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ABSTRACT 28 

Background: Phelan-McDermid syndrome (PMS) is a rare genetic disorder with high risk of 29 

autism spectrum disorder (ASD), intellectual disability and language delay, and is caused by 30 

22q13.3 deletions or mutations in the SHANK3 gene. To date, the molecular and pathway changes 31 

resulting from SHANK3 haploinsufficiency in PMS remain poorly understood. Uncovering these 32 

mechanisms is critical for understanding pathobiology of PMS and, ultimately, for the 33 

development of new therapeutic interventions. 34 

 35 

Methods: We developed human induced pluripotent stem cell (hiPSC)-based models of PMS by 36 

reprogramming peripheral blood samples from individuals with PMS (n=7) and their unaffected 37 

siblings (n=6). For each participant, up to three hiPSC clones were generated and differentiated 38 

into induced neural progenitor cells (iNPCs; n=32) and induced forebrain neurons (iNeurons; 39 

n=42). Genome-wide RNA-sequencing was applied to explore transcriptional differences between 40 

PMS probands and unaffected siblings. 41 

 42 

Results: Transcriptome analyses identified 391 differentially expressed genes (DEGs) in iNPCs 43 

and 82 DEGs in iNeurons, when comparing cells from PMS probands and unaffected siblings 44 

(FDR <5%). Genes under-expressed in PMS were implicated in Wnt signaling, embryonic 45 

development and protein translation, while over-expressed genes were enriched for pre- and post-46 

synaptic density genes, regulation of synaptic plasticity, and G-protein-gated potassium channel 47 

activity. Gene co-expression network analysis identified two modules in iNeurons that were over-48 

expressed in PMS, implicating postsynaptic signaling and GDP binding, and both modules 49 

harbored a significant enrichment of genetic risk loci for developmental delay and intellectual 50 
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disability. Finally, PMS-associated genes were integrated with other ASD iPSC transcriptome 51 

findings and several points of convergence were identified, indicating altered Wnt signaling, 52 

extracellular matrix and glutamatergic synapses.  53 

 54 

Limitations: Given the rarity of the condition, we could not carry out experimental validation in 55 

independent biological samples. In addition, functional and morphological phenotypes caused by 56 

loss of SHANK3 were not characterized here.  57 

 58 

Conclusions: This is the largest human neural sample analyzed in PMS. Genome-wide RNA-59 

sequencing in hiPSC-derived neural cells from individuals with PMS revealed both shared and 60 

distinct transcriptional signatures across iNPCs and iNeurons, including many genes implicated in 61 

risk for ASD, as well as specific neurobiological pathways, including the Wnt pathway.  62 

 63 

  64 
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INTRODUCTION 65 

Phelan-McDermid syndrome (PMS) is one of the most penetrant and more common single-locus 66 

causes of ASD, accounting for ca. 1% of ASD diagnoses [1-3]. PMS is caused by heterozygous 67 

22q13.3 deletions or mutations leading to haploinsufficiency of the SHANK3 gene [2, 4-6]. 68 

Clinical manifestations of PMS include ASD, global developmental delay, severe to profound 69 

intellectual disability (ID), motor abnormalities, delayed or absent speech, and epilepsy [2, 6, 7]. 70 

SHANK3 is a scaffolding protein of the post-synaptic density of excitatory synapses and plays a 71 

critical role in synaptic function, being a key component in the integration of glutamatergic 72 

synaptic signaling [8-14]. A fundamental knowledge gap separates the well-defined clinical impact 73 

of SHANK3 mutations on neurodevelopmental phenotypes and the molecular and cellular 74 

mechanisms leading to these phenotypes. Uncovering these mechanisms is critical for identifying 75 

drug targets and developing novel intervention strategies for PMS and for subsets of ASD that 76 

share related pathobiological mechanisms. 77 

 78 

Several studies have utilized murine models to explore the molecular consequences of SHANK3-79 

deficiency. We and others have shown that mice with a disruption in Shank3 have altered 80 

glutamatergic signaling and synaptic dysfunction, as well as altered motor, social and repetitive 81 

behaviors [11, 15-26]. Studies on a genetically modified Shank3 rat model showed deficits in 82 

attention and in long-term social memory, which were attributable to reduced synaptic plasticity 83 

in the hippocampal-medial prefrontal cortex pathway [27, 28]. Many of the features of these rodent 84 

models reflect deficits similar to those observed in PMS. However, although animals and humans 85 

share homologous genes, pathways, and networks, rodents may have limits as models of human 86 
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neurodevelopment. Specifically, the biological context and integration of molecular pathways 87 

differ across species, which can pose an obstacle for drug development and discovery.  88 

 89 

The generation of neuronal cultures from human induced pluripotent stem cells (hiPSCs) has the 90 

potential to create translatable and experimentally tractable human neuronal models [29, 30]. 91 

hiPSCs can be derived directly from participant cells and reprogrammed to differentiate into target 92 

cell types of interest, recapitulating the early stages of neurodevelopment in vitro, all while 93 

retaining the genetics of the original donor. In several studies, hiPSC-derived neurons have been 94 

examined from individuals with PMS and show a reduction in the number of synapses in SHANK3-95 

deficient neurons, together with impaired dendritic arborization and major deficits in excitatory, 96 

but not inhibitory, synaptic activity [31-36]. Isogenic comparisons of CRISPR-engineered 97 

heterozygous and homozygous SHANK3 mutations demonstrated that SHANK3-deficiency causes 98 

functionally impaired hyperpolarization-activated cation currents, likely through its ability to 99 

interact with and organize the hyperpolarization-activated cyclic nucleotide-gated channels that 100 

mediate Ih currents [37]. Some studies indicate that excitatory synaptic transmission in PMS 101 

neurons can be corrected by restoring SHANK3 expression, by treating neurons with IGF-1, or by 102 

pharmacologically and genetically activating Akt or inhibiting the Cdc2-like kinase 2 activity [31, 103 

34, 35]. Amelioration of deficits associated with SHANK3 haploinsufficiency have also been 104 

demonstrated by treating iPSCs with lithium or valproic acid [34].  105 

 106 

Overall, the rodent and hiPSC-based studies consistently confirm that, at the neurophysiological 107 

level, PMS leads to a disruption in glutamatergic signaling. A next step would be to identify 108 

consistent molecular changes in PMS, specifically, the repertoire of genes and molecular pathways 109 
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that are altered in expression as a consequence of SHANK3-deficiency. A better understanding of 110 

these molecular mechanisms may inform the search for approaches to ameliorate neurobiological 111 

and neurophysiological deficits in vitro, with the ultimate goal of advancing treatments for PMS.  112 

 113 

The overarching objective of the current study was to identify the transcriptional signatures of 114 

SHANK3-deficiency in iNPCs and iNeurons by comparing genome-wide RNA-seq gene 115 

expression between PMS probands (n=7) and unaffected siblings (n=6). A multi-step analytic 116 

approach was applied to: (1) confirm the developmental specificity of our hiPSC neuronal cells; 117 

(2) quantify the variance in iNPC and iNeuron transcriptome data that is explained by differences 118 

in neural cell types, individual donors and other relevant factors; and (3) identify and characterize 119 

candidate genes, molecular pathways and co-regulatory networks associated with PMS in iNPCs 120 

and iNeurons. We identify important molecular pathways that both inform pathobiological 121 

mechanisms in PMS and suggest approaches for interventions. 122 

  123 

  124 
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MATERIALS AND METHODS 125 

Participants. The study includes 13 participants (Table 1, 7 probands and 6 unaffected siblings) 126 

enrolled at the Seaver Autism Center for Research and Treatment at the Icahn School of Medicine 127 

at Mount Sinai. Individuals were referred through the Phelan-McDermid Syndrome Foundation, 128 

ongoing research studies, and communication between families. The study was approved by the 129 

Program for the Protection of Human Subjects at the Icahn School of Medicine at Mount Sinai. 130 

Parents or legal guardians provided informed consent for participation and publication.  131 

Genetic findings. The mutation in patient 1 was identified through clinical WES by the Medical 132 

Genetics Laboratory at the Baylor College of Medicine. Deletions in patients 2-7 were identified 133 

as follows: Patient 2, FISH and chromosome microarray (CMA) by Signature Genomics; patient 134 

3, CMA by the Genetics Laboratory at the University of Oklahoma Health Sciences Center; patient 135 

4, FISH by Quest Diagnostic and CMA by the Shaare Zedek Medical Center, Jerusalem; patient 136 

5, CMA at the UCSF Benioff Children's Hospital Oakland; patient 6, CMA by the Mount Sinai 137 

Genetic Testing Laboratory; and, patient 7, karyotyping and custom OGT 22q array by cytogenic 138 

laboratory of the Greenwood Genetic Center.  139 

Variants were annotated according to the Human Genome Variation Society guidelines. As 140 

reported previously, the human genome reference assembly (GRCh37/hg19 and GRCh38/hg38) is 141 

missing the beginning of exon 11 (NM_033517.1:c.1305_1346, 5′-142 

cccgagcgggcccggcggccccggccccgcgcccggccccgg-3′, coding for 436-PSGPGGPGPAPGPG-449). 143 

We numbered nucleotide and amino acid positions according to the SHANK3 RefSeq mRNA 144 

(NM_033517.1) and protein (NP_277052.1) sequence, in which this mistake has been corrected. 145 
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Variants were interpreted according to the American College of Medical Genetics and Genomics 146 

(ACMG) guidelines.  147 

iPSC generation. Blood samples were collected from all participants and used for both DNA 148 

isolation (DNeasy Blood and Tissue Kit, Qiagen) and peripheral blood mononuclear cells 149 

(PBMCs) extraction (BD Vacutainer CPT Mononuclear Cell Preparation Tubes with Sodium 150 

Heparin, BD Biosciences) according to manufacturer’s instructions. PBMCs were cultured for 9 151 

to 12 days in an erythroblast enrichment medium [38] to expand the erythroblast population and 152 

2.5×105 cells were transduced using recombinant Sendai viral vectors (Cytotune-iPSC 2.0TM, 153 

Thermofisher scientific), expressing the four reprogramming factors Oct4, Sox2, Kfl4 and c-Myc, 154 

according to manufacturer’s instructions. After three days, transduced cells were plated on 155 

irradiated mouse embryonic fibroblast (MEFs) and grown for two to three weeks in hiPSC medium 156 

until the emergence of individual colonies. Live hiPSCs were labeled by Tra-1-60 immunostaining 157 

(R&D systems) and positive clones were manually picked and grown on MEFs using iPSC 158 

medium. After reaching passage 10, hiPSC colonies were transitioned to feeder-free conditions 159 

using Matrigel-coated plates (Corning) and mTeSR1 medium (Stem Cell Technology) and up to 160 

three clones per individual were validated, expanded and cryopreserved.  161 

iPSC validation. All hiPSC lines were assessed for chromosomal abnormalities by performing 162 

karyotyping (WiCell). Their identity was confirmed using short-tandem repeat (STR) analysis 163 

(WiCell) and comparison with the donor’s blood DNA. The potential for self-renewal and 164 

pluripotency of the hiPSC lines was assessed by utilizing hiPSC RNA with the Taqman hPSC 165 

Scorecard Assay (Thermo Fisher, A15870). For pluripotency, RNA was isolated after random 166 

differentiation of iPSCs into embryoid bodies [39] to generate the three primary germ layers. Full 167 

elimination of the Sendai virus vectors was confirmed by immunostaining and with the Taqman 168 
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hPSC Scorecard Assay. The e-Myco Mycoplasma PCR Detection Kit (Bulldog Bio, 25233) and 169 

the MycoAlert Mycoplasma Detection Kit (Lonza,  LT07-118) were used to ensure that all the 170 

cells used in this study were mycoplasma-free.  171 

Generation of neuronal progenitor cells (iNPCs). iNPCs were induced from passage 16 to P18 172 

hiPSCs using the PSC Neural Induction Medium (Invitrogen) according to the manufacturer’s 173 

protocol. They were maintained in PSC Neural Expansion Medium up to passage 4 and then 174 

transferred to NPC medium (DMEM/F12, N2, B27 without retinoic acid, 1µg/mL natural mouse 175 

laminin, 20ng/mL FGF2). At passage 5, NPCs were labelled with Sox2 (Santa Cruz SC-17320, 176 

1:100) and Nestin (ThermoFisher MA1-110, 1:200) antibodies to confirm their cellular identity 177 

and validated NPCs were cryopreserved. For RNA isolation, NPCs at passage 6 were seeded into 178 

12-well plates at a density of 750,000 cells per well and harvested on the 7th day after plating using 179 

RNABee (BioConnect, CS-104B) and RNA was extracted according to manufacturer’s protocol.  180 

Generation of forebrain neurons. For neuronal differentiation, NPCs at passage 6 were plated 181 

on to Matrigel-coated 6-well plates at a density of 200,000 cells per well in neural differentiation 182 

medium (DMEM/F12, N2, B27 without retinoic acid, 1µg/mL natural mouse laminin, 500µg/mL 183 

Dibutyryl cyclic-AMP, 20 ng/mL BDNF, 20ng/mL GDNF, 200nM L-Ascorbic Acid; [40]). 184 

Neurons were cultured for 4, 6 or 8 weeks with replacement of two thirds of the medium every 3 185 

days. For immunostaining, additional neurons were plated on Matrigel-coated coverslips and 186 

similarly processed. At each neuronal time-point, immunohistostaining with MAP2 (Millipore 187 

MAB3418, 1:500) and Beta-3-Tubulin (Abcam ab18207, 1:1000) was performed for all samples 188 

to confirm their neuronal identity and cells for RNA sequencing were harvested using RNABee. 189 
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RNA was extracted using the same procedures as described for iNPC samples. Here, the term 190 

“iNeurons” refers to mixed forebrain neuron cultures.  191 

RNA isolation, library preparation and sequencing. RNA samples were processed for RNA-192 

sequencing to form two groups: 1) a larger discovery set; and 2) a smaller replication set. For the 193 

discovery set, 39 iNPC and 42 iNeuron RNA samples underwent RNA-sequencing. For the 194 

replication set, 21 iNeuron RNA samples collected at 6 weeks underwent RNA-sequencing. The 195 

integrity for each RNA sample was measured using the Agilent 2100 Bioanalyzer (Agilent, Santa 196 

Clara, CA, USA). All RNA integrity numbers (RINs) were greater than 8 (RIN: 9.59  ± 0.43). RNA 197 

samples were purified using PolyA selection, and the Illumina TruSeq Stranded Total RNA kit 198 

(Ilumina, San Diego, CA, USA) was used for library preparation, according to the manufacturer 199 

instructions. All indexed RNA libraries were pooled and sequenced using long read paired-end 200 

chemistry (2 × 150 bp) at an average read depth of ~50M reads per sample using the Illumina 201 

HiSeq2500. Resulting short reads with Illumina adapters were trimmed and low-quality reads were 202 

filtered using TrimGalore (--illumina option) [41]. All high-quality reads were then processed for 203 

alignment using the hg38 reference and the ultrafast universal RNA-seq aligner STAR (v2.5.1) 204 

[42] with default parameters. Mapped bam files were sorted using Samtools and short read data 205 

were quantified using featureCounts [43] with the following parameters: -T 5,  -t exon, -g gene_id. 206 

Subsequently, all read counts were exported and all downstream analyses were performed in the 207 

R statistical computing environment.  208 

RNA-seq data pre-processing and quality control. Raw count data was subjected to non-209 

specific filtering to remove low-expressed genes that did not meet the requirement of a minimum 210 

of 2 counts per million (cpm) in at least ~40% of samples. This filtering threshold was applied to 211 

iNPC and iNeuron samples separately. All expression values were converted to log2 RPKM and 212 
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subjected to unsupervised principal component analysis (PCA) to identify and remove outlier 213 

samples that lay outside 95% confidence intervals from the grand averages as well as samples with 214 

aberrant X-inactivation gene expression profiles. A total of 32 iNPC and 42 iNeuron RNA-seq 215 

samples from the discovery set, and a total of 17 iNeuron samples from the replication set passed 216 

into downstream analyses.  217 

Developmental specificity analysis. Two independent analyses were performed to confirm the 218 

developmental specificity of our iNPC and iNeuron gene expression data. First, we sought to 219 

confirm the developmental origin of our samples by integrating several RNA-seq data sets from 220 

post-mortem brain tissue and hiPSC models with our iNPC and iNeuron gene expression data 221 

using a previously described analytical approach [44]. A total of 15 independent studies were 222 

collected covering 2,716 independent samples and 11,650 genes. All expression values were 223 

converted to log2 RPKM and collectively normalized using quantile normalization from the limma 224 

R package [45]. These data, along with our iNPC and iNeuron expression data were analyzed 225 

jointly and integrated using principal component analysis (PCA). Second, we sought to confirm 226 

that highly expressed genes in our current data set are indeed preferentially prenatally biased in 227 

expression, based on BrainSpan developmental RNA-seq data. We previously applied a linear 228 

regression model to 299 neocortical BrainSpan samples ranging from 8 post-conceptual weeks to 229 

40 years of age in order to characterize 22,141 genes as either prenatally or postnatally biased 230 

(log2FC > 0.1 and q < 0.05) or unbiased in expression (q > 0.05) [46]. The regression model 231 

generated a ‘prenatal effect’ (t-statistic) of the log2 fold-change of prenatal versus postnatal 232 

transcript abundance. We leveraged these summary statistics to examine the top 1000 most 233 

expressed and top 1000 least expressed genes in both iNPCs and iNeurons. Each gene set was 234 

examined to determine if the distribution of the fetal effect (i.e. t-statistics for each gene set) 235 
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differed significantly from the entire neocortical background using a Wilcoxon signed rank test. 236 

The neocortical background was defined as genes which were simultaneously detected by RNA-237 

seq in the current study as well as genes found to be expressed in the neocortex following quality 238 

control procedures. 239 

Cell type deconvolution analysis. The frequencies of neural cell types were estimated using 240 

Cibersort cell type deconvolution (https://cibersort.stanford.edu/) [47]. Cibersort relies on known 241 

cell subset specific marker genes to predict the proportions of cell types in heterogeneous bulk 242 

RNA-sequencing data. The method applies linear support vector regression, a machine learning 243 

approach that is robust compared to other methods with respect to noise, unknown mixture content 244 

and closely related cell types. As input, we used a reference panel of single-cell RNA-sequencing 245 

data from the human fetal cortex [48]. Cell specific gene signatures were curated using pre-defined 246 

cell clusters from the original publication covering four cell types: i) dividing intermediate 247 

progenitor cells (clusters 15-19); ii) excitatory neurons (clusters 21-28); iii) inhibitory neurons 248 

(clusters 38-46); and iv) mixed glial cells (clusters 4,6,9,19). Definitions for excitatory and 249 

inhibitory cell lineages in these data were defined in our previous work [46].  250 

Quantifying transcriptome variance explained by known factors. Following data quality 251 

control, outlier detection and developmental specificity analysis (all described above), all gene 252 

expression values were normalized using VOOM normalization (a variance-stabilization 253 

transformation method) [45], and these data were used to carry out the remainder of downstream 254 

analyses. To understand the effects of various recorded factors on gene expression patterns, linear 255 

mixed effect models were applied to decompose the transcriptome variability into discrete 256 

percentages of variability attributable to multiple biological and technical sources of variation 257 

using the R package variancePartition [49]. For each gene, the percentage of gene expression 258 
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variation attributable to differences in cell types, individual as a repeated measure (i.e., inter-donor 259 

effects), family effects, PMS diagnosis, RIN, age, biological sex, sequencing batch and variation 260 

in estimated cell type frequencies was computed. By properly attributing multiple sources of 261 

expression variation in this fashion, it is possible to identify and partially correct for some 262 

confounding variables in our differential gene expression analysis. 263 

eQTL enrichment analysis. We used our previously described approach [44] to examine the 264 

overlap between genes with eQTLs from the CommonMind Consortium and genes exceeding a 265 

variance percentage cutoffs for a particular variable of interest in the current study. In brief, 266 

varianceParition analysis was applied to assign each gene a fraction of variance explained by a 267 

specific observed factor in the current analysis. A total of 40 different variance explained cutoff 268 

thresholds were examined and the overlap between genes with values exceeding this cutoff and 269 

the 2000 genes with the smallest p-values from cis-eQTL analysis is evaluated. The overlap is 270 

computed for the observed data and 10,000 data sets with the variance percentages randomly 271 

permutated. At each cutoff where > 100 genes are represented, the fold enrichment is computed as 272 

the observed overlap over the permuted overlap. 273 

Differential gene expression analysis. Differential gene expression analyses were conducted 274 

using a moderated t-test from the R package limma [45]. All analyses adjusted for the possible 275 

confounding influence of biological sex, sequencing batch and RIN. Moreover, due to the repeated 276 

measures study design, where individuals are represented by multiple independent iNPC and 277 

iNeuron technical replicates, the duplicateCorrelation function was applied in the limma analysis 278 

and gene level significance values were adjusted for multiple testing using the Benjamini and 279 

Hochberg method to control the false discovery rate (FDR). Genes passing a FDR < 5% were 280 

labeled as showing significantly altered expression.  281 
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Functional enrichment of differentially expressed genes. Functional annotation was assessed 282 

in two complementary ways. First, all differentially expressed genes (FDR <5%) were functional 283 

annotated using the ToppFun module of ToppGene Suite software [50]. We explored Gene 284 

Ontology terms related to biological processes using a one-tailed hyper-geometric tested 285 

(Benjamini–Hochberg (BH) FDR corrected) to assess the significance of the overlap. Enrichment 286 

was examined separately for over-expressed and under-expressed genes. All terms must pass an 287 

FDR corrected p-value and a minimum of three genes per ontology were used as filters prior to 288 

pruning ontologies to less redundant terms. Second, we applied the camera function in the R 289 

package limma [45] to perform a competitive gene set test and to assess whether the genes in a 290 

given set are highly or lowly ranked in terms of differential gene expression relative to genes that 291 

are not in the set. The method leverages limma’s linear model framework, taking both the design 292 

matrix and contrast matrix (if present) and accommodates the observational-level weights from 293 

voom in the testing procedure. After adjusting the variance of the resulting gene set test statistic 294 

by a variance inflation factor that depends on the gene-wise correlation (which is set to 0.01 by 295 

default) and the size of the set, a p-value is returned and adjusted for multiple testing. 296 

Protein-protein interaction networks. The STRING database v11.0 [51] was used to assess 297 

whether differentially expressed genes were enriched for direct protein–protein interactions (PPIs) 298 

and to identify key genes mediating the regulation of multiple targets. For these analyses, our 299 

signature query of PMS-associated genes (FDR<5%) were used as input. STRING implements a 300 

scoring scheme to report the confidence level for each direct PPI (low confidence: < 0.4; medium: 301 

0.4–0.7; high: > 0.7). We used a combined STRING score > 0.4. Hub genes within the PPI network 302 

are defined as those with the highest degree of network connections. We further used STRING to 303 

test whether the number of observed PPIs were significantly more than expected by chance using 304 
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a nontrivial random background model. For visualization, the STRING network was imported into 305 

Cytoscape [52]. 306 

CHD8 ChIP-Seq overlap analysis. To assess whether PMS-associated genes (FDR <5%) relate 307 

to known genome-wide CHD8 binding sites, we tested our differentially expressed gene sets for 308 

enrichment with human brain-specific sequences from two independent ChIP-seq studies 309 

covering: 1) 3,281 CHD8-binding sites in the human mid-fetal brain at 16-19 post-conception 310 

weeks [53]; and 2) 6,860 CHD8-binding sites in human neural progenitor cells [54] using the 311 

intersection of signal-enriched regions detected by all three CHD8 antibodies used in the study. In 312 

order to assess overlap with these binding sites, genomic coordinates were defined as the start and 313 

end positions for each differentially expressed gene (analogous to gene length). A permutation-314 

based approach with 1,000 random permutations was used to determine statistical significance of 315 

the overlap between genomic coordinates for differentially expressed genes with CHD8-binding 316 

sites using the R package regioneR [55]. 317 

Weighted gene co-expression network analysis (WGCNA). Signed co-expression networks 318 

were built separately for iNPC and iNeuron samples using WGCNA [56]. To construct a global 319 

weighted network for each cell type, a total of 15,759 post QC genes across 32 iNPC samples and 320 

16,721 genes across 42 iNeuron samples were used. The absolute values of Pearson’s correlation 321 

coefficients were calculated for all possible gene pairs within each cell type and resulting values 322 

were transformed using a β-power (β=12 for iNPC samples; β=14 for iNeuron samples) so that the 323 

final correlation matrices followed an approximate scale-free topology. The WGCNA dynamic 324 

tree-cut algorithm was used to detect network modules (minimum module size =50; cut tree 325 

height = 0.99; deep-split = 2, merge module height = 0.20). Once network modules were identified, 326 

modules were assessed for significant associations to PMS diagnosis, as well as other biological 327 
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and technical factors. In order to determine which modules, and corresponding biological 328 

processes, were most associated with PMS, we ran singular value decomposition of each module’s 329 

expression matrix and used the resulting module eigengene (ME), equivalent to the first principal 330 

component, to represent the overall expression profiles for each module. This technique is useful 331 

for reducing the number of multiple comparisons from thousands of genes to tens of modules. 332 

Gene co-expression modules that were significantly associated with PMS were subjected to 333 

functional annotation using the ToppFun module of ToppGene Suite software, as described above. 334 

Fisher’s exact tests were used to assess the overlap of co-expression modules between iNPCs and 335 

iNeurons, while controlling FDR using the BH procedure.  336 

Curation of autism and neurodevelopmental disorder gene sets. Two tiers of gene sets were 337 

collected to examine overlap with PMS-associated genes in the current study: (1) gene sets that 338 

implicate genetic risk for ASD and neurodevelopmental disorders (NDDs); and (2) gene sets that 339 

represent differentially expressed genes induced by knockdown (KD) or knockout (KO) of an ASD 340 

or NDD gene in iPSCs. For the gene sets that cover genetic evidence for ASD and NDDs we 341 

collected loci from: i) five lists of de novo variants implicated in ASD [46, 57-60]; ii) loci that 342 

implicate risk for intellectual disability (ID) [61, 62]; iii) genes implicated in developmental 343 

disorders (DD) from the DDG2P database [63]. We also included genes that are direct targets of 344 

FMRP [64]. For the gene sets from other iPSC transcriptome studies, we curated previously 345 

described differentially expressed genes caused by: i) shRNA KD of SHANK3 in hiPSC-derived 346 

neurons [65]; ii) CRISPR/Cas9 heterozygous KO of CHD8 in hiPSC-derived NPCs and neurons 347 

[66]; iii) shRNA KD of TCF4 and EHMT1 in hiPSC-derived NPCs [67]; iv) shRNA KD of MBD5 348 

and SATB2 in human neural stem cells [68]; v) shRNA KD of NRXN1 in human neural stem cells 349 
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[69]; and vi) CRISPR/Cas9 heterozygous and homozygous KO of ten different ASD-related genes 350 

in iPSCs and iPSC-derived neurons [70]. Full gene lists are provided in Supplemental Table 4. 351 

Gene overlap analyses. To compute significance of all gene-based overlaps, we used a the 352 

GeneOverlap function in R which uses a Fisher’s Exact Test (FET) and an estimated odds-ratio 353 

for all pair-wise tests. Similarly, overrepresentation of ASD and NDD genetic risk gene sets within 354 

gene co-expression modules were analyzed a FET to assess the statistical significance. When 355 

testing overlap across gene modules, tests were adjusted for multiple testing using BH procedure 356 

to control the FDR. 357 

Availability of data and materials. RNA-sequencing fastq files have been deposited in the Gene 358 

Expression Omnibus under accession number GSEXXXX (to be released following manuscript 359 

publication). 360 

RESULTS 361 

iNPC and iNeuron RNA-seq data generation and quality control 362 

Peripheral blood samples were reprogrammed into hiPSCs and differentiated to generate iNPCs 363 

and iNeurons from a primary cohort of individuals with PMS (n=7; 2 males and 5 females) and 364 

their unaffected siblings (n=6; 3 males and 3 females; Table 1). The majority of the PMS probands 365 

studied here harbor subtelomeric deletions spanning 40-690 kbp, with the exception of one 366 

affected individual with a SHANK3 point mutation. For all individuals, genome-wide RNA-367 

sequencing was generated from iNPCs and from iNeurons at four, six and eight weeks in culture, 368 

to compare transcriptional differences between PMS probands and their unaffected siblings. For 369 

each participant, 1-to-3 clones were used for the NPC and neuronal induction yielding a total of 370 

39 iNPC samples and 42 iNeuron samples in the discovery set (Supplemental Table 1). 371 
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Subsequently, all gene expression data were inspected for outlier samples on the basis of abnormal 372 

gene expression profiles (i.e. samples beyond 95% confidence interval of grand mean), and six 373 

iNPC samples were flagged and removed (Figure S1A-B). Next, because the extent of X-374 

inactivation in females has been reported to be a quality issue during iPSC reprogramming, we 375 

examined the expression patterns of genes on the sex chromosomes using XIST on chrX and six 376 

genes on chrY for all samples (Figure S1C-D). This analysis identified six female iNPC samples 377 

(five of which were already removed on the basis of outlier expression profiles) that have 378 

expression patterns intermediate between males and females, consistent with either contamination 379 

or aberrant X-inactivation, which were removed from our analysis.  380 

 381 

Developmental and cellular specificity of iNPCs and iNeurons 382 

We sought to determine whether our iNPC and iNeuron transcriptome data accurately reflects 383 

early developmental gene expression profiles by integrating our RNA-seq data with other studies 384 

using iPSC neuronal cell and post-mortem brain gene expression data. A total of 15 independent 385 

studies were leveraged covering 11,650 genes and 2,719 developmentally distinct samples (see 386 

Materials and Methods). Following standardized data pre-processing procedures, principal 387 

component analysis (PCA) stratified all gene expression samples into a distinct developmental 388 

axis starting with early embryonic stem cells and subsequently moving into iNPCs and iNeurons, 389 

and into prenatal and postnatal postmortem brain samples (Figure S2A). Embryonic stem cells 390 

(ESCs) and iPSCs clustered separately from iNPCs and iNeurons, which in turn co-clustered with 391 

early prenatal brain samples. Notably, our iNPCs and iNeurons also co-cluster with iNPC and 392 

iNeuron samples generated from previous reports confirming their early developmental gene 393 

expression profiles. This clustering was robust to differing methodologies used for iPSC 394 
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reprogramming and differentiation across multiple prior studies. We also quantified whether the 395 

genes with the highest expression in our iNPC and iNeuron data sets were predominantly 396 

prenatally biased in expression using data from the BrainSpan project, and a clear prenatal bias in 397 

expression was observed for genes with the highest levels of expression across both cell types 398 

(Figure S2B). We also observed that genes with the lowest level of expression were predominantly 399 

postnatally biased in expression, indicating that markers of later postnatal brain development are 400 

expressed at low levels in the current data sets (Figure S2C).  401 

 402 

It is possible that PMS-associated mutations could lead to unique neural cell type composition in 403 

proband, as compared to sibling, cells. In addition, genetic background or stochastic factors may 404 

also impact cell composition. We therefore estimated proportions of neural cell types for all iNPC 405 

and iNeuron samples using a reference panel of single-cell RNA-sequencing data from the fetal 406 

human cortex [48]. We observed that our iNPC samples were largely comprised of dividing 407 

intermediate progenitor cells (~43.4%) and excitatory neurons (~23.1%), while iNeuron samples 408 

were estimated to be comprised predominantly of excitatory neurons (~42.4%) and inhibitory 409 

neurons (~24.8%) (Figure S3). Comparative analyses of the estimated cell type compositions 410 

revealed minor increases in predicted proportions of excitatory neuron (p=0.04) and a decrease in 411 

inhibitory neurons (p=0.002) in PMS probands relative to unaffected siblings (Figure S3). These 412 

in silico predictions suggest that differences in excitatory and inhibitory cell proportions may be 413 

impacted by loss of SHANK3. 414 

 415 

Quantifying sources of gene expression variability: clinical, technical and biological factors 416 
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Inter-donor and clonal variations have previously been reported to explain a substantial fraction of 417 

gene expression variability in iPSC-derived neural cells. Therefore, as a quality check, genome-418 

wide concordance was evaluated between technical replicates, familial related and unrelated 419 

donors. Concordance between technical replicates was examined by either origin of the same clone 420 

and the same induction or the same clone but different induction (Figure 1 A-B). Our analysis 421 

confirmed that the strongest correlation was observed between technical replicates from the same 422 

clone and same induction followed by same clone and different induction in both iNPC and 423 

iNeuron samples. Subsequently, to test the influence of various factors on gene expression profiles, 424 

for each gene, the percentage of gene expression variation attributable to each clinical and 425 

technical factor was computed. Collectively, these variables explained ~55% of transcriptome 426 

variation, with differences between iNPC and iNeuron samples having the largest genome-wide 427 

effect that explained a median 29.2% of the observed variation, followed by differences in donor 428 

as a repeated measure (median 5.2%) and estimated excitatory cell type proportions (median 2.2%) 429 

(Figure 1C). The remaining factors explained smaller fractions of overall transcriptome variation, 430 

including family (median <0.1%) and biological sex (median <0.1%). Expression variation due to 431 

diagnosis (i.e., PMS proband) had a detectable effect in a smaller number of genes. Notably, when 432 

iNPC and iNeuron samples were analyzed separately, other technical variables such RNA integrity 433 

values, sequencing batch and total number of weeks in culture explained very little expression 434 

variation (Figure S4). Additionally, differences in SHANK3 deletion size had a small but distinct 435 

effect on 50 genes, which were significantly overrepresented on chromosome 22 (Figure S5A-B; 436 

iNPCs, p=1.3e-31; iNeurons, p=3.2e-18). These genes were encompassed within the largest 437 

deletion reported here, and displayed clear patterns of under-expression relative to the other PMS 438 

probands (Figure S5C).  439 
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 440 

Next, the influence of cell type proportions, albeit predicted, were further evaluated by overlaying 441 

excitatory neuron cell type predictions on a PCA of the gene expression data. The PCA separated 442 

iNPCs and iNeurons along the first principal component (PC), explaining 86.4% of the variance, 443 

and excitatory neuron cell estimates were separated both by PC1 and PC2 (Figure 1D). As 444 

expected, iNeuron samples had a higher proportion of predicted excitatory neurons than iNPCs 445 

(mean increase = 19.3%, p = 1.97e-35 by linear model), and conversely iNPCs contain a higher 446 

proportion of predicted dividing intermediate neuron progenitor cells (mean increase = 23.7%, 447 

p =9.16=e-63 by linear model), consistent with results derived from our previous analyses. As a 448 

final measure, we took into account the recent observation that inter-donor variation in iNPCs and 449 

iNeurons reflects genetic regulation of gene expression and shows strong enrichment for 450 

expression quantitative trait loci (eQTLs). We tested this observation in our data and similarly 451 

confirmed that genes whose variance is largely explained by differences in donor are strongly 452 

enriched for eQTLs derived from post-mortem human brain samples (Figure 1E). Variation 453 

induced by differences in iNPC and iNeuron cells and predicted cell type proportions did not 454 

reflect such genetic differences between individuals and it is likely that either stochastic or 455 

epigenetic regulators could contribute to their variability.  456 

 457 

Transcriptional signatures of PMS in iPSC-derived neural cells 458 

Differential gene expression analyses comparing PMS probands and unaffected siblings identified 459 

392 differentially expressed genes (DEGs) in iNPCs and 82 genes in iNeurons (FDR<5%; Figure 460 

2 A-B, Supplemental Table 2), while adjusting for the possible influence of donor as a repeated 461 

measure, sex, RIN and sequencing batch. Genome-wide concordance was examined between 462 
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iNPCs and iNeurons using PMS-associated log2 fold-changes, and a remarkably similar patterns 463 

of differential gene expression were observed between PMS probands and unaffected siblings in 464 

both cell types (Figure 2C; R=0.43, p <2.2e-16). Moreover, nine statistically significant DEGs 465 

were detected across both iNPCs and iNeurons, and each displayed the same direction of effect in 466 

PMS, including three genes which were consistently over-expressed (ARHGAP20, PCYT2, 467 

CAMK2N1) and six genes which were consistently under-expressed in PMS (SHANK3, PSMD5-468 

AS1, GPC3, TSHZ2, RP11-655M14.13 (lincRNA), RP11-115D19.1 (lcRNA)). Functional 469 

annotation of DEGs revealed strong pathway and biological enrichment for genes that were 470 

predominantly under-expressed in PMS in both iNPCs and iNeurons covering several early 471 

developmental terms and pathways, including 20 genes mapping to the Wnt signaling pathway 472 

(e.g. FRZB, G3BP1, GPC3, GPC6, MLLT3, ROR2, RSPO3, WNT3A, WNT4) (Figure 2D). Several 473 

biological processes were uniquely enriched among the under-expressed genes in iNeurons, 474 

including extracellular matrix (ECM)-related process, protein translation-related terms (e.g,. 475 

peptide chain elongation, translational termination/elongation/regulation/initiation) and nonsense 476 

mediated decay (Figure 2E). Overexpressed genes in iNeurons also displayed enrichment for 477 

genes involved in pre- and post-synaptic activity, cholesterol biosynthesis, transmission across 478 

chemical synapses, GABAergic synapses, G protein gated-potassium channels, signaling by 479 

insulin receptor, signaling to ERKs, glutamate binding and activation of AMPA receptors (Figure 480 

2F). No enrichment was observed for over-expressed genes in PMS iNPC samples. Notably, 481 

adjusting for differing cell type proportions within iNPC and iNeuron samples had little effect on 482 

the resulting differential gene expression signatures (Figure S6; Table S2). A full table of 483 

enrichment terms can be found in Supplemental Table 3.  484 

 485 
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To support these functional enrichment observations, we tested whether candidate genes that are 486 

dysregulated together indeed interact with each other at the protein level. A significant 487 

overrepresentation of direct protein-protein interactions (PPI) was identified for differentially 488 

expressed genes in iNPCs (p=2.32e-09, average node degree=1.81) and iNeurons (p= 4.19e-09, 489 

average node degree=0.81). In iNPC, hub genes in the PPI included genes involved in glutamate 490 

receptor signaling pathway, including GRM3, GRIA1, CAMK2A and several homeobox genes 491 

(Figure S7A). The iNeuron PPI network was notably smaller in edges and nodes, and components 492 

of the Wnt signaling pathway emerged as candidate hub genes, including WNT3A, WNT7B and 493 

FRZB (Figure S7B). Given that many of these genes share similar functions and interactions, we 494 

queried whether these transcriptional signatures also shared common brain-specific regulatory 495 

mechanisms. To this end, we related DEGs in PMS to well-curated binding sites for CHD8, a 496 

chromodomain helicase strongly associated with ASD, using CHD8 ChIP-sequencing data from 497 

two independent studies. Among DEGs in iNPCs, significant enrichment was observed for CHD8 498 

binding sites derived from the human mid-fetal brain (p=0.03) and for binding sites derived from 499 

human NPCs (p=0.001). No significant enrichment for CHD8 binding sites was observed for 500 

DEGs in iNeurons (p=0.46, p=0.41, respectively; Figure S8). 501 

 502 

Co-expression modules associated with PMS  503 

Given that the majority of the PMS-associated genes share similar functions and interactions, we 504 

tested whether these genes are also co-expressed. We applied unsupervised WGCNA separately 505 

to iNPCs and iNeurons to identify small sets of genes with similar co-expression patterns. A total 506 

of 19 co-expression modules were identified in NPCs and 22 modules were identified in iNeuron 507 

samples, and all modules were well preserved between iNPCs and iNeurons (Figure S9). Each 508 
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module was assessed for overrepresentation of differentially expressed genes in PMS as well as 509 

previously reported genetic risk loci for ASD and other NDDs (Figure 3A). Genes that were 510 

differentially expressed in PMS iNPCs were significantly overrepresented in iNPC module M4 511 

(∩=53, p=1.53e-41), while differentially expressed genes in iNeurons were strongly enriched 512 

across three iNeuron modules: M2 (∩=12, p=0.003), M4 (∩=14, p=2.6e-5) and M19 (∩=32, 513 

p=2.15e-21). Notably, module M2 in iNeurons harbored a significant fraction of genetic risk loci 514 

for ID (∩=5, p=0.02), while module M4 in iNeurons was enriched for DD (∩=14, p=0.02) and ID 515 

(∩=5, p=0.002) risk loci. Module eigengene (ME) values for all modules were then regressed onto 516 

individual diagnostic status (i.e. PMS probands), which confirmed significant module-trait 517 

associations for module M4 in iNPCs with PMS (r=-0.58, p=6e-04) as well as iNeuron modules 518 

M2 (r=0.50, p=9e-04), M4 (r=0.55, p=2e-04) and M19 (r=-0.55, p=2e-04) with PMS (Figure 3B). 519 

Next, the gene-module assignments identified for iNPC and iNeuron samples, respectively, were 520 

used to perform supervised module construction for the same set of genes in the contrasting cell 521 

type (i.e. genes in module M1 identified in iNPCs were forced to form a module in iNeurons), 522 

which were similarly tested for association with PMS. In doing so, we found that genes that were 523 

either negatively or positively associated with PMS in one cell type, displayed similar levels of 524 

association to PMS in the other cell type (Figure 3B), consistent with our differential gene 525 

expression analysis (Figure 2C). Functional annotation of these candidate modules revealed 526 

similar biological functions as previously reported from differential gene expression, including 527 

under-expression of iNPC module M4 and iNeuron module, which were both enriched for early 528 

embryonic development gene sets, ECM, neurogenesis and Wnt signaling (Figure 3C). In 529 

iNeurons, module M2 was positively associated with PMS and was implicated in GDP binding, 530 

response to oxygen/stress/hormones, LRR domain binding. A separate iNeuron module M4 was 531 
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enriched for GTPase signaling, postsynaptic signal transduction and axon guidance-related 532 

processes.  533 

 534 

Overlap with existing ASD transcriptome iPSC reports 535 

We also explored points of convergence between our SHANK3-deficiency findings in PMS with 536 

gene expression changes induced by either shRNA knockdown (KD) or CRISPR/Cas9 knockout 537 

(KO) of other top ranked ASD genes assayed in neural cell types (Table 2; Figure S10). A total 538 

of 6 iPSC transcriptome studies spanning 17 different ASD and NDD genes were evaluated. We 539 

identified several significant overlaps between PMS-associated gene findings in both iNPCs and 540 

iNeurons with gene expression perturbations associated with: i) SHANK3 KD in neurons (∩=20, 541 

FET=2.4e-7; ∩=44, FET=0.003, respectively); ii) CHD8 KO in NPCs (∩=33, FET=0.004; ∩=15, 542 

FET=0.1.8e-5, respectively); iii) CHD8 KO in neurons (∩=91, FET=1.3e-7; ∩=29, FET=5.7e-7, 543 

respectively); iv) EHMT1 KD in NPCs (∩=23, FET=0.001; ∩=10, FET=0.001, respectively); v) 544 

NRXN1 KD in stem cells (∩=8, FET=0.001; ∩=4, FET=0.04, respectively); vi) SCN2A KO in 545 

iPSCs (∩=55, p=0.0002; ∩=16, p=0.001, respectively); vii) ATRX KO in iPSCs (∩=32, FET=0.03; 546 

∩=10, FET=0.02, respectively); and viii) ATRX KO in neurons (∩=47, FET=6.73e-7; ∩=12, 547 

FET=0.002, respectively). In addition, differentially expressed genes in PMS iNeurons, but not in 548 

iNPCs, were enriched for genes associated with: ix) SATB2 KD in stem cells (∩=8, FET=0.0002); 549 

and x) TNEM1 KO in neurons (∩=7, p=0.004). Importantly, the vast majority of these observed 550 

overlaps were consistently enriched for genes implicating changes in Wnt signaling, ECM, 551 

perineuronal net and glutamatergic synapses (Table 2; Figure S10).  552 

 553 

Validation of PMS-associated gene dysregulation in iNeurons 554 
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To validate our PMS transcriptional signatures, we performed additional RNA-sequencing on a 555 

replication set of 21 iNeurons collected at 6 weeks. Following data preprocessing, four samples 556 

were removed on the basis of aberrant X-inactivation (Figure S11A-B) and a total of eight 557 

biological replicates derived from independent differentiations and nine technical replicates passed 558 

into our subsequent validation analyses. In silico predictions of cell type frequencies validated the 559 

trending decreases in inhibitory neurons (p=0.05) and increases in excitatory neurons (p=0.08), 560 

albeit to an insignificant extent in PMS (Figure S11C). Subsequently, sample-to-sample 561 

correlation coefficients were evaluated between discovery and replication samples, first among 562 

technical replicates (median R=0.98), then among biological replicates derived from independent 563 

differentiations (median R=0.96) and between unrelated donors (median R=0.94) (Figure 4A). 564 

Overall, levels of concordance were highest between technical replicates relative to those observed 565 

between biological replicates (p=2.6e-9) and unrelated donors (p=7.7e-12). Next, differentially 566 

expressed genes were computed using the replication set of iNeurons and genome-wide 567 

concordance of PMS-associated log2 fold-changes were regressed onto log2 fold-changes 568 

computed using different combinations of discovery set iNeuron samples: i) six week samples; ii) 569 

four and eight week samples; or iii) four, six and eight week samples. As expected, the highest 570 

levels of concordance were observed between discovery and replication six week samples 571 

(R=0.92) followed by a combination of four, six and eight weeks (R=0.86) and subsequently four 572 

and eight week samples (R=0.80) (Figure 4B).  573 

 574 

  575 
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DISCUSSION 576 

Our study sought to characterize transcriptional signatures of SHANK3 haploinsufficiency in 577 

neurodevelopment, by comparing genome-wide RNA-seq profiles of iNPCs and iNeurons derived 578 

from individuals with PMS with those of their unaffected siblings. We report on the largest sample 579 

set of PMS-derived iNPCs and iNeurons to date, representative of a range of genetic lesions 580 

associated with PMS, from a SHANK3 point mutation to small and large 22q13.3 deletions. DEGs 581 

in our dataset were enriched for pathways involved in core developmental processes such as 582 

pattern specification and embryonic morphogenesis, including Wnt signaling pathways that are 583 

essential for neuronal fate specification. Gene co-expression modules generated from these data 584 

demonstrated convergence between altered PMS molecular pathways and ASD and NDD genetic 585 

risk loci. Importantly, overlapping DEG findings were identified between the current study and 586 

findings from other ASD and NDD transcriptome iPSC studies, demonstrating overlapping 587 

changes in RNA involved in Wnt signaling, ECM and glutamatergic synapses.  588 

 589 

The transcriptional signatures of PMS in iNeurons point to altered postsynaptic density, 590 

glutamatergic synaptic and GABAergic genes. Our results are in line with evidence supporting a 591 

role for SHANK3 prior to synaptogenesis and neural circuit formation, specifically in early 592 

morphogenesis and excitatory/ inhibitory balance [32, 65, 71-74]. For example, a zebrafish model 593 

of PMS that utilized morpholinos to disrupt shank3a and shank3b resulted in delayed mid- and 594 

hindbrain development, disruptions in motor behaviors, and seizure-like behaviors  [73].  595 

 596 

SHANK3 may mediate presynaptic function via transynaptic signaling through cell adhesion 597 

molecules such as neurexin and neuroligin [75, 76]. In a rat hippocampal in vitro model, SHANK3 598 
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expression was found to affect transynaptic signaling by modulating pre- and postsynaptic protein 599 

content and neurotransmission efficiency through neurexin-neuroligin interactions [74]. SHANK3 600 

has been shown to bind neuroligin via its PDZ domain [77], therefore potentially regulating 601 

synaptic strength via retrograde signaling through cell adhesion molecules. In addition, since 602 

neurexin-neuroligin are implicated in the regulation and coordination of synaptic function via 603 

transynaptic signaling [76], with some evidence of NMDAR regulation involvement [78], their 604 

association with SHANK3 presents with one possible mechanism by which SHANK3 disruption 605 

could dysregulate excitatory/inhibitory balance in the developing brain. 606 

 607 

Our group has previously shown that SHANK3 point mutations are sufficient to convey a PMS 608 

phenotype [4], although larger deletion sizes have been associated with a more severe range of 609 

PMS manifestations [6, 7, 41]. Here, we find that differences in SHANK3 deletion size have a 610 

significant dosage effect on 50 genes that span the largest deletion in our dataset. One of these 611 

genes, WNT7B, had been previously associated with macrocephaly and chromosome 22 deletions 612 

greater than 5Mb [7]. WNT7B codes for a secreted signaling protein that is central to Wnt signaling 613 

pathway, which is also enriched in our dataset and has been implicated in SHANK3 deficiency in 614 

previous reports [79]. These findings suggest that genes in close proximity to SHANK3 on 615 

chromosome 22 may also play a role in modulating the pathobiology of PMS. 616 

 617 

We also found several points of convergence on ECM and Wnt signaling in PMS and other iPSC 618 

studies of ASD and NDDs. Numerous lines of evidence point to Wnt signaling as a candidate 619 

pathway implicated in ASD etiology [80]. In previous reports, mutations of Wnt signaling pathway 620 

genes involved in processes such as neurite growth, synapse formation, neurogenesis and 621 
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corticogenesis have been associated with ASD phenotypes [81, 82]. For example, CTNNB1, which 622 

produces the protein β-catenin, plays a critical role in cell adhesion and cell signaling in the Wnt 623 

signaling pathway and de novo mutations in CTNNB1 have been linked to individuals with DD, 624 

ID and ASD [46]. In murine models, stabilization of CTNNB1 in cortical samples has been found 625 

to increase Wnt signaling and boost neurogenesis [83], while depletion of CTNNB1 from inhibitory 626 

neurons leads to deficits in neuronal activation and ASD-like behavior [84]. Numerous top-ranked 627 

ASD risk genes have also been found to function with CTNNB1 and the Wnt signaling pathway. 628 

For example, CHD8 is a chromatin remodeling factor and a top-ranked ASD risk gene, which has 629 

been shown to be a positive regulator of CTNNB1-mediated Wnt signaling in NPCs [85]. Notably, 630 

many under-expressed genes in the current dataset show enrichment for both Wnt signaling genes 631 

and CHD8 binding sites. Both PTEN and TCF7L2 also represent ASD and ID risk genes [58, 60, 632 

86, 87], respectively, and have been identified to function with CTNNB1 to regulate normal brain 633 

growth [88] and to initiate transcriptional responses following Wnt receptor binding [89]. 634 

Additionally, de novo mutations in DDX3X are associated with ID and ASD [90], and this gene 635 

has been recently identified to be an important component of CTNNB1-mediated Wnt signaling by 636 

regulating kinase activity, which in turn promote phosphorylation of Dvl and represents a major 637 

hub in the Wnt pathway [91]. Therefore, in addition to ASD, CTNNB1-mediated Wnt signaling 638 

may be disrupted in ID and other NDDs, further underscoring the points of convergence identified 639 

the current study and demonstrating the importance of this pathway in proper neurodevelopment. 640 

 641 
Given the described changes in the Wnt signaling pathway, a follow-up question would be whether 642 

pharmacological regulation of Wnt signaling represents an important and/or plausible treatment 643 

strategy for PMS and ASD. Notably, several medications have been shown to modulate Wnt 644 

signaling, including methylphenidates [92], selective serotonin reuptake inhibitors (SSRIs) [93] 645 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/855163doi: bioRxiv preprint 

https://doi.org/10.1101/855163
http://creativecommons.org/licenses/by-nd/4.0/


30 
 

and some antipsychotic medications [89, 94]. For example, long-term administration of 646 

methylphenidate in mice has been shown to modulate key components of the Wnt signaling 647 

pathway, including Akt and GSK3 [92]. Similarly, SSRI treatment (e.g. fluoxetine) has been 648 

shown to boost Wnt signaling, specifically Wnt2 and Wnt3 in two different mouse studies [93, 95]. 649 

Further, two additional reports have also demonstrated that the antipsychotic medication 650 

haloperidol promotes Wnt signalling, including WNT5A and β-catenin expression [96] as well as 651 

the phosphorylation of Akt [94]. Overall, it is noteworthy that several pharmacological 652 

interventions for behavioral disorders affect components of Wnt signaling, either directly or 653 

indirectly. However, additional investigations are required to determine the role of these 654 

mechanisms and compare the treatment efficacy across individuals with and without Wnt signaling 655 

abnormalities.  656 

 657 

The current study also presents some limitations. First, given the rarity of PMS, we could not carry 658 

out experimental validation in independent biological samples. Nevertheless, in an effort to boost 659 

signal over noise, several points of convergence were identified with gene-based findings from 660 

other iPSC transcriptome studies. Second, loss of SHANK3 has been shown to affect neurite length, 661 

complexity of neurite arborization and soma area, which were not examined in the current study 662 

and may contribute to some of the observed transcriptional changes. Third, while in silico 663 

predictions of cell type proportions attempted to control and quantify the variance in these 664 

transcriptome data, it remains possible that some transcriptional changes can be related to changes 665 

in proportions of specific cell types. This is especially true when studying iNeurons, which reflect 666 

a heterogeneous mixture of neuronal subpopulations and mixed glial cells. Single-cell RNA-667 
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sequencing of iNeurons at different differentiation stages may produce a clearer picture of the 668 

underlying cellular heterogeneity and corresponding gene expression profiles in such samples.  669 

 670 

In summary, our study demonstrates that SHANK3-deficiency results in profound transcriptional 671 

changes in PMS-derived hiPSC-iNPCs and hiPSC-iNeurons. Many early developmental pathways 672 

are impacted, including altered processes related to pre-and post-synaptic signaling, embryonic 673 

development and function, as well as Wnt and ECM signaling. Several other iPSC transcriptome 674 

studies of ASD and NDD genes also displayed changes in ECM and Wnt signaling, providing 675 

molecular insights into PMS and into NDDs more broadly. 676 

 677 
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Author	and	year Target	gene Approach Cellular	model FET	P-value Odds	ratio Intersect Example	genes FET	P-value Odds	ratio Intersect Example	genes

Huang	et.,	2019 SHANK3 shRNA	KD hiPSC-derived	neurons 3.3E-04 1.93 44
COL5A2,	COL18A1
NDP,	ADAMTS18,	CRTAP,	
NFATC1

2.4E-07 4.64 20
WNT3A,	BCAN,	FRZB,	
SPO3,	APCDD1,	WNT7B

Wnt	signaling,	ECM,	Signaling	
pathways	regulating	stem	cell	

pluripotency

CHD8 CRISPR/Cas9	heterozygous	KO hiPSC-derived	NPCs 4.0E-03 1.71 33
CCCND1,	VCAN,	NFATC1,	
SMAD9,	LRRC8B,	HOXB5

1.8E-05 4.14 15
FRZB,	FREM1,	RSPO3,	
ROR2,	MMP15,	WNT3A

ECM,	Wnt	signaling,	frizzled	binding,	
netrin	receptor	activity,		axon	

CHD8 CRISPR/Cas9	heterozygous	KO hiPSC-derived	neurons 1.3E-07 1.95 91
NKD2,	COL5A2,	COL18A1,	
NCAN,	COL14A1,	INHBE

5.7E-07 3.48 29
BCAN,	FRZB,	FREM1,	
RSPO3,	ID1-3,	WNT7B

Non-canonical	Wnt	signaling	
pathway,	ECM,		Glypican	pathway	

TCF4 shRNA	KD hiPSC-derived	NPCs 6.2E-01 0.93 5
ABCB4,	FBXL15,	SHF,	NELL2,	
ADAMTSL1

6.8E-01 0.89 1 PLEKHA5 NA

EHMT1 shRNA	KD hiPSC-derived	NPCs 1.8E-03 2.05 23
NKD2,	CAMK2A,	COL18A1,	
VCAN,	NCAN,	HOXB6

1.8E-04 4.52 10
BCAN,	ID2,	ID1,	WNT7B,	
ST6GALNAC3,	CORO2B

Perineuronal	net,	genes	encoding	
proteoglycans	and	ECM,	Hippo	
signaling	pathway,	Wnt	signaling

MBD5 shRNA	KD Human	neural	stem	cells 8.8E-01 0.67 6
NCAN,	SMAD9,	E2F7,	
MARCKSL1,	IFITM3,	TOP1MT

5.6E-01 1.07 2 ID1,	KCNJ10 Perineuronal	net,	ALK1	signaling

SATB2 shRNA	KD Human	neural	stem	cells 1.7E-01 1.41 11
NCAN,	HMGA2,	KCND3,	
SIGMAR1,	DDB2,	GAD1

2.6E-04 5.30 8
BCAN,	ID1,	KCNIP1,	
KLF10,	CORO2B,	MPC1

ECM	proteoglycans,	GABA	
synthesis,	p53	signaling,	Ras	

Zeng	et	a.l.,	2013 NRXN1 shRNA	KD Human	neural	stem	cells 1.3E-03 4.06 8
ZFHX3,	NCAN,	GFRA1,	
LRRC8B,	DDB2,	TMEM151B

4.2E-02 4.68 4
HSPA2,	NKD2,	COL5A2,	
KCNIP1

Cell	adhesion,	neurogenesis,	
axonogenesis,	cell	motility,		ECM

ATRX CRISPR/Cas9	heterozygous	KO 4.0E-02 1.43 32
SHANK3,	CAMK2N1,	INHBE,	
IGFBP3,	SOCS2,	GNB4

2.4E-02 2.20 10
BCAN,	ID2,	SHANK3,	
CAMK2N1,		
ST6GALNAC3,	RHOU

NA

CHD8 CRISPR/Cas9	heterozygous	KO 1.0E+00 0.00 0 - 2.4E-01 3.72 1 OLIG3 NA
AFF2 CRISPR/Cas9	heterozygous	KO 8.8E-01 0.55 2 CRHBP,	GRHL3 5.4E-01 1.31 1 HSPA2 NA

CACNA1C CRISPR/Cas9	homozygous	KO 1.5E-01 1.72 6
INHBE,	GRID2,	GPC6,	SLC7A2,	
ADM2,	CHMP6

1.7E-01 2.71 2 KLF10,	ID2 NA

KCNQ2 CRISPR/Cas9	homozygous	KO 6.3E-01 1.01 1
MDGA2

1.0E+00 0.00 0 - NA

SCN2A CRISPR/Cas9	homozygous	KO 2.0E-04 2.06 55
CCND1,	NKD2,	COL5A2,	VCAN,	
CRTAP,	CAMK2A

1.7E-03 2.56 16
FRZB,	ID1-3,	HSPA2,	
SMOX,	ST6GALNAC3,		

Voltage	gated	sodium	channel	
activity,	neuronal	precursor	

ASTN2 CRISPR/Cas9	homozygous	KO 3.3E-01 1.33 5
INHBE,	FOXI3,	STK32B,	
SEMA6D,	MANEAL

5.5E-01 1.25 1 FOXB1 Glycoproteins,	ECM,	Axon	guidance

DLGAP2 CRISPR/Cas9	homozygous	KO 9.3E-01 0.38 1 IGFBP3 1.0E-01 3.76 2 ST6GALNAC3,	RHOU NA

TENM1 CRISPR/Cas9	heterozygous	KO 1.8E-01 1.40 11
CAMK2N1,	SULT1C4,	IGFBP3,	
CELSR1,	MOCOS,	FBXO25

8.2E-01 0.59 1 CAMK2N1 NA

ANOS1 CRISPR/Cas9	heterozygous	KO 4.0E-01 1.46 2 MDGA2,	SHISA3 1.0E+00 0.00 0 - NA

ATRX CRISPR/Cas9	heterozygous	KO 6.7E-07 2.36 47
CAMK2A,	COL14A1,	NCAN,	
GPC3,	SHANK3,	TSHZ2

2.1E-03 2.88 12
WNT3A,	FRZB,	GPC3,	
SHANK3,	TSHZ2,	
ARHGAP20

Glutamate	receptor	binding,	Wnt	
signaling,	synaptic	signaling,	

glutamatergic	synapse,	postsynaptic	
CHD8 CRISPR/Cas9	heterozygous	KO 1.0E+00 0.00 0 2.7E-02 8.27 2 PCDHGA3,	PCDHGA7 NA
AFF2 CRISPR/Cas9	heterozygous	KO 3.9E-01 1.49 2 IGFBP3,	COL14A1 3.4E-02 7.27 2 SLITRK2,	PIEZO2 NA

CACNA1C CRISPR/Cas9	homozygous	KO 6.6E-01 0.94 1 RASGRP1 1.0E+00 0.00 0 - NA

KCNQ2 CRISPR/Cas9	homozygous	KO 1.0E+00 0.00 0 - 1.3E-04 17.19 4
WNT3A,	MSX2,	PIEZO2,	
PCDHGA3

NA

SCN2A CRISPR/Cas9	homozygous	KO 1.0E+00 0.00 0 - 4.2E-02 6.42 2 PCDHGA3,	PCDHGA7 NA

ASTN2 CRISPR/Cas9	homozygous	KO 1.0E+00 0.00 0 - 3.3E-05 15.20 5
WNT3A,	ID1,	MSX2,	
PIEZO2,	PCDHGA3

NA

DLGAP2 CRISPR/Cas9	homozygous	KO 1.0E+00 0.00 0 - 1.0E+00 0.00 0 - NA

TENM1 CRISPR/Cas9	heterozygous	KO 2.9E-01 1.23 12
GPC3,	ARHGAP20,	COL14A1,	
VCAN,	SLC10A4,	CAMSAP3

5.0E-03 3.60 7
WNT3A,	ID1,	MSX2,	
DPPA4,	GPC3,	
ARHGAP20

ECM,		Glypican	pathway,	Wnt	
signaling,	signaling	patways	

regulating	stem	cell	pluripotency

ANOS1 CRISPR/Cas9	heterozygous	KO 1.0E+00 0.00 0 - 6.6E-03 17.77 2 WNT3A,	PCDHGA3 NA

iNPCs

A	Fisher's	exact	test	(FET)	and	an	estimated	odds-ratio	were	used	to	compute	significance	of	each	overlap.	When	the	intersection	is	greater	than	six,	an	six	intersecting	example	genes	are	displayed	for	brevity.	Pathway	level	analyses	were	
computed	using	overlapping	genes	and	corrected	for	mulitple	comparisons	using	the	BH	procedure	in	ToppGene.	Abbreviations:	KD,	knockdown;	KO,	knockout.	

Table	2.	 Overlap	of	PMS	differentially	expressed	genes	(FDR	<5%)	with	exisiting	ASD	iPSC	transcriptome	studies.

iNeurons Enriched	GO	terms	(FDR	<5%)

iPSC-derived	neurons

iPSCs

Gigek	et	al.,	2015

Deneault	et	al.,	2018

Study	description

Wang	et.,	2015

Chen	et.,	2014
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MAIN FIGURES AND LEGENDS 995 

 996 

Figure 1. Quantifying transcriptome variance explained by observed factors. Correlation between 997 

samples from the same donor (technical replicates) compared to correlations between samples of related 998 

and unrelated family members in (A) iNPC and (B) iNeuron samples. Wilcoxon rank-sum test was used 999 

to test for differences between the means of correlation coefficients. (C) The linear mixed model 1000 
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framework of the varianceParition R package was used to compute the percentage of gene expression 1001 

variance explained according to seven covariates, which represent potential biological sources of 1002 

variability. Differences in cell types and excitatory neuron cell composition (estimated using CiberSort in 1003 

grey) explains the largest amount of variability in the transcriptome data. (D) Principal components 1004 

analysis (PCA) of gene expression data from iNPCs (triangles) and iNeurons (circles) where samples are 1005 

colored according to their predicted excitatory neuron cell type score. (E) Genes that vary most across 1006 

donors are enriched for brain cis-eQTLs. Fold enrichment (log2) for the 2000 top cis-eQTLs discovered 1007 

in post mortem dorsolateral prefrontal cortex data generated by the CommonMind Consortium shown for 1008 

seven sources of variation, plus residuals. Each line indicates the fold enrichment for genes with the 1009 

fraction of variance explained exceeding the cutoff indicated on the x-axis. Enrichments are shown on the 1010 

x-axis until less than 100 genes pass the cutoff. 1011 
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 1013 

Figure 2. Genes and pathways associated with PMS. Differential gene expression analyses adjusted for 1014 

sequencing batch, biological sex, RIN and individual donor as a repeated measure using the 1015 

dupCorrelation function in the limma R package. Volcano plots compare the extent of PMS-associated 1016 

log2 fold-changes to -log10 multiple test corrected P-value in (A) iNPCs and (B) iNeurons. Black dotted 1017 

line indicates genes passing an adjusted P<0.05. (C) Genome-wide concordance of PMS-associated log2 1018 

fold-changes was examined between iNCPs and iNeurons. Inset Venn diagram displays the overlap of 1019 

significant differentially expressed genes between the two cell types. Functional enrichment analysis of 1020 

PMS dysregulated genes that show (D) under-expression in iNPCs, (E) under-expression in iNeurons and 1021 

(F) over-expression in iNeurons. All enrichment terms displayed pass a multiple test corrected P-value.  1022 
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 1024 

Figure 3. Genes co-expression analysis and enrichment. (A) A total of 19 co-expression modules were 1025 

identified in iNPC samples and 22 modules were identified in iNeuron samples, and each module was 1026 

tested for enrichment of genetic risk loci for ASD, ID and DD using findings from other large-scale 1027 

studies. Modules were also examined for enrichment of target genes of FMRP, an RNA binding protein 1028 

that is associated with ASD risk, as well as differentially expressed genes identified in the current study 1029 

(see Figure 2). Enrichment was assessed using a Fisher’s exact test to assess the statistical significance 1030 

and p-values were adjusted for multiple testing using the Bonferroni procedure. We required an adjusted 1031 

P-value < 0.05 (*) to claim that a gene set is enriched within a user-defined list of genes. (B) Module 1032 

eigengene (ME) values were associated with PMS for iNPCs (triangles) and iNeurons (circles). Next, 1033 

genes in the iNPC samples were then forced to construct modules using the gene-module assignments 1034 

identified in the iNeuron samples, and vice versa, and these ME values were also associated with PMS. 1035 
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(C) Functional enrichment was performed on four PMS-associated modules and the top eight enrichment 1036 

terms (removing redundant annotations) are displayed.   1037 
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 1039 

Figure 4. Replication of iNeuron RNA-seq. A replication set of iNeuron samples collected at 6 weeks 1040 

in culture were subjected to RNA-seq. (A) Correlation coefficients between samples from the same donor 1041 

and same clone (technical replicates), biological replicates from independent inductions and correlations 1042 

between all other samples. A Wilcoxon rank-sum test was used to test for differences between the means 1043 

of correlation coefficients. (B) The second replication batch of iNeuron samples were used to derive 1044 

differential gene expression signatures between PMS probands and unaffected siblings. The PMS-1045 

associated log2 fold-changes from this replication set (x-axis) were compared to PMS-associated log2 fold-1046 

changes from the discovery set of samples, which were derived using combinations technical replicates 1047 

and biological replicates at different weeks in culture (y-axis).  1048 

 1049 
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SUPPLEMENTAL FIGURES AND LEGENDS 1051 

 1052 

Figure S1. Outlier analyses. Principal component analyses were performed on RPKM values for all (A) 1053 

iNPC and (B) iNeuron gene expression samples. Outliers beyond the 95% confidence intervals (black 1054 

ellipse) were excluded from downstream analyses. We also sought to identify samples that may have 1055 

under-gone issues with X-inactivation and/or sample mislabeling by confirming that the reported 1056 

biological sex is concordant with gene expression on chrX and chrY for both (C) iNPC and (D) iNeuron 1057 

samples. The expression on XIST from chrX was plotted against the sum of expression of six chrY genes 1058 
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(USP9Y, UTY, NLGN4Y, ZFY, RPS4Y1, TXLNG2P). Female samples with intermediate expression 1059 

profiles were excluded from further analysis.  1060 
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 1062 

 1063 

Figure S2. Developmental specificity analysis.  (A) Several postmortem brain and hiPSC RNA-seq data 1064 

sets spanning a broad range of developmentally distinct samples were integrated with the hiPSC-derived 1065 

iNPCs and iNeurons in the current study by principal component analysis to confirm their developmental 1066 

specificity. The first two principal components are shown and the iNPC samples (black stars) and iNeuron 1067 

samples (black triangles) are each outlined by 95% confidence intervals. A t-statistic was calculated 1068 

comparing prenatal to postnatal expression in the BrainSpan bulk RNA-seq data. (B) In iNPC samples, 1069 

the t-statistic distribution of the top 1000 most expressed shows a prenatal bias and the top 1000 least 1070 

expressed genes shows a clear postnatal bias. (C) A similar pattern was observed for the top 1000 most 1071 

and least expressed genes across iNeuron samples.  1072 
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 1074 

Figure S3. Cell type deconvolution analysis. Cibersort cell type deconvolution analysis of global gene 1075 

expression profiles estimated cell frequencies (y-axis) in (A-B) iNPCs and (C-D) iNeurons for four major 1076 

cell types (x-axis) using a reference panel of single-cell RNA-sequencing data from the human fetal cortex. 1077 

The predicted cellular proportions were compared between PMS probands and unaffected siblings to 1078 

confirm that major shifts in underlying cell types would not confound downstream analyses. A Wilcox 1079 

rank-sum test was used to compare the fractions of cell proportions between probands and siblings.  1080 
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 1082 

Figure S4. Variance explained by technical factors. The linear mixed model framework of the 1083 

varianceParition R package was used to compute the percentage of gene expression variance explained by 1084 

multiple biological and technical factors for (A) iNPCs and (B) iNeurons. (C) The variance explained by 1085 

the total number of weeks iNeurons spent in culture was further evaluated by principal component 1086 

analysis.   1087 
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 1089 

Figure S5. Variance explained by SHANK3 deletion size.  (A) The linear mixed model framework of 1090 

the varianceParition R package was used to compute the percentage of gene expression variance explained 1091 

by SHANK3 deletion size in iNPCs and iNeurons. (B) Genes with variance explained >50% by deletion 1092 

size were examined for chromosomal enrichment, and strong enrichment for chromosome 22 was 1093 

observed. The vertical black line indicates -log10 P-value < 0.05. (C) Fifty unique genes were identified 1094 

that varied by deletion size and mapped to chromosome 22, which were plotted on a heatmap using 1095 

average expression values across all technical replicates for iNPC and iNeuron samples. The size of 1096 

SHANK3 deletion (bp) is displayed on the x-axis.  1097 
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 1099 

 1100 

Figure S6. Controlling for cell type frequencies for differential expression. The concordance of 1101 

genome-wide PMS-associated log2 fold-changes were evaluated comparing two models: i) one model 1102 

adjusting for sequencing batch, biological sex, RIN and individual donor as a repeated measure on the y-1103 

axis; and ii) a second model adjusting for the same factors plus predicted excitatory neuron cell type 1104 

composition on the x-axis. Concordance was examined for both (A) iNPC and (B) iNeuron samples.  1105 
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 1107 

Figure S7. Protein-protein interaction network. Direct protein–protein interaction network of 1108 

differentially expressed genes identified in (A) iNPCs and (B) iNeurons.  1109 
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 1111 

Figure S8. CHD8 enrichment analysis.  Genomic coordinates for differentially expressed genes in 1112 

iNPCs and iNeurons were assessed for enrichment for human brain specific CHD8 binding sites derived 1113 

from (A-B) human mid-fetal brain tissue and (C-D) human neural progenitor cells (NPCs). The regioneR 1114 

R package was used to test overlaps of genomic regions based on permutation sampling. We sampled 1115 

random regions from the genome 1000 times, matching size and chromosomal distribution of the region 1116 

set under study. By recomputing the overlap with CHD8 binding sites in each permutation, statistical 1117 

significance of the observed overlap was computed.  1118 
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 1120 

Figure S9. WGCNA module construction and overlap.  The β-power defined for both (A) iNPC and 1121 

(B) iNeuron samples in order to achieve scale free network topology for gene co-expression network 1122 

construction. As a rule of thumb, β-power’s > 0.8 achieve scale free network topology, and a final β-power 1123 

of 12 was used iNPC samples and a β-power of 14 for iNeuron samples. (C) Overlap analysis of co-1124 

expression modules defined based on iNPC and iNeuron samples. Significance of the overlap was tested 1125 

using a one-sided Fisher’s exact test and corrected for multiple comparisons using Bonferroni procedure. 1126 

Significant overlaps with adjusted P<0.05 are marked with an asterisks (*). 1127 
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 1129 

Figure S10. Overlap with other ASD iPSC transcriptome studies. Convergence of differentially 1130 

expressed genes (FDR <5%) in the current study with other ASD iPSC transcriptome studies was assessed 1131 

using a Fisher’s Exact Test (FET) and an estimated odds-ratio was computed in comparison to a genome-1132 

wide background set to 20,000. Significant overlaps are demarked with a red asterisks (*). All overlapping 1133 

genes found in common with the currents study were subjected to ToppGene functional enrichment. 1134 

Overlap of differentially expressed genes and functional annotation was performed using data from (A-1135 

B) Huang et al., 2019, (C-D) Wang et al., 2015, and (E-G) Chen et al., 2014, (H) Gigek et al., 2015, (I-1136 

J) Zheng et al., 2013, and (K-M) Deneault et al., 2018. Note that no functional enrichment was observed 1137 

based on the overlap with (G) Chen et al., 2014 and (H) Gigek et al., 2015.  To simply multiple overlaps, 1138 

(K-L) the -log10 P-value (x-axis) is used to display the extent of significance based on gene expression 1139 

perturbations associated with CRISPR/Cas9 knockout of 10 different ASD genes.  1140 
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 1142 

 1143 

Figure S11. Data pre-processing using replication iNeuron samples. Principal component analyses 1144 

were performed on RPKM values for (A) all replication set iNeuron samples at 6 weeks. Outliers beyond 1145 

the 95% confidence intervals (black ellipse) were excluded from downstream analyses. (B) We also sought 1146 

to identify samples that may have under-gone issues with X-inactivation and/or sample mislabeling by 1147 

confirming that the reported biological sex is concordant with gene expression on chrX and chrY, which 1148 

confirmed aberrant X-inactivation observed in iNPCs sharing the same clone and induction (Supplemental 1149 

Table 1). Samples with intermediate expression profiles were excluded from further analysis. (C) 1150 

Cibersort cell type deconvolution analysis of global gene expression profiles estimated cell frequencies 1151 

(y-axis) for four major cell types (x-axis) using a reference panel of single-cell RNA-sequencing data from 1152 

-4000

0

4000

-10000 -5000 0 5000
PC1

P
C
2

-10

-5

0

5

-3 0 3 6

log2(XIST)
lo
g2
(c
hr
Y
) as.factor(Group)

F

M

poor

Su
m

 o
f 6

 c
hr

Y
ge

ne
s 

(lo
g 2

FP
KM

)
XIST expression (log2 FPKM)

iNeurons (6 weeks) iNeurons (6 weeks)

PC1

PC
2

A B

105-5-6w

21-6-6w
21-6B-6w

21-16-6w

0.0

0.1

0.2

0.3

0.4

0.5

Dividing
iPC

Excitatory
neurons

Inhibitory
neurons

Mixed
glial

variable

va
lu
e

Dx

CTRL

PMS

Pr
ed

ic
te

d 
ce

ll 
typ

e 
fre

qu
en

cie
s

0.0

0.2

0.4

0.6

Interneurons Astrocytes Stem cells Microglia OPCs

variable

va
lu
e

Dx
CTRL

PMS

Unaffected sib.
PMS proband

p=0.05

p=0.52

p=0.96
p=0.97

C

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/855163doi: bioRxiv preprint 

https://doi.org/10.1101/855163
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

the human fetal cortex. The predicted cellular proportions were compared between PMS probands and 1153 

unaffected siblings using a Wilcox rank-sum test. 1154 
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