

1 **Understanding the introgression process from *Aegilops tauschii* into hexaploid wheat**
2 **through identity by descent analysis and its effect on genetic diversity**

3

4 Moses Nyine¹, Elina Adhikari¹, Marshall Clinesmith², Katherine Jordan¹, Allan K. Fritz^{2*},
5 Eduard Akhunov^{1*}

6

7 ¹ Department of Plant Pathology, Kansas State University, Manhattan, KS 66506

8 ² Department of Agronomy, Kansas State University, Manhattan, KS 66506

9

10 *Corresponding authors: Allan K. Fritz (akf@ksu.edu); Eduard Akhunov
11 (eakhunov@ksu.edu)

12

13 Key words: *Aegilops tauschii*, domestication, genetic diversity, hexaploid wheat, identity by
14 descent, imputation, introgression

15

16 **Abstract**

17 Wild relatives of hexaploid wheat (*Triticum aestivum*) are the reservoirs of novel allelic
18 diversity with great potential to improve many agronomic traits in wheat. Here, we
19 investigated the genome-wide patterns and efficiency of *Aegilops tauschii* allele introgression
20 into the winter wheat cultivars. The introgression population of 351 BC₁F_{3:5} lines was
21 selected based on phenology and development characteristics from crosses between six
22 hexaploid wheat lines and 21 wheat-*Ae. tauschii* octoploids. Complexity reduced genomic
23 library sequencing was used to develop SNP markers and infer the regions of identity-by-
24 descent and the boundaries of the introgressed segments. Using a diverse panel of 116 *Ae.*
25 *tauschii* accessions, it was possible to infer that introgression lines had single or multiple IBD
26 segments from accessions of diverse geographic origin. Introgression frequency was high at
27 the ends of chromosomes and low in the large pericentromeric 2/3 of the chromosome arms
28 characterized by low crossover rate. While the effect of selection for free-threshing genotypes
29 was evident around the domestication gene *Tg*, reduction in the frequency of introgression
30 was limited to relatively small regions flanking the gene. These results suggest that the
31 effects of phenotypic selection on the introgressed wild relative's alleles at the early
32 generations of population development are strongly influenced by the distribution of
33 crossover frequency across genome, consistent with the Hill-Robertson effect. Our study
34 offers insights into the introgression population development to ensure retention of genetic

35 diversity across entire genome and presents a resource that will be valuable for deploying
36 wild relative diversity in breeding programs to create climate resilient and disease resistant
37 varieties with improved yield and quality traits.

38

39 **Introduction**

40 Wheat production is constrained by several biotic and abiotic factors, yet the demand
41 for wheat is expected to double by 2050. A yield increase of ~2.4 % per year has been
42 projected as required to close the gap between the current production level and an increasing
43 demand (Ray *et al.* 2013). While this goal can be achieved by improving agronomic
44 practices, expanding the production area and/or deployment of high-yielding wheat varieties,
45 the first two alternatives are unsustainable because land is a limited resource and most
46 effective agronomic practices are costly. Accelerated wheat improvement through extensive
47 deployment of available genomics tools and genetic resources, including close and distant
48 wild relatives of wheat, is viewed as the most effective and sustainable alternative to
49 increasing yield.

50 Allohexaploid wheat, *Triticum aestivum* ($2n = 6x = 42$, AABBDD) resulted from
51 hybridization of *Triticum turgidum* ($2n = 4x = 28$, AABB) and *Aegilops tauschii* ssp.
52 *strangulata* ($2n = 2x = 14$, DD) (Kihara 1944; Luo *et al.* 2007; Wang *et al.* 2013).
53 Domestication of wheat followed by continuous selection by early farmers led to the
54 ‘domestication syndrome’ that resulted in fixation or loss of alleles from the populations of
55 wild relatives (Peng *et al.* 2003; Haudry *et al.* 2007; Dvorak *et al.* 2012). The wild diploid
56 and tetraploid relatives that carry homoeologous genomes such as *Triticum turgidum* ssp.
57 *dicoccoides* (AB genomes), *T. monococcum* (A genome), *T. urartu* (A genome), *Ae. tauschii*
58 ssp. *tauschii* (D genome), and *Ae. tauschii* ssp. *strangulata* (D genome) are the primary
59 sources of genes for improvement of common wheat (Gill and Raupp 1987; Qi *et al.* 2007).
60 Secondary sources of resistance genes are close relatives of hexaploid wheat such as *T.*
61 *timopheevii* ($2n = 4x = 28$, AAGG) and *Ae. speltoides* ($2n = 2x = 14$, SS). Introgression of
62 beneficial alleles from these wild relatives was achieved by homoeologous recombination
63 between the chromosomes of common wheat and wild relatives in the absence of *Ph1* gene
64 controlling the pairing between homoeologs (Sears 1977). Introgression involves either direct
65 crosses between common wheat and wild relatives or crosses between common wheat and
66 synthetic wheat lines that are generated by hybridizing tetraploid wheat and wild diploids (Qi
67 *et al.* 2007; Ogbonnaya *et al.* 2013).

68 Direct crossing of wild relatives to common wheat followed by backcrosses to the
69 recurrent common wheat parent has been reported as a faster approach for introducing traits
70 (Alonso and Kimber 1984; Gill and Raupp 1987). This approach was successfully used to
71 transfer resistance to Hessian fly, greenbug and leaf rust into wheat (Gill and Raupp 1987).
72 The D genome from *Ae. tauschii* has been associated with important adaptation traits such as
73 drought and salinity stress tolerance, increased yield by influencing various yield components
74 as well as grain, flour and dough quality (Ogbonnaya *et al.* 2013; Jones *et al.* 2013). Several
75 genes that confer resistance to stem rust and leaf rust have been identified on D chromosomes
76 in bread wheat landraces or their relatives (Liu *et al.* 2013; Periyannan *et al.* 2013). Other
77 members of the *Triticeae* family have been utilized as a tertiary genetic pool for wheat
78 improvement via non-homoeologous recombination (alien introgression). Many major
79 disease resistance and environmental adaptation genes have been introgressed into wheat by
80 translocation of chromosome segments and addition of full chromosomes or chromosome
81 arms from rye, *Agropyron*, *Ae. ventricosa* and other species (Ayliffe *et al.* 2008; Liu *et al.*
82 2011; McIntosh *et al.* 2015; Cruz *et al.* 2016).

83 Improvement of wheat via alien genome introgression and homoeologous
84 recombination can be challenging due to linkage drag of unwanted alleles from the wild
85 relatives' genomes that can negatively impact agronomic traits (Anugrahwati *et al.* 2008).
86 Genes affecting plant growth, development and domestication traits, such as dwarfing gene
87 *Rht1*, photoperiod response gene *Ppd-D1*, tenacious glume gene *Tg*, and domestication gene
88 *Q* have been mapped on chromosome arms 4DS, 2DS, 2BS and 5AL (Peng *et al.* 1999;
89 Jantasuriyarat *et al.* 2004; Simons *et al.* 2006; Beales *et al.* 2007; Sood *et al.* 2009).
90 Quantitative trait loci (QTL) from chromosome 4A, 4B, 6B and 7B have also been reported
91 to confer free-threshability in wheat recombinant inbred lines (Jantasuriyarat *et al.* 2004;
92 Peleg *et al.* 2011). The analyses of SNPs around genes affecting domestication traits showed
93 substantial reduction of genetic diversity, which was indicative of strong positive selection
94 for the domesticated allelic variants (He *et al.* 2019; Wang *et al.* 2019).

95 Genotyping approaches based on next-generation sequencing of complexity-reduced
96 genomic libraries substantially accelerated analysis of genetic diversity in large crop genomes
97 (Elshire *et al.* 2011; Saintenac *et al.* 2011; Poland *et al.* 2012; Saintenac *et al.* 2013; Jordan *et*
98 *al.* 2015, 2018). The high proportion of missing data in low-coverage sequencing datasets
99 was compensated by the availability of the whole genome sequence (The International Wheat
100 Genome Sequencing Consortium (IWGSC) 2018) that facilitated accurate genotype
101 imputation. Imputation of ungenotyped SNP markers from a reference panel into a target

102 population takes advantage of regions of identity-by-descent (IBD), thus allowing the
103 interpolation of SNPs into the target population (Browning and Browning 2013). The power
104 and resolution of association studies have been shown to improve after imputation (Browning
105 and Browning 2012; Jordan *et al.* 2015; Nyine *et al.* 2019).

106 In this study, we developed the populations of winter wheat lines carrying
107 introgression from a diverse set of *Ae. tauschii* accessions selected to represent broad genetic
108 and geographic diversity of the species. The boundaries of introgressed segments in wheat
109 genome were detected using the IBD analyses based on the SNP datasets generated by
110 complexity-reduced sequencing of 378 introgression population lines and 116 *Ae. tauschii*
111 accessions. The distribution of introgressed segments across the genome was investigated to
112 assess its overall effect on genetic diversity, and evaluate the impact of recombination rate
113 variation and early selection for uniform phenological and developmental characteristics on
114 the introgression frequency in different parts of the wheat genome. The effect of selection
115 against non-adaptive traits contributed by *Ae. tauschii* was investigated around the
116 domestication gene *Tg* controlling tenacious glume trait (Sood *et al.* 2009).

117

118 **Materials and methods**

119 The study population consisted of 351 BC₁F_{3:5} *Ae. tauschii* introgression lines
120 developed by crossing synthetic *Ae. tauschii*-wheat octoploid lines with hexaploid wheat
121 recurrent parents. The octoploid lines were developed by crossing six hexaploid wheat
122 parents with 21 *Ae. tauschii* accessions (Supporting Information Table S1). The resulting F₁
123 hybrid plants regenerated from rescued embryos were treated with colchicine to generate the
124 synthetic octoploids (Dale *et al.* 2017). The synthetic octoploids were then backcrossed once
125 to the respective hexaploid wheat parents or to another wheat line. The BC₁F₁ plants were
126 selfed and advanced by single seed descent to the BC₁F₃ generation. Seeds from individual
127 BC₁F₃ plants were bulked and grown in single rows in the field at the Kansas State University
128 Ashland Research Farm near Manhattan, KS in the 2016-17 growing season. Thirty-one
129 families were represented in this material. The number of lines per family ranged from 42 to
130 137 and resulted in a total of 2,861 lines that were planted. The 351 lines used in this research
131 were selected from this set of materials. Selection criteria included production of sufficient
132 seed to allow yield testing, general fitness, threshability to allow mechanical harvest and
133 phenology similar to the elite hexaploid parent(s). In addition, 116 diverse *Ae. tauschii*
134 accessions representing *Ae. tauschii* ssp. *tauschii* and *Ae. tauschii* ssp. *strangulata* from

135 different geographical locations were used as the reference panel in the study (Supporting
136 Information Table S2).

137

138

139 **Sequencing complexity-reduced genomic libraries**

140 DNA from *Ae. tauschii* introgression population and the reference panel samples was
141 extracted using DNeasy 96 Plant DNA extraction kit (Qiagen) following the manufacture's
142 protocol. The quality and concentration of the DNA was assessed using PicoGreen® dsDNA
143 assay kit (Life Technologies). Input DNA was normalized to 400 ng (20ul of 20ng/ul) using
144 Qiagility robot (Qiagen). Genotyping by sequencing (GBS) libraries were constructed using
145 the modified protocol previously described by Saintenac *et al.* (2013), and subjected to size
146 selection using Pippin Prep system (Sage Scientific) to enrich for 270-330 bp fragments. In
147 total, five libraries were produced, representing 80 barcoded accessions each. Each library
148 was sequenced on Illumina NextSeq 500 using a 1 x 75 bp kit for the introgression lines and
149 1 x 100 bp kit for the reference panel following the Illumina protocol. TASSEL 5.0 GBS v2
150 pipeline (Glaubitz *et al.* 2014) was used to generate SNPs from the fastq files of the
151 introgression lines and the reference panel. In brief, the raw GBS sequence reads were
152 aligned to the Chinese Spring reference sequence v1.0 (The International Wheat Genome
153 Sequencing Consortium (IWGSC) 2018) using Burrow's Wheeler Alignment (BWA)
154 software. TASSEL 5.0 GBS v2 default parameters were used in all steps (Glaubitz *et al.*
155 2014).

156

157 **SNP genotyping and imputation**

158 SNPs for the reference *Ae. tauschii* panel with minor allele frequency (MAF) less than
159 0.02 and maximum missingness greater than 70 % were filtered out using vcf-filter tools. The
160 missing SNPs were imputed using the program Beagle v.5.0 (Browning and Browning 2013)
161 with default parameters (File S1). SNPs from *Ae. tauschii* derived introgression population
162 were filtered in two steps. First, SNPs from all subgenomes (A, B and D) with minor allele
163 frequency (MAF) less than 0.05 and maximum missingness greater than 30 % were filtered
164 out using vcf-filter tools. The missing SNP were imputed using the program Beagle v.5.0
165 with default parameters. In the next step, all A and B genome SNPs, and D genome SNPs
166 with MAF less than 0.01 were excluded from the raw vcf file using vcf-filter tools. The
167 program conform-gt (<https://faculty.washington.edu/browning/conform-gt.html>) was used to
168 check the concordance of D genome SNP positions between the introgression population and

169 the reference panel based on the Chinese Spring genome coordinates (IWGSC, 2018).
170 Missing and ungenotyped SNPs in the D genome of the introgression population were
171 imputed from the reference panel using Beagle v.5.0 (File S2).

172

173

174 **Principal component analysis (PCA)**

175 The population structure of the diverse *Ae. tauschii* accessions and the introgression
176 population was analyzed using the 11,624 D genome SNPs segregating in both populations
177 (File S3, S4). SNP dataset was converted to the hapmap format and imported into TASSEL
178 v.5.0, which was used to calculate the principal components. The first two components were
179 plotted to show the distribution and clustering of the reference panel accessions in relation to
180 the 21 parental *Ae. tauschii* accessions and the entire introgression population. In addition, a
181 total of 13,719 SNPs (File S5), including 4,016, 4,142, 5,112 and 449 from A, B, D genomes
182 and unanchored scaffolds, respectively, were used to evaluate the distribution of *Ae. tauschii*-
183 derived introgression lines on the first two principal components using wheat parents as
184 grouping factors.

185

186 **Genetic diversity**

187 To evaluate the effect of introgression on genetic diversity, the mean number of base
188 differences for each SNP site in all pairwise comparisons (π) among *Ae. tauschii* accessions,
189 introgression lines and hexaploid wheat lines were calculated using vcftools and summarized
190 in R (R Development Core Team 2011). The π values for each chromosome were interpolated
191 using the R function ‘approx’ (method=’linear’, rule=1) and plotted using R package
192 ‘ggplot2’.

193

194 **Recombination hotspots**

195 The imputed D-genome SNPs were split into subsets based on families. A
196 combination of custom Perl and R scripts (Nyine *et al.* 2018), were used to convert the SNP
197 alleles to 0, 1, and 2, of which, 0 is homozygous major allele, 1 is heterozygous and 2 is
198 homozygous minor allele. Regions containing monomorphic SNPs were eliminated by the R
199 script. A total of 16 families each having at least 10 progenies plus the respective parents
200 were used in this analysis. A separate custom Perl script was used to count the number of
201 allele phase transitions in each chromosome per individual and recode the flanking SNP

202 positions as break points (Jordan *et al.* 2018). The number of recombination breakpoints
203 (RBP) per 10 kb sliding window in each chromosome per family was obtained using bedmap
204 option from BEDOPS v2.4.35 (Neph *et al.* 2012). The total RBP per 10 kb window across the
205 16 families was obtained and the 99th percentile plotted using R-package ggplot2. All
206 windows with total RBP below the 99th percentile of recombination events were masked by
207 adding 0 before the line plots were generated. The centromere position in each chromosome
208 was marked based on the Chinese Spring reference genome (The International Wheat
209 Genome Sequencing Consortium (IWGSC) 2018; Su *et al.* 2019). Kruskal Wallis test was
210 used to test for significant differences in the distribution of recombination breakpoints in each
211 family.

212 In order to investigate the effect of sequence divergence and structural re-
213 arrangements on recombination, we compared hexaploid wheat (Chinese Spring) and the
214 diploid relative, *Ae. tauschii* ssp. *strangulata* (AL8/79) D genomes at protein level. High
215 confidence D genome gene protein sequences from Chinese Spring v.1.0 and *Ae. tauschii*
216 v.4.0 (Luo *et al.* 2017) were used. The annotation of the *Ae. tauschii* genome was
217 downloaded from <http://aegilops.wheat.ucdavis.edu/ATGSP/annotation/>. Local protein
218 BLAST databases were created for each dataset using BLAST2+. Reciprocal blastp was
219 performed between the two species' genome proteins using default parameters. A Perl script
220 was used to filter out blast hits with percent identity less than 95 and gap opens greater than
221 0. A file consisting of species chromosome identity, gene name, gene start and end positions
222 was generated from the respective gff3 file. MCScanX software (Wang *et al.* 2012) was used
223 to generate the dot plot and dual synteny plot that were used to compare the structural
224 differences between the genome of *T. aestivum* and *Ae. tauschii*.

225 The difference in recombination rate between *Ae. tauschii* ssp. *strangulata* and *Ae.*
226 *tauschii* ssp. *tauschii* introgression lines was ascertained by the pairwise comparison of
227 families derived from each subspecies using equal number of SNPs from the same genomic
228 loci. The correlation between total RBP and genetic distance was calculated between the
229 introgression lines and their respective hexaploid wheat and *Ae. tauschii* parents. Scatter plots
230 for genetic distance versus total RBP were generated for each family using ggplot2.

231

232 **Identity by Descent detection (IBD)**

233 Introgression of *Ae. tauschii* genome in hexaploid wheat was inferred using IBD.
234 SNPs from each chromosome were separated and used as input genotype (gt) data for IBD
235 detection. The program Beagle v.4.1 was used to detect IBD segments between introgression

236 lines, hexaploid wheat and *Ae. tauschii* parents using default parameters. The R-package
237 ggplot2 was used to generate a density plot of IBD segment start per chromosome to show
238 the distribution pattern. All chromosomes were scaled by dividing the IBD values by the
239 individual chromosome length and then multiplied by 100. Using a sliding window of 0.5 Mb
240 and a 1 % fraction of overlap between features, IBD segments shared between introgression
241 lines and *Ae. tauschii* parents were counted in each window using the bedmap tool provided
242 in BEDOPS v2.4.35 and a line graph was plotted using ggplot2.

243 The efficiency of introgression was estimated as a percentage of observed proportion
244 of *Ae. tauschii* genome in the introgression lines as inferred by IBD to the expected
245 proportion of *Ae. tauschii* in BC₁F_{3:5}. Assuming that recombination events between *Ae.*
246 *tauschii* and hexaploid wheat D genomes occurred normally in each chromosome, the
247 expected proportion of *Ae. tauschii* genome in the BC₁F_{3:5} introgression lines was
248 approximated at 25 %. The observed proportion of introgression was obtained by dividing the
249 total length of IBD segments from *Ae. tauschii* shared with each line by the genome size of
250 *Ae. tauschii* (4.3 Gb) and multiplied by 100. The result was then divided by 25 and multiplied
251 by 100 to get the percentage introgression efficiency. The average, standard deviation,
252 minimum and maximum IBD length shared between introgression lines, introgression lines
253 and hexaploid wheat, introgression lines and *Ae. tauschii* parents were determined, and
254 divided by the chromosome size.

255 The relationship between IBD and the domestication gene tenacious glume (*Tg*) on
256 chromosome arm 2DS was explored. The IBD count per 1 kb sliding window was used to
257 compare the frequency of introgression in the *Tg* region. Genes within the *Tg* region (21.8
258 Mb to 23.3 Mb) and their functional annotation were extracted from the Chinese Spring
259 reference gene annotation file. Introgression lines were phenotyped for tenacious glume trait.
260 The results were used to confirm the presence or absence of wild type alleles depending on
261 whether the introgression segment spanned the *Tg* gene region or not. Genome-wide
262 association analysis of tenacious glume trait with the 11,624 SNP markers was done using
263 GAPIT function in R. A mixed linear model was used and the population structure was
264 controlled using the first three principal components calculated from the markers. A
265 Manhattan plot of negative log₁₀ of false discovery rate (FDR) transformed P-values from the
266 D chromosomes was generated in R using ‘qqman’ package.

267

268 **Data availability**

269 All supplemental material and relevant data are available at FigShare.

270

271 **Results**

272 **Genotyping and SNP imputation**

273 A total of 314,783,044 high quality NGS reads with barcodes were generated with an
274 average of 2,713,647 reads per sample from the diverse *Ae. tauschii* accessions (Supporting
275 Information Table S2). Eighty-six percent (86 %) of the reads were aligned to the Chinese
276 Spring reference sequence v.1.0 (The International Wheat Genome Sequencing Consortium
277 (IWGSC) 2018) with an average of 2,336,299 reads per sample. The number of SNP sites
278 generated from the TASSEL v. 5.0 GBS v.2 pipeline was 120,877. After filtering out SNPs
279 with MAF less than 0.02, and maximum missingness greater than 70%, the number of
280 retained SNPs was 86,031.

281 Similarly, 1,080,452,138 high quality reads with barcodes were generated with an
282 average of 2,904,441 reads per sample from the introgression population (Supporting
283 Information Table S1). Ninety-six percent (96 %) of the reads were aligned to the Chinese
284 Spring reference with an average of 2,801,376 reads per sample. The number of unfiltered
285 SNPs generated by the TASSEL v.5.0 GBS v.2 pipeline was 275,286. A total of 58,932 SNPs
286 from the A, B, and D genomes were retained after filtering out SNPs with MAF less than 0.05
287 and maximum missingness greater than 30%. The number of SNPs from the D genome was
288 37.6 % of the filtered SNP dataset. The second filtering performed on the D genome SNPs to
289 remove sites with MAF less than 0.01 resulted in 41,228 SNPs, out of which, 7,749 also
290 segregated in the diverse set of *Ae. tauschii* accessions (henceforth, reference panel). Using
291 the program Beagle v.5.0 (Browning and Browning 2013), 78,282 SNPs were imputed from
292 the reference panel into the *Ae. tauschii*-derived introgression population.

293

294 **Principle component analysis**

295 Population structure of *Ae. tauschii* and introgression populations based on genetic
296 markers reflects the allele diversity in the species. The 137 *Ae. tauschii* accessions formed
297 three distinct clusters when the first two PCs calculated from 11,624 SNPs were plotted (Fig.
298 1). One cluster consisting of accessions known to belong to *Ae. tauschii* ssp. *strangulata* or
299 lineage 2 (L2), was clearly distinct from the rest (Wang *et al.* 2013). The remaining two
300 clusters belonged to *Ae. tauschii* ssp. *tauschii* or lineage 1 (L1a and L1b). Cluster L1a was
301 the most heterogeneous with accessions coming from Afghanistan (AFG), Turkmenistan
302 (TKM), Iran (IRN), Pakistan (PAK) and Tajikistan (TJK), (Table S3). Fifteen of the *Ae.*
303 *tauschii* parents used to generate the introgression population belonged to this cluster. More

304 than two thirds of the accessions in cluster L1b were from Turkey (TUR) with only a few
305 admixtures from Armenia (ARM), IRN, TJK and PAK. Three parents of the introgression
306 population were present in this cluster. Cluster L2 consisted of *Ae. tauschii* accessions mostly
307 collected from Iran (IRN), although a few accessions from Azerbaijan (AZE), Turkmenistan
308 (TKM) and TUR were present. Three parents of the introgression population parents
309 clustered in this group and two of them (TA1642, TA2378) are known to belong to *Ae.*
310 *tauschii* ssp. *strangulata* or lineage 2 (Wang *et al.* 2013; Singh *et al.* 2019).

311 The broad geographic distribution of *Ae. tauschii* accessions used to generate the
312 introgression population increases the chances of transferring alleles adaptive to different
313 agroecological zones. When the introgression lines were plotted on the first two PCs together
314 with *Ae. tauschii* accessions and hexaploid wheat parents, cluster L1a and L1b collapsed into
315 one cluster (Fig. 2). Cluster L2 remained independent while the introgression lines and
316 hexaploid wheat parents formed another cluster. The introgression lines showed a wide
317 distribution on the two PCs relative to the *Ae. tauschii* and hexaploid wheat parents. Many
318 introgression lines clustered closer to hexaploid wheat parents indicating that the greater
319 proportion of genome in the BC₁F_{3.5} lines comes from hexaploid wheat. This trend is likely
320 associated with the loss of the introgressed segments as a result of backcrossing to the
321 hexaploid parents and selection during population development. When the introgression lines
322 were compared with the hexaploid wheat parents using 13,719 SNPs from all three sub-
323 genomes, clustering was consistent with the pedigree (Fig. 3). In each cluster, admixed
324 introgression lines were observed because of the shared *Ae. tauschii* parents.

325

326 **Genetic diversity**

327 While most domesticated species experienced loss of genetic diversity due to
328 population bottleneck and selection for alleles controlling domestication traits, their
329 respective wild ancestors often maintain high levels of genetic diversity (Akunov *et al.*
330 2010; Xu *et al.* 2012; Hufford *et al.* 2012). To assess the effect of wild relative introgression
331 on genetic diversity in wheat, we estimated SNP diversity (π) in the populations of *Ae.*
332 *tauschii*, hexaploid wheat parents and the introgression lines. The average π value for the
333 diverse *Ae. tauschii* accessions was 0.33, suggesting that these accessions represented a rich
334 allelic diversity that could be valuable for wheat improvement. A cross-population diversity
335 comparison showed a low average genetic diversity in the wheat D genome across all
336 chromosomes (Table 1). The lowest diversity was found in the hexaploid wheat parents with

337 the chromosome mean ranging from 0.004 to 0.014 as compared to *Ae. tauschii* parents that
338 ranged from 0.108 to 0.114. For most chromosome regions, the levels of genetic diversity in
339 the introgression population were intermediate between the levels of diversity in the parental
340 populations of wheat and *Ae. tauschii* but tended towards the *Ae. tauschii* with maximum
341 mean π of 0.12 on chromosome 4D (Fig. 4 and Fig. S2). Analysis of variance showed
342 significant differences in π values between *Ae. tauschii*, hexaploid wheat and introgression
343 lines ($P < 0.001$), but not between chromosomes ($P = 1$). The genetic diversity of the
344 introgression lines for most regions of chromosome 4D and 5D were higher than those of *Ae.*
345 *tauschii* parents (Fig. S2). Taken together, these results indicate that *Ae. tauschii* introgression
346 lines substantially increased the genetic diversity of the recurrent hexaploid wheat parents.

347

348 **Effect of recombination rate on introgression**

349 One of the factors affecting the distribution of recombination events across genome
350 are structural re-arrangements (Stapley *et al.* 2017). Using the comparative dot-plot analysis
351 of gene order along the chromosomes, we observed that more than 99% of the genes from *T.*
352 *aestivum* were perfectly collinear to those of *Ae. tauschii* ssp. *strangulata* suggesting lack of
353 major structural re-arrangements between the D genomes of bread wheat and its diploid
354 ancestor (Fig. 5A). However, some small-scale inversions were observed on chromosomes
355 2D, 4D and 6D in the regions near the centromeres, and four genes were found in non-
356 syntenic positions between the wheat (1D and 5D) and *Ae. tauschii* (1D, 4D and 5D)
357 chromosomes (Fig. 5B).

358 Efficiency of introgression could also be strongly influenced by the distribution of
359 recombination rate along the chromosomes. Consistent with previous observations (Jordan *et*
360 *al.* 2018), a high frequency of recombination events was observed towards the telomeres but
361 the patterns were chromosome specific. Kruskal Wallis test showed that across all families,
362 the number of recombination breakpoints (RBP) was significantly different between
363 chromosomes ($P < 0.001$) at 95 % confidence level. At 99th percentile, chromosome 2D, 5D
364 and 7D had the highest number of regions with elevated recombination rate, while 1D and 5D
365 had the highest total RBP per 10 kb window (Table 2, Table S4). Most chromosomes showed
366 no evidence of recombination in the regions near the centromere, except for chromosomes 1D
367 and 6D (Fig. 6).

368 The frequency of recombination points between two different species are determined
369 by the genetic distance or sequence diversity between them. It is expected that, as the genetic

370 distance between hexaploid wheat and the *Ae. tauschii* accessions increases, the total RBP
371 should reduce within the introgression lines resulting from such a cross. All families showed
372 negative Pearson's correlation coefficients for total RBP and genetic distance between
373 introgression lines and *Ae. tauschii* parents (Fig. 7). As expected, introgression lines with
374 many introgression segments from *Ae. tauschii* had many total RBP and were genetically
375 closer to *Ae. tauschii* than wheat. A reduction in the total RBP was observed in families
376 FAM92, FAM93 and FAM96 derived from wheat and *Ae. tauschii* parents TA1642 and
377 TA2378, which belong to *Ae. tauschii* ssp. *strangulata*. This observation was contrary to
378 what was expected. Further analysis comparing FAM93 derived from *Ae. tauschii* ssp.
379 *strangulata* to seven *Ae. tauschii* ssp. *tauschii*-derived families (FAM97, FAM98, FAM99,
380 FAM106, FAM109, FAM112 and FAM116) and FAM92 derived from *Ae. tauschii* ssp.
381 *strangulata* using same and equal number of SNPs that were segregating between the
382 parental lines also showed the same trend (Fig S3). The *t*-test statistics did not reveal
383 significant difference in recombination rate between FAM93 and FAM92 ($P = 0.469$) at 95 %
384 confidence level. However, significant differences were observed between *Ae. tauschii* ssp.
385 *strangulata*-derived family FAM93 and all *Ae. tauschii* ssp. *tauschii*-derived families ($P <$
386 0.001). These observations can be explained by the low level of SNP diversity between the
387 wheat D genome and *Ae. tauschii* ssp. *strangulata*, which is considered to be the donor of the
388 wheat D genome (Dvorak *et al.* 1998), resulting in underestimation of the total number of
389 crossovers in the FAM92, FAM93 and FAM96 families. It is also possible that increase in the
390 levels of interhomolog polymorphism can stimulate recombination. In *Arabidopsis*, increase
391 in crossovers was observed when heterozygous regions are juxtaposed with homozygous
392 regions (Ziolkowski *et al.* 2015), suggesting that the genomic distribution of interhomolog
393 divergence have substantial effect on distribution of recombination rate.

394

395 **Identity by descent analysis shows low introgression frequency in the pericentromeric 396 regions**

397 The proportion of wild relative genome in the elite wheat lines can influence many
398 traits but the location of introgressions is key in determining the effects. In this study, IBD
399 was used to infer introgression of *Ae. tauschii* genome into hexaploid wheat lines. A density
400 plot of IBD segments along the chromosomes of the introgression population showed a U-
401 shaped distribution (Fig. 8). The frequency of IBD segments positively correlated with the
402 distribution of recombination rate (Jordan *et al.* 2018) and increased from the centromeres
403 towards the telomeric regions of the chromosomes. There was no chromosome preference

404 during introgression. Variation in the number of introgressions per line were observed across
405 chromosomes with the percentage proportion of *Ae. tauschii* genome in the introgression
406 lines ranging from 0.075 % to 13.5 % (Table S5). The efficiency of introgression as inferred
407 by IBD ranged from 0.3 % to 54.1 % based on the expected 25 % *Ae. tauschii* genome in the
408 BC₁F_{3:5} lines. Some lines had single or multiple introgression per chromosome. The IBD
409 segments shared between the introgression lines and wheat parents were on average 2.4 folds
410 longer than those shared with the *Ae. tauschii* parents (Table 3), but not significantly different
411 at 95% confidence level based on the *t*-test statistics (P = 0.066). The average percent length
412 of IBD segments shared between introgression lines and *Ae. tauschii* parents varied from
413 2.69 % to 6.98 % with a minimum of 0.28 % and a maximum of 41.33 %. Similarly, the
414 average percent length of IBD segments shared between the chromosomes of introgression
415 lines and hexaploid wheat parents ranged between 6.16 % and 26.63 % with a minimum of
416 0.44 % and a maximum of 86.18 %. The IBD segments shared between introgression lines
417 reached up to 100 % on chromosomes 3D, 4D and 6D.

418

419 **Relationship between IBD segments and tenacious glume gene**

420 Free-threshing is one of the traits that led to the domestication of wheat and it is
421 controlled by *Q* and *Tg* genes (Jantasuriyarat *et al.* 2004; Simons *et al.* 2006). In-depth
422 analysis of chromosome 2D was carried out to understand the relationship between IBD
423 segments and domestication gene *Tg* (Sood *et al.* 2009). The analysis was based on the
424 hypothesis that introgression lines that were free-threshing had shared IBD segments with
425 wheat on 2DS where *Tg* gene is expected and no shared IBD segments with *Ae. tauschii*. To
426 test this hypothesis, the sequences of microsatellite markers *Xgwm455*, *Xgwm296*, *Xgwm261*
427 and *Xwmc503* linked to *Tg* were aligned to the Chinese Spring reference v.1.0 to determine
428 their location on 2DS. Marker *Xwmc503* closest to *Tg* gene mapped at 19.6 Mb on 2DS
429 (Table S6). Based on Sood *et al.* (2009) genetic map, the *Tg* gene is located 2.2 cM away
430 from marker *Xwmc503*, implying that the *Tg* gene is located approximately at position 21.8
431 Mb. A count of IBD segments within 1-kb sliding windows showed a sharp decline in IBD
432 segments shared between introgression lines and *Ae. tauschii* parents within the *Tg* gene
433 region (Fig. 9A). The IBD segments shared between the introgression lines and hexaploid
434 wheat parents increased in the *Tg* gene region indicating a selection pressure for free-
435 threshing trait during population development. The lowest decline in IBD segments count
436 was observed at 23.3 Mb. There were 40 high confidence genes within the 21.8 Mb to 23.3
437 Mb interval (Table S7) including two transcription factors from the bZIP and GRAS families.

438 To verify the impact of introgression on free-threshing, we phenotyped the
439 introgression lines for tenacious glume trait and compared the results with IBD map. All lines
440 that had introgression segments spanning the *Tg* gene region on 2DS were positive for
441 tenacious glume trait (Table S8). Some lines, which had the introgression segment boundary
442 close to the *Tg* region also scored positive for tenacious glume trait (false negative), but a
443 majority were negative as expected. The presence of some false negatives could be explained
444 by the inability of the Beagle program to accurately determine the exact boundary of the
445 introgression in some cases.

446 Genome-wide association studies are used to determine the non-random association of
447 marker alleles to the trait of interest. Using a mixed linear model while controlling for the
448 population structure, we observed that majority of the significant SNPs associated with
449 tenacious glume trait in the introgression population were located on chromosome arm 2DS
450 (Fig. 9B), which was consistent with IBD analysis. At a threshold FDR q-value of 0.05, 31
451 SNPs near the *Tg* locus on 2DS showed significant association with the trait and the closest
452 SNPs to the *Tg* locus were chr2D_19242994 and chr2D_22955732 located downstream and
453 upstream of the locus, respectively (Table S9).

454

455 **Discussion**

456 Wheat improvement through breeding is a continuous process that delivers new
457 varieties to the farmers to ensure sustainable food production under changing environmental
458 conditions and increasing world population. For several decades, breeding efforts have been
459 directed towards improving agronomic, yield and disease resistance traits but of late climate
460 change is becoming one of the major crop production constraints. Wild relatives adapted to
461 various agroecological climates are the sources of alleles that can protect wheat by making it
462 resilient to climate change. In this study, we tracked the introgression of diverse *Ae. tauschii*
463 subspecies genome segments in hexaploid wheat and assessed its impact on genetic diversity.

464 Loss of genetic diversity associated with domestication and breeding (Haudry *et al.*
465 2007; Akhunov *et al.* 2010; Ozkan *et al.* 2011; Xu *et al.* 2012; Hufford *et al.* 2012) can
466 potentially reduce the adaptive potential of cultivated wheat. Wild relatives of wheat were
467 shown to be valuable source of allelic diversity for improving disease resistance, drought
468 tolerance and quality traits (Uauy *et al.* 2006; Sohail *et al.* 2011; Saintenac *et al.* 2013;
469 Periyannan *et al.* 2013; Chen *et al.* 2015). The wild diploid ancestor of the wheat D genome,
470 *Ae. tauschii*, was shown to have two main lineages that experienced limited contact (Wang *et*
471 *al.* 2013). The level of D genome genetic diversity in the wheat lines derived from crosses

472 with *Ae. tauschii* ssp. *strangulata* from lineage 2 was shown to be lower than in the lines
473 derived from *Ae. tauschii* ssp. *tauschii* from lineage 1, consistent with the origin of the wheat
474 D genome from *Ae. tauschii* ssp. *strangulata* (Dvorak *et al.* 2012; Wang *et al.* 2013).
475 Therefore, the introgression lines developed in our study carry genomic segments from *Ae.*
476 *tauschii* accessions coming from geographically diverse locations that represent different
477 climatic conditions and biotic pressure under which wheat grows. These lines present a
478 valuable genetic resource for breeding climate resilient, disease resistant and nutritionally
479 high-quality wheat.

480 Introgression from wild relatives into wheat is challenged by hybrid incompatibility,
481 embryo abortion and infertility (Gill and Raupp 1987), and was successfully accomplished
482 from the direct ancestors of the wheat D and AB genomes using synthetic hexaploids or
483 octoploids (Miranda *et al.* 2006; Dreisigacker *et al.* 2008; Dale *et al.* 2017). High density
484 genotyping data generated by sequencing now permits high-resolution haplotype analysis of
485 diverse populations and accurate imputation of missing data using reference panels (Jordan *et*
486 *al.* 2015; Nyine *et al.* 2019). In this study, imputation with the reference panel of *Ae. tauschii*
487 accessions was used to increase the number of SNPs on the D genome of the introgression
488 lines. This resource enabled identification of introgression segments from a wild relative by
489 inferring IBD regions. A similar approach was used in maize to identify 23 regions showing
490 IBD with the foundation parents using MaizeSNP50 BeadChip (Liu *et al.* 2015).

491 The lack of major structural rearrangements differentiating the wheat D genome from
492 its diploid ancestor underlies successful gene and trait transfer from *Ae. tauschii* into bread
493 wheat. The high level of structural similarity between these two genomes facilitated the
494 hybridization and recombination between them (Gill and Raupp 1987; Dvorak *et al.* 1998;
495 Akhunov *et al.* 2010; Luo *et al.* 2017), with our results being consistent with the previously
496 made observations. Relatively small inversions near the centromeric regions of chromosomes
497 2D, 4D and 6D had little impact on introgression efficiency compared to other centromeric
498 regions without inversions. The low frequency of crossovers in these regions does not allow
499 for estimating the effect of structural rearrangements on recombination and introgression.

500 The frequency of IBD regions along the chromosomes showed a U-shaped
501 distribution with lower incidence of regions derived from *Ae. tauschii* in the pericentromeric
502 regions. The introgression frequency correlated negatively with the length of IBD regions and
503 positively with the frequency of crossovers indicating that longer introgressed segments in
504 the low-recombining pericentromeric regions had lower chance of being inherited in the
505 progeny of crosses between *Ae. tauschii*-derived octoploids and wheat. These chromosomal

506 patterns of introgression efficiency and length suggest that introgression was strongly
507 affected by the distribution of recombination rate along chromosomes. This outcome was not
508 expected as we assumed that selected lines in the BC₁F_{3:4} generation plants should have equal
509 probability of inheriting introgressed regions across entire genome. However, it is likely that
510 selection applied at BC₁F_{3:4} generation to maintain uniform phenology, threshability,
511 flowering time and developmental characteristics inadvertently eliminated many lines
512 carrying large introgressed regions in the pericentromeric regions. According to theory,
513 introgressions that carry alleles having a negative impact on the selected traits will be
514 removed from the population, with the size of the affected region defined by the
515 recombination rate (Hill and Robertson 1966). It appears that negative interaction between
516 alleles located within large introgressions in the low-recombining pericentromeric region and
517 alleles of the adapted recurrent parent affected targeted phenotypes resulting in removal of
518 these plants during population development. The limited number of recombination events at
519 the BC₁F₂ generation, especially in the large pericentromeric regions of wheat chromosomes,
520 resulted in linkage drag that affected substantial proportion of the genome.

521 On the contrary, terminal regions of wheat chromosomes showed the high rate of
522 introgression consistent with the theoretical predictions of the effect of selection on linked
523 variation (Hill and Robertson 1966). The importance of recombination in separating the
524 negatively selected alleles from the background was clearly demonstrated for the *Tg* locus
525 controlling free-threshing trait in wheat (Jantasuriyarat *et al.* 2004; Sood *et al.* 2009). Since
526 this gene is located in the high-recombining terminal region of chromosome, we did not
527 observe substantial effect of selection against the wild-type allele on the frequency of
528 introgression from *Ae. tauschii*. The high recombination rate even allowed for mapping the
529 *Tg* gene locus to the 1.5 Mb genomic interval, which was confirmed by genome-wide
530 association analysis. Taken together, these results indicate that the unintended consequence of
531 selection applied during the early stages of introgression population development is the low
532 rate of introgression in the low-recombining regions of the wheat genome.

533 With the development of new genomic resources for wheat and its wild relatives (Ling
534 *et al.* 2013; Avni *et al.* 2017; Luo *et al.* 2017; The International Wheat Genome Sequencing
535 Consortium (IWGSC) 2018; Arora *et al.* 2019), the importance of introgression populations
536 for wheat improvement is increasing. Recombination will be one of the main factors that will
537 influence the efficiency of introgression in these populations. Our study suggests that any
538 form of selection applied during population development quickly eliminates large portions of
539 the donor genome, especially in regions of low recombination. The loss of the wild relative's

540 alleles in the pericentromeric regions in this study was somewhat surprising given that
541 phenotypic selection was only applied at the BC₁F_{3:4} stage and field conditions for selection
542 were poor. This clearly suggests that multiple genes with strong combined effect on adaptive
543 traits are present in these regions and identification of any beneficial alleles in these regions
544 will be complicated by linkage drag.

545 It is common practice for germplasm development programs to subject material to
546 selection pressure from early stages of population development. This is consistent with the
547 goal of identifying high performing materials relatively quickly to support commercial
548 breeding. The application of early selection allows rapid exploitation of beneficial alleles in
549 the regions of high recombination. This is a worthy objective but the current results are a
550 clear justification for a two-tiered approach to germplasm development if such programs are
551 to fully exploit the diversity present in donor material.

552 Exploration and exploitation of diversity in regions of lower recombination requires a
553 parallel approach to germplasm development that complements the efforts to rapidly exploit
554 diversity present in the highly recombining regions. The first step is to ensure that maximum
555 diversity is maintained in the introgression materials. This could be achieved by genotyping
556 early generation populations to select subsets of lines carrying introgressions covering the
557 genome. Low selection pressure and marker-assisted population management will retain
558 introgressed regions. The drive toward fixation that occurs with additional selfing generations
559 calls for methods to maintain heterozygosity, such as random mating through the use of
560 genetic male sterility or chemical hybridizing agents, that are warranted in self-pollinated
561 species. This would enhance effective recombination and increase the probability of freeing
562 beneficial alleles from the influence of linked deleterious alleles in regions of low
563 recombination. Failure to engage such strategies will result in the near-immediate loss of
564 introgressed diversity, reducing the potential long-term impact of germplasm development
565 programs. Recently, genetic factors controlling crossover frequency across genome and in the
566 pericentromeric regions of wheat chromosomes have been identified (Jordan *et al.* 2018;
567 Gardiner *et al.* 2019). The discovery of these genetic factors could also facilitate strategies to
568 further increase the efficiency of introgression, and selection for favorable introgressed
569 alleles in the low recombining regions.

570

571 **Acknowledgements**

572 This project was supported by the Agriculture and Food Research Initiative Competitive
573 Grant 2016-67013-24473 from the USDA National Institute of Food and Agriculture. We

574 would like to thank Alina Akhunova and KSU Integrated Genomics Facility for sequencing
575 genomic libraries, and Jon Raupp from Wheat Genetics Resources Center for providing seeds
576 of 21 accessions of *Aegilops tauschii* used for developing introgression population.

577

578 **References**

579 Akhunov, E. D., A. R. Akhunova, O. D. Anderson, J. a Anderson, N. Blake *et al.*, 2010
580 Nucleotide diversity maps reveal variation in diversity among wheat genomes and
581 chromosomes. *BMC Genomics* 11: 702.

582 Alonso, L., and G. Kimber, 1984 Use of restitution nuclei to introduce alien genetic variation
583 into hexaploid wheat. *Zeitschrift für Pflanzenzüchtung* 92: 185–189.

584 Arora, S., B. Steuernagel, K. Gaurav, S. Chandramohan, Y. Long *et al.*, 2019 Resistance gene
585 cloning from a wild crop relative by sequence capture and association genetics. *Nat.*
586 *Biotechnol.* 37: 139–143.

587 Avni, R., M. Nave, O. Barad, K. Baruch, S. O. Twardziok *et al.*, 2017 Wild emmer genome
588 architecture and diversity elucidate wheat evolution and domestication. *Science* 97: 93–
589 97.

590 Ayliffe, M., R. Singh, and E. Lagudah, 2008 Durable resistance to wheat stem rust needed.
591 *Curr. Opin. Plant Biol.* 11: 187–92.

592 Beales, J., A. Turner, S. Griffiths, J. W. Snape, and D. a Laurie, 2007 A pseudo-response
593 regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat
594 (*Triticum aestivum* L.). *Theor. Appl. Genet.* 115: 721–33.

595 Browning, S. R., and B. L. Browning, 2012 Identity by descent between distant relatives:
596 detection and applications. *Annu. Rev. Genet.* 46: 617–33.

597 Browning, B. L., and S. R. Browning, 2013 Improving the accuracy and efficiency of
598 identity-by-descent detection in population data. *Genetics* 194: 459–71.

599 Chen, S., M. N. Rouse, W. Zhang, Y. Jin, E. Akhunov *et al.*, 2015 Fine mapping and
600 characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective
601 against the *Puccinia graminis* f. sp. *tritici* Ug99 race group. *Theor. Appl. Genet.* 128:
602 645–56.

603 Cruz, C. D., G. L. Peterson, W. W. Bockus, P. Kankanala, J. Dubcovsky *et al.*, 2016 The 2NS
604 translocation from *Aegilops ventricosa* confers resistance to the *Triticum* pathotype of
605 *Magnaporthe oryzae*. *Crop Sci.* 56:.

606 Dale, Z., H. Jie, H. Luyu, Z. Cancan, Z. Yun *et al.*, 2017 An advanced backcross population
607 through synthetic octaploid wheat as a “Bridge”: Development and QTL detection for

608 seed dormancy. *Front. Plant Sci.* 8: 1–10.

609 Dreisigacker, S., M. Kishii, J. Lage, and M. Warburton, 2008 Use of synthetic hexaploid
610 wheat to increase diversity for CIMMYT bread wheat improvement. *Aust. J. Agric. Res.*
611 59: 413–420.

612 Dvorak, J., K. R. Deal, M.-C. Luo, F. M. You, K. von Borstel *et al.*, 2012 The origin of spelt
613 and free-threshing hexaploid wheat. *J. Hered.* 103: 426–41.

614 Dvorak, J., M. Luo, and E. D. Akhunov, 2011 N . I . Vavilov ' s Theory of Centres of
615 Diversity in the Light of Current Understanding of Wheat Diversity , Domestication and
616 Evolution. *Czech. J. Genet. Plant Breed.* 47: 1–8.

617 Dvorak, J., M. C. Luo, Z. L. Yang, and H. B. Zhang, 1998 The structure of the Aegilops
618 tauschii gene pool and the evolution of hexaploid wheat. *Theor. Appl. Genet.* 97: 657–
619 670.

620 Elshire, R. J., J. C. Glaubitz, Q. Sun, J. a Poland, K. Kawamoto *et al.*, 2011 A robust, simple
621 genotyping-by-sequencing (GBS) approach for high diversity species. *PLoS One* 6:
622 e19379.

623 Gardiner, L., L. U. Wingen, P. Bailey, R. Joynson, T. Brabbs *et al.*, 2019 Analysis of the
624 recombination landscape of hexaploid bread wheat reveals genes controlling
625 recombination and gene conversion frequency. *Genome Biol.* 20: 69.

626 Ge, S. De, 2001 Size of Donor Chromosome Segments Around Introgressed Loci and
627 Reduction of Linkage Drag in Marker-Assisted Backcross Programs. *Genetics*.

628 Gill, B. S., and W. J. Raupp, 1987 Direct Genetic Transfers from Aegilops squarrosa L. to
629 Hexaploid Wheat. *Crop Sci.* 27: 445–450.

630 Glaubitz, J. C., T. M. Casstevens, F. Lu, J. Harriman, R. J. Elshire *et al.*, 2014 TASSEL-GBS:
631 A High Capacity Genotyping by Sequencing Analysis Pipeline. *PLoS One* 9: e90346.

632 Haudry, a, a Cenci, C. Ravel, T. Bataillon, D. Brunel *et al.*, 2007 Grinding up wheat: a
633 massive loss of nucleotide diversity since domestication. *Mol. Biol. Evol.* 24: 1506–17.

634 He, F., R. Pasam, F. Shi, S. Kant, G. Keeble-Gagnere *et al.*, 2019 Exome sequencing
635 highlights the role of wild relative introgression in shaping the adaptive landscape of the
636 wheat genome. *Nat. Genet.* 51: 896–904.

637 Hill, W., and Robertson, 1966 The effect of linkage on limits to artificial selection. *Genet.*
638 *Res.* 8: 269–294.

639 Hufford, M. B., X. Xu, J. van Heerwaarden, T. Pyhäjärvi, J.-M. Chia *et al.*, 2012
640 Comparative population genomics of maize domestication and improvement. *Nat.*
641 *Genet.* 44: 808–11.

642 Jantasuriyarat, C., M. I. Vales, C. J. W. Watson, and O. Riera-Lizarazu, 2004 Identification
643 and mapping of genetic loci affecting the free-threshing habit and spike compactness in
644 wheat (*Triticum aestivum* L.). *Theor. Appl. Genet.* 108: 261–273.

645 Jones, H., N. Gosman, R. Horsnell, G. A. Rose, L. A. Everest *et al.*, 2013 Strategy for
646 exploiting exotic germplasm using genetic, morphological, and environmental diversity:
647 the *Aegilops tauschii* Coss. example. *Theor. Appl. Genet.* 126: 1793–808.

648 Jordan, K. W., S. Wang, F. He, S. Chao, Y. Lun *et al.*, 2018 The genetic architecture of
649 genome-wide recombination rate variation in allopolyploid wheat revealed by nested
650 association mapping. *Plant J.* 95: 1039–1054.

651 Jordan, K., S. Wang, Y. Lun, L. Gardiner, R. MacLachlan *et al.*, 2015 A haplotype map of
652 allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes.
653 *Genome Biol.* 16: 48.

654 Kihara, H., 1944 Discovery of the DD-analyser, one of the ancestors of *Triticum vulgare*.
655 *Agriculture Hortic.* 19: 889–890.

656 Ling, H.-Q., S. Zhao, D. Liu, J. Wang, H. Sun *et al.*, 2013 Draft genome of the wheat A-
657 genome progenitor *Triticum urartu*. *Nature* 496: 87–90.

658 Liu, Z., R. L. Bowden, and G. Bai, 2013 Molecular markers for leaf rust resistance gene Lr42
659 in wheat. *Crop Sci.* 53: 1566–1570.

660 Liu, C., Z. Hao, D. Zhang, C. Xie, M. Li *et al.*, 2015 Genetic properties of 240 maize inbred
661 lines and identity-by-descent segments revealed by high-density SNP markers. *Mol.*
662 *Breed.* 35: 146.

663 Liu, S., L. X. Yu, R. P. Singh, Y. Jin, M. E. Sorrells *et al.*, 2010 Diagnostic and co-dominant
664 PCR markers for wheat stem rust resistance genes Sr25 and Sr26. *Theor. Appl. Genet.*
665 120: 691–697.

666 Luo, M.-C., Y. Q. Gu, D. Puiu, H. Wang, S. O. Twardziok *et al.*, 2017 Genome sequence of
667 the progenitor of the wheat D genome *Aegilops tauschii*. *Nature* 551: 498–502.

668 Luo, M.-C., Z.-L. Yang, F. M. You, T. Kawahara, J. G. Waines *et al.*, 2007 The structure of
669 wild and domesticated emmer wheat populations, gene flow between them, and the site
670 of emmer domestication. *Theor. Appl. Genet.* 114: 947–59.

671 McIntosh, R. a., P. Zhang, C. Cowger, R. Parks, E. S. Lagudah *et al.*, 2011 Rye-derived
672 powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus. *Theor.*
673 *Appl. Genet.* 123: 359–367.

674 Miranda, L. M., J. P. Murphy, D. Marshall, and S. Leath, 2006 Pm34: a new powdery mildew
675 resistance gene transferred from *Aegilops tauschii* Coss. to common wheat (*Triticum*

676 *aestivum* L.). *Theor. Appl. Genet.* 113: 1497–504.

677 Neph, S., M. S. Kuehn, A. P. Reynolds, E. Haugen, R. E. Thurman *et al.*, 2012 BEDOPS:

678 High-performance genomic feature operations. *Bioinformatics* 28: 1919–1920.

679 Nyine, M., B. Uwimana, N. Blavet, E. Hřibová, H. Vanrespaille *et al.*, 2018 Genomic

680 Prediction in a Multiploid Crop: Genotype by Environment Interaction and Allele

681 Dosage Effects on Predictive Ability in Banana. *Plant Genome* 11:.

682 Nyine, M., S. Wang, K. Kiani, K. Jordan, S. Liu *et al.*, 2019 Genotype Imputation in Winter

683 Wheat Using First-Generation Haplotype Map SNPs Improves Genome-Wide

684 Association Mapping and Genomic Prediction of Traits. *G3:*

685 *Genes|Genomes|Genetics* 9: 125–133.

686 Ogbonnaya, F. C., O. Abdalla, A. Mujeeb-Kazi, A. G. Kazi, S. S. Xu *et al.*, 2013 Synthetic

687 Hexaploids: Harnessing Species of the Primary Gene Pool for Wheat Improvement.

688 *Plant Breed. Rev.* 35–122.

689 Ozkan, H., G. Willcox, A. Graner, F. Salamini, and B. Kilian, 2011 Geographic distribution

690 and domestication of wild emmer wheat (*Triticum dicoccoides*). *Genet. Resour. Crop*

691 *Evol.* 58: 11–53.

692 Peleg, Z., T. Fahima, A. B. Korol, S. Abbo, and Y. Saranga, 2011 Genetic analysis of wheat

693 domestication and evolution under domestication. *J. Exp. Bot.* 62: 5051–61.

694 Peng, J., D. E. Richards, N. M. Hartley, G. P. Murphy, K. M. Devos *et al.*, 1999 “Green

695 revolution” genes encode mutant gibberellin response modulators. *Nature* 400: 256–61.

696 Peng, J., Y. Ronin, T. Fahima, M. S. Röder, Y. Li *et al.*, 2003 Domestication quantitative trait

697 loci in *Triticum dicoccoides*, the progenitor of wheat. *Proc. Natl. Acad. Sci. U. S. A.*

698 100: 2489–94.

699 Periyannan, S., J. Moore, M. Ayliffe, U. Bansal, X. Wang *et al.*, 2013 The Gene Sr33, an

700 Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99.

701 *Science* 341: 786–8.

702 Poland, J. A., P. J. Brown, M. E. Sorrells, and J.-L. Jannink, 2012 Development of high-

703 density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-

704 sequencing approach. *PLoS One* 7: e32253.

705 Qi, L., B. Friebel, P. Zhang, and B. S. Gill, 2007 Homoeologous recombination, chromosome

706 engineering and crop improvement. *Chromosom. Res.* 15: 3–19.

707 R Development Core Team, R., 2011 R: A Language and Environment for Statistical

708 Computing (R. D. C. Team, Ed.). R Found. Stat. Comput. 1: 409.

709 Ray, D. K., N. D. Mueller, P. C. West, and J. A. Foley, 2013 Yield Trends Are Insufficient to

710 Double Global Crop Production by 2050. PLoS One 8:.

711 Saintenac, C., D. Jiang, and E. D. Akhunov, 2011 Targeted analysis of nucleotide and copy
712 number variation by exon capture in allotetraploid wheat genome. Genome Biol. 12:
713 R88.

714 Saintenac, C., D. Jiang, S. Wang, and E. Akhunov, 2013 Sequence-based mapping of the
715 polyploid wheat genome. G3 (Bethesda). 3: 1105–14.

716 Sears, E. R., 1977 AN INDUCED MUTANT WITH HOMOEOLOGOUS PAIRING IN
717 COMMON WHEAT. Can. J. Genet. Cytol. 19: 585–593.

718 Simons, K. J., J. P. Fellers, H. N. Trick, Z. Zhang, Y.-S. Tai *et al.*, 2006 Molecular
719 characterization of the major wheat domestication gene Q. Genetics 172: 547–55.

720 Singh, N., S. Wu, V. Tiwari, S. Sehgal, J. Raupp *et al.*, 2019 Genomic analysis confirms
721 population structure and identifies inter-lineage hybrids in *Aegilops tauschii*. Front.
722 Plant Sci. 10: 1–13.

723 Sohail, Q., T. Inoue, H. Tanaka, A. E. Eltayeb, Y. Matsuoka *et al.*, 2011 Applicability of
724 *Aegilops tauschii* drought tolerance traits to breeding of hexaploid wheat. Breed. Sci.
725 61: 347–57.

726 Sood, S., V. Kuraparth, G. Bai, and B. S. Gill, 2009 The major threshability genes soft
727 glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin
728 to independent mutations at non-orthologous loci. Theor. Appl. Genet. 119: 341–51.

729 Stapley, J., P. G. D. Feulner, S. E. Johnston, A. W. Santure, and C. M. Smadja, 2017 Variation
730 in recombination frequency and distribution across eukaryotes: Patterns and processes.
731 Philos. Trans. R. Soc. B Biol. Sci. 372: 20160455.

732 Su, H., Y. Liu, C. Liu, Q. Shi, Y. Huang *et al.*, 2019 Centromere Satellite Repeats Have
733 Undergone Rapid Changes in Polyploid Wheat Subgenomes. Plant Cell 31:
734 tpc.00133.2019.

735 The International Wheat Genome Sequencing Consortium (IWGSC), 2018 Shifting the limits
736 in wheat research and breeding using a fully annotated reference genome. Science 361:
737 eaar7191.

738 Uauy, C., A. Distelfeld, T. Fahima, A. Blechl, and J. Dubcovsky, 2006 A NAC Gene
739 Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat.
740 Science 314: 1298–1301.

741 Wang, J., M.-C. Luo, Z. Chen, F. M. You, Y. Wei *et al.*, 2013 *Aegilops tauschii* single
742 nucleotide polymorphisms shed light on the origins of wheat D-genome genetic
743 diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198: 925–

744 937.

745 Wang, W., Q. Pan, B. Tian, F. He, Y. Chen *et al.*, 2019 Gene editing of the wheat homologs of
746 TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat.
747 Plant J. <https://doi.org/10.1111/tpj.14440>.

748 Wang, Y., H. Tang, J. D. Debarry, X. Tan, J. Li *et al.*, 2012 MCScanX: A toolkit for detection
749 and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40: 1–14.

750 Xu, X., X. Liu, S. Ge, J. D. Jensen, F. Hu *et al.*, 2012 Resequencing 50 accessions of
751 cultivated and wild rice yields markers for identifying agronomically important genes.
752 Nat. Biotechnol. 30: 105–11.

753 Ziolkowski, P. A., L. E. Berchowitz, C. Lambing, N. E. Yelina, X. Zhao *et al.*, 2015
754 Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover
755 remodelling via interference during *Arabidopsis* meiosis. Elife 4: 1–29.

756

757 **Figure legends**

758 Fig. 1. Distribution of 116 *Ae. tauschii* accessions (red) used as reference panel and the 21
759 *Ae. tauschii* accessions (magenta) used to generate the introgression lines on the first
760 two principal components. L1a and L1b accessions belong to *Ae. tauschii* ssp. *tauschii*
761 while L2 accessions belong to *Ae. tauschii* ssp. *strangulata*.

762 Fig. 2. Distribution of 116 *Ae. tauschii* accessions (AT) used as reference panel, the 21 *Ae.*
763 *tauschii* accessions (ILP_AT) used to generate the introgression lines, hexaploid
764 wheat parents (ILP_HW) and the 351 introgression lines (IL) on the first two principal
765 components.

766 Fig. 3. Distribution of introgression lines and the hexaploid wheat parents on the first two
767 principal components based on SNP markers from A, B, D genomes and unanchored
768 scaffolds.

769 Fig. 4. Variation in nucleotide diversity for chromosome 2D based on pi values interpolated
770 using R function ‘approx’. The blue dashed line indicates the position of SSR marker
771 *Xwmc503* linked to tenacious glume gene indicated by the magenta dashed line.

772 Fig. 5. Comparison of *T. aestivum* and *Ae. tauschii* genomes at protein sequence level. A is a
773 dot plot showing the collinearity between genes and the deviation of the dots from the
774 main diagonal indicate inversion. B shows the synteny between the two species
775 genomes.

776 Fig. 6. Distribution of recombination hotspots per chromosome at 99th percentile.

777 Fig. 7. Scatter plots showing the correlation between total recombination breakpoints and
778 genetic distance per introgression line from *Ae. tauschii* and hexaploid wheat parents
779 in a family.

780 Fig. 8. Density plots of identity by descent segments start positions along the seven D
781 chromosomes of the introgression lines derived from hexaploid wheat and *Ae. tauschii*.

782 Fig. 9. Location of *Tg* locus on chromosome arm 2DS as inferred by identity by descent
783 (IBD) analysis and genome-wide association study. A. Frequency of introgression from *Ae.*
784 *tauschii* into hexaploid wheat as inferred by IBD in chromosome arm 2DS region containing
785 tenacious glume (*Tg*) gene. The IBD segments were counted per 1-kb sliding window. The
786 blue line shows the position of marker *Xmwc503*, magenta line indicates the most likely
787 position of *Tg* gene based on Sood et al. (2009) and the red lines shows the chromosome
788 region with the lowest IBD frequency (*Tg* locus boundary). B. Manhattan plot showing the
789 position of significant SNPs on 2DS and the red line shows the SNPs that are significant at an
790 FDR q-value of 0.001.

791

792 **Supporting information**

793

794 **Supplemental tables**

795 Table S1. Summary of GBS data for introgression lines, *Ae. tauschii* and hexaploid wheat
796 parents.

797 Table S2. Summary of GBS data for 116 *Ae. tauschii* accessions used as a reference panel.

798 Table S3. Origin of *Ae. tauschii* accessions used as reference panel, the source of 21 *Ae.*
799 *tauschii* used as introgression parents and their grouping based on the first two
800 principal components.

801 Table S4. Frequency of total recombination breakpoint from 16 introgression population
802 families.

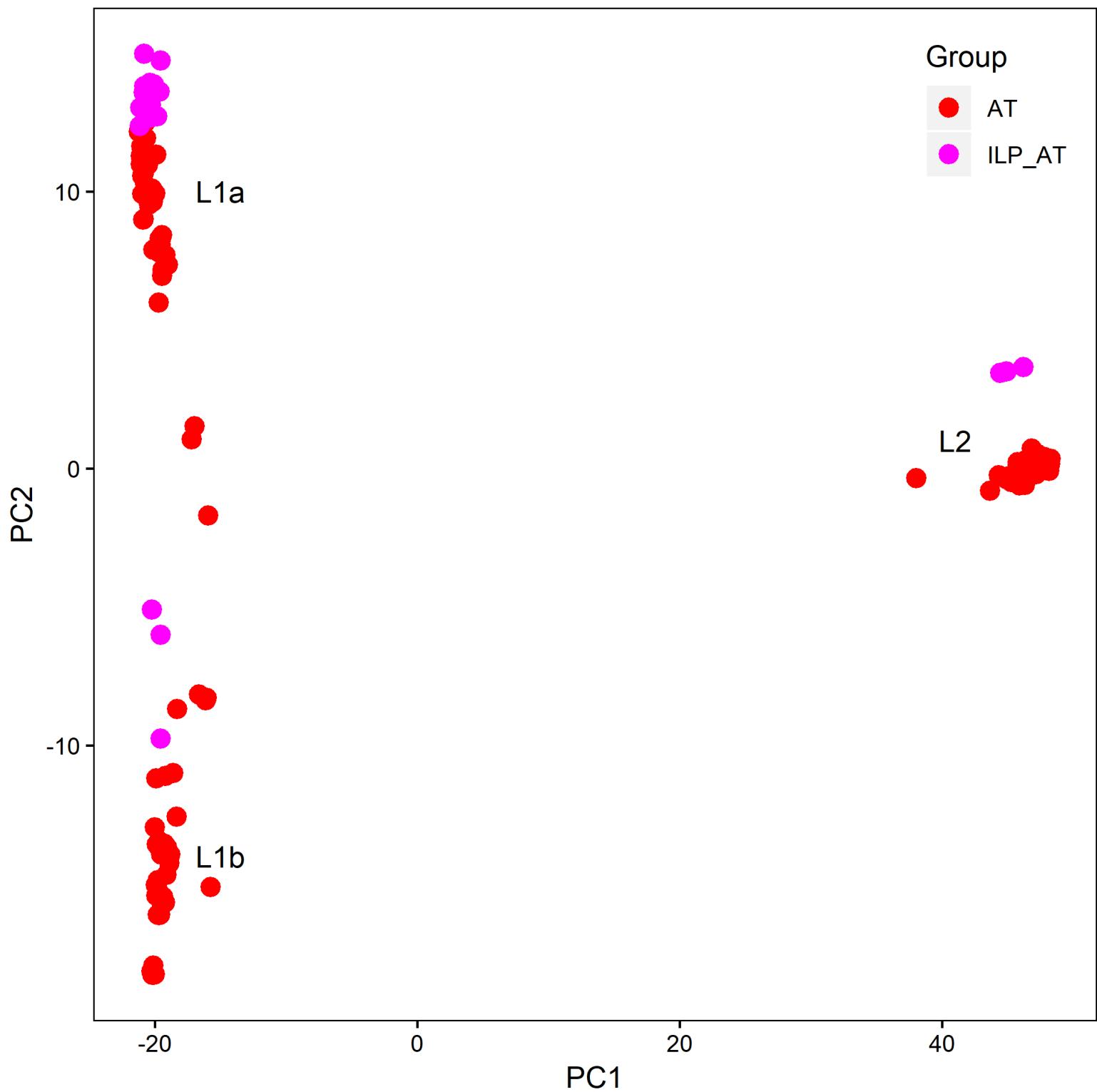
803 Table S5. Efficiency of *Ae. tauschii* introgression in wheat as inferred by identity by descent.

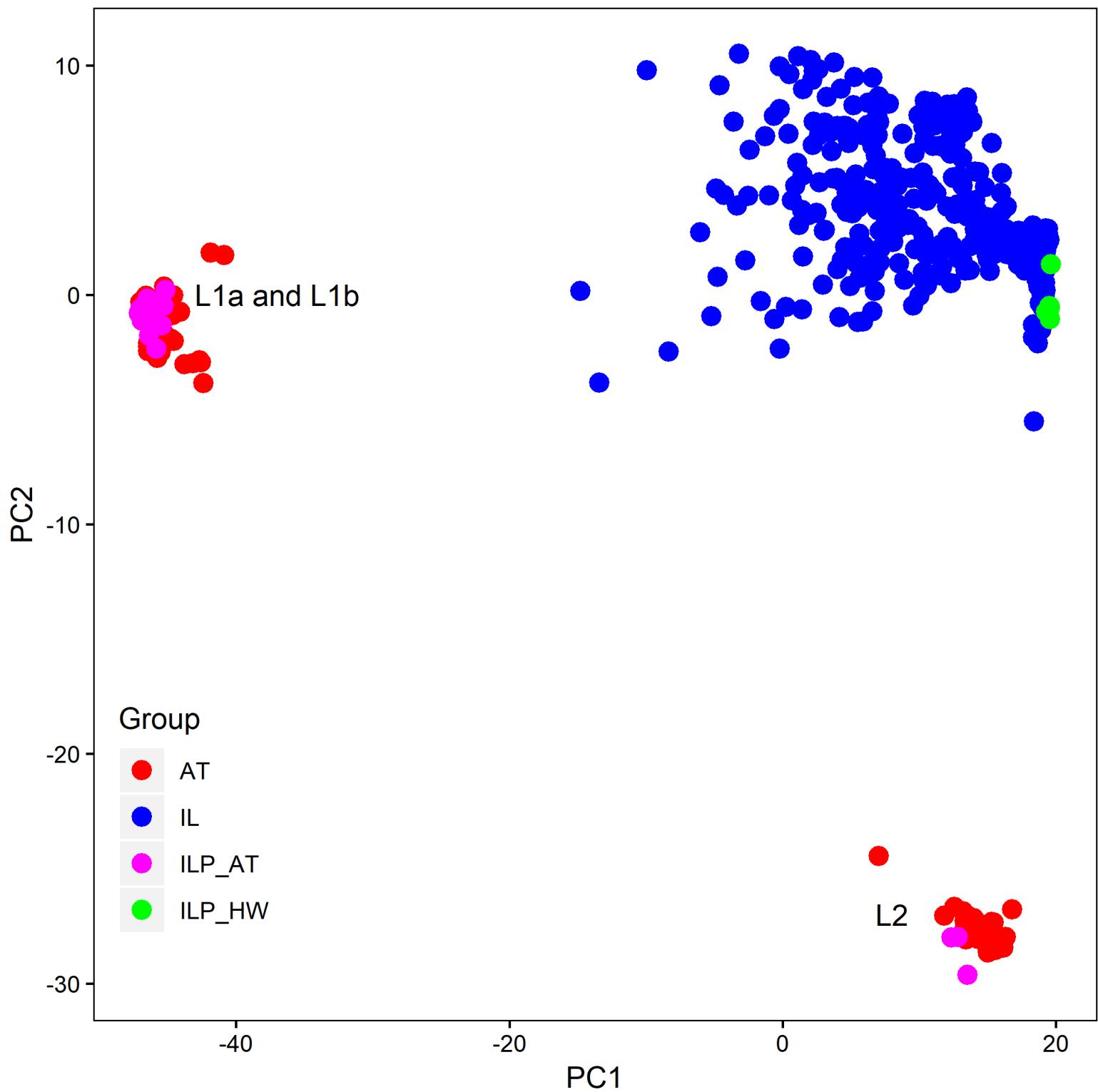
804 Table S6. Location of microsatellite markers linked to tenacious glume (*Tg*) gene on the
805 Chinese Spring reference v1.

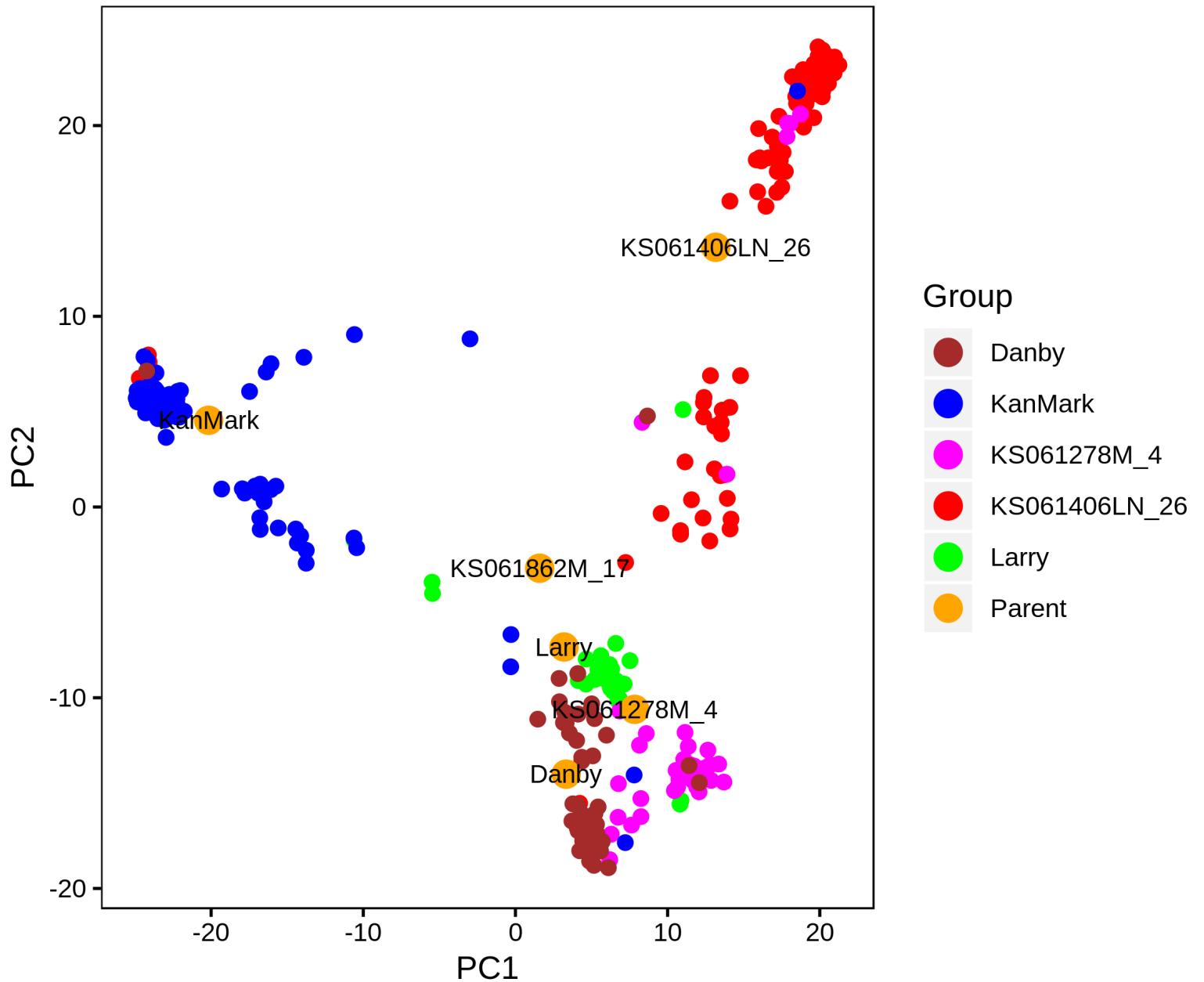
806 Table S7. High confidence genes within chromosome arm 2DS interval known to control
807 tenacious glume trait.

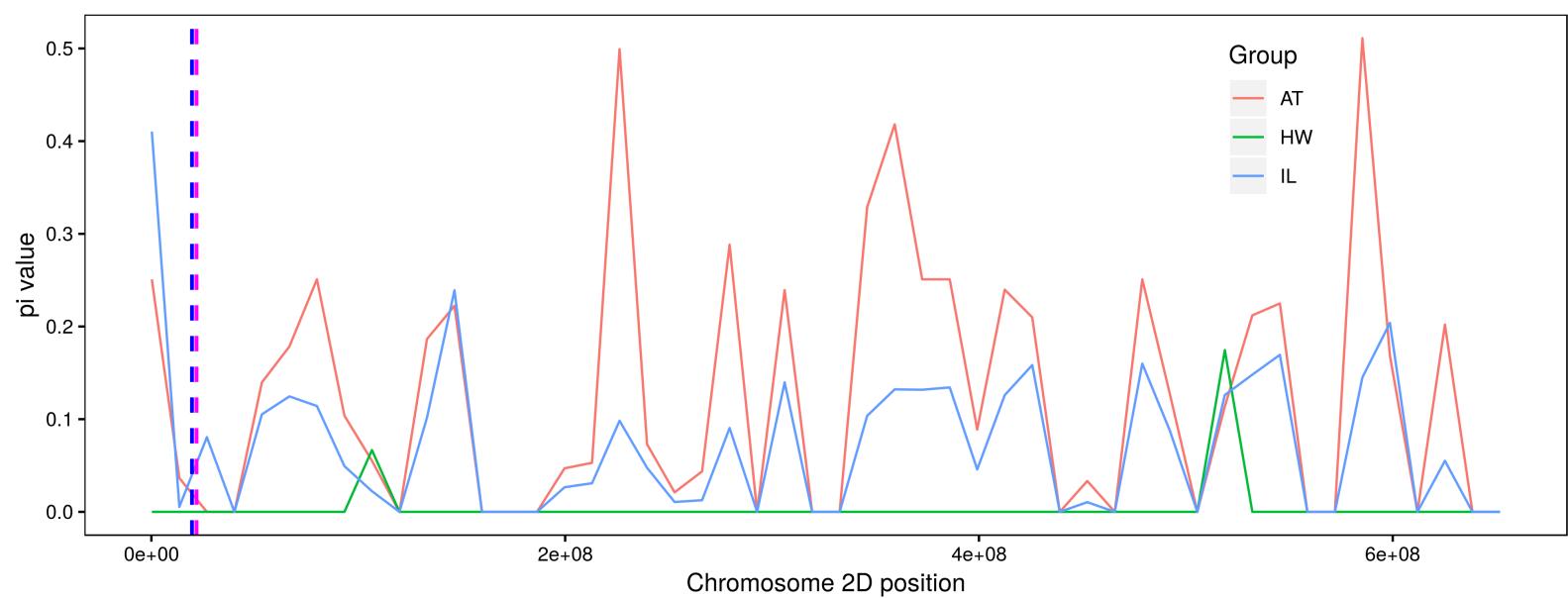
808 Table S8. Tenacious glume scores for the introgression lines with and without introgression
809 from *Ae. tauschii* parents on chromosome arm 2DS where the *Tg* gene is located.

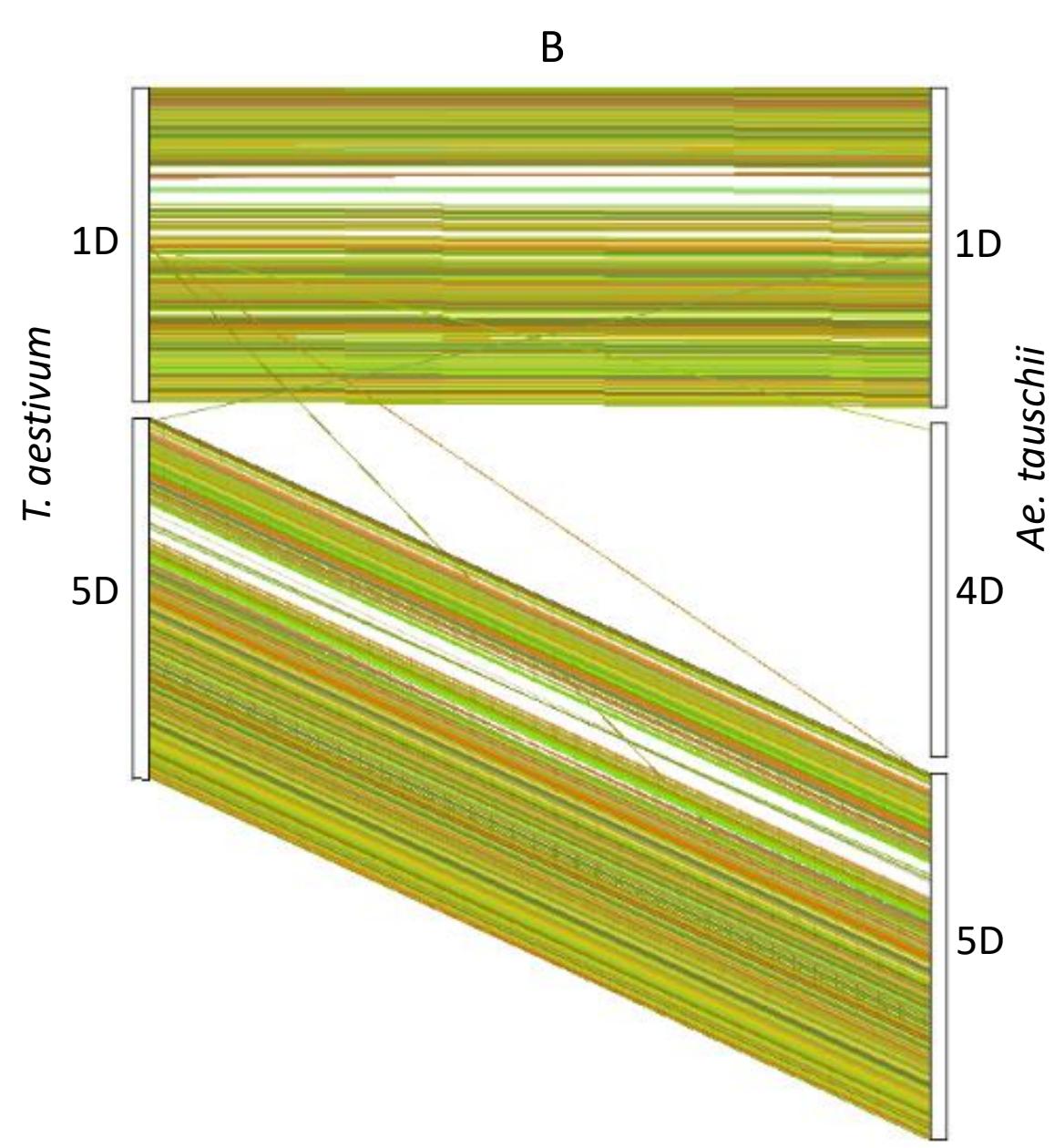
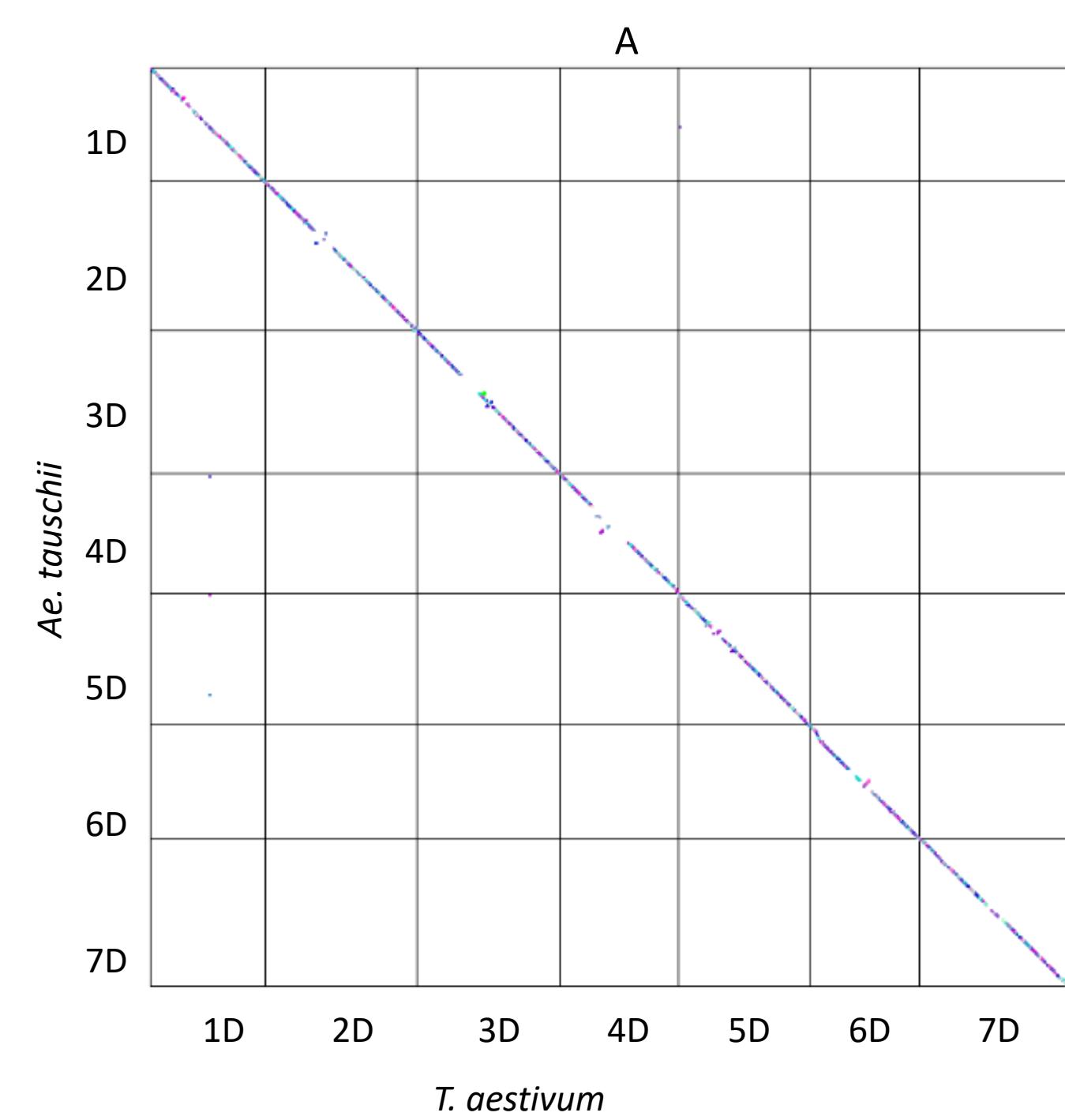
810 Table S9. SNPs on chromosome arm 2DS closest to Tg locus significantly associated with
811 tenacious glume trait.

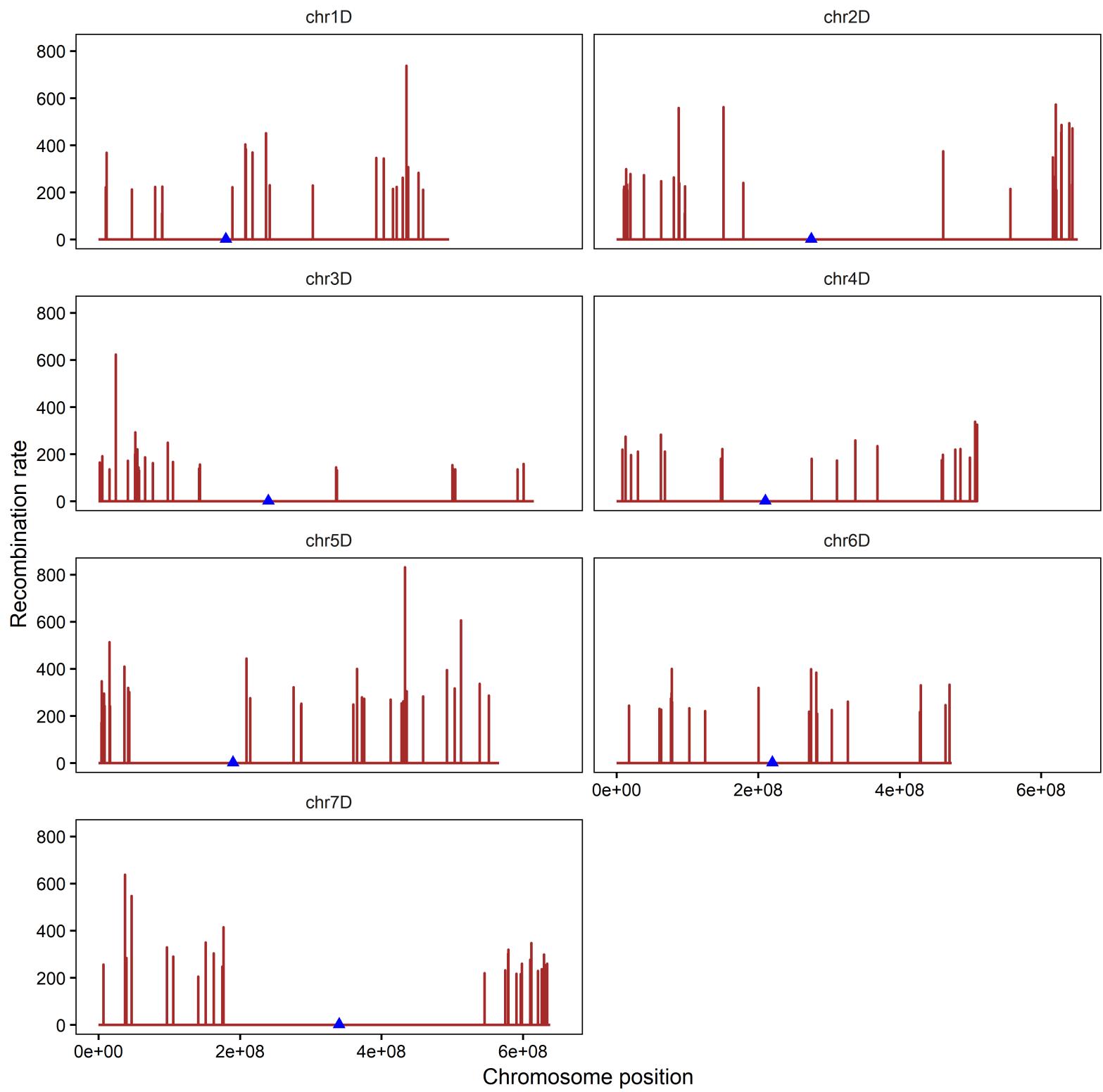

812

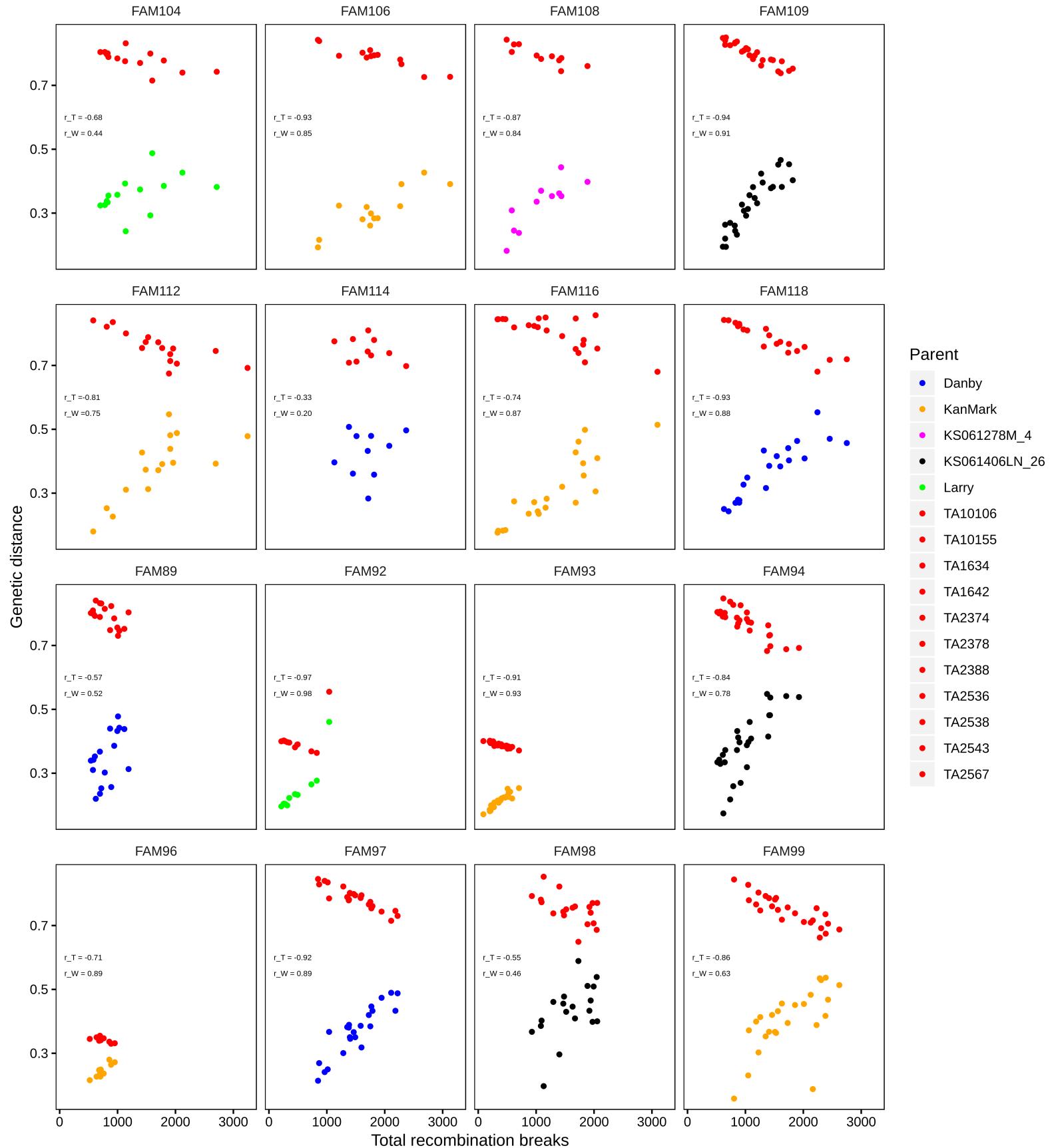

813 **Supplemental figures**

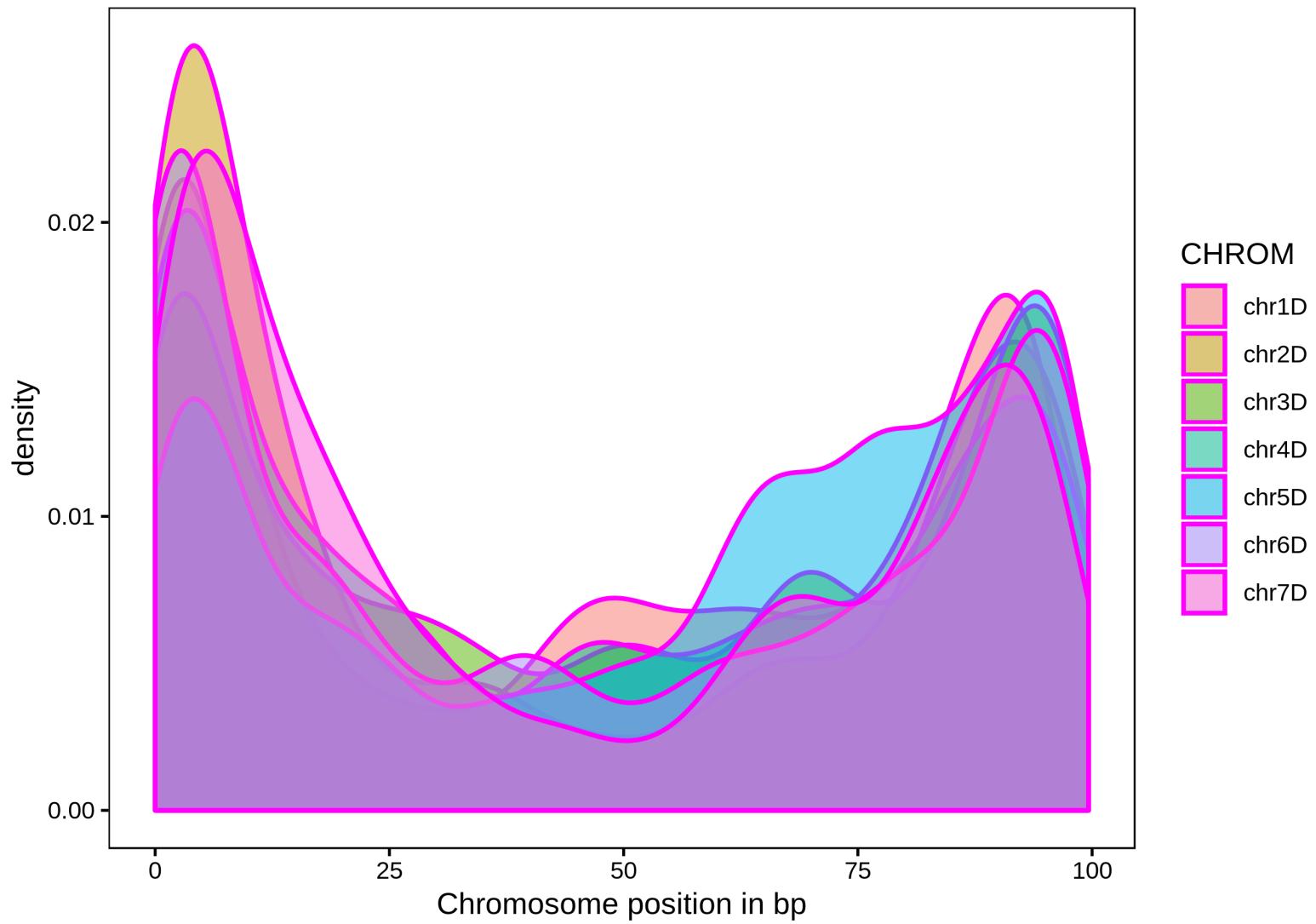

814 Fig. S1. A plot of identity by descent (IBD) count shared between the introgression lines and
815 *Ae. tauschii* parents in 0.5 Mb sliding windows.

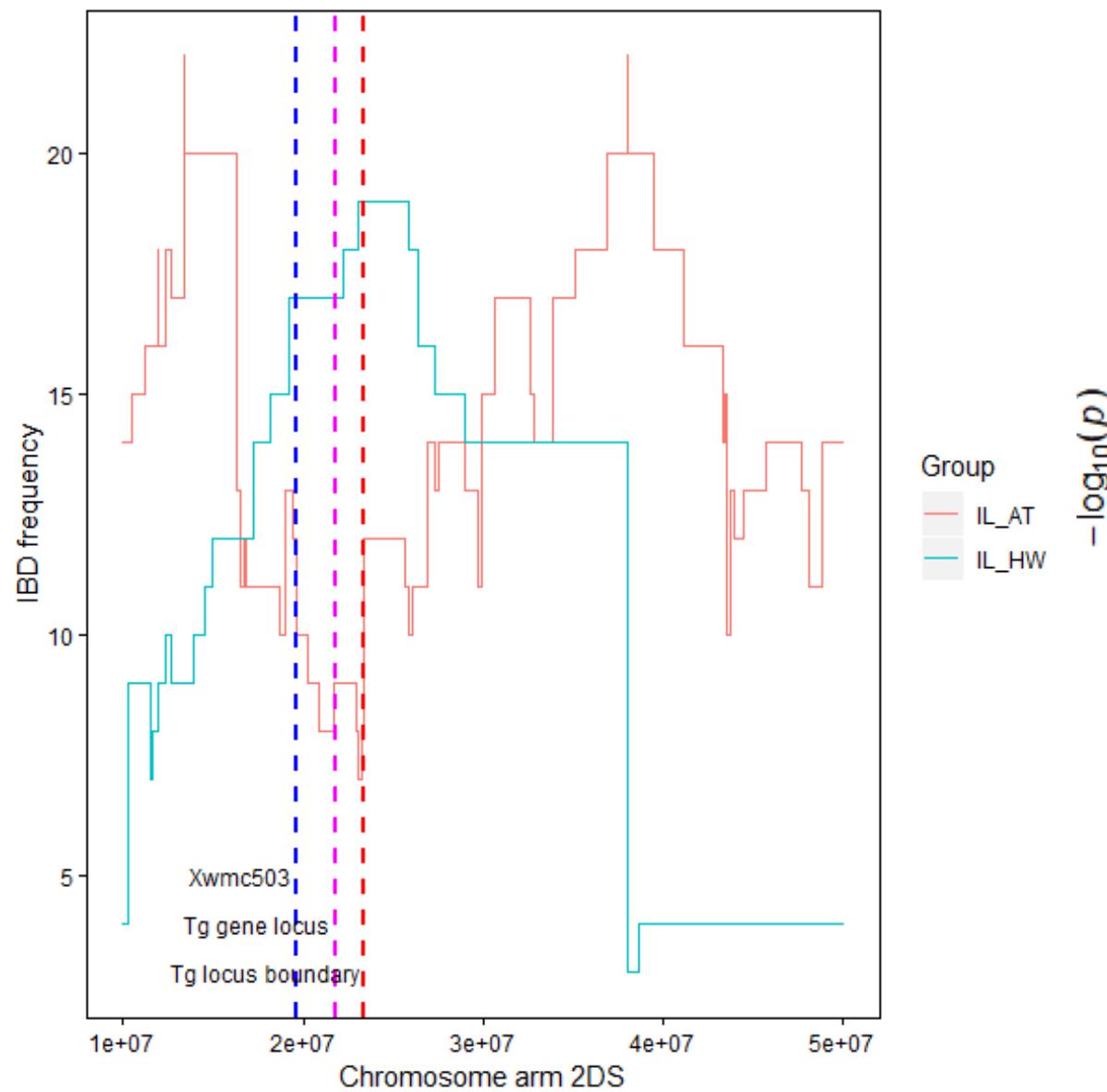

816 Fig. S2. Variation in nucleotide diversity per chromosome based on pi values interpolated
817 using R function ‘approx’.

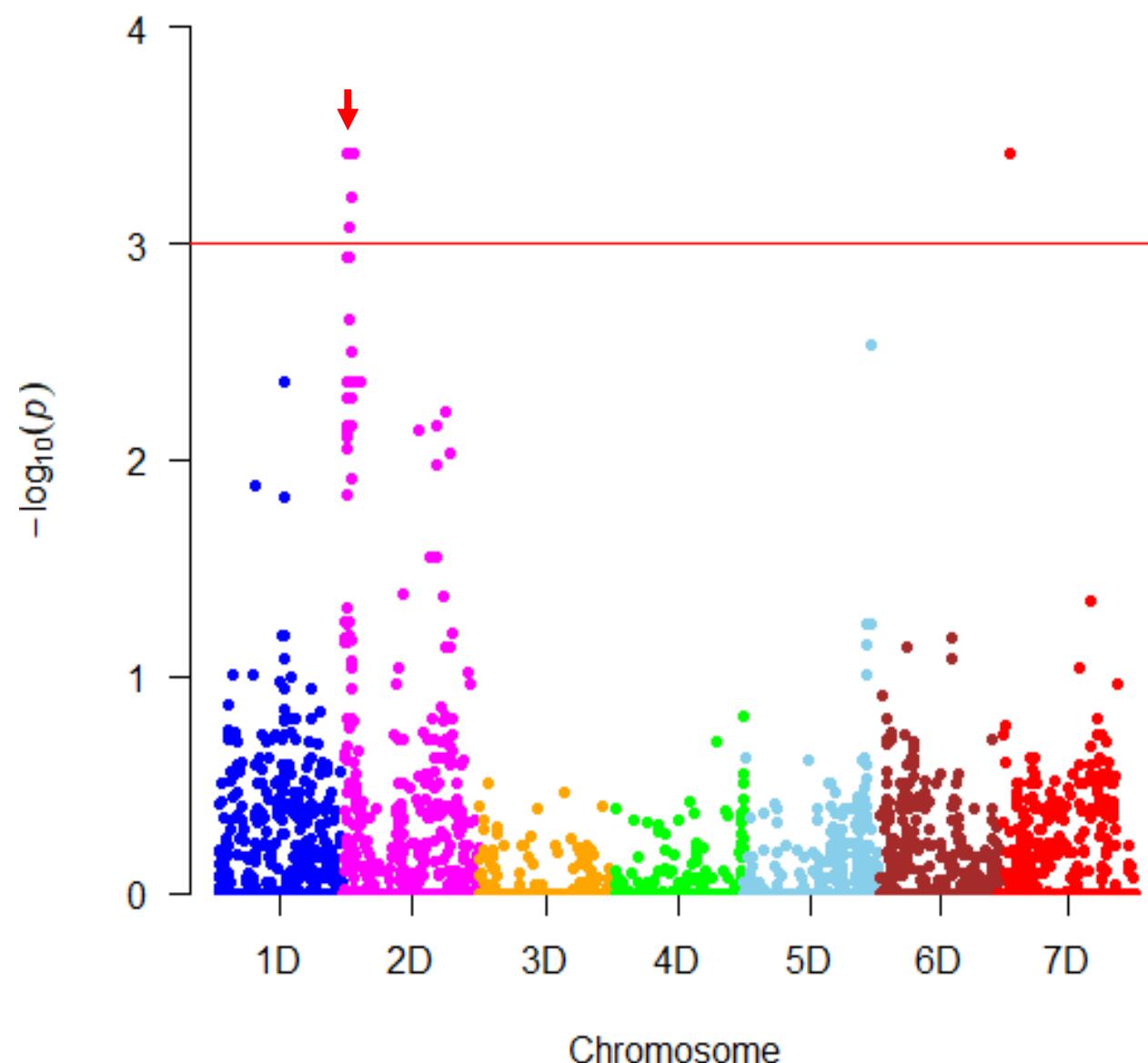


818 Fig. S3. Relationship between total recombination breaks and genetic distance in *Ae. tauschii*
819 ssp. *strangulata* derived family FAM93 compared with *Ae. tauschii* ssp. *tauschii*
820 derived families.











A

B

Table 1. A comparison of genetic diversity of *Ae. tauschii* derived introgression lines and their parents.

Group	Min.	Mean	Max.
chr1D_AT	0.000	0.098	0.512
chr1D_HW	0.000	0.014	0.545
chr1D_IL	0.000	0.083	0.501
chr2D_AT	0.000	0.107	0.512
chr2D_HW	0.000	0.013	0.546
chr2D_IL	0.000	0.065	0.501
chr3D_AT	0.000	0.110	0.512
chr3D_HW	0.000	0.009	0.545
chr3D_IL	0.000	0.047	0.499
chr4D_AT	0.000	0.112	0.512
chr4D_HW	0.000	0.004	0.485
chr4D_IL	0.000	0.120	0.501
chr5D_AT	0.000	0.105	0.512
chr5D_HW	0.000	0.011	0.545
chr5D_IL	0.000	0.115	0.501
chr6D_AT	0.000	0.114	0.512
chr6D_HW	0.000	0.010	0.545
chr6D_IL	0.000	0.090	0.501
chr7D_AT	0.000	0.108	0.512
chr7D_HW	0.000	0.010	0.545
chr7D_IL	0.000	0.079	0.501

AT are *Aegilops tauschii* parents, HW are hexaploid wheat parents and IL are the introgression lines

Table 2. Summary of recombination hotspots at 99th percentile of total recombination breakpoints from 16 families of the introgression population.

Chromosome	No. of windows	Min recombination	Max recombination
chr1D	23	211	738
chr2D	29	210	573
chr3D	26	131	623
chr4D	21	171	338
chr5D	28	241	831
chr6D	22	210	400
chr7D	32	205	637

Table 3. Percentage length of identity by descent segments shared between introgression lines, hexaploid wheat and *Ae. tauschii* accessions.

Chromosome	Mean (%)	SD (%)	Min (%)	Max (%)
chr1D ^a	4.84	5.45	0.32	26.97
chr1D ^b	12.07	13.00	0.54	47.72
chr1D ^c	11.57	16.17	0.31	95.23
chr2D ^a	3.88	4.60	0.33	41.33
chr2D ^b	6.61	10.90	0.90	55.89
chr2D ^c	11.92	19.32	0.30	91.72
chr3D ^a	2.69	2.57	0.28	21.12
chr3D ^b	8.70	12.01	0.95	38.88
chr3D ^c	12.12	20.24	0.26	100.00
chr4D ^a	6.98	6.36	0.49	38.26
chr4D ^b	26.63	21.77	2.55	86.18
chr4D ^c	17.78	23.49	0.33	100.00
chr5D ^a	3.35	3.40	0.46	24.50
chr5D ^b	6.74	8.68	0.88	58.99
chr5D ^c	8.30	11.90	0.41	85.68
chr6D ^a	4.88	4.03	0.33	20.73
chr6D ^b	6.16	10.86	0.58	69.88
chr6D ^c	12.88	20.78	0.33	100.00
chr7D ^a	3.07	4.01	0.29	24.99
chr7D ^b	6.76	9.78	0.44	48.29
chr7D ^c	8.50	13.97	0.24	91.27

^a Introgression lines x *Ae. tauschii*

^b Introgression lines x Hexaploid wheat

^c Introgression line x Introgression line