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Abstract

When a formerly rare pathogen emerges to cause a pandemic, it is critical to understand the ecology of

the disease dynamics and its potential effects on disease control. Here, we take advantage of newly avail-

able experimental data to parameterize a temperature-dependent dynamical model of Zika virus (ZIKV)

transmission, and analyze the effects of temperature variability and the parameters related to control

strategies on ZIKV R0 and the total disease burden (i.e., total number of human cases). Sensitivity analy-

ses identified that R0 and disease burden were largely driven by different parameters, with the exception

of temperature, which is the dominant driver of epidemic dynamics in the models. Our estimate ofR0 had
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a single optimum temperature (≈ 30o C, comparable to recently published results (≈ 29o) [1]. However,

the total number of human cases (“disease burden”) is maximized across a wider temperature range, from

24 to 36oC. The models indicate that the disease is highly sensitive to seasonal temperature variation. For

example, although the model predicts that Zika transmission cannot occur at a constant temperature of

22oC, with seasonal variation of 5oC around a mean of 22oC, the model predicts a larger epidemic than

what would occur at a constant 30oC, the temperature predicted to maximize R0. This suggests that

the potential geographic range of Zika is wider than indicated from static R0 models, underscoring the

importance of climate dynamics and variation on emerging infectious diseases.

Introduction

Vector-borne viruses (arboviruses) are emerging threats to both human and animal health. The global

expansion of dengue virus (DENV), West Nile virus (WNV), chikungunya (CHIKV) and most recently

Zika virus (ZIKV) are prominent examples of how quickly mosquito-transmitted viruses can emerge and

spread through naive host populations. Currently 3.9 billion people living within 120 countries are at

risk of mosquito-borne arboviral diseases [2] with effects on human well-being that can be devastating

(e.g., death, illness, as well as social and human ramifications of Zika induced-microcephaly and other

congenital disorders) [3]. Anticipating and preventing outbreaks of emerging mosquito-borne viruses

across these host populations is a major challenge.

Despite growing research to develop new therapeutics and vaccines, mitigating arbovirus disease spread

still depends on conventional mosquito control methods, often with mixed success. Developing tools

that allow us to successfully predict outbreaks of these viruses and efficiently target current and future

interventions to specific times and locations can aid effective mosquito and disease control. Such efforts

are often limited by gaps in knowledge on the relationships among mosquito vectors, pathogens, and the

environment, especially for emerging arboviruses such as CHIKV and ZIKV. Even in well-researched

disease systems (e.g. malaria and DENV), key transmission parameters are only estimated from a few

studies [4–6].
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Variation in environmental temperature has a strong impact on the environmental suitability for trans-

mission risk across a diversity of vector-borne disease systems [7–10]. Mosquitoes are small ectothermic

organisms, and their fitness [11, 12], life history [13–18], and vectorial capacity [4–6, 17, 19–22] ex-

hibit non-linear, unimodal relationships with environmental temperature. Recent work by Tesla et al.

[20] demonstrates such temperature-transmission relationships for ZIKV, a recently emerging pathogen.

These temperature-transmission relationships have significant ramifications on how disease transmission

varies seasonally, across geographic locations, and with future climate and land use change. Control tools

being considered for use within integrated vector management (IVM) strategies may also be affected by

temperature, such as conventional chemical insecticides that target a diverse range of insect pests [23–

28], including mosquitoes [29, 30]. Further, there is evidence that temperature could modify the efficacy

of novel control interventions, such as mosquito lines transinfected with the intracellular bacteria Wol-

bachia [31–34].

Several modeling frameworks have been used to predict environmental suitability for vector-borne dis-

ease transmission, including, most recently, temperature-dependentR0 models [4–6, 19, 20] and compart-

mental models of vector-borne disease dynamics [9, 35, 36]. The parameter R0 is broadly considered to

be the most important summary statistic in epidemiology and disease ecology. It is defined as the expected

number of new cases generated by a single infectious person or mosquito introduced into a fully suscep-

tible population through the period within which that person or mosquito is infectious [37]. As a simple

metric, it can easily incorporate the non-linear influence of multiple temperature-dependent mosquito

and pathogen traits, and has been applied to define the thermal optimum and limits for malaria [5, 6, 38],

DENV, CHIKV [4, 39, 40], ZIKV [4, 20], and Ross River virus [19]. However, temperature-dependent

R0 formulations only define the relative risk of disease emergence and do not predict the disease burden

(or incidence). The derivation, interpretation, and validation of R0 models is thus problematic in highly

variable systems [41]. Dynamical models of transmission that track densities of infectious individuals

over time, on the other hand, can more readily capture the impact of varying environmental conditions.

To better understand potential climate effects on control strategies for ZIKV, we developed a temperature-
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dependent dynamical model based on recent experimental work characterizing temperature-trait relation-

ships between ZIKV vector competence, extrinsic incubation rate, and the per capita daily mosquito mor-

tality rate [20]. Through numerical and sensitivity analyses we analyze effects of control parameters and

temperature on R0 and the disease burden. The model addresses the following questions: 1) How do the

thermal optima and ranges for R0 compare to those for the human disease burden? 2) How does seasonal

temperature variation affect disease burden relative to a constant temperature environment? 3) Which

parameters have the greatest impact on R0 and the disease burden that can inform control efforts? 4) Are

different thermal environments more or less suitable for specific control strategies?

Our results show that R0 and the disease burden were largely driven by different parameters, with the

exception of temperature being the dominant driver of both transmission metrics. Further, human disease

burden was maximized across a wider range of temperatures than what would have been predicted from

the temperature-dependent R0 model. Human disease burden was highly sensitive to seasonal temper-

ature variation, suggesting the potential invasion map of ZIKV may be wider than previously reported.

Further, the effectiveness of potential control strategies (e.g., vaccines, drug treatment, and insecticides)

are predicted to be sensitive to such differences in seasonal temperature variation.

Methods

We construct a temperature-dependent compartmentalized model of ZIKV dynamics with and without

seasonal temperature change. Where possible, model parameters are estimated from the most recent

laboratory experiments on temperature effects on the life cycle of the virus [4, 42]. We compare how

temperature dependence affects R0, human “disease burden”(total number of infected individuals over

the course of the epidemic), and key ecological characteristics of the system, such as extrinsic incubation

period, the probability of transmission from the mosquito to the human, the probability of transmission

from the human to the mosquito, and daily rates of mosquito and egg to adult survival. We then ana-

lyze the combined effects of disease control parameters and temperature on R0 and the disease burden.

Through a Latin-Hypercube Sampling-based [43] sensitivity analysis we identify key parameters that

most drive the epidemiological outcomes (R0 and the disease burden).
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The basic dynamic model

The model apportions humans into four groups based on ZIKV infection status that changes over time, t:

susceptible Sh (not infected), latent Eh (contracted the virus, but not yet infectious), infectious Ih (con-

tracted the virus and can transmit it), and recovered Rh with lifelong immunity. The mosquito population

is divided into similar classes, where the state variables have subscript v, but without an immune class

since it is assumed that infectious mosquitoes do not clear the virus once it is in the salivary glands. The

total human and mosquito populations are Nh = Sh + Eh + Ih +Rh and Nv = Sv + Ev + Iv.

We assume that the human population is constant during an outbreak (relevant for short epidemics).

Susceptible humans acquire the virus at rate (force of infection) λvh(Iv, Nh) =
bvβvhIv
Nh

, while susceptible

mosquitoes acquire the virus at rate λhv(Ih, Nh) = bvβhvIh
Nh

, where bv is the number of human bites per

mosquito per unit time, βvh is the probability that an infectious mosquito successfully transmits the virus

while taking a blood meal from a susceptible human (i.e., the transmission rate), and βhv is the probability

that an infectious human successfully transmits the virus to a biting, susceptible mosquito (i.e. the infec-

tion rate). The respective average residence times of infected humans and mosquitoes in the latent classes

are 1/σh and 1/σv, while the respective rates at which humans and mosquitoes become infectious are σh

and σv. Humans are infectious for approximately 1/γh days before recovering with permanent immunity

(γh is the per capita human recovery rate), while infectious mosquitoes remain infectious until they die.

Mosquito recruitment occurs at a per capita rate f(Iv) = αv

(
1− Nv

κv

)
, where κv is the carrying capacity

(maximum number of mosquitoes a breeding site can support). Further, αv = θvνvφv/µv, consistes of θv,

or the number of eggs a female mosquito produces per day; νv, the probability of surviving from egg to

adult; and φv, the rate at which an egg develops into an adult mosquito. Mosquitoes die naturally at per

capita rate µv, where 1/µv is the average lifespan of mosquitoes. See Fig. 1 for a schematic of the model

and Table 1 for details on parameter values.

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/855072doi: bioRxiv preprint 

https://doi.org/10.1101/855072
http://creativecommons.org/licenses/by/4.0/


Figure 1: Compartmental model of Zika virus transmission. Compartments are divided into humans

(blue), and vectors (red), representing disease status, with transitions between compartments (rates) in

solid lines. The transmission of Zika virus from humans to vectors is denoted by dashed lines, and from

vectors to humans by dashed-dotted line. Rates of demographic change (births and deaths) in the vector

population are denoted by dotted lines.

Parameter Description Baseline value Range Source

γ−1
h Human infectious period 5 days 4− 7 days [44]

σ−1
h Intrinsic incubation period 5.9 days 3− 14 days [45, 46]

σ−1
v Extrinsic incubation period 10 days 8− 12 days [47, 48]

βvh Probability of a mosquito infecting a human 0.33 0.1− 0.75

βhv Probability of a human infecting a mosquito 0.33 0.1− 0.75

µ−1
v Mosquito lifespan 14 days 7− 30 days

κv Vector carrying capacity 20000 1000− 50000

Table 1: Parameter definitions and baseline values for system without temperature dependence.

The dynamic model for the Zika virus is described by the equations:

Ṡh = −bvβvhIv
Nh

Sh,

Ėh =
bvβvhIv
Nh

Sh − σhEh,
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İh = σhEh − γhIh,

Ṙh = γhIh, (1)

Ṡv = αvNv

(
1− Nv

κv

)
−
(
bvβhvIh
Nh

+ µv

)
Sv,

Ėv =
bvβhvIh
Nh

Sv − (σv + µv)Ev,

İv = σvEv − µvIv.

Dots denote differentiation with respect to time, t. The dynamics of the total human population and

mosquito populations are described by the equations:

Ṅh = 0, and Ṅv =

(
αv

(
1− Nv

κv

)
− µv

)
Nv. (2)

Without Zika virus, the mosquito population grows according to Eq. (2), or Nv(t) = N∗
v /(1+(N∗

v /N
0
v −

1)e−(αv−µv)t), where N0
v is the initial mosquito population and N∗

v = κv

(
1− µv

αv

)
> 0 for αv > µv

is the positive equilibrium obtained by setting the right-hand-side of the equation to zero. Observe that

Nv(0) = N0
v , and that when αv > µv, the total mosquito population relaxes on the equilibrium population

(N∗
v ) in the long-run. Therefore, the equilibrium point N∗

v is stable when αv > µv and vanishes when

αv < µv. The case for which αv < µv results in a trivial mosquito equilibrium represents a situation in

which the mosquito population becomes extinct.

In the presence of the Zika virus, the basic reproduction number of system (1) is:

R0 =

√
b2vβvhβhvσv

γhµv(σv + µv)

N∗
v

Nh

. (3)

The main difference between this R0 calculation and that from the Ross-MacDonald model is in the

probability that the mosquito survives the latent period. The Zika virus can spread when R0 > 1 and can

be contained when R0 < 1.

For the purposes of exploring control strategies, we also consider a variant of this model that includes

vaccination, where vaccinated susceptible humans are assumed to enter the immune class directly. For
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this special case, the first and fourth equations of (1) are replaced by Ṡh = −
(
bvβvhIv
Nh

+ δh

)
Sh and

Ṙh = δhSh + γhIh, respectively, where δh represents the per capita rate human vaccination rate.

Introducing temperature

The majority of the parameters associated with the mosquito vector (θev, νv, φv, bv, µv), as well as ZIKV

transmission (βhv) and replication (σv), are known to be influenced by environmental and climate condi-

tions [1, 4]. We investigate the effects of temperature variation on the dynamics of the mosquito popula-

tion and ZIKV transmission over time. We follow the approach in [9] and model temperature-dependent

parameters with the functional forms presented below. We rely on values and ranges of temperature-

dependent parameters from recent laboratory-generated analyses for Zika virus [1] and Ae. aegypti life

history parameters (e.g., the biting rate of mosquitoes, the number of eggs a female mosquito lays per

day, the probability of an egg surviving to an adult mosquito, and the rate at which an egg develops into

an adult mosquito) from [4] as specified in Table 2. As in [4], the functional forms for the temperature

dependent parameters are based on the quadratic and Briere [49] forms and are given by:

Eggs per female mosquito per day: θv(T ) = cθvT (T − T 0
θv)(T

m
θv − T )

1
2 ,

Egg-adult survival probability: νv(T ) = cνv(T − T 0
νv)(T − Tmνv ),

Egg-adult development rate: φv(T ) = cφvT (T − T 0
φv)(T

m
φv − T )

1
2 ,

Mosquito biting rate: bv(T ) = cbvT (T − T 0
bv)(T

m
bv − T )

1
2 , (4)

Infectivity of infectious humans: βhv(T ) = cbhv(T − T 0
βhv

)(T − Tmβhv),

Extrinsic incubation rate: σv(T ) = cσvT (T − T 0
σv)(T

m
σv − T )

1
2 ,

Vector mortality rate: µv(T ) =
1

cls(T − T 0
ls)(T − Tmls )

,

where T is the temperature in degrees Celsius, T0 is the minimum temperature, Tm is the maximum

temperature, c is a rate scaling factor, and the subscripts denote the corresponding parameters. These

relationships between some model parameters, model outcomes, and temperature are illustrated in Fig. 2.

We further introduce seasonal variation in the system by modeling temperature through the functional
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form:

T (t) = Tm + Ta sin

(
2π

365

)
t, (5)

where Tm is the mean annual temperature and Ta is the amplitude (divergence from mean temperature

or mid-point between the lowest and highest annual temperatures). Temperature-dependent parameters

used in our analyses are presented in Table 2.

c T 0 Tm

Trait Mean Range Mean Range Mean Range Source

θv(T ) 8.56× 10−3 [3.78, 14.1]× 10−3 14.58 [8, 08, 20.60] 34.61 [34, 35.77] [4]

νv(T ) −5.99× 10−3 [−6.82,−5.13]× 10−3 13.56 [12.56, 14.51] 38.29 [38.29, 39.02] [4]

φv(T ) 7.86× 10−5 [5.75, 9.93]× 10−5 11.36 [7.19, 15.03] 39.17 [39.17, 39.54] [4]

bv(T ) 2.02× 10−4 [1.2, 2.8]× 10−4 13.35 [5.84, 14.82] 40.08 [36.60, 40.51] [4]

βhv(T ) −3.54× 10−3 [−5.6,−1.8]× 10−3 22.72 [21.09, 24] 38.38 [36.46, 40.25] [1]

σv(T ) 1.74× 10−4 [5.4, 30.4]× 10−5 18.27 [7.68, 24] 42.31 [39.26, 45] [1]

1/µv(T ) −3.02× 10−1 [−4.68,−1.34]× 10−1 11.25 [6.3, 15.06] 37.22 [34.79, 39.57] [1]

Table 2: Parameter values for temperature-dependent functional forms. The parameters c, T 0 and Tm

carry subcripts that correspond to the actual parameter, e.g., cθv , T 0
θv

and Tmθv for the number of eggs laid

by a female mosquito, θv.

Control strategies

To analyze the relationship between temperature and Zika control, we identified the following parame-

ters of the system that correspond to potential control strategies: vaccination (δh) decreases susceptibility

and is directly incorporated into the models as described above; recovery rates (γh) can, for example, be

increased through treatment with antiviral medication; vector biting rates (bv) can be reduced through de-

creasing exposure to mosquitoes with personal protection or household improvements; vector-to-human

transmission probability (βvh) can decrease with transmission-blocking Wolbachia; the vector carrying

capacity (κv) can be reduced by eliminating vector breeding grounds near human habitats; egg-adult sur-

vival probability (νv) can be reduced through larvicides; and adult mosquito survival rate (µv) can be
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decreased through indoor spraying and the use of aldulticides. We investigate how the interactions of

these control parameters and temperature influence R0 and the disease burden, Ih.

Sensitivity analysis

Two types of sensitivity analyses - local and global - were used to explore the impact of temperature

and selected control parameters on the basic reproduction number (R0) and the human disease burden

(Ih). The local sensitivity analysis was conducted by varying only one parameter while holding all other

parameters fixed, or varying both temperature and a control parameter while holding the other parameters

fixed. Each varied parameter was divided into 50, 100, and 250 equally spaced points within biologically

feasible bounds. See Figs. 2-5 for results. As the human vaccination rate (δh) does not appear explicitly

in the expression ofR0, we cannot assess the impact of temperature on this control parameter on the basic

reproduction number. However, we explore the impact of temperature on the human vaccination rate and

associated implications for Ih, the human disease burden (Fig. 3).

Global sensitivity analysis is presented in Fig. 7. The analysis is carried out using the Latin-hypercube

Sampling (LHS) and Partial Rank Correlation Coefficient (PRCC) technique [43]. The process involves

identifying a biologically feasible mean, minimum and maximum value for each of the parameters (see,

for example, [1, 4]) and subdividing the range of each parameter into 1000 equal sub-intervals, assuming

a uniform distribution between the minimum and maximum values of each parameter. We then sample at

random and without replacement from the parameter distributions to generate an m× n latin-hypercube

sampling matrix, whose m rows (i.e., 1000 rows) consist of different values for each of the model param-

eters and the n columns (corresponding to the number of parameters in the system) consist of different

values for the same parameter. Thus, each row of the Latin hypercube sampling matrix provides a param-

eter regime that is used for computing the basic reproduction number, solving the dynamic system, and

computing the human disease burden. The parameters, basic reproduction number, and human disease

burden are then ranked with partial correlation coefficients estimated for each parameter along with cor-

responding p-values. PRCCs range from −1 to 1 and are used to examine the correlation between model

parameters and model outputs (R0 and disease burden). This method thus identifies parameters with the
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most significant influence on model outputs; it does not quantify the effect of a change in a parameter on

the output.

Mapping Seasonal Control

We mapped the R0 as a function of monthly mean temperature. Globally gridded monthly mean current

temperature were downloaded from WorldClim.org [50], at a 5 arc-minute resolution (approximately

10 km2 at the equator), and predicted rates as a function of temperature at 0.20 C were mapped to the

global grids. All raster calculations and graphics were conducted in R, using package raster [51].

Results

Impact of temperature on model parameters and key outputs

The models show unimodal relationships between temperature and the temperature-dependent parame-

ters, resulting in an optimal temperature that maximizes parameter values and a critical minimum and

maximum temperature at which parameter values go to zero. Figure 2 presents the effects of temperature

on mosquito and pathogen parameters, the disease burden in humans (total number of infected individuals

over the course of the epidemic) and mosquitoes, and the basic reproduction number, R0 (via temperature

effects on mosquito and ZIKV parameters).

The response of R0 to temperature is strongly peaked as has been demonstrated in other systems

(e.g., dengue, malaria, Ross River virus) [4, 42]. In contrast, the relationship between disease burden

and temperature discretely changes when temperature enters into a thermal range, but has little or no

change to temperature variation within that range (Fig. 2 (i) versus (j)). At temperatures associated with

lower epidemic peaks, there are longer epidemic periods, resulting in the same total number of infected

individuals over the course of the epidemic (Figure 2 (l)).
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Figure 2: Effect of temperature, T on mosquito and pathogen parameters: (a) mosquito biting rate, bv; (b)

the pathogen transmission probability from humans to mosquitoes, βhv; (c) the inverse of the pathogen

extrinsic incubation period, σv, (d) the average mosquito lifespan, 1/µv; (e) the vector competence,

vc = βhvβvh; (f) the number of eggs laid by a female mosquito per day, θv; (g) the egg-to-adult mosquito

development rate, φv; (h) the egg-to-adult mosquito survival probability, νv; (i) the basic reproduction

number, R0; (j and k) the total infectious human population, Ih in thousands, and total vector population,

Iv in hundreds of thousands; and (l) the infectious human population. Time, t in (l) is in hundreds of

days. The number of infectious individuals rises with temperature up to an optimal temperature between

29oC and 32oC. As temperatures are increased beyond the optimal, the number of infectious individuals

falls.

Zika virus control

For most control-related parameters, effects on disease burden were largely independent of temperature

(color bands are vertical for most of the plots, (Fig. 3(a-h)). However, vaccination and recovery were

less influential on the total disease burden at optimal temperatures, indicating a higher proportion of the

population needs to be vaccinated at optimal temperatures than at sub-optimal temperatures to achieve a

given reduction in the overall disease burden (Fig. 3(c)). Thus, warming temperatures (for most countries)
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will generally make it more difficult to control Zika through vaccination and drugs.
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Figure 3: Effect of temperature and control parameters on human disease burden (total infectious human

population): (a) vector biting rate, bv; (b) human recovery rate, γh; (c) human vaccination rate, δh; (d) the

probability of transmission from the mosquito to the human, βvh; (e) the probability of transmission from

the human to the mosquito, βhv; (f) vector mortality rate, µv; (g) vector carrying capacity, κv; (h) and

the vector egg-adult survival probability, νv. With the exception of the human vaccination and recovery

rates, temperature does not substantially alter the effects of most control parameters on the human disease

burden (the color bands have little gradient in the parameter space).

The effects on the basic reproduction number (R0) of most control parameters were more dependent

on temperature (Fig. 4) than was the case for the disease burden (total Ih), with the greatest effect in-

volving the clearance rate of infection (γh), the probability of transmission from an infectious human to

a susceptible mosquito (βhv), mosquito carrying capacity (κv), and the mosquito mortality rate (µv).
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Figure 4: Effect on the basic reproduction number, R0, of temperature and control parameters: (a) the

mosquito biting rate, bv; (b) the human recovery rate, γh; (c) the probability of transmission from the

mosquito to the human, βvh; (d) the probability of transmission from the human to the mosquito, βhv;

(e) the mosquito carrying capacity, κv; and (f) the mosquito mortality rate, µv. (Vaccination δh and the

egg-to-adult mosquito survival probability, νv, do not appear explicitly the in R0 model.) The effect of

these parameters on R0 is more dependent on temperature than their effects on disease burden (e.g., the

color bands are less vertical and more diagonal in parts of the parameter space).

Seasonal variation

Seasonal temperature variation affects outcomes by providing transient temperatures (variation from the

mean) where the basic reproduction number changes and can rise above 1 allowing for transmission to

occur. At constant temperatures, epidemics only occur in humans between 230 - 370 C. Seasonal temper-

ature variation of ±60 C allows large epidemics to occur between mean temperatures of 15 - 340 C (Fig. 5

(a)). Thus temperate regions with large seasonal variation can support large epidemics, comparable to

that of warmer tropical climates with less seasonal variation. In contrast to the models without seasonal

variation (Fig. 3), the models with seasonal variation (Fig. 5) indicate that the effectiveness of control

parameters on disease burden is generally sensitive to changes in temperature (e.g., the color bands in the

subplots of Fig. 5 are diagonal in more of the parameter space than they are in (Fig. 3 ). Fig. 6 shows

how the thermal conditions that are suitable for Zika (where R0 > 1) change with seasonal temperature

variation across the globe.
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Figure 5: Total human disease burden, Ih, is sensitive to the annual mean (oscillation) temperature, Tm,

and several important control-related parameters: (a) the seasonal divergence of the annual temperature

from the mean, Ta; (b) the human recovery rate, γh; (c) the human vaccination rate, δh; (d) the scaling

factor of vector biting rate, cbv ; (e) the probability of transmission from the mosquito to the human, βvh;

(f) the scaling factor of the probability of transmission from the human to the mosauito, cβhv ; (g) the

scaling factor of the vector mortality rate, cls (g); (h) the vector carrying capacity, κv; (i) and the egg

survival probability scaling factor, cνv . The annual mean (oscillation) temperature varies along the x-

axis, the seasonal divergence of the annual temperature from the mean and the other control parameters

vary along the y-axes, and the color scale indicates the total infectious humans. Apart from (a), where

the temperature amplitude (Ta) is varying, the amplitude is set at 10o C for the other plots. Plot (a) shows

that there can be large epidemics even when mean temperatures are low if the seasonal variation (the

amplitude) is high enough, as would be found in subtropical and temperate regions.
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Figure 6: Estimated R0 for different mean monthly temperatures, globally. R0 below 1 means the disease

cannot take off. Note the month-to-month variation in locations such as Australia, demonstrating the

impact of seasonal temperature variation on R0, and therefore on the control level needed to reduce or

eradicate disease.
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Global uncertainty and sensitivity analysis

(b)

(c)

(a)
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(d)

Figure 7: Global sensitivity analysis indicates the sensitivity of the basic reproduction number, R0 (a

and c), and disease burden, Total Ih (b, d, and e), to all model parameters. Bars indicate partial rank

correlation coefficients (PRCC), illustrating the contribution of parameters to variability or uncertainty

in the model outputs (R0 and Ih). (a)-(b) No temperature dependence; (b)-(c) temperature dependence

but no temperature variation; (e) temperature dependence and temperature variation. Without accounting

for temperature, models show different sets of drivers for R0 (a) than burden (b). When temperature is

included, it is the dominant contributor to model sensitivity for all models (c)-(e).

A global sensitivity analysis using Latin Hypercube sampling showed that R0 and disease burden are

largely sensitive to different parameters. However, temperature is a dominant driver of variation in

both the basic reproduction number (R0) and disease burden (total Ih) when it is included in the model

(Fig. 7(c-e)). The human recovery rate, γh, was a consistently influential driver of the disease burden.

In contrast, the basic reproduction number was not sensitive to recovery in the models with and with-

out temperature. While R0 was also sensitive to vector competence (βvh and βhv), biting rate (bv), and
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mosquito lifespan (1/µ), total infection burden was far less sensitive to these parameters and was mainly

sensitive to human recovery rate (γh) (Fig. 7(a)-(b)).

Discussion

We are interested in what drives arbovirus epidemics with Zika as a model and how to reduce the burden

of these diseases, focusing on temperature and key parameters that correspond to existing or potential

control methods (e.g., pesticides, reduced breeding habitats, vaccines, or treatment). We investigated

temperature-dependent dynamic transmission models that incorporated recent empirical estimates of the

relationships between temperature and Zika infection, transmission, and mosquito lifespan [1]. The

dynamical models (that measure total disease burden and account for temperature variation) generate

qualitatively different results than models based on static variables. Temperature had an overwhelmingly

strong impact on both R0 and the disease burden (total infectious individuals, equivalent to area under

the Ih epidemic curve), but the response was much more gradual and had a clear optimum for R0, while

disease burden responded as a threshold function (Fig. 2(i)-(j)). This is because, while epidemics have

a higher peak at the max R0 (at optimal temperatures), the epidemics are longer at sub-optimal tem-

peratures (lower R0). Thus, Zika virus is capable of spreading efficiently through the host population

(high Ih) across a broad range of temperatures for which R0 > 1, spanning from 17-37o C in constant

environments (Fig. 5) (a) [9]. This is broadly consistent with the high seroprevalence of Zika found in a

number of countries [52, 53]. This suitable temperature region expanded and shifted toward cooler mean

temperatures under seasonally varying environments (Fig. 5 (a)).

These results have two key implications. First, large epidemics can occur under realistic, seasonally

varying, temperature environments even in regions where the mean temperature alone would be expected

to suppress transmission, for example in a location with a mean of 15o C and a seasonal amplitude of

7o C. Second, temperature determines both upper and lower thresholds for whether or not epidemics are

possible [9]. However, within the predicted suitable temperature range defined by R0, disease burden is

largely limited by the density of susceptible hosts (Figs. 2, 5 (a)) [9]. More broadly, the results highlight

the important principle that metrics of transmission (e.g., R0) have a nonlinear relationship with human

disease burden (total Ih) and contribute distinct implications for our understanding of the transmission
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process.

Whether or not temperature affects the potential for disease control via vector control, reduction in

host biting rate, vaccination, or drug administration is an important applied question for designing public

health campaigns. Temperature did not strongly affect the impact of most control-related parameters

on total disease burden when the models did not include seasonal variation. When the models included

seasonal variation, the effectiveness of most control parameters depended on temperature. In all models,

human vaccination rate required to control epidemics varied strongly with mean temperature (Figs. 3-5).

Achieving herd immunity and thereby suppressing transmission via vaccination is more difficult when

temperatures are highly suitable (200-350 C under constant temperatures or 150-320 C under varying

temperatures; Figs. 3-5). By contrast, the effects of the human recovery rate (γh) and the vector mortality

rate (µv) on R0 were sensitive to temperature, but their effects on total disease burden were not sensitive

to temperature.

Similar to previous work on dengue [9], our results show that Zika can invade and cause large out-

breaks during the summer in seasonally varying environments with lower average temperatures, such as

temperate regions of the U.S., Europe, and Asia. This implies that differences in the size of epidemics in

tropical versus temperate locations occur not just because of differences in temperature (and its impacts

on R0) but also because of differences in vector breeding habitat availability, humidity, human mosquito

exposure, and other socio-ecological factors. Much of the globe—including regions in temperate, sub-

tropical, and tropical climates—is already suitable for Zika transmission for all or part of the year, and

climate change is likely to expand this suitability geographically and seasonally (Ryan et al., in review).

However, processes that increase the density of susceptible human populations and their exposure to

mosquitoes, including urbanization and urban poverty, human population growth, and the growth and ge-

ographic expansion of vector populations, are likely to expand the burden of Zika even more dramatically

in the future.

Conclusion

The unexpected emergence and global expansion of Zika in 2015-2017 and its association with Zika

congenital syndrome and Guillain-Barre syndrome revealed once again how poorly prepared the global
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community is for the looming and expanding threat of vector-borne diseases. Given the recent history of

Aedes aegypti-transmitted viruses, including dengue, chikungunya, and Zika, rapidly expanding world-

wide and the challenges of controlling these epidemics without specific vaccines or drugs, understanding

the ecological drivers of transmission and their effects on potential disease control tools is crucial for

improving preparedness for future vector-borne disease emergence. If a Zika vaccine becomes available,

then the precisely defined temperature thresholds for large epidemics predicted in our model imply that

vaccination targets should be set based on climate. By contrast, because other potential interventions that

would reduce vector population sizes, biting rates, and human recovery rates act more independently of

temperature, targets could be set based on other socio-ecological factors in a given epidemic setting. This

dynamic temperature-dependent modeling framework, which depends most strongly on vector and host

parameters that are virus-independent, may be a useful first step for responding to future Aedes-borne

disease epidemics.
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