

# 1 Systematic localization of Gram-negative 2 bacterial membrane proteins

3  
4 Anna Sueki<sup>1,2</sup>, Frank Stein<sup>1</sup>, Mikhail Savitski<sup>1</sup>, Joel Selkirk<sup>1</sup> ‡, Athanasios Typas<sup>1</sup> ‡  
5

6 <sup>1</sup> European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117  
7 Heidelberg, Germany

8 <sup>2</sup> Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences  
9

10  
11 ‡ to whom correspondence should be addressed:  
12 [selkirk@embl.de](mailto:selkirk@embl.de) & [typas@embl.de](mailto:typas@embl.de)

## 14 Abstract

15 The molecular architecture and function of the Gram-negative bacterial cell envelope  
16 is dictated by protein composition and localization. Proteins that localize to the inner  
17 (IM) and outer (OM) membranes of Gram-negative bacteria play critical and distinct  
18 roles in cellular physiology, however, approaches to systematically interrogate their  
19 distribution across both membranes and the soluble cell fraction are lacking. We  
20 employed multiplexed quantitative mass spectrometry to assess membrane protein  
21 localization in a proteome-wide fashion by separating IM and OM vesicles from  
22 exponentially growing *E. coli* K-12 cells on a sucrose density gradient. The migration  
23 patterns for >1600 proteins were classified in an unbiased manner, accurately  
24 recapitulating decades of knowledge in membrane protein localization in *E. coli*. For  
25 559 proteins that are currently annotated as peripherally associated to the IM  
26 (Orfanoudaki and Economou, 2014) and display potential for dual localization to  
27 either the IM or cytoplasm, we could allocate 110 to the IM and 206 as soluble based  
28 on their fractionation patterns. In addition, we uncovered 63 cases, in which our data  
29 disagreed with current localization annotation in protein databases. For 42 of them,  
30 we were able to find supportive evidence for our localization findings in literature. We  
31 anticipate our systems-level analysis of the *E. coli* membrane proteome will serve as  
32 a useful reference dataset to query membrane protein localization, as well as provide  
33 a novel methodology to rapidly and systematically map membrane protein  
34 localization in more poorly characterized Gram-negative species.

## 35 Introduction

36 The inner and outer membrane (IM and OM) of Gram-negative bacteria carry out  
37 fundamental cellular functions crucial for cell viability (Silhavy et al., 2010). The OM  
38 directly interfaces with the extracellular environment and provides a formidable  
39 physical barrier that excludes the passage of large and hydrophobic compounds (Bos  
40 et al., 2007; May and Grabowicz, 2018; Nikaido, 2003). The IM plays a vital role in  
41 ensuring selective transport of small compounds into and out of the cell, as well as  
42 sensing external cues and transducing information to adaptive transcriptional  
43 responses (Jacob-Dubuisson et al., 2018; Kuhn et al., 2017; Luirink et al., 2012).  
44 Both membranes facilitate protein translocation from the cytoplasm to the cell  
45 envelope and/or the extracellular milieu by dedicated protein machines. Proteins  
46 targeted to the IM and OM possess distinct biochemical properties and play  
47 fundamental roles in building and maintaining cell envelope integrity. This includes  
48 correct assembly of the peptidoglycan layer, which gives bacteria their cell shape and  
49 together with the OM defines their mechanical strength (Rojas et al., 2018; Typas et  
50 al., 2011). Understanding to which membrane proteins are targeted provides  
51 important insight on the physical location of their biological activity, which is  
52 particularly useful for interrogating proteins of unknown function and investigating  
53 modular envelope protein complexes (Typas and Sourjik, 2015).

54

55 Proteins localizing to the IM or OM can be sub-categorized based on their distinct  
56 biophysical properties. IM proteins typically contain  $\alpha$ -helical transmembrane  
57 domains that mediate their integration into the phospholipid bilayer. These proteins  
58 include small molecule transporters (e.g. ABC transporters for metal ions and sugars)  
59 and large multi-protein complexes (e.g. SecYEG translocon and ATP synthase). IM  
60 proteins are diverse in their structure, function and domain localization; some contain  
61 structural domains that extend into the cytoplasmic and/or periplasmic space. In the  
62 OM, there are two distinct types of proteins: outer membrane proteins (OMPs), which  
63 are mostly composed of amphipathic  $\beta$ -strands that form a closed  $\beta$ -barrel structure,  
64 and lipoproteins, which are anchored to the OM via an N-terminal lipidated cysteine  
65 and typically contain a soluble domain that extends into the periplasmic space.  
66 Lipoproteins carry out diverse functions in the cell envelope, yet they still remain a  
67 largely poorly characterized group of proteins. Although lipoproteins have been  
68 traditionally considered to face the periplasmic space, some have been recently

69 shown to reach the cell surface (Cowles et al., 2011; Dunstan et al., 2015; Webb et  
70 al., 2012), even by traversing through OMPs (Cho et al., 2014; Konovalova et al.,  
71 2014; Létoquart et al., 2019).

72

73 While most proteins localize to, and function at, either the IM or OM, several trans-  
74 envelope protein complexes span both membranes. Some of the larger complexes  
75 like flagella (Beeby et al., 2016) and secretion apparatuses (Deng et al., 2017)  
76 contain dedicated IM, OM and periplasmic components, whereas smaller ones such  
77 as the Tol-Pal complex (Gray et al., 2015; Lloubès et al., 2001; Petiti et al., 2019), the  
78 PBP1a/b-LpoA/B peptidoglycan synthase complexes (Egan et al., 2014; Paradis-  
79 Bleau et al., 2010; Typas et al., 2010), the efflux pump AcrAB-TolC (Du et al., 2014),  
80 the TAM translocation complex (Selkirk et al., 2012) and all TonB-dependent  
81 transport complexes (Celia et al., 2016) possess IM or OM components that can  
82 span the envelope by reaching their interaction partner in the other membrane.  
83 Moreover, in addition to integral membrane proteins, soluble proteins can associate  
84 peripherally to membranes via stable or transient protein-protein interactions with  
85 integral membrane proteins and/or with the lipid bilayer. In the case of lipoproteins,  
86 the attachment to phospholipids is covalent and part of their biosynthesis (Szewczyk  
87 and Collet, 2016). As many membrane proteins reside within protein complexes that  
88 play vital roles for cell envelope integrity, it is important to obtain a blueprint of the  
89 bacterial membrane protein composition that experimentally defines which proteins  
90 are membrane-associated and the membrane to which they are targeted.  
91 Furthermore, protein localization is closely linked to protein function, and therefore a  
92 key step in ascertaining the mode of action of membrane proteins.

93

94 Localization for most proteins in *E. coli* and other Gram-negative bacteria can be  
95 predicted quite accurately based on sequence information. Analysis of protein N-  
96 terminal signal sequences is commonly used to predict protein localization. For  
97 example, SignalP (Almagro Armenteros et al., 2019) detects signal sequences that  
98 target nascent proteins for transport across the IM via the SecYEG/SecA translocon.  
99 Similarly, TATFIND identifies substrates of the Tat translocase (Bagos et al., 2010).  
100 Interestingly, periplasmic proteins bear sufficiently distinguishable biophysical,  
101 biochemical and structural characteristics when compared to their cytoplasmic  
102 counterparts, so that one can accurately discern them with signal-sequencing

103 agnostic machine-learning predictors (Loos et al., 2019). Moreover, several tools  
104 exist to predict membrane protein localization and topology including those that  
105 predict transmembrane  $\alpha$ -helices and topology of IM-transmembrane proteins such  
106 as the TMHMM server (Krogh et al., 2001), as well as algorithms to predict  $\beta$ -barrel  
107 folding of OMPs such as PRED-TMBB (Bagos et al., 2004) and BOMP (Berven et al.,  
108 2004). *E. coli* genome databases, such as STEPdb (Orfanoudaki and Economou,  
109 2014), Ecocyc (Keseler et al., 2017) and Uniprot (The UniProt Consortium, 2019),  
110 use information from such prediction tools, together with experimental evidence, to  
111 assign protein localization. However, the difficulties of assigning protein localization  
112 solely based on structure and signal sequence prediction can lead to mis-annotations,  
113 as it has been discussed previously (Babu et al., 2018; Orfanoudaki and Economou,  
114 2014). Thus, as much of the current knowledge is based on prediction tools, it is of  
115 key importance to experimentally verify protein localization to clarify the predictive  
116 accuracy of the above mentioned *in silico* approaches.

117

118 Proteomic-based studies of bacterial cell membranes in the past have focused on  
119 either the IM or OM proteomes separately (Bernsel and Daley, 2009; Papanastasiou  
120 et al., 2013, 2016; Tsolis and Economou, 2017), which precludes definitive  
121 statements about the protein allocation across the two membranes and is prone to  
122 contamination from abundant soluble proteins. To systematically examine membrane  
123 protein localization in an unbiased and systematic manner, we combined sucrose  
124 gradient membrane fractionation with quantitative proteomics (Bantscheff et al.,  
125 2012). This allowed us to validate most of the predicted protein localizations, while  
126 resolving the protein localization of a large number of proteins with previously  
127 ambiguous localization, and uncovering some proteins with unexpected membrane  
128 localization, which are currently mis-annotated in databases.

129

## 130 Results

### 131 IM and OM proteome separation and quantification

132 To systematically assess protein localization within the bacterial cell envelope, we  
133 isolated bacterial membrane proteins by harvesting *E. coli* K-12 MG1655 grown to  
134 mid exponential phase (Figure 1A). Total membrane vesicles were purified, followed  
135 by IM and OM vesicle separation on a sucrose density gradient as previously  
136 described (Anwari et al., 2010). The sucrose gradient was then separated into eleven  
137 fractions and analyzed by immunoblot and SDS-PAGE. Effective IM and OM vesicle  
138 separation was verified using SecG and BamA antiserum (Figure 1B). Fractions 2 to  
139 11 and the total membrane (input sample prior to fractionation) were labelled with 11-  
140 plex tandem mass tag (TMT) reagents (Werner et al., 2014) and analyzed and  
141 quantified using mass spectrometry (MS) (Figure 1A and S1A). In total, we identified  
142 1605 common proteins across the two biological replicates, and thus proceeded to  
143 data normalization and quantification as described in the materials and methods  
144 (Figure S1A and Table S1).

145

146 To assess protein abundance in each fraction, we calculated the logarithmic fold  
147 change ( $\log_2\text{FC}$ ) of each sucrose gradient fraction relative to the total membrane  
148 fraction for each protein. The fractionation pattern across the 10 quantified fractions  
149 (fraction 2 to 11) was examined for each protein for each replicate (Table S1). The  
150 quantitative MS-based fractionation pattern matched immunoblot data for the control  
151 proteins, SecG for the IM and BamA for the OM (Figure 1B lower). Replicate  
152 correlation between independent experiments for all  $\log_2\text{FC}$  values was high ( $R =$   
153 0.77; Pearson correlation,  $p < 0.001$ , Figure S1B). Proteome coverage was analyzed  
154 by comparison to protein localization annotation from STEPdb database  
155 (Orfanoudaki and Economou, 2014) using Uniprot IDs (summarized and modified as  
156 in Table S2). For membrane protein annotation categories, we had an overall 56%  
157 coverage (973 out of 1741 proteins) with several categories reaching 70% coverage,  
158 whereas non-membrane protein categories did not exceed 25% coverage (Figure  
159 1C). Altogether we could quantitatively assess the sucrose gradient fractionation of  
160 1605 proteins (Table S3), covering most membrane-annotated proteins in STEPdb.

161

162 **Systematic assignment of membrane protein localization**

163 Sucrose density gradients are conventionally analyzed by immunoblotting to  
164 compare the abundance of a given protein within a high or low sucrose density  
165 fraction (Figure 1A-B). To systematically analyze protein localization, we used the  
166 combined averages of the high and low sucrose fractions ( $\log_2$  of f08, f09 and f10 for  
167 high, and  $\log_2$  of f02, f03 and f04 for low) and calculated the difference between the  
168 two  $\log_2$  averages, which we referred to as the “sucrose gradient ratio” (Table S3).  
169 High values indicate a greater abundance within higher sucrose density fractions, as  
170 expected for OM proteins. The reverse is true for IM proteins, which exhibit low  
171 values due to their enrichment within the low sucrose density fractions.

172

173 To assess whether our calculated sucrose gradient ratio reflected known protein  
174 localization, we grouped these values based on localization annotation (modified  
175 from STEPdb database, Table S2). As anticipated, most IM protein categories (i.e.  
176 IM-integral, IM-peri and IMLP) displayed a low sucrose gradient ratio, whereas the  
177 two OM protein categories, OMPs and OMLPs, showed high sucrose gradient ratios  
178 (Figure 2A). This striking concordance with curated annotations and our calculated  
179 localization confirms the accuracy of our methodology. We chose the 90th percentile  
180 of IM protein distribution (solid blue line) and the 10th percentile of OM protein  
181 distribution (solid red line) as cut-offs to define IM and OM protein localization using  
182 the sucrose gradient ratio (Figure 2B), respectively. All proteins that fell between  
183 these two cutoffs were classified as soluble proteins.

184

185 Interestingly, although soluble proteins were expected contaminants in our  
186 experiments, they did not always behave as expected upon sucrose density gradient  
187 fractionation. In general, soluble proteins localized in the cytoplasm and periplasm  
188 displayed midrange sucrose gradient ratios, which is in agreement with the majority  
189 of them being contaminants and non-specifically associated with either IM or OM  
190 vesicles. We noted that the IM-cyto category displayed bimodal characteristics with  
191 one peak being consistent with IM localization and another peak that aligned with  
192 soluble proteins (Figure 2A, Table S3). This suggests that the IM-cyto category of  
193 proteins referred to as “peripheral IM proteins” in STEPdb and originally described in  
194 another study (Papanastasiou et al., 2013), consists of a mixture of proteins that  
195 have clear preferential localizations either to the cytoplasm or to the IM. We therefore

196 did not use this category for benchmarking our data, but rather kept it to later  
197 definitively allocate the primary localization of this large group of proteins. Taken  
198 together, these data show that quantitative proteomic-based analysis of sucrose  
199 gradient fractionated membrane vesicles can rapidly and systematically localize  
200 proteins to the IM or OM.

201

202 **Unbiased clustering of sucrose gradient fractionation patterns can robustly**  
203 **identify protein membrane localization**

204 As the sucrose density-based fractionation patterns of IM and OM proteins were  
205 distinct (Figure 1B lower panel after normalization), we asked whether unbiased  
206 clustering of the fractionation patterns could be used to distinguish proteins according  
207 to their annotated membrane localization. Based on PCA analysis of all identified  
208 proteins, we set the number of clusters to 4 for k-means clustering analysis (Figure  
209 S2). This resulted in four groups containing the following number of proteins - cluster  
210 1: 111, cluster 2: 650, cluster 3: 680 and cluster 4: 164 (Figure 3 left, Table S3),  
211 where each cluster exhibited distinctive fractionation patterns (Figure 3 middle). We  
212 then asked what STEPdb localization annotations are associated with proteins in the  
213 four different clusters. Proteins in cluster 1 were strongly enriched for OM proteins,  
214 cluster 2 with IM proteins, and cluster 3 and 4 with soluble proteins (Figure 3 right).  
215 Thus k-means clustering successfully grouped proteins based on their membrane  
216 localization as a function of their sucrose gradient fractionation pattern. While each  
217 cluster was dominated by a single membrane localization annotation (OM-cluster 1,  
218 IM-cluster 2 or soluble-cluster 3 and 4), some proteins were grouped into clusters  
219 that conflicted with their STEPdb annotated localization with the IM-cyo group  
220 featuring prominently in various clusters (Figure 3 right). Nevertheless, these results  
221 show that systematic and unbiased clustering of sucrose gradient fractionation  
222 patterns of the membrane proteome can be used to assign membrane localization.

223

224 **Filtering and comparison of sucrose gradient ratio and clustering**

225 In order to increase the confidence of our calls for protein localization, we carried out  
226 two further steps. First, we ran k-means clustering for the dataset where the two  
227 replicates were treated separately. Out of this, we identified 140 (out of 1605)  
228 proteins whose fractionation patterns between replicates resulted in clustering to  
229 different localization clusters (OM-cluster 1, IM-cluster 2 or soluble-cluster 3 and 4)

230 for the two replicates. We reasoned that this is due to irreproducibility between the  
231 replicates and removed these proteins from further analysis. Second, we assessed  
232 the similarity of our two methods (k-means vs. sucrose gradient ratio) in assessing  
233 protein localization. To do this, we used the thresholds of sucrose gradient ratio for  
234 IM and OM defined in Figure 2B. We found a large overlap between the two methods  
235 for all three localization categories: IM, OM and soluble (Figure 4A). In total, we  
236 identified 1368 proteins (out of 1465 possible) to agree between the two methods,  
237 which we further used as our high confidence protein localization dataset. When  
238 considering all 1605 proteins, the two methods agreed in 1456 proteins (Figure S4A).  
239 In general, both quantification methods for protein localization worked well, and in  
240 combination provided more confident identification calls (true positive rates are 95%  
241 and 48% for overlap and non-overlap sets, respectively; using STEPdb annotations  
242 as true positive). The clustering method worked better than the ratio cutoffs for OM  
243 proteins, but on the other hand, cluster 4 seemed to have the most inconsistent calls  
244 for protein localization (Figure S3).

245

246 As mentioned before, IM-cyto proteins showed a bimodal distribution of sucrose  
247 gradient ratio (Figure 2A) and could be found in multiple clusters (2, 3 and 4; Figure 3  
248 right). Having now high-confident protein localization allocations, we could define 110  
249 proteins as IM and 206 as soluble (Figure 4B; see also Figure S4B for all proteins,  
250 including lower confidence ones). This separation is corroborated by the melting  
251 temperatures of these two group of proteins. We have previously reported that IM  
252 proteins are more thermostable than their cytoplasmic counterparts (Mateus et al.,  
253 2018). In agreement with this, IM-cyto proteins categorized here to be soluble had  
254 similarly low melting temperatures as cytoplasmic proteins (Figure S5). In contrast  
255 IM-cyto proteins categorized as IM proteins had higher melting temperatures, albeit  
256 not as high as integral IM proteins, presumably due to their peripheral interaction  
257 rather than integral association with the IM (Figure S5). Thus, in the experimental  
258 conditions we tested, IM-cyto annotated proteins resulted in a mixture of soluble and  
259 IM proteins, which through their fractionation patterns, we could allocate their  
260 predominant protein localization.

261

262 **Identification of potentially mis-annotated proteins**

263 STEPdb combines robust computational predictions with a wealth of experimental  
264 information to allocate protein localization in *E. coli*, and hence we used it here as a  
265 gold-standard dataset to benchmark our data and decide on thresholds for making  
266 localization calls. In doing so, we noted that a small fraction of our allocations of IM,  
267 soluble and OM proteins conflicted with their STEPdb annotations. Namely, 63 (out  
268 of 1368) high-confidence proteins, including both membrane and soluble, were found  
269 in clusters that at least partially conflicted with their corresponding STEPdb  
270 localization annotation (Table S4). We manually curated these proteins based on  
271 published literature. Firstly, we checked the localization annotation in another recent  
272 study (Babu et al., 2018). Babu et al. summarized different localization annotation  
273 databases and primary literature, including STEPdb, generated a score for protein  
274 localization, and then annotated protein localization accordingly in their study. Eleven  
275 proteins out of the 63 proteins we identified as mismatches agreed with the curated  
276 list in Babu et al. We thus conclude that the STEPdb localization for these 11  
277 proteins was likely inaccurate (Table S4). We found corroborating evidence for 12  
278 more such cases in literature or in other prediction databases. Importantly, in these  
279 cases rather than relying on the combined result from multiple *in silico* prediction  
280 algorithms, our data is able to provide the high-confidence experimental evidence  
281 needed to verify the localization for these proteins.

282

283 We also noted unexpected fractionation patterns for certain proteins upon sucrose  
284 density fractionation. Firstly, we detected several proteins annotated as solely  
285 periplasmic in STEPdb fractionated as membrane proteins in our experiments. Many  
286 of them have known interacting membrane partners, which is presumably the reason  
287 they co-fractionate with either the IM (EnvC, FdoG, NapG, and RseB) or the OM  
288 (LptA) (Figure 4C, Table S4). The situation was similar for periplasmic components of  
289 IM ABC transporter complexes (FhuD, PstS, and SapA) which co-fractionated with  
290 IM proteins, possibly as a consequence of a direct conditional association with IM  
291 proteins upon active transport (Moussatova et al., 2008), but were only annotated as  
292 periplasmic in STEPdb (Table S4). In total, there were 19 cases for which STEPdb  
293 had incomplete annotation.

294

295 Conversely, FecB, a known periplasmic component of an ABC transporter complex is  
296 annotated both as IM-peri (peripherally associated to IM) and periplasmic in STEPdb,  
297 but only identified as soluble in our experimental conditions. In this case, we are  
298 failing to detect the IM-association because the transporter is likely inactive in the  
299 conditions we probe, and the STEPdb annotation is more accurate (Table S4).  
300 Moreover, IM proteins known to form trans-envelope complexes (e.g. TamB and  
301 TonB) failed to cluster as either IM or OM proteins in the fractionation experiments.  
302 Overall, we could reasonably explain 51 out of the 63 cases where STEPdb and our  
303 results disagreed, out of which we could find additional information that supports our  
304 localization call (42 proteins) or the original STEPdb annotation (9 proteins)  
305 (summarized in Table S4). Overall, these findings demonstrate that our quantitative  
306 assessment of protein localization captures accurately the *in vivo* biological state.  
307

## 308 Discussion

309 We quantified the membrane proteome using TMT-labelling MS, which allowed us to  
310 experimentally identify localization in a systematic and unbiased manner for the  
311 majority of membrane proteins in *E. coli*. We verified current knowledge of membrane  
312 protein localization for proteins that was determined experimentally and/or predicted  
313 bioinformatically. The advantage of this method is that instead of assessing  
314 membrane protein localization via conventional immunoblot of sucrose density  
315 gradient fractions, quantitative proteomic approaches can be used to rapidly and  
316 quantitatively assess protein localization in an antibody-independent manner.

317

318 Comparison of our data with the curated STEPdb annotation revealed high  
319 concordance. In addition, our data provided a predominant location for a large part of  
320 the *E. coli* membrane proteome referred to as peripherally associated membrane  
321 proteins (Papanastasiou et al., 2013). STEPdb categorizes proteins that peripherally  
322 interact with the cytoplasmic face of the IM as a “peripheral IM protein”, which we  
323 referred to here for simplicity as IM-cyto (Table S2). Although we detect the majority  
324 of IM-cyto proteins (68% of 559 proteins) in the membrane fraction (which is depleted  
325 from soluble proteins), most of them are reproducibly assigned as soluble proteins  
326 according to their sucrose fractionation pattern (206 out of 316 high-confident calls).  
327 This absence of co-fractionation with the IM proteome, suggests that many of these  
328 proteins are mainly cytoplasmic in exponentially growing cells in LB, and their  
329 previous identification in membrane protein fractions in this study and others is likely  
330 because they are recurrent contaminants. We cannot exclude that some of these  
331 proteins have conditional, low affinity or transient association with the IM and proteins  
332 therein, or a small fraction of the total protein amount is at any given point associated  
333 with the IM. In contrast, about one third of the IM-cyto proteins exhibited clear IM  
334 fractionation patterns and thus can be confidently assigned as IM-associated proteins.

335

336 We found 63 proteins out of 1368 which were inconsistent with the reported  
337 localization annotation in STEPdb. We were able to explain 51 by additional literature  
338 data. Those proteins have a wrong or missing annotation in STEPdb (42) or their  
339 function/activity makes their sucrose gradient fractionation patterns misleading (9). In  
340 most cases, sucrose gradient fractionation failed to make the right call when the  
341 protein was spanning the envelope or had presumably dual membrane localization. It

342 is likely that the new localization is also correct for most of 12 remaining proteins  
343 (Table S4). Thus, our data are helpful for improving protein localization, even for an  
344 organism as intensively studied as *E. coli*, which has been subjected to a plethora of  
345 targeted and systematic studies and researchers can benefit from carefully curated  
346 databases, such as STEPdb.

347

348 In some cases, sucrose gradient fractionation patterns were indicative of protein  
349 activity. For example, periplasmic partners of IM ABC transporters often showed  
350 sucrose gradient fractionation patterns similar to that of IM proteins (Figure 4C),  
351 which we postulate were due to their strong interaction with the cognate IM ABC  
352 transporters in the substrate-bound state (Moussatova et al., 2008). In other cases,  
353 they behaved as soluble proteins, which likely reflects the inactive state of the ABC  
354 transporter. Interestingly, trans-envelope spanning IM proteins, such as TamB and  
355 TonB, displayed fractionation patterns similar to soluble proteins. This is presumably  
356 due to strong interactions with their OM counterparts, which pull a subpopulation of  
357 the protein together with OM vesicles during ultracentrifugation. Consistent with our  
358 observations, TonB was previously found in the OM fraction upon sucrose gradient  
359 fractionation (Higgs et al., 2002; Letain and Postle, 1997). This suggests that trans-  
360 envelope IM proteins can present distinctive properties upon sucrose gradient  
361 fractionation. More broadly it implies that sucrose gradient fractionation can provide  
362 insights into the activity and mechanical strength of specific envelope complexes  
363 during different growth stages and conditions.

364

365 Not only does this work provide a resource of sucrose gradient fractionation for 1605  
366 proteins, with 1368 proteins having their cellular localization confidently assigned, the  
367 method we present can be used for rapid and systematic characterization of  
368 membrane proteomes in different contexts – growth conditions and stages, and  
369 under different cellular perturbations. Many membrane proteins are only conditionally  
370 expressed (Mateus et al., 2018), whereas other proteins conditionally relocate in and  
371 out of membranes (Li and Young, 2012, 2015; Lim et al., 2013). Importantly, our  
372 method allows for the systematic mapping of membrane proteomes from other Gram-  
373 negative species for which protein localization annotation and transport mechanisms  
374 are less (if at all) studied.

375

376 **ACKNOWLEDGEMENTS**

377 We thank Tassos Economou for critically reading the manuscript and providing  
378 feedback; members of Typas lab for valuable discussions; H. Tokuda for the SecG  
379 antibody; T. Lithgow for the BamA antibody; and members of the EMBL Proteomics  
380 Core Facility (PCF), especially Mandy Rettel and Dominic Helm, for assisting with  
381 sample preparation and data acquisition. We acknowledge funding from EMBL for  
382 this research. JS was supported by fellowships from the EMBL Interdisciplinary  
383 Postdoc (EIPOD) program under Marie Skłodowska-Curie Actions COFUND (grant  
384 number 291772). AS was supported by the DFG under a grant in the priority program  
385 SPP1617 and EMBL.

386

387 **DATA AVAILABILITY**

388 The mass spectrometry proteomics data have been deposited to the  
389 ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner  
390 repository with the dataset identifier PXD016403.

391

392 **CODE AVAILABILITY**

393 The code and pipelines used for data analysis are available upon request.

394

395 **DECLARATION OF INTEREST**

396 The authors declare no competing interests.

397

398 **Figure 1: Gram-negative bacterial inner and outer-membrane fractionation**  
399 **quality control and membrane proteome coverage.**

400 A) Schematic illustration of the method. *E. coli* cells were harvested in exponential  
401 phase ( $OD_{578} \sim 0.7$ ), lysed and ultracentrifuged to collect the membrane fraction  
402 containing both OM (red) and IM (blue) vesicles. Total membrane vesicles were  
403 separated on a sucrose density gradient, which separates IM from OM vesicles  
404 based on their distinct buoyant densities. Samples were collected into 11 fractions  
405 (f01 to f11) where f02 to f11 and total membrane sample prior to fractionation were  
406 TMT-labelled and analyzed by LC-MS/MS. After data normalization (see Figure S1),  
407 membrane localization of proteins was defined.

408 B) SDS-PAGE analysis of sucrose gradient fractionation. T: total cell lysate, S:  
409 soluble fraction upon ultracentrifugation, M: total membrane fraction prior to sucrose  
410 gradient fractionation. Upper panel: Coomassie stained gel. Middle panel:  
411 immunoblot analysis for control proteins: BamA for OM, SecG for IM (middle panel).  
412 Lower panel: TMT-labelling MS quantification result of the two control proteins  
413 (BamA and SecG). Log<sub>2</sub> fold-change of each fraction / total membrane fraction for  
414 fractions (f02 to f11) for BamA and SecG. Mean with standard deviation is plotted  
415 from the two biological replicates.

416 C) Fraction of proteins identified for each STEPdb localization category. Localization  
417 annotation is summarized in Table S2.

418

419 **Figure 2: Sucrose gradient ratio separates proteins according to membrane**  
420 **localization.**

421 A) Smoothed distributions of sucrose gradient ratios for each protein localization  
422 category based in STEPdb (as in Figure 1C). Sucrose gradient ratio values were  
423 calculated as a difference of the average of high sucrose fractions ( $\log_2$  of f08, f09,  
424 f10) and the average of the low sucrose fractions ( $\log_2$  of f02, f03, f04) for each  
425 protein.

426 B) Sucrose gradient ratio of three categories (IM, OM and Sol) grouped from A).  
427 Cytoplasmic and periplasmic proteins from (A) were grouped as soluble proteins (n  
428 =632), IM-integral and IM-peri as IM proteins (n=495) and OM and OMLPs as OM  
429 proteins (n=98). Dotted lines refer to the 10th and 90th percentiles for IM, OM and  
430 soluble proteins for each membrane localization group, respectively. The 90th

431 percentile for IM and the 10th percentile for OM proteins are shown as solid lines as  
432 they are used as thresholds to allocate proteins to the three categories.

433

434 **Figure 3: Unbiased K-means clustering of sucrose gradient fractionation**  
435 **patterns accurately depicts protein membrane localization**

436 K-means clustering based on log fold-change of each fraction to total membrane  
437 sample. Left: heatmap representing each cluster patterns. Middle: fractionation  
438 pattern of all proteins in each cluster (grey) and the distribution average (blue). Right:  
439 Pie chart representing annotated localization of proteins found in each cluster.  
440 Localization annotation as in Figure 1C.

441

442 **Figure 4: Identification of potentially mis-annotated proteins**

443 A) Venn diagrams showing commonly identified proteins for each localization  
444 categories (IM, OM and soluble), based on our two quantification methods. Red  
445 denotes protein localizations stemming from the sucrose gradient ratios and blue  
446 refers to the k-means clustering annotation. 1465 proteins were assigned localization  
447 by the different methods. The two methods agreed in the localization of 1368 proteins,  
448 which we used as a “high-confidence” localization set.

449 B) Comparison of identified localization with annotated localization for the 1368  
450 proteins from panel A. Protein localizations considered not to match with STEPdb  
451 annotations are marked with \*. The IM-cyo category has a bimodal distribution,  
452 likely because proteins could not be confidently allocated to either the IM or the  
453 cytoplasm in STEPdb, but can be with the experimental data provided here.

454 C) Schematic representation explaining experimental localization of proteins not or  
455 partially matching the STEPdb annotation (besides IM-cyo): 1) Known interacting  
456 partner proteins in membranes (Left: LptA interacts with OM protein, LptD/E and  
457 fractionates as OM protein as previously reported (Chng et al., 2010), middle: EnvC  
458 interacts with IM proteins FtsEX (Yang et al., 2011), similarly for FdoG, NapG, and  
459 RseB), right: Rfa proteins in cytoplasm were identified as IM proteins, possibly due to  
460 interactions with bona-fide IM Rfa proteins). 2) Periplasmic partner of ABC  
461 transporters detected as IM proteins presumably because they bind to the IM  
462 components and transporters when transporters are active (Moussatova et al., 2008):  
463 this is for example the case for FhuD interacting with FhuBC upon substrate  
464 (ferrichrome, orange) binding. 3) Trans-envelope protein interaction is known: TamB

465 spans the envelope and interacts with OM-located TamA (Selkirk et al., 2012), and  
466 TonB with OM-located TonB-dependent transporters, resulting in a misleading  
467 sucrose gradient fractionation (distributed equally in all fractions, thus appearing as  
468 soluble protein), which in the case of TonB has been previously shown (Higgs et al.,  
469 2002; Letain and Postle, 1997). 4) Previously shown dual localization of cytoplasmic  
470 protein in OM for Dps and SeqA (d'Alençon et al., 1999; Lacqua et al., 2006; Li et al.,  
471 2008). Full list of 63 proteins not matching with STEPdb, with 51 proteins explained  
472 can be found in Table S4.

473

474 **Figure S1: Quality control of TMT-labelling MS results**

475 A) Boxplot representation of summed TMT reporter ion signals (signal sums)  
476 distribution across sucrose gradient fractions before and after normalization of the  
477 two biological replicates (batch-cleaned using the removeBatchEffect function from  
478 limma (Ritchie et al., 2015) and then normalized using the vsn package (Huber et al.,  
479 2002)). Box boundaries indicate the upper and lower IQR, the median is depicted by  
480 the middle boundary and whiskers represent 1.5x IQR.  
481 B) Replicate correlation of  $\log_2$  fold-change (logFC) value of each sucrose gradient  
482 fraction to total membrane fraction (10 data points per protein, thus total 16050 data  
483 points). Pearson's correlation shown as red line ( $R = 0.77$ ,  $p$ -value  $< 2.2e-16$ ).

484

485 **Figure S2: PCA analysis of fractionation patterns**

486 Each dot represents a protein (total 1605 proteins). x-axis for PC1 (65.4% of  
487 variability), y-axis for PC2 (19.8% of variability) and color scale represents k-means  
488 clustering groups. The data used is in Table S3 (ratio of each fraction to total  
489 membrane, average of two replicates).

490

491 **Figure S3: Comparison of k-means clustering to sucrose gradient ratio**

492 Histogram of sucrose gradient ratio for each k-means cluster is shown for all proteins  
493 (1605 proteins) in the assay. Number of total protein found in each cluster are:  
494 cluster 1 – 111, cluster 2 – 650, cluster 3 – 680, cluster 4 – 164.

495

496 **Figure S4: Identification of potentially mis-annotated proteins (all proteins)**

497 A) Same analysis as Figure 4A for all 1605 proteins without filtering for clustering  
498 reproducibility. Venn diagrams showing commonly identified proteins for each

499 localization categories (IM, OM and soluble), based on our two quantification  
500 methods. Red denotes protein localizations stemming from the sucrose gradient  
501 ratios and blue refers to the k-means clustering annotation. The two methods agree  
502 in the localization of 1456 proteins.

503 B) Same analysis as Figure 4B for all proteins without filtering for clustering  
504 reproducibility. Comparison of identified localization with annotated localization for  
505 the 1456 proteins from panel A. Protein localizations considered to be not matching  
506 with annotation are highlighted with \*.

507

508 **Figure S5: Comparison of protein localization with protein melting temperature**  
509 Violin plots encompassing box plots (plotted as in Fig. S1) of protein melting  
510 temperatures (Mateus et al., 2018) as a function of protein localization for  
511 cytoplasmic, IM and cyo-IM proteins. The latter was split in the two sub-groups we  
512 identified in our experiments. Cytoplasm (n=391), IM (n=218, IM-integral, IM-peri and  
513 IMLP combined), IM categorized IM-cyo proteins (n=85), and soluble categorized  
514 IM-cyo proteins (n=199).

515

## 516 **Supplemental information**

517 Table S1. TMT-labelling MS results and normalization (signal sum values)

518 Table S2. Localization annotation used in this study based on STEPdb

519 Table S3. Membrane ratio and K-means clustering data

520 Table S4. Protein list non-matching STEPdb annotations & literature search  
521 summary

522

# 523 **Materials and Methods**

## 524 **Bacterial culturing**

525 The wild-type strain used in this study is *Escherichia coli* K-12 MG1655  $\Delta$ (*argF*-  
526 *lac*)U169 *rprA::lacZ* (Majdalani et al., 2002). Bacterial cells were grown for 4  
527 generations in LB-Lennox (referred as LB herein) medium at 37°C with vigorous  
528 shaking 200 rpm, and collected for fractionation while still being in exponential growth  
529 phase, at an OD (578nm) of 0.6 – 0.8.

530

531 **Membrane vesicle isolation and sucrose density fractionation**

532 Membrane vesicles were isolated and fractionated essentially as previously  
533 described (Anwari et al., 2010) with the following deviations. Phosphate Saline Buffer  
534 (PBS) was used as the base buffer instead of Tris. After sucrose gradient separation,  
535 1 mL fractions were collected step-wise from the top of the gradient, yielding 11  
536 fractionated samples that were analyzed by Coomassie staining and Western blotting  
537 using SDS-PAGE gels as described below. Fractions 2 to 11 (f02-f11), as well as an  
538 aliquot of the total input membrane sample (diluted 10 times in H<sub>2</sub>O), were labeled  
539 with 11-plex TMT and subjected to LC-MS/MS.

540

541 **Sample preparation and TMT labelling**

542 Before sample preparation for MS, proteins were solubilized by adding SDS to the  
543 samples (final concentration of 1% SDS). Samples were then sonicated for 5 minutes  
544 in an ultrasonic bath, heated for 10 minutes to 80°C, and sonicated again for another  
545 5 minutes. Disulphide bonds were reduced by incubating at 56°C for 30 minutes in 10  
546 mM dithiothreitol (DTT) buffered with 50 mM HEPES (pH = 8.5). Reduced cysteines  
547 were alkylated by incubating 30 minutes at room temperature in dark with 20 mM 2-  
548 chloroacetamide in 50 mM HEPES buffer pH = 8.5. Samples were prepared for MS  
549 using the SP3 protocol (Hughes et al., 2014, 2019). On bead trypsin (sequencing  
550 grade, Promega, V5111) digestion was performed to an enzyme:protein ratio of 1:50  
551 and incubated overnight at 37 °C. Digested peptides were then recovered in HEPES  
552 buffer by collecting the supernatant after magnet-based separation from the SP3  
553 beads, and combining the second elution wash of beads with HEPES buffer.  
554 Collected peptides were labelled with TMT10plex Isobaric Label Reagent  
555 (ThermoFisher, (Werner et al., 2014)) and with 131C label (ThermoFisher) according  
556 to the manufacturer's instructions as described below. In brief, 0.8 mg of the TMT  
557 reagents was dissolved in 42 µL of 100 % acetonitrile and 4 µL of this stock was  
558 added to the peptide sample and incubated for 1 hour at room temperature. The  
559 reaction was quenched with 5% hydroxylamine for 15 minutes at room temperature.  
560 Then the 10 samples labelled with unique TMT10plex labels were combined into one  
561 sample. The combined sample was then cleaned up using OASIS® HLB µElution  
562 Plater (Waters). The samples were separated through an offline high pH reverse  
563 phase fractionation on an Agilent 1200 Infinity high-performance liquid  
564 chromatography system which was equipped with a Gemini C18 column (3 µm, 110

565 Å, 100 x 1.0 mm, Phenomenex). The fractionation was performed as previously  
566 described (Reichel et al., 2016). Samples were pooled in into a total of 12 fractions.

567

## 568 **Mass spectrometry data acquisition**

569 Chromatography was performed using an UltiMate 3000 RSLC nano LC system  
570 (Dionex) fitted with a trapping cartridge ( $\mu$ -Precolumn C18 PepMap 100, 5 $\mu$ m, 300  
571  $\mu$ m i.d. x 5 mm, 100 Å) and an analytical column (nanoEase<sup>TM</sup> M/Z HSS T3 column  
572 75  $\mu$ m x 250 mm C18, 1.8  $\mu$ m, 100 Å, Waters). Trapping was carried out with a  
573 constant flow of solvent A (0.1% formic acid in water) at 30  $\mu$ L/min onto the trapping  
574 column for 6 minutes. Subsequently, peptides were eluted via the analytical column  
575 with a constant flow of 0.3  $\mu$ L/min with increasing percentage of solvent B (0.1%  
576 formic acid in acetonitrile) from 2% to 4% in 6 min, from 4% to 8% in 1 min, then 8%  
577 to 25% for a further 71 min, and finally from 25% to 40% in another 5 min. The outlet  
578 of the analytical column was coupled directly to a Fusion Lumos (Thermo) mass  
579 spectrometer using the proxeon nanoflow source in positive ion mode.

580

581 Peptides were introduced into the Fusion Lumos via a Pico-Tip Emitter 360  $\mu$ m OD x  
582 20  $\mu$ m ID; 10  $\mu$ m tip (New Objective) and an applied spray voltage of 2.4 KV. The  
583 capillary temperature was set at 275°C. Full mass scan was acquired with mass  
584 range 375-1500 m/z in profile mode in the orbitrap with resolution of 120000. The  
585 filling time was set at maximum of 50 ms with a limitation of 4x10<sup>5</sup> ions. Data  
586 dependent acquisition (DDA) was performed with the resolution of the Orbitrap set to  
587 30000, with a fill time of 94 ms and a limitation of 1x10<sup>5</sup> ions. A normalized collision  
588 energy of 38 was applied. MS<sup>2</sup> data was acquired in profile mode.

589

## 590 **MS data analysis**

591 IsobarQuant (Franken et al., 2015) and Mascot (v2.2.07, (Perkins et al., 1999)) were  
592 used to process the acquired data, which was then searched against a Uniprot  
593 *Escherichia coli* proteome database (UP000000625, downloaded on 05/14/2016)  
594 containing common contaminants and reversed sequences (The UniProt Consortium,  
595 2019). The following modifications were included into the search parameters:  
596 Carbamidomethyl (C) and TMT10 (K) (fixed modification), Acetyl (Protein N-term),  
597 Oxidation (M) and TMT10 (N-term) (variable modifications).

598

599 For the full scan (MS1) a mass error tolerance of 10 ppm, and for MS/MS (MS2)  
600 spectra of 0.02 Da was set. Further parameters were set: Trypsin as protease with  
601 an allowance of maximum two missed cleavages; a minimum peptide length of seven  
602 amino acids; at least two unique peptides were required for a protein identification.  
603 The false discovery rate on peptide and protein level was set to 0.01.

604

#### 605 **Statistical analysis of MS data**

606 The protein.txt output files of IsobarQuant (Franken et al., 2015) were processed  
607 using the R programming language (R Core Team, 2019). As a quality criterion, only  
608 proteins which were quantified with at least two unique peptides were used. Raw tmt  
609 reporter ion signals (signal\_sum columns) were first batch-cleaned using the  
610 removeBatchEffect function from limma (Ritchie et al., 2015) and then normalized  
611 using the vsn package (Huber et al., 2002). Normalized data was clustered in 4  
612 clusters using the kmeans function of the stat package in R.

613

#### 614 **SDS-PAGE and Coomassie staining**

615 Protein samples were solubilized and reduced by boiling at 95°C for 5 minutes in  
616 Laemmli loading buffer (200 mM Tris-HCl (pH=6.8), 8% SDS, 40% glycerol, 400 mM  
617 DTT, 0.02% bromophenol blue). Solubilized samples were loaded and separated in  
618 gradient gels of 4-20% acrylamide (Teo-Tricine gels from Expedeon, NXG42012)  
619 using the running buffer (Run-Blue running buffer: 0.8 M Tricine, 1.2 M  
620 Triethanolamine, 2% SDS). Bio-rad systems were used, applying 100 V per chamber.  
621 For Coomassie staining, gels were incubated in staining solution (50% methanol,  
622 40% H<sub>2</sub>O, 10% acetic acid, 1 g Brilliant Blue R250 per 1 L) for 1 hour, and destained  
623 with destaining solution (40% ethanol, 10% acetic acid, 50% H<sub>2</sub>O) until the desirable  
624 signal was achieved. Incubations were performed at room temperature with constant  
625 moderate mixing by rocking.

626

#### 627 **Immunoblot analysis**

628 Proteins were separated on acrylamide gels as described above, and transferred to  
629 methanol-activated PVDF membranes (Merck, IPVH00010), using Western blot  
630 transfer buffer (3.03 g Tris, 14.4g glycine, 200 mL methanol per 1 L) for 1.5 hours at  
631 100 V. All the incubation steps from here on were performed with constant moderate

632 agitation by using rocking platforms. Membranes were blocked for 1 hour with 5%  
633 skim milk in TBST (20 mM Tris, 10 mM NaCl, 0.1% Tween-20), and then incubated  
634 with appropriately diluted primary antibodies ( $\alpha$ -BamA – 1:10,000,  $\alpha$ -SecG – 1:6,000)  
635 in 5% skim milk in TBST overnight at 4°C. After three times of 5 minutes washes with  
636 TBST, membranes were incubated for 1 hour with secondary  $\alpha$ -rabbit antibodies  
637 conjugated with horseradish peroxidase (HRP) (GE healthcare, NA934) diluted by  
638 1:10,000 in 5% skim milk in TBST. After these antibody incubations, membranes  
639 were washed again three times for 5 minutes with TBST. Proteins were detected by  
640 adding ECL substrate (GE Healthcare, RPN2106), then exposing and visualizing  
641 using a digital developing machine (ChemiDoc™ Touch Imaging System).

642

#### 643 **Databases**

644 UniProt (The UniProt Consortium, 2019) was used as the source for protein ID and  
645 sequences. Protein localization information on STEPdb database (Orfanoudaki and  
646 Economou, 2014) was summarized and modified as in Table S2. Modification  
647 includes assignment of single localization for proteins with two or more localization  
648 annotations.

649

650

651

652

653 **References**

654

655 Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther,  
656 O., Brunak, S., von Heijne, G., and Nielsen, H. (2019). SignalP 5.0 improves signal  
657 peptide predictions using deep neural networks. *Nat. Biotechnol.* 37, 420–423.

658 Anwari, K., Poggio, S., Perry, A., Gatsos, X., Ramarathinam, S.H., Williamson, N.A.,  
659 Noinaj, N., Buchanan, S., Gabriel, K., Purcell, A.W., et al. (2010). A Modular BAM  
660 Complex in the Outer Membrane of the  $\alpha$ -Proteobacterium *Caulobacter crescentus*.  
661 *PLoS One* 5, e8619.

662 Babu, M., Bundalovic-Torma, C., Calmettes, C., Phanse, S., Zhang, Q., Jiang, Y.,  
663 Minic, Z., Kim, S., Mehla, J., Gagarkinova, A., et al. (2018). Global landscape of cell  
664 envelope protein complexes in *Escherichia coli*. *Nat. Biotechnol.* 36, 103–112.

665 Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., and Hamodrakas, S.J. (2004).  
666 PRED-TMBB: a web server for predicting the topology of beta-barrel outer  
667 membrane proteins. *Nucleic Acids Res.* 32, W400-4.

668 Bagos, P.G., Nikolaou, E.P., Liakopoulos, T.D., and Tsirigos, K.D. (2010). Combined  
669 prediction of Tat and Sec signal peptides with hidden Markov models. *Bioinformatics*  
670 26, 2811–2817.

671 Bantscheff, M., Lemeer, S., Savitski, M.M., and Kuster, B. (2012). Quantitative mass  
672 spectrometry in proteomics: critical review update from 2007 to the present. *Anal.*  
673 *Bioanal. Chem.* 404, 939–965.

674 Beeby, M., Ribardo, D.A., Brennan, C.A., Ruby, E.G., Jensen, G.J., and Hendrixson,  
675 D.R. (2016). Diverse high-torque bacterial flagellar motors assemble wider stator  
676 rings using a conserved protein scaffold. *Proc. Natl. Acad. Sci. U. S. A.* 113, E1917–  
677 26.

678 Bernsel, A., and Daley, D.O. (2009). Exploring the inner membrane proteome of  
679 *Escherichia coli*: which proteins are eluding detection and why? *Trends Microbiol.* 17,  
680 444–449.

681 Berven, F.S., Flikka, K., Jensen, H.B., and Eidhammer, I. (2004). BOMP: a program  
682 to predict integral -barrel outer membrane proteins encoded within genomes of

683 Gram-negative bacteria. *Nucleic Acids Res.* 32, W394–W399.

684 Bos, M.P., Robert, V., and Tommassen, J. (2007). Biogenesis of the Gram-Negative  
685 Bacterial Outer Membrane. *Annu. Rev. Microbiol.* 61, 191–214.

686 Celia, H., Noinaj, N., Zakharov, S.D., Bordignon, E., Botos, I., Santamaria, M.,  
687 Barnard, T.J., Cramer, W.A., Lloubes, R., and Buchanan, S.K. (2016). Structural  
688 insight into the role of the Ton complex in energy transduction. *Nature* 538, 60–65.

689 Chng, S.-S., Gronenberg, L.S., and Kahne, D. (2010). Proteins Required for  
690 Lipopolysaccharide Assembly in *Escherichia coli* Form a Transenvelope Complex.  
691 *Biochemistry* 49, 4565–4567.

692 Cho, S., Szewczyk, J., Pesavento, C., Zietek, M., Banzhaf, M., Roszczenko, P.,  
693 Asmar, A., Laloux, G., Hov, A., Leverrier, P., et al. (2014). Detecting Envelope Stress  
694 by Monitoring β-Barrel Assembly. *Cell* 159, 1652–1664.

695 Cowles, C.E., Li, Y., Semmelhack, M.F., Cristea, I.M., and Silhavy, T.J. (2011). The  
696 free and bound forms of Lpp occupy distinct subcellular locations in *Escherichia coli*.  
697 *Mol. Microbiol.* 79, 1168–1181.

698 d'Alençon, E., Taghbalout, A., Kern, R., and Kohiyama, M. (1999). Replication cycle  
699 dependent association of SeqA to the outer membrane fraction of *E. coli*. *Biochimie*  
700 81, 841–846.

701 Deng, W., Marshall, N.C., Rowland, J.L., McCoy, J.M., Worrall, L.J., Santos, A.S.,  
702 Strynadka, N.C.J., and Finlay, B.B. (2017). Assembly, structure, function and  
703 regulation of type III secretion systems. *Nat. Rev. Microbiol.* 15, 323–337.

704 Du, D., Wang, Z., James, N.R., Voss, J.E., Klimont, E., Ohene-Agyei, T., Venter, H.,  
705 Chiu, W., and Luisi, B.F. (2014). Structure of the AcrAB-TolC multidrug efflux pump.  
706 *Nature* 509, 512–515.

707 Dunstan, R.A., Hay, I.D., Wilksch, J.J., Schittenhelm, R.B., Purcell, A.W., Clark, J.,  
708 Costin, A., Ramm, G., Strugnell, R.A., and Lithgow, T. (2015). Assembly of the  
709 secretion pores GspD, Wza and CsgG into bacterial outer membranes does not  
710 require the Omp85 proteins BamA or TamA. *Mol. Microbiol.* 97, 616–629.

711 Egan, A.J.F., Jean, N.L., Koumoutsi, A., Bougault, C.M., Biboy, J., Sassine, J.,  
712 Solovyova, A.S., Breukink, E., Typas, A., Vollmer, W., et al. (2014). Outer-membrane  
713 lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B.

714 Proc. Natl. Acad. Sci. U. S. A. 111, 8197–8202.

715 Franken, H., Mathieson, T., Childs, D., Sweetman, G.M.A., Werner, T., Tögel, I.,  
716 Doce, C., Gade, S., Bantscheff, M., Drewes, G., et al. (2015). Thermal proteome  
717 profiling for unbiased identification of direct and indirect drug targets using  
718 multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593.

719 Gray, A.N., Egan, A.J.F., Van't Veer, I.L., Verheul, J., Colavin, A., Koumoutsi, A.,  
720 Biboy, J., Altelaar, A.F.M., Damen, M.J., Huang, K.C., et al. (2015). Coordination of  
721 peptidoglycan synthesis and outer membrane constriction during *Escherichia coli* cell  
722 division. Elife 4.

723 Higgs, P.I., Letain, T.E., Merriam, K.K., Burke, N.S., Park, H., Kang, C., and Postle, K.  
724 (2002). TonB Interacts with Nonreceptor Proteins in the Outer Membrane of  
725 *Escherichia coli*. J. Bacteriol. 184, 1640–1648.

726 Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and Vingron, M. (2002).  
727 Variance stabilization applied to microarray data calibration and to the quantification  
728 of differential expression. Bioinformatics 18 Suppl 1, S96-104.

729 Hughes, C.S., Foehr, S., Garfield, D.A., Furlong, E.E., Steinmetz, L.M., and  
730 Krijgsveld, J. (2014). Ultrasensitive proteome analysis using paramagnetic bead  
731 technology. Mol. Syst. Biol. 10, 757–757.

732 Hughes, C.S., Moggridge, S., Müller, T., Sorensen, P.H., Morin, G.B., and Krijgsveld,  
733 J. (2019). Single-pot, solid-phase-enhanced sample preparation for proteomics  
734 experiments. Nat. Protoc. 14, 68–85.

735 Jacob-Dubuisson, F., Mechaly, A., Betton, J.-M., and Antoine, R. (2018). Structural  
736 insights into the signalling mechanisms of two-component systems. Nat. Rev.  
737 Microbiol. 16, 585–593.

738 Keseler, I.M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martínez, C.,  
739 Caspi, R., Fulcher, C., Gama-Castro, S., Kothari, A., Krummenacker, M., et al. (2017).  
740 The EcoCyc database: reflecting new knowledge about *Escherichia coli* K-12.  
741 Nucleic Acids Res. 45, D543–D550.

742 Konovalova, A., Perlman, D.H., Cowles, C.E., and Silhavy, T.J. (2014).  
743 Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is  
744 threaded through the lumen of -barrel proteins. Proc. Natl. Acad. Sci. 111, E4350–  
745 E4358.

746 Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting  
747 transmembrane protein topology with a hidden Markov model: application to  
748 complete genomes. *J. Mol. Biol.* **305**, 567–580.

749 Kuhn, A., Koch, H.-G., and Dalbey, R.E. (2017). Targeting and Insertion of  
750 Membrane Proteins. *EcoSal Plus* **7**.

751 Lacqua, A., Wanner, O., Colangelo, T., Martinotti, M.G., and Landini, P. (2006).  
752 Emergence of Biofilm-Forming Subpopulations upon Exposure of *Escherichia coli* to  
753 Environmental Bacteriophages. *Appl. Environ. Microbiol.* **72**, 956–959.

754 Letain, T.E., and Postle, K. (1997). TonB protein appears to transduce energy by  
755 shuttling between the cytoplasmic membrane and the outer membrane in *Escherichia*  
756 *coli*. *Mol. Microbiol.* **24**, 271–283.

757 Létoquart, J., Rodriguez-Alonso, R., Nguyen, V.S., Louis, G., Calabrese, A.N.,  
758 Radford, S.E., Cho, S.-H., Remaut, H., and Collet, J.-F. (2019). Structural insight into  
759 the formation of lipoprotein- $\beta$ -barrel complexes by the  $\beta$ -barrel assembly machinery.  
760 *BioRxiv* 823146.

761 Li, G., and Young, K.D. (2012). Isolation and identification of new inner membrane-  
762 associated proteins that localize to cell poles in *Escherichia coli*. *Mol. Microbiol.* **84**,  
763 276–295.

764 Li, G., and Young, K.D. (2015). A new suite of tnaA mutants suggests that  
765 *Escherichia coli* tryptophanase is regulated by intracellular sequestration and by  
766 occlusion of its active site. *BMC Microbiol.* **15**, 14.

767 Li, H., Wang, B.-C., Xu, W.-J., Lin, X.-M., and Peng, X.-X. (2008). Identification and  
768 Network of Outer Membrane Proteins Regulating Streptomycin Resistance in  
769 *Escherichia coli*. *J. Proteome Res.* **7**, 4040–4049.

770 Lim, B., Miyazaki, R., Neher, S., Siegele, D.A., Ito, K., Walter, P., Akiyama, Y., Yura,  
771 T., and Gross, C.A. (2013). Heat shock transcription factor  $\sigma$ 32 co-opts the signal  
772 recognition particle to regulate protein homeostasis in *E. coli*. *PLoS Biol.* **11**,  
773 e1001735.

774 Lloubès, R., Cascales, E., Walburger, A., Bouveret, E., Lazdunski, C., Bernadac, A.,  
775 and Journet, L. (2001). The Tol-Pal proteins of the *Escherichia coli* cell envelope: an  
776 energized system required for outer membrane integrity? *Res. Microbiol.* **152**, 523–  
777 529.

778 Loos, M.S., Ramakrishnan, R., Vranken, W., Tsirigotaki, A., Tsare, E.-P., Zorzini, V.,  
779 Geyter, J. De, Yuan, B., Tsamardinos, I., Klappa, M., et al. (2019). Structural Basis of  
780 the Subcellular Topology Landscape of *Escherichia coli*. *Front. Microbiol.* *10*, 1670.

781 Luirink, J., Yu, Z., Wagner, S., and de Gier, J.-W. (2012). Biogenesis of inner  
782 membrane proteins in *Escherichia coli*. *Biochim. Biophys. Acta* *1817*, 965–976.

783 Majdalani, N., Hernandez, D., and Gottesman, S. (2002). Regulation and mode of  
784 action of the second small RNA activator of RpoS translation, RprA. *Mol. Microbiol.*  
785 *46*, 813–826.

786 Mateus, A., Bobonis, J., Kurzawa, N., Stein, F., Helm, D., Hevler, J., Typas, A., and  
787 Savitski, M.M. (2018). Thermal proteome profiling in bacteria: probing protein state in  
788 vivo. *Mol. Syst. Biol.* *14*, e8242.

789 May, K.L., and Grabowicz, M. (2018). The bacterial outer membrane is an evolving  
790 antibiotic barrier. *Proc. Natl. Acad. Sci.* *115*, 8852–8854.

791 Moussatova, A., Kandt, C., O'Mara, M.L., and Tielemans, D.P. (2008). ATP-binding  
792 cassette transporters in *Escherichia coli*. *Biochim. Biophys. Acta - Biomembr.* *1778*,  
793 1757–1771.

794 Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability  
795 revisited. *Microbiol. Mol. Biol. Rev.* *67*, 593–656.

796 Orfanoudaki, G., and Economou, A. (2014). Proteome-wide Subcellular Topologies  
797 of *E. coli* Polypeptides Database (STEPdb). *Mol. Cell. Proteomics* *13*, 3674–3687.

798 Papanastasiou, M., Orfanoudaki, G., Koukaki, M., Kountourakis, N., Sardis, M.F.,  
799 Aivaliotis, M., Karamanou, S., and Economou, A. (2013). The *Escherichia coli*  
800 Peripheral Inner Membrane Proteome. *Mol. Cell. Proteomics* *12*, 599–610.

801 Papanastasiou, M., Orfanoudaki, G., Kountourakis, N., Koukaki, M., Sardis, M.F.,  
802 Aivaliotis, M., Tsolis, K.C., Karamanou, S., and Economou, A. (2016). Rapid label-  
803 free quantitative analysis of the *E. coli* BL21(DE3) inner membrane proteome.  
804 *Proteomics* *16*, 85–97.

805 Paradis-Bleau, C., Markovski, M., Uehara, T., Lupoli, T.J., Walker, S., Kahne, D.E.,  
806 and Bernhardt, T.G. (2010). Lipoprotein cofactors located in the outer membrane  
807 activate bacterial cell wall polymerases. *Cell* *143*, 1110–1120.

808 Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S.,

809 Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The  
810 PRIDE database and related tools and resources in 2019: improving support for  
811 quantification data. *Nucleic Acids Res.* **47**, D442–D450.

812 Perkins, D.N., Pappin, D.J.C., Creasy, D.M., and Cottrell, J.S. (1999). Probability-  
813 based protein identification by searching sequence databases using mass  
814 spectrometry data. *Electrophoresis* **20**, 3551–3567.

815 Petiti, M., Serrano, B., Faure, L., Lloubes, R., Mignot, T., and Duché, D. (2019). Tol  
816 Energy-Driven Localization of Pal and Anchoring to the Peptidoglycan Promote  
817 Outer-Membrane Constriction. *J. Mol. Biol.* **431**, 3275–3288.

818 R Core Team (2019). R: A Language and Environment for Statistical Computing.

819 Reichel, M., Liao, Y., Rettel, M., Ragan, C., Evers, M., Alleaume, A.-M., Horos, R.,  
820 Hentze, M.W., Preiss, T., and Millar, A.A. (2016). In Planta Determination of the  
821 mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. *Plant Cell* **28**, 2435–  
822 2452.

823 Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K.  
824 (2015). limma powers differential expression analyses for RNA-sequencing and  
825 microarray studies. *Nucleic Acids Res.* **43**, e47.

826 Rojas, E.R., Billings, G., Odermatt, P.D., Auer, G.K., Zhu, L., Miguel, A., Chang, F.,  
827 Weibel, D.B., Theriot, J.A., and Huang, K.C. (2018). The outer membrane is an  
828 essential load-bearing element in Gram-negative bacteria. *Nature* **559**, 617–621.

829 Selkirk, J., Mosbahi, K., Webb, C.T., Belousoff, M.J., Perry, A.J., Wells, T.J., Morris,  
830 F., Leyton, D.L., Totsika, M., Phan, M.-D., et al. (2012). Discovery of an archetypal  
831 protein transport system in bacterial outer membranes. *Nat. Struct. Mol. Biol.* **19**,  
832 506–510.

833 Silhavy, T.J., Kahne, D., and Walker, S. (2010). The Bacterial Cell Envelope. *Cold*  
834 *Spring Harb. Perspect. Biol.* **2**, a000414–a000414.

835 Szewczyk, J., and Collet, J.-F. (2016). The Journey of Lipoproteins Through the Cell:  
836 One Birthplace, Multiple Destinations. *Adv. Microb. Physiol.* **69**, 1–50.

837 The UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge.  
838 *Nucleic Acids Res.* **47**, D506–D515.

839 Tsolis, K.C., and Economou, A. (2017). Quantitative Proteomics of the *E. coli*

840 Membranome. In *Methods in Enzymology*, (Elsevier Inc.), pp. 15–36.

841 Typas, A., and Sourjik, V. (2015). Bacterial protein networks: properties and functions.

842 *Nat. Rev. Microbiol.* 13, 559–572.

843 Typas, A., Banzhaf, M., van den Berg van Saparoea, B., Verheul, J., Biboy, J.,

844 Nichols, R.J., Zietek, M., Beilharz, K., Kannenberg, K., von Rechenberg, M., et al.

845 (2010). Regulation of peptidoglycan synthesis by outer-membrane proteins. *Cell* 143,

846 1097–1109.

847 Typas, A., Banzhaf, M., Gross, C.A., and Vollmer, W. (2011). From the regulation of

848 peptidoglycan synthesis to bacterial growth and morphology. *Nat. Rev. Microbiol.* 10,

849 123–136.

850 Webb, C.T., Selkirk, J., Perry, A.J., Noinaj, N., Buchanan, S.K., and Lithgow, T.

851 (2012). Dynamic association of BAM complex modules includes surface exposure of

852 the lipoprotein BamC. *J. Mol. Biol.* 422, 545–555.

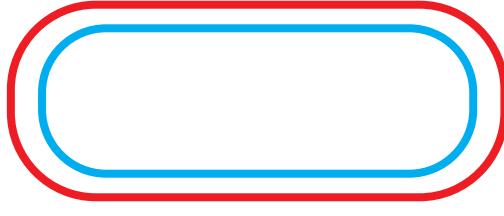
853 Werner, T., Sweetman, G., Savitski, M.F., Mathieson, T., Bantscheff, M., and Savitski,

854 M.M. (2014). Ion Coalescence of Neutron Encoded TMT 10-Plex Reporter Ions. *Anal.*

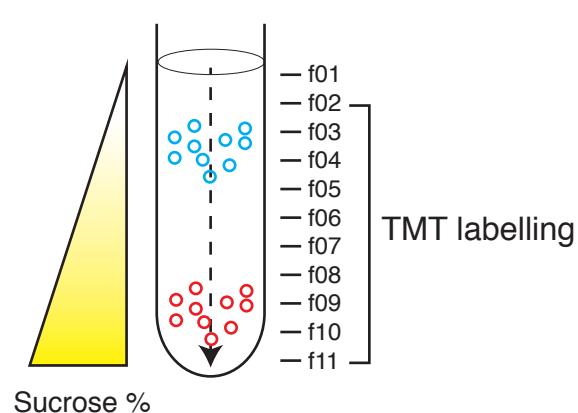
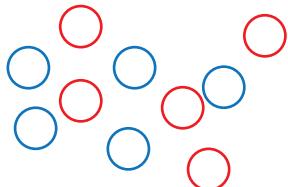
855 *Chem.* 86, 3594–3601.

856 Yang, D.C., Peters, N.T., Parzych, K.R., Uehara, T., Markovski, M., and Bernhardt,

857 T.G. (2011). An ATP-binding cassette transporter-like complex governs cell-wall


858 hydrolysis at the bacterial cytokinetic ring. *Proc. Natl. Acad. Sci.* 108, E1052–E1060.

859

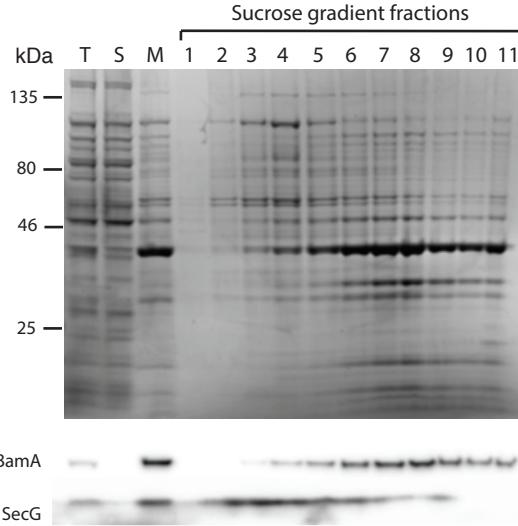


# Figure 1

A

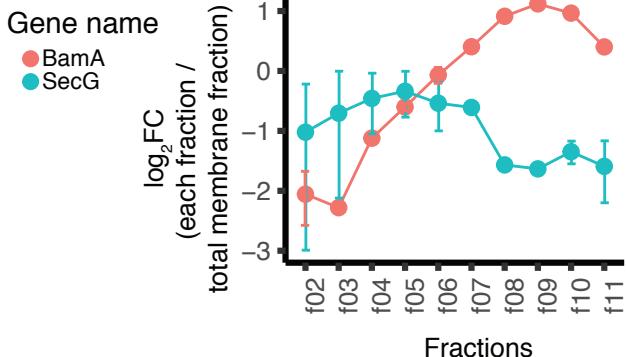
*E. coli* K-12 in exponential phase



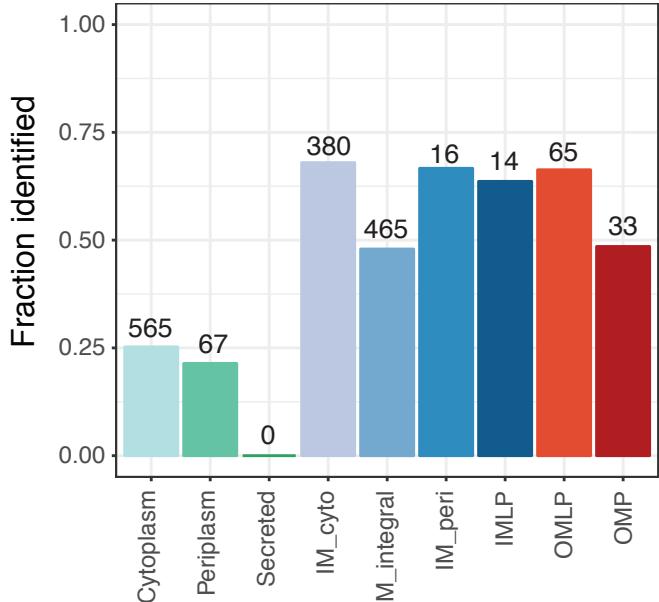
Lysed and membrane vesicles formed (IM and OM vesicles)




Quantitative LC-MS/MS


Data normalization

Membrane localization identification


B

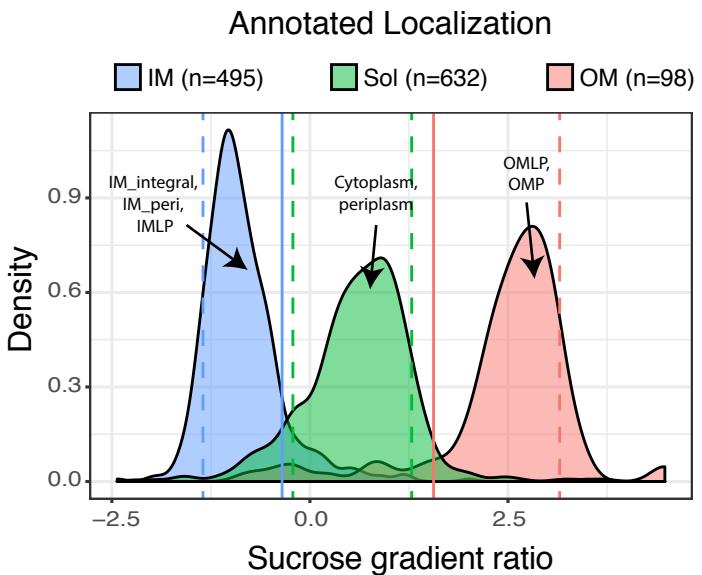


Normalized signal of TMT-labelling MS result

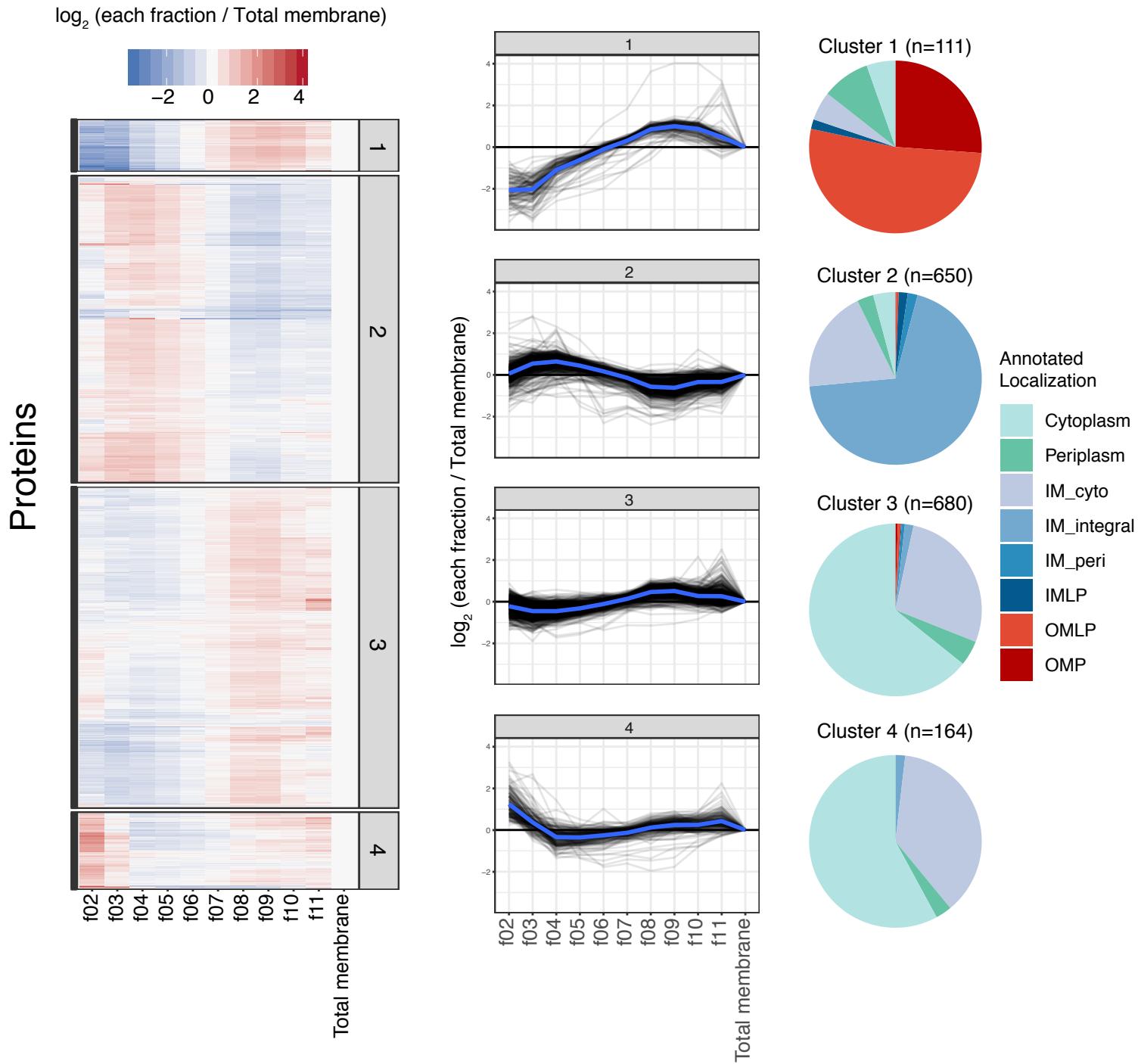


C



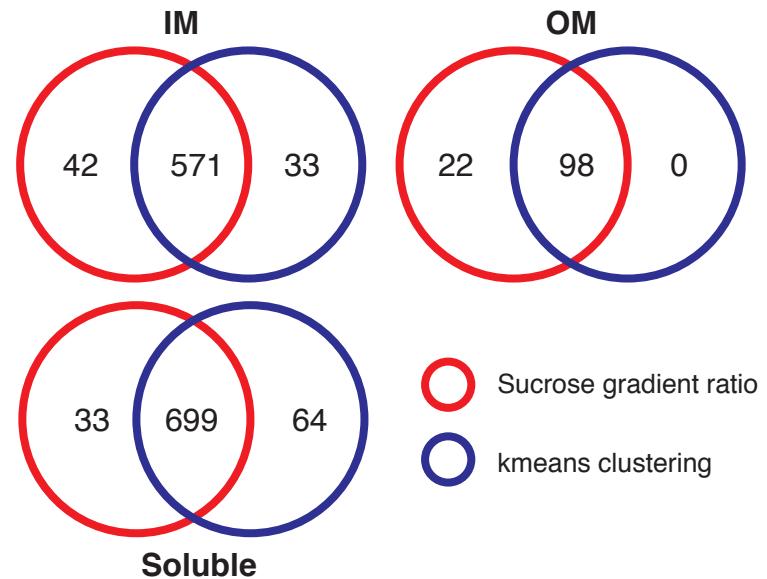

Annotated localization

# Figure 2

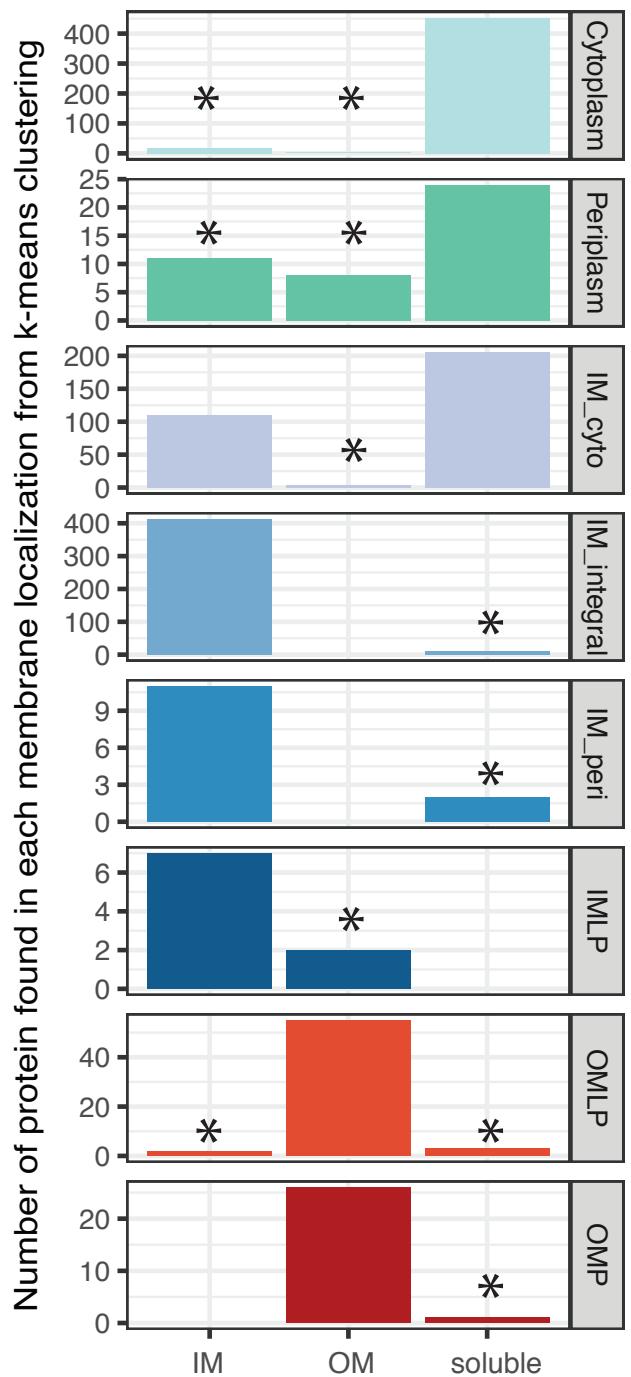

A



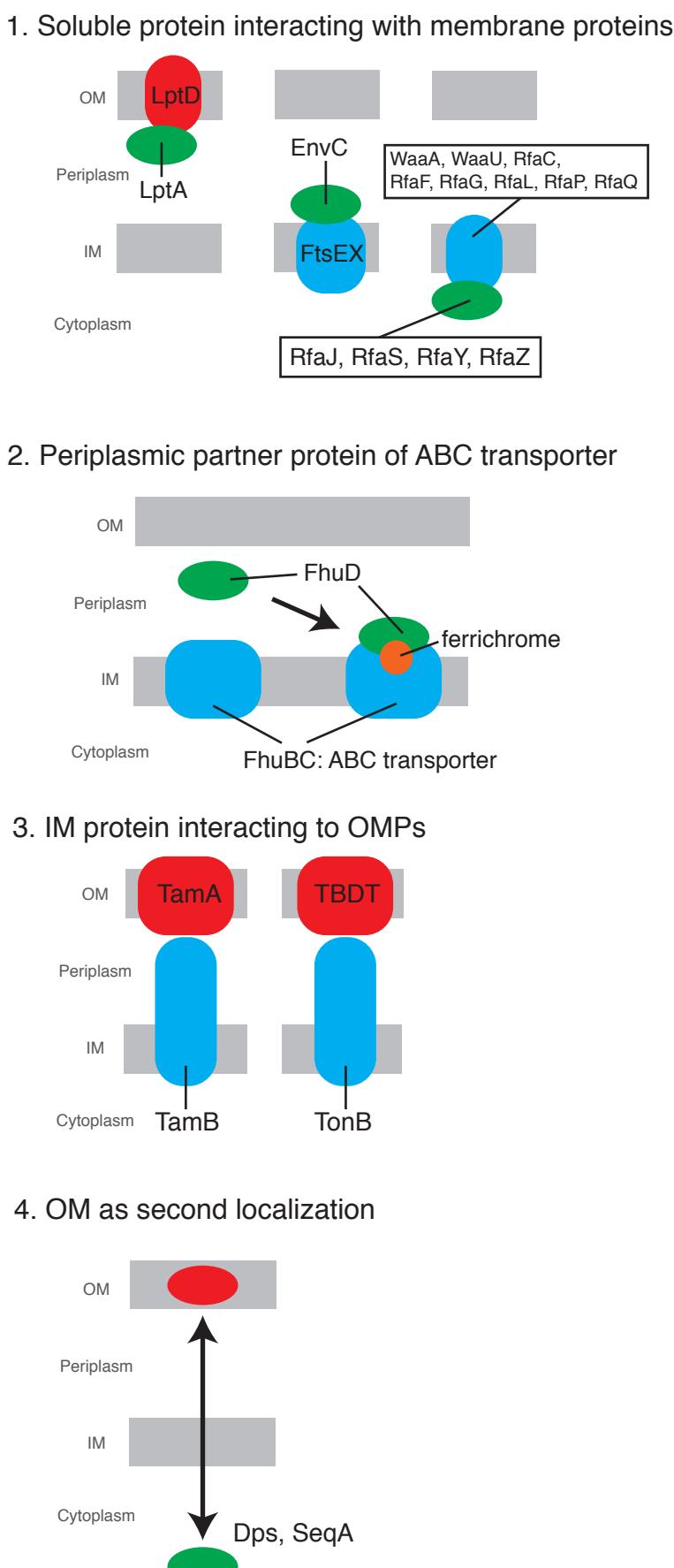
B




# Figure 3

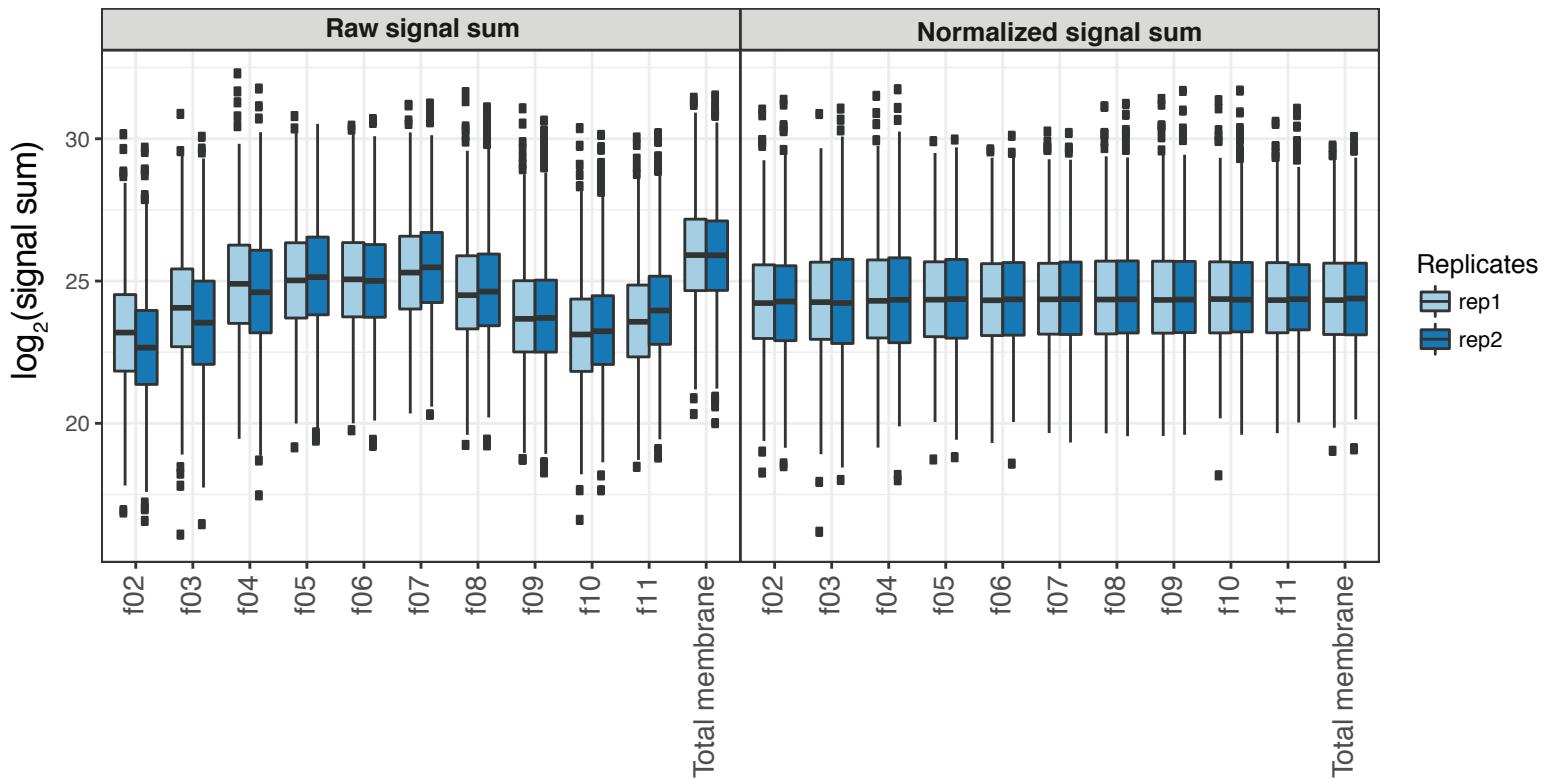



# Figure 4

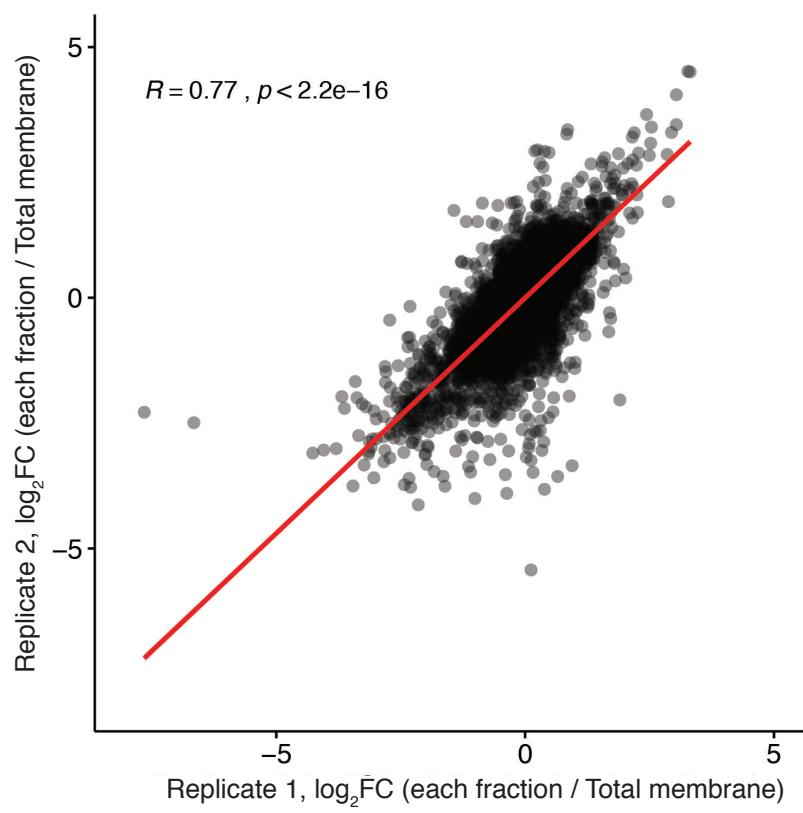

A



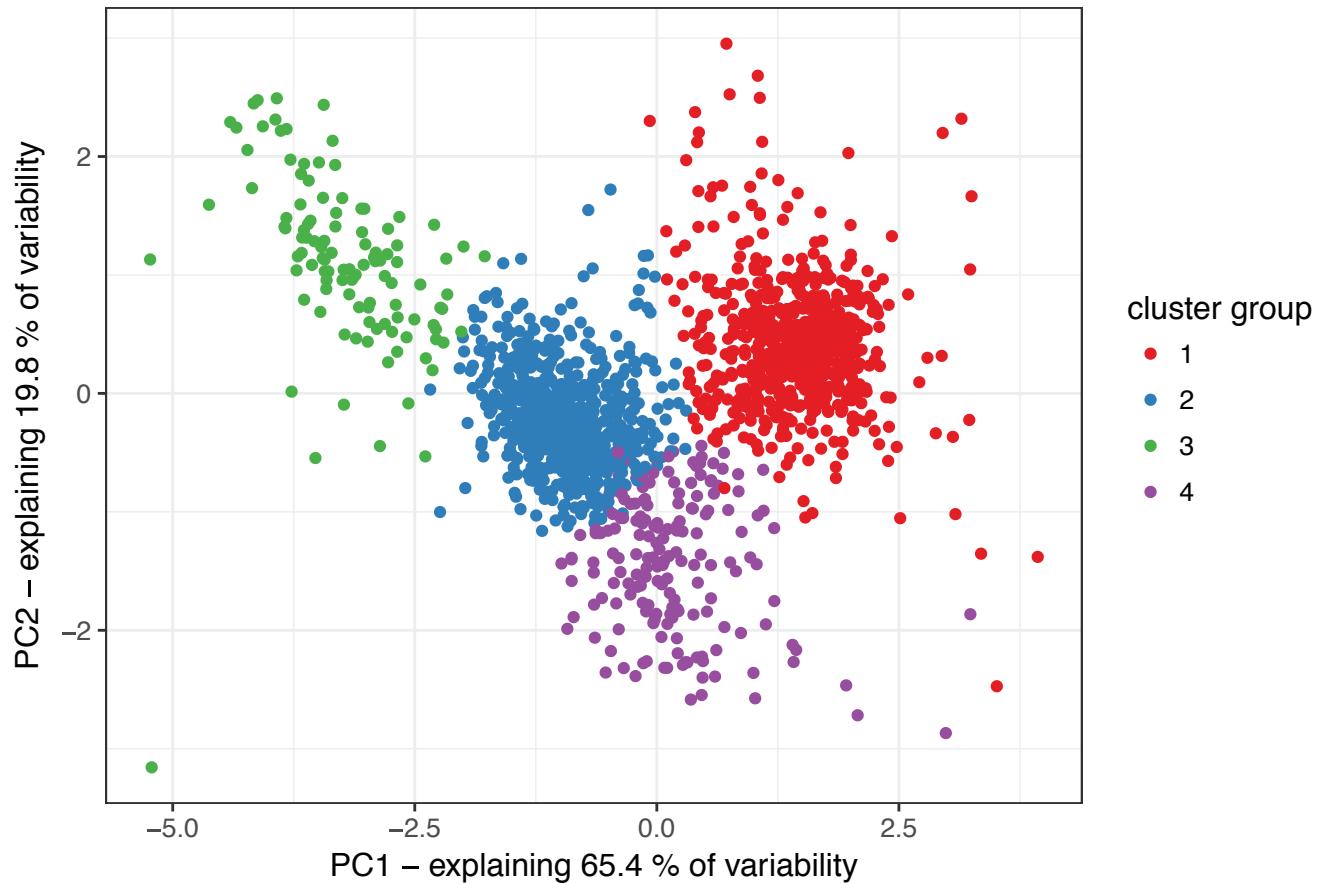
B



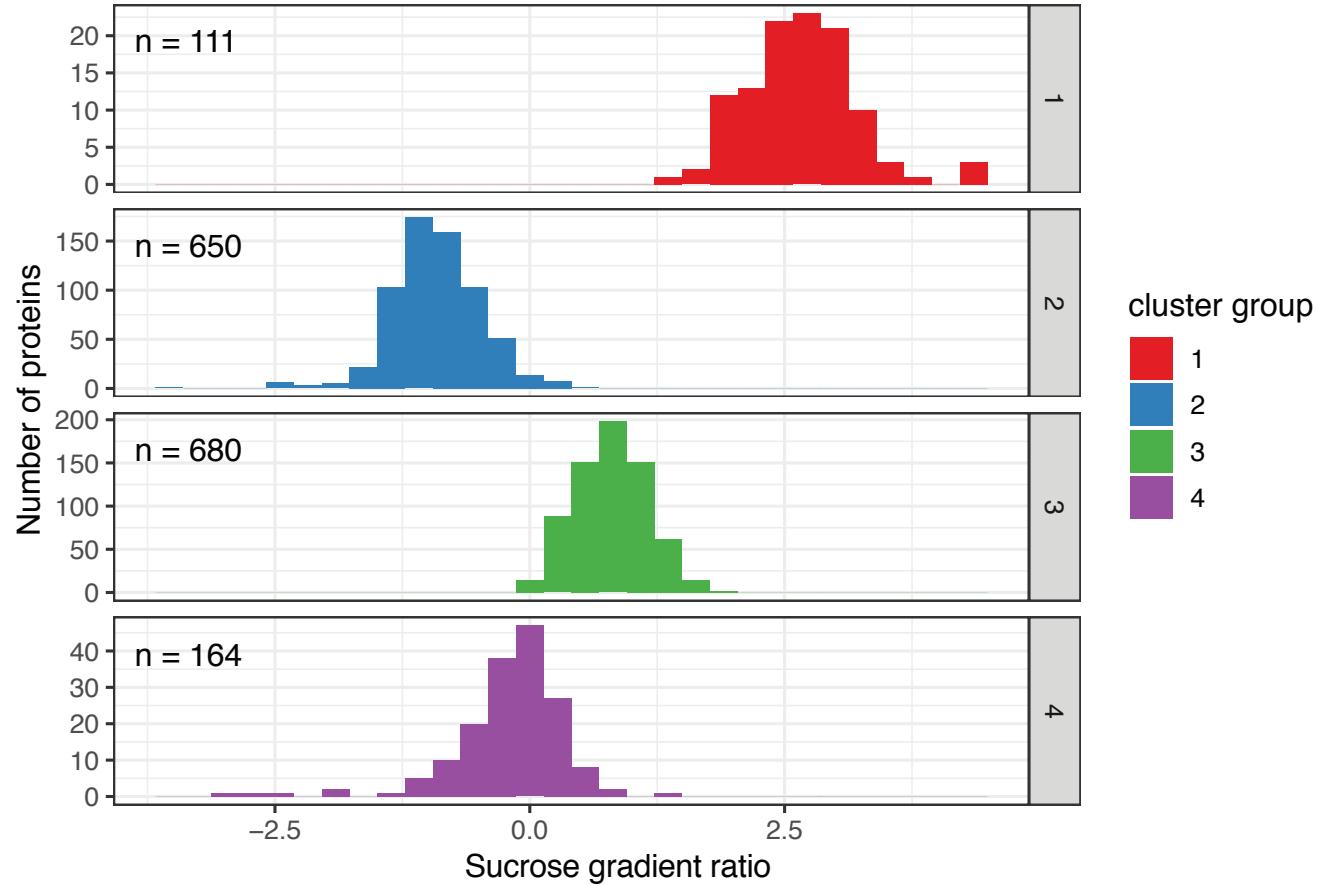

C



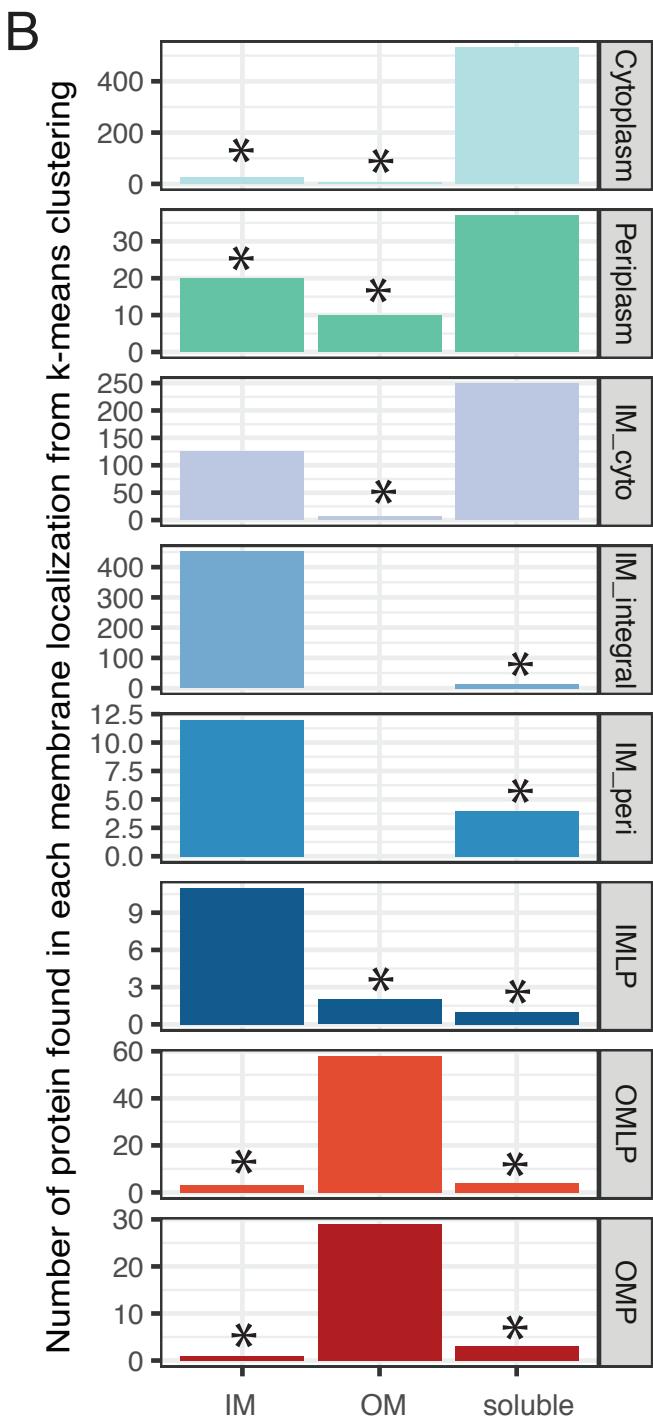
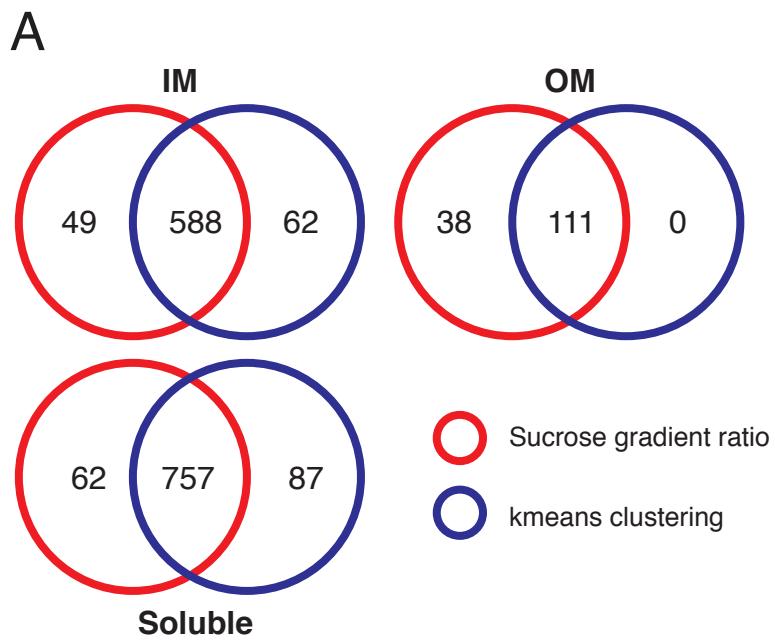

# Figure S1


A




B





# Figure S2




# Figure S3



# Figure S4



# Figure S5

