific network, as well as enriched GO terms for sets of connector genes, 559 

are provided in Supp. Data 8. Gene networks were visualized using Cytoscape v.3.7.2 [93] 560 

using an edge-weighted spring embedded layout. 561 

  562 
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FIGURE LEGENDS  859 

Figure 1. Targeted analysis to identify global developmental phenotypes with knockdown 860 

of homologs of CNV genes. (A) Strategy for identifying non-neuronal phenotypes and 861 

underlying cellular mechanisms for homologs of CNV and known neurodevelopmental genes 862 

using the fly wing as a model system. We evaluated 59 Drosophila homologs of genes within 10 863 

CNV regions and 20 known neurodevelopmental genes (79 total homologs). Using the UAS-864 

GAL4 system with wing-specific bxMS1096 driver, we knocked down 136 individual RNAi lines 865 

for the CNV and neurodevelopmental homologs, and evaluated qualitative and quantitative 866 

phenotypes. We next clustered RNAi lines based on severity of qualitative phenotypes, and 867 

compared adult wing phenotypes to phenotypes observed with ubiquitous and eye-specific 868 

knockdown of homologs. Furthermore, we evaluated underlying cellular mechanisms for the 869 

observed wing-specific phenotypes, and examined the connectivity patterns of candidate 870 

homologs for developmental phenotypes in multiple human tissue-specific networks. (B) 871 

Representative brightfield images of adult wing phenotype severity observed with knockdown of 872 

homologs of CNV genes, based on clustering analysis, are shown. (C) Heatmap with k-means 873 

clustering of qualitative phenotypes in adult female wings across 136 RNAi lines is shown. The 874 

color of each cell represents the frequency of individual fly wings (n=20-25 adult wings) for 875 

each RNAi line (x-axis) that show a specific severity (no phenotype, mild, moderate, severe, 876 

lethal) for the five qualitative phenotypes assessed (y-axis; wrinkled wings, ectopic veins, 877 

missing veins, discoloration, bristle planar polarity), as detailed in Supp. Data 2. Based on these 878 

data, we identified clusters for no phenotype (n=75 lines), mild (n=24 lines), moderate (n=10 879 

lines), severe (n=21 lines), and lethal (n=6 lines). (D) Summary table of qualitative and 880 

quantitative adult wing phenotypes for all tested RNAi lines of homologs of CNV and 881 
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neurodevelopmental genes. Quantitative phenotype totals do not include lethal RNAi lines for 882 

both area and vein length. In addition, L3 vein length totals do not include severe RNAi lines. 883 

 884 

Figure 2. Qualitative adult wing phenotypes of Drosophila homologs of CNV and 885 

neurodevelopmental genes. Heatmaps representing the five qualitative adult wing phenotypes 886 

for all 136 RNAi lines, with (A) all 59 tested homologs for 10 CNV regions and (B) 20 887 

homologs for neurodevelopmental genes (β-catenin, core neurodevelopmental genes, and 888 

microcephaly genes), are shown. The color of each cell represents the frequency of each of the 889 

five qualitative phenotypes by severity (wrinkled wings, WR; ectopic veins, EV; missing veins, 890 

MV; discoloration, DC; bristle planar polarity, BP), ranging from no phenotype to lethal. (C) 891 

Representative brightfield images of adult fly wings (scale bar = 500µm) with wing-specific 892 

knockdown of homologs of CNV and neurodevelopmental genes showing the five assessed 893 

qualitative phenotypes, including discoloration, wrinkled wings, bristle polarity, ectopic veins, 894 

and missing veins are shown. The panels in the bxMS1096-GAL4 control and C6836KK112485 images 895 

highlight bristle planar polarity phenotypes for the representative images. Black arrowheads 896 

highlight ectopic veins and white arrowheads highlight missing veins. Genotypes for the images 897 

are: w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;UAS-RphGD7330 RNAi/+;UAS-898 

Dicer2/+, w1118/bxMS1096-GAL4;UAS-CG15528KK107736 RNAi/+; UAS-Dicer2/+, w1118/bxMS1096-899 

GAL4;UAS-CG6836KK112485 RNAi/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;+;UAS-900 

CG14182GD2738 RNAi/UAS-Dicer2, and w1118/bxMS1096-GAL4;UAS-kisKK100890 RNAi/+; UAS-901 

Dicer2/+. 902 

 903 
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Figure 3. Quantitative adult wing phenotypes of Drosophila homologs of CNV and 904 

neurodevelopmental genes. (A) Representative brightfield images of adult fly wings (scale bar 905 

= 500µm) with wing-specific knockdown of homologs of CNV and neurodevelopmental genes 906 

with size defects are shown. The bxMS1096-GAL4 control image highlights the six veins, including 907 

longitudinal veins L2, L3, L4, and L5 as well as the anterior and posterior crossveins (ACV and 908 

PCV), that were measured for quantitative analysis. The dotted line in the control image 909 

represents the total wing area calculated for each RNAi line. Genotypes for the images are: 910 

w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;UAS-Fmo-2KK109203 RNAi/+; UAS-911 

Dicer2/+, and w1118/bxMS1096-GAL4;+;UAS-TrpmGD4541 RNAi/UAS-Dicer2. (B) Boxplot of L3 912 

vein lengths for knockdown of select homologs in adult fly wings (n = 9-91, *p < 0.05, two-913 

tailed Mann–Whitney test with Benjamini-Hochberg correction). Vein measurements for all 914 

other longitudinal veins and crossveins (ACV and PCV) for these lines are represented in Supp 915 

Fig. 2. (C) Boxplot of wing areas for knockdown of select homologs in adult fly wings (n = 9-916 

91, *p < 0.05, two-tailed Mann–Whitney test with Benjamini-Hochberg correction). All boxplots 917 

indicate median (center line), 25th and 75th percentiles (bounds of box), and minimum and 918 

maximum (whiskers), with red dotted lines representing the control median. 919 

 920 

Figure 4. Comparison of wing-specific, eye-specific, and ubiquitous knockdown of 921 

homologs of CNV and known neurodevelopmental genes. (A) Heatmap with the penetrance 922 

of phenotypes with ubiquitous knockdown (da–GAL4) of select homologs of CNV genes, 923 

compared to their adult wing-specific (bxMS1096–GAL4) phenotypic severity is shown. (B) 924 

Boxplots of Flynotyper-derived phenotypic scores for adult eyes with eye-specific knockdown 925 

(GMR-GAL4) of select homologs of CNV and neurodevelopmental genes, normalized as fold-926 
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change (FC) to control values (n = 7–40, *p < 0.05, one-tailed Mann–Whitney test with 927 

Benjamini-Hochberg correction). The boxplots are arranged by severity of adult wing 928 

phenotypes observed for each RNAi line, while the Flynotyper phenotypic scores are categorized 929 

into four severity categories: no change (0–1.1 FC), mild (1.1–1.5 FC), moderate (1.5–2.0 FC), 930 

and severe (>2.0 FC). (C) Boxplot showing the average eye phenotypic scores for 66 RNAi lines 931 

of select homologs of CNV and neurodevelopmental genes, normalized as fold-change (FC) to 932 

control values, by wing phenotypic category (n=4–30 RNAi lines per group). We did not observe 933 

any significant changes in eye phenotype severity across the five wing phenotypic categories 934 

(Kruskal-Wallis rank sum test, p=0.567, df = 5, χ2 = 3.881). Examples of average eye phenotypic 935 

scores for RNAi lines with no phenotype (paraGD3392_1), mild (rlKK115768), and lethal (dlg1GD4689) 936 

wing phenotype severity are highlighted in the graph. All boxplots indicate median (center line), 937 

25th and 75th percentiles (bounds of box), and minimum and maximum (whiskers), with red 938 

dotted lines representing the control median. (D) Representative brightfield adult eye (scale 939 

bar = 100 µm) and adult wing (scale bar = 500µm) images with tissue-specific knockdown of 940 

homologs of CNV genes are shown. Genotypes for the eye images are: w1118;GMR-GAL4/+; 941 

UAS-Dicer2/+, w1118;GMR-GAL4/UAS-LnkKK105731 RNAi; UAS-Dicer2/+, w1118;GMR-942 

GAL4/UAS-mEFTu1GD16961 RNAi; UAS-Dicer2/+. Genotypes for the wing images are: 943 

w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-GAL4; UAS-LnkKK105731 RNAi/+; UAS-944 

Dicer2/+, and w1118/bxMS1096-GAL4; UAS-mEFTu1GD16961 RNAi/+; UAS-Dicer2/+. 945 

 946 

Figure 5. Expression patterns of Drosophila homologs and human CNV and 947 

neurodevelopmental genes across multiple tissues. (A) Heatmap with expression of fly 948 

homologs of select CNV and neurodevelopmental genes in multiple Drosophila larval and adult 949 
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tissues, derived from the FlyAtlas Anatomical Microarray dataset, compared with adult wing 950 

phenotype severity, is shown. Expression values are grouped into no expression (<10 fragments 951 

per kilobase of transcript per million reads, or FPKM), low (10–100 FPKM), moderate (100–500 952 

FPKM), high (500–1000 FPKM), and very high (>1000 FPKM) expression categories. (B) 953 

Heatmap with expression of select human CNV and neurodevelopmental genes in multiple adult 954 

tissues, derived from the Genotype-Tissue Expression (GTEx) dataset v.1.2, is shown. 955 

Expression values are grouped into no expression (<3 transcripts per million reads, or TPM), low 956 

(3–10 TPM), moderate (10–25 TPM), high (25–100 TPM), and very high (>100 TPM) 957 

expression categories. X symbols denote preferential expression in a particular tissue (see 958 

Methods). Expression data for all CNV and neurodevelopmental genes are provided in Supp. 959 

Data 6. 960 

 961 

Figure 6. Drosophila homologs of CNV and neurodevelopmental genes show altered levels 962 

of apoptosis and proliferation. (A) Larval imaginal wing discs (scale bar = 50 µm) stained with 963 

nuclear marker DAPI, apoptosis marker dcp1, and cell proliferation marker pH3 illustrate altered 964 

levels of apoptosis and cell proliferation due to wing-specific knockdown of select fly homologs 965 

of CNV genes. We quantified the number of stained cells within the wing pouch of the wing disc 966 

(white box), which becomes the adult wing. Additional representative images of select homologs 967 

are presented in Supp Fig. 5. Genotypes for the wing images are: w1118/bxMS1096-GAL4;+; UAS-968 

Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-AatfGD7229 RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;UAS-969 

Pp4-19CGD9561/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-Atx2GD11562 RNAi/UAS-Dicer2, 970 

and w1118/bxMS1096-GAL4;+; UAS-SinGD7027 RNAi/UAS-Dicer2. (B) Box plot of dcp1-positive 971 

cells in larval wing discs with knockdown of select fly homologs of CNV and 972 
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neurodevelopmental genes, normalized to controls (n = 7–18, *p < 0.05, two-tailed Mann–973 

Whitney test with Benjamini-Hochberg correction). We note that several RNAi lines showed 974 

severe dcp1 staining across the entire wing disc and could not be quantified. The number of dcp1 975 

positive cells were calculated manually. (C) Box plot of pH3-positive cells in the larval wing 976 

discs with knockdown of select fly homologs of CNV and neurodevelopmental genes, 977 

normalized to controls (n = 6–18, *p < 0.05, two-tailed Mann–Whitney test with Benjamini-978 

Hochberg correction). The number of pH3 positive cells were calculated using the 979 

AnalyzeParticles function in ImageJ. All boxplots indicate median (center line), 25th and 75th 980 

percentiles (bounds of box), and minimum and maximum (whiskers), with red dotted lines 981 

representing the control median.  982 

 983 

Figure 7. Candidate Drosophila homologs of genes within CNV regions interact with 984 

conserved signaling pathways. Larval imaginal wing discs (scale bar = 50 µm) stained with (A) 985 

wingless, (B) patched, (C) engrailed, and (D) delta illustrate disrupted expression patterns for 986 

proteins located within the Wnt (wingless), Hedgehog (patched and engrailed), and Notch (delta) 987 

signaling pathways due to wing-specific knockdown of select fly homologs of CNV and 988 

neurodevelopmental genes. Dotted yellow boxes represent expected expression patterns for 989 

signaling proteins in bxMS1096-GAL4 control images. White arrowheads and dotted white boxes 990 

highlight disruptions in expression patterns of signaling proteins with knockdown of CNV or 991 

neurodevelopmental genes. Additional representative images of select homologs are presented in 992 

Supp Fig. 7. Genotypes for the wing images are: w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, 993 

w1118/bxMS1096-GAL4;UAS-Pp4-19CGD9561/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;UAS-994 

Cbp20KK109448/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-SinGD7027 RNAi/UAS-Dicer2, 995 
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w1118/bxMS1096-GAL4;+; UAS-AatfGD7229 RNAi/UAS-Dicer2, and w1118/bxMS1096-GAL4;UAS-996 

Klp61FGD14149/+; UAS-Dicer2/+. 997 

 998 

Figure 8. Connectivity of human CNV genes with conserved signaling pathway genes in 999 

human tissue-specific networks. (A) Representative diagrams of eight human CNV and 1000 

neurodevelopmental genes whose fly homologs disrupt the Notch signaling pathway and 57 1001 

human Notch signaling genes within kidney, heart, and brain-specific gene interaction networks 1002 

are shown. Yellow nodes represent CNV and neurodevelopmental genes, pink nodes represent 1003 

Notch signaling pathway genes, and green nodes represent connector genes within the shortest 1004 

paths between CNV and Notch pathway genes. (B) Violin plots showing the average 1005 

connectivity (i.e. inverse of shortest path lengths) of CNV genes to genes in Hedgehog, Notch, 1006 

and Wnt signaling pathways across the tested tissue-specific networks (n=322–810 pairwise 1007 

interactions, *p < 0.05, two-tailed Welch’s t-test with Benjamini-Hochberg correction). (C) 1008 

Table showing enriched clusters of Gene Ontology (GO) Biological Process terms for connector 1009 

genes observed for each signaling pathway in the three tested tissue-specific networks, 1010 

categorized by enrichments in ubiquitous, neuronal, and non-neuronal tissues (p<0.05, Fisher’s 1011 

Exact test with Benjamini-Hochberg correction). 1012 

 1013 

Figure 9. A multigenic model for neuronal and non-neuronal phenotypes associated with 1014 

pathogenic CNVs. Schematic of a multigenic model for neuronal and non-neuronal phenotypes 1015 

associated with pathogenic CNVs. While a subset of genes within CNV regions contribute 1016 

towards tissue-specific phenotypes, a majority of genes contribute towards both neuronal and 1017 
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non-neuronal phenotypes through disruption of developmental signaling pathways and global 1018 

biological processes.  1019 
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SUPPLEMENTARY LEGENDS 1020 

Supplementary Figure 1. Quantitative vein length phenotypes for select Drosophila 1021 

homologs of CNV and neurodevelopmental genes. Boxplots of longitudinal veins (A) L2, (B) 1022 

L4, (C) L5, and (D) anterior crossvein (ACV) and (E) posterior crossvein (PCV) lengths for 1023 

knockdown of select homologs in adult fly wings (n = 9-91, *p < 0.05, two-tailed Mann–1024 

Whitney test with Benjamini-Hochberg correction). All boxplots indicate median (center line), 1025 

25th and 75th percentiles (bounds of box), and minimum and maximum (whiskers), with red 1026 

dotted lines representing the control median.  1027 

  1028 

Supplementary Figure 2. Comparisons of eye-specific and wing-specific knockdowns for 1029 

select Drosophila homologs of CNV and neurodevelopmental genes. Boxplots of Flynotyper-1030 

derived phenotypic scores for 66 tested adult eyes with eye-specific knockdown (GMR-GAL4) of 1031 

select homologs of CNV and neurodevelopmental genes, normalized as fold-change (FC) to 1032 

control values (n = 1–40, *p < 0.05, one-tailed Mann–Whitney test with Benjamini-Hochberg 1033 

correction). RNAi lines that do not show any observable qualitative adult wing phenotypes, 1034 

including lines that show wing measurement phenotypes, are represented in (A), and RNAi lines 1035 

with observable mild to lethal qualitative wing phenotypes are represented in (B). All boxplots 1036 

indicate median (center line), 25th and 75th percentiles (bounds of box), and minimum and 1037 

maximum (whiskers), with red dotted lines representing the control median.  1038 

 1039 

Supplementary Figure 3. Expression of Drosophila homologs of CNV and 1040 

neurodevelopmental genes in larval and adult tissues. Venn diagrams representing the 1041 

number of 76/77 tested fly homologs for CNV and neurodevelopmental genes expressed (>10 1042 
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fragments per kilobase of transcript per million reads, or FPKM) in (A) larval (central nervous 1043 

system or CNS, gut, trachea, and fat body) and (B) adult tissues (brain, gut, heart and fat body), 1044 

are shown. 1045 

 1046 

Supplementary Figure 4. Additional Drosophila homologs of CNV and neurodevelopmental 1047 

genes show altered levels of cell proliferation and apoptosis. Larval imaginal wing discs 1048 

(scale bar = 50 µm) stained with nuclear marker DAPI, apoptosis marker dcp1, and cell 1049 

proliferation marker pH3 illustrate altered levels of cell proliferation and apoptosis due to wing-1050 

specific knockdown of select fly homologs of CNV genes. We examined changes in the number 1051 

of stained cells within the wing pouch of the wing disc (white box), which becomes the adult 1052 

wing. Genotypes for the wing images are: w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-1053 

GAL4;UAS-Cbp20KK109448/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-dlg1GD4689 1054 

RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;UAS-CG8888GD3777/+; UAS-Dicer2/+, w1118/bxMS1096-1055 

GAL4;+; UAS-UQCR-C2GD11238 RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;+; UAS-ACCGD3482 1056 

RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;UAS-Klp61FGD14149/+; UAS-Dicer2/+, and 1057 

w1118/bxMS1096-GAL4;UAS-RphGD7330 RNAi/+;UAS-Dicer2/+. 1058 

 1059 

Supplementary Figure 5. Select female and male Drosophila homologs of CNV and 1060 

neurodevelopmental genes show altered levels of cell proliferation and apoptosis. (A) Larval 1061 

imaginal wing discs (scale bar = 50 µm) stained with nuclear marker DAPI, apoptosis marker 1062 

dcp1, and cell proliferation marker pH3 illustrate altered levels of cell proliferation and apoptosis 1063 

due to wing-specific knockdown of select fly homologs of CNV genes in females and males. We 1064 

examined changes in the number of stained cells within the wing pouch of the wing disc (white 1065 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


47 
 

 

box), which becomes the adult wing. Genotypes for the wing images are: w1118/bxMS1096-GAL4;+; 1066 

UAS-Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-lgsGD1241/UAS-Dicer2, w1118/bxMS1096-GAL4;+; 1067 

UAS-Sra-1GD11477/UAS-Dicer2, and w1118/bxMS1096-GAL4;UAS-CG11035KK101201 RNAi+; UAS-1068 

Dicer2/+. (B) Box plot of dcp1-positive cells in larval wing discs with knockdown of select fly 1069 

homologs of CNV and neurodevelopmental genes, normalized to controls (n = 9–13, *p < 0.05, 1070 

two-tailed Mann–Whitney test with Benjamini-Hochberg correction). The number of dcp1 1071 

positive cells were calculated manually. (C) Box plot of pH3-positive cells in the larval wing 1072 

discs with knockdown of select fly homologs of CNV and neurodevelopmental genes, 1073 

normalized to controls (n = 9–13, *p < 0.05, two-tailed Mann–Whitney test with Benjamini-1074 

Hochberg correction). The number of pH3 positive cells were calculated using the 1075 

AnalyzeParticles function in ImageJ. All boxplots indicate median (center line), 25th and 75th 1076 

percentiles (bounds of box), and minimum and maximum (whiskers), with red dotted lines 1077 

representing the control median. 1078 

 1079 

Supplementary Figure 6. Additional Drosophila homologs of genes within CNV regions 1080 

interact with conserved signaling pathways to induce developmental phenotypes. Larval 1081 

imaginal wing discs (scale bar = 50 µm) stained with (A) wingless, (B) patched, (C) engrailed, 1082 

and (D) delta illustrate disrupted expression patterns for proteins located within the Wnt 1083 

(wingless), Hedgehog (patched and engrailed), and Notch (delta) signaling pathways due to 1084 

wing-specific knockdown of additional fly homologs of CNV and neurodevelopmental genes. 1085 

Dotted yellow boxes represent expected expression patterns for signaling proteins in bxMS1096-1086 

GAL4 control images. White arrowheads and dotted white boxes highlight disruptions in 1087 

expression patterns of signaling proteins with knockdown of CNV or neurodevelopmental genes. 1088 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


48 
 

 

Genotypes for the wing images are: w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-1089 

GAL4;+; UAS-dlg1GD4689 RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;+; UAS-Tsf2GD2442 1090 

RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;+; UAS-Atx2GD11562 RNAi/UAS-Dicer2, w1118/bxMS1096-1091 

GAL4;+; UAS-UQCR-C2GD11238 RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;+; UAS-nudEGD15226 1092 

RNAi/UAS-Dicer2, and w1118/bxMS1096-GAL4;+; UAS-ACCGD3482 RNAi/UAS-Dicer2. 1093 

 1094 

Supplementary Figure 7. Tissue-specific network diagrams showing connectivity of human 1095 

CNV genes with conserved signaling pathway genes. Representative network diagrams of nine 1096 

human CNV and neurodevelopmental genes whose fly homologs disrupt the (A) Wnt and (B) 1097 

Hedgehog signaling pathway and 162 human Wnt and 46 human Hedgehog signaling genes 1098 

within kidney, heart, and brain-specific gene interaction networks are shown. Yellow nodes 1099 

represent CNV and neurodevelopmental genes, pink nodes represent Notch signaling pathway 1100 

genes, and green nodes represent connector genes within the shortest paths between CNV and 1101 

Notch pathway genes. 1102 

 1103 

Supplementary Data 1 (Excel file). Drosophila homologs of human CNV and 1104 

neurodevelopmental genes as determined using DIOPT v.7.1.  1105 

 1106 

Supplementary Data 2 (Excel file). Qualitative and quantitative adult wing phenotypic data for 1107 

Drosophila homologs of human CNV and neurodevelopmental genes. This file shows the raw 1108 

frequencies of severity for the five qualitative wing phenotypes and average areas and vein 1109 

lengths for all 136 female and male tested RNAi lines. In addition, this file also includes k-means 1110 

clustering analysis for the female RNAi lines. 1111 
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 1112 

Supplementary Data 3 (Excel file). Summary of adult wing qualitative and quantitative 1113 

phenotypes by Drosophila homologs. This file summarizes qualitative k-means clustering and 1114 

longitudinal L3 vein length and wing area changes for all 136 RNAi lines by fly homologs. We 1115 

define discordant homologs when RNAi lines for the same homologs showed inconsistent wing 1116 

phenotypes. For each homolog with multiple RNAi lines, we checked discordance among RNAi 1117 

lines for no phenotype versus any qualitative or quantitative phenotypes, followed by 1118 

discordance for small or large quantitative phenotypes. 1119 

 1120 

Supplementary Data 4 (Excel file). Phenotypes of mouse knockdown models for homologs of 1121 

CNV genes. This file lists lethality and neuronal and non-neuronal phenotypes, categorized using 1122 

top-level Mammalian Phenotype Ontology terms, for knockdown models of 130 mouse 1123 

homologs of CNV genes derived from the Mouse Genome Informatics (MGI) database. 1124 

 1125 

Supplementary Data 5 (Excel file). Summary of eye-specific and wing-specific phenotypes for 1126 

fly homologs. This file summarizes eye-specific and wing-specific phenotypes by severity 1127 

category for 66 RNAi lines by fly homologs of CNV and neurodevelopmental genes. Eye 1128 

phenotype severity is defined by Flynotyper phenotypic scores with fold-change (FC) 1129 

normalization to control as follows: no change (0–1.1 FC), mild (1.1–1.5 FC), moderate (1.5–2.0 1130 

FC), and severe (>2.0 FC). Wing phenotype severity is defined by k-means clustering for 1131 

qualitative phenotypes and quantitative size changes as listed in Supp. Data 3. 1132 

 1133 
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Supplementary Data 6 (Excel file). Tissue-specific expression of Drosophila homologs and 1134 

human CNV and neurodevelopmental genes. This file lists expression values across multiple fly 1135 

and human tissues for all 79 Drosophila homologs and 150 human genes. Fly expression data 1136 

(fragments per kilobase of transcript per million reads, or FPKM) was derived from the FlyAtlas 1137 

Anatomical Microarray dataset, and human expression data (transcripts per million reads, or 1138 

TPM) was derived from the Genotype-Tissue Expression (GTEx) dataset v.1.2.  1139 

 1140 

Supplementary Data 7 (Excel file). Summary of immunostaining of the larval imaginal wing 1141 

discs. This file summarizes changes in apoptosis (27 homologs), cell proliferation (27 1142 

homologs), and Wnt, Hedgehog, and Notch signaling pathway proteins (14 homologs), along 1143 

with qualitative and quantitative adult wing phenotypes (as listed in Supp. Data 2.), for female 1144 

and male fly homologs.  1145 

 1146 

Supplementary Data 8 (Excel file). Tissue-specific network connectivity for candidate CNV 1147 

genes and signaling pathway genes. This file lists the shortest path lengths between nine 1148 

candidate CNV genes and 265 genes within Wnt, Hedgehog, and Notch signaling pathways for 1149 

heart, kidney, and brain-specific gene interaction networks, along with the connector genes that 1150 

are within the shortest paths. Enriched Gene Ontology (GO) Biological Process, Cellular 1151 

Component, and Molecular Function terms for sets of connector genes for each signaling 1152 

pathway in each tissue-specific networks are also represented.  1153 

 1154 

Supplementary Data 9 (Excel file). List of Drosophila stocks used for experiments, including 1155 

stock numbers and genotypes. 1156 
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 1157 

Supplementary Data 10 (Excel file). Statistics for all experimental data. This file shows all 1158 

statistical information (sample size, mean/median/standard deviation of datasets, test statistics, p-1159 

values, degrees of freedom, confidence intervals, and Benjamini-Hochberg FDR corrections) for 1160 

all data. Statistical information for Kruskal-Wallis test includes factors, degrees of freedom, test 1161 

statistics, and post-hoc pairwise Wilcoxon tests with Benjamini-Hochberg correction. 1162 
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