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Abstract

Chromatin interactions are important for gene regulation and cellular
specialization. Emerging evidence suggests many-body spatial interac-
tions can play important roles in condensing super-enhancer regions into
a cohesive transcriptional apparatus. Chromosome conformation stud-
ies using Hi-C are limited to pairwise, population-averaged interactions;
therefore, not suitable for direct assessment of many-body interactions.
We describe a computational model, CHROMATIX, that reconstructs
structural ensembles based on Hi-C data and identifies significant many-
body interactions. For a diverse set of highly-active transcriptional loci
with at least 2 super-enhancers, we detail the many-body functional land-
scape and show DNase-accessibility, POLR2A binding, and decreased
H3K27me3 are predictive of interaction-enriched regions.

Background

Chromosome folding and nuclear organization play essential roles in fundamen-
tal processes such as regulation of gene expression (I} 2]) and cellular specializa-
tion (3t [4). A wealth of information on chromatin organization has been gained
through studies based on chromosome conformation capture techniques such
as Hi-C (B 6} [7; [8), which measure pairwise, proximity interactions between
chromatin regions that are averaged over a population of cells (6; [9). There
is now growing evidence that multi-valent interactions play important roles in
formation of phase-separated and highly dense, functional chromatin assemblies
in super-enhancers (SEs) (L0} [IT)); however, it is difficult to detect and quantify
many-body (> 3) interactions from pairwise and averaged Hi-C measurements.

Several experimental techniques have been developed to detect putative
many-body chromatin interactions. These include single-cell Hi-C (12 [13} [14),
Dip-C (I5; 16), Tri-C (2), GAM (I7)), and SPRITE (I8)). However, there are
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limitations with these techniques. For example, while single-cell Hi-C permits
detection of instances of many-body interactions in individual cells, it often
has low genomic coverage (19); GAM and SPRITE do not readily distinguish
direct from indirect many-body chromatin interactions due to ancillary cou-
pling effects (I [18]). Overall, our current knowledge of many-body chromatin
interactions and their functional roles in chromatin condensation is limited.

With the extensive availability of population-averaged Hi-C data for many
biological systems, we ask whether it is possible to gain insight into function-
ally important many-body spatial interactions from these high-quality, high-
resolution measurements. While no computational method is currently avail-
able, we hypothesize that 3-D polymer modeling can be used to overcome
the limitations of population-averaged, pairwise Hi-C measurements. However,
there are a number of significant technical challenges. These include: i) decon-
volving the population-averaged and pairwise Hi-C contact frequencies into an
underlying ensemble of single-cell 3-D chromatin folds, such that instances of
many-body interactions in single cells are collectively consistent with the input
Hi-C; and #) distinguishing specific (i.e, highly non-random) many-body inter-
actions from non-specific interactions which are largely due to effects of linear
genomic proximity (20) and nuclear confinement (21} 22} 23).

Modeling of 3-D chromatin structure allows for detailed analysis of nuclear
organization patterns and can detect spatially interacting regions (21} 22 23}
245 255 26 27 285 295 [30% B} [32% B3 [34]). There are many well-developed physical
models for chromatin folding, including the Strings and Binders Switch (SBS)
model (24]), the Minimal Chromatin Model (MiChroM) (26; 28)), and the n-
Constrained Self-Avoiding Chromatin (nCSAC) model (21 22). The nCSAC
approach folds polymers under the influence of predicted specific pairwise inter-
actions obtained after controlling for effects of nuclear confinement. The SBS
and MiChroM models follow block copolymer approaches (29 B0), in which
chromatin regions are assigned different affinities for each other based on their
corresponding types. In SBS, chromatin types are defined by their affinity to
Brownian binder particles which facilitate bridging of multiple chromatin sites
up to a specified valency. In MiChroM, chromatin types and affinities are based
on clustering of epigenetic markers, followed by maximum-entropy optimization
of the resulting energy function. SBS and MiChroM can reproduce important
physical phenomena such as the dynamics of chromatin condensation leading to
phase separation; however, no methods for calling specific many-body chromatin
interactions based on these models have been reported yet.

Several computational methods have been developed to detect specific pair-
wise chromatin interactions present within Hi-C datasets (20). These include the
negative binomial model of Jin et al. (35), the non-parametric spline approach
of Fit-Hi-C (36)), the binomial model of GOTHiC (37), the local neighborhood
loop-calling approach of HiICCUPS (9)), and the hidden Markov random field
model of Xu et al. (38). These methods rely on the empirical Hi-C for esti-
mation of a background model that is then used to assess the significance of
each pairwise chromatin contact; hence, these approaches may contain intrin-
sic bias as the observed Hi-C data is being used for construction of its own
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null hypothesis test. In addition, these methods lack a 3-D folding model and
therefore cannot assess the significance of many-body (> 3) chromatin spatial
interactions.

In this work, we describe CHROMATIX (CHROMatin mIXture), a new
computational approach for detecting specific many-body interactions from pop-
ulation averaged Hi-C data. We focus on uncovering occurrences where 3-, 4-,
or more genomic regions all spatially co-locate to within a defined Euclidean
distance threshold. We further require that these occurrences do not arise from
simple physical effects of monomer connectivity, excluded volume, and spatial
confinement; we refer to these as specific many-body interactions.

We extend the nCSAC (21} 22) folding method which allows for nearly unbi-
ased construction of random polymer chains to serve as a null model completely
decoupled from the Hi-C data. By further integrating extensive polymer simu-
lations under a Bayesian generative framework (39), we resolve complex depen-
dencies among chromatin contacts and deconvolve population Hi-C data into
the most likely single-cell contact states. These contact states are then folded
to produce a 3-D structural ensemble consistent with the measured Hi-C. We
achieve our results through a novel deep-sampling algorithm called fractal Monte
Carlo, which can generate 3-D polymer ensembles with improved structural di-
versity and target distribution enrichment (see Supplementary Information).

To study highly non-random and direct higher-order interactions among
super-enhancers, enhancers, and promoter regions, we apply our method to a
diverse set of 39 highly transcriptionally-active loci in the GM12878 mammalian
cell line; specifically, all TAD-bounded (40} [41]) loci (<2 MB), each with at least
2 super-enhancers (I} [3; @) showing evidence of possible super-enhancer con-
densation (see Supplementary Information, Table S1) (I8). We detect specific
many-body interactions in each of these loci, summarize the landscape of func-
tional associations among participating regions, and report common biological
factors predictive of interaction enrichment.

Results

Model for chromatin folding

We independently modeled the 39 genomic loci, ranging in size from 480 KB
to 1.94 MB, each as a connected, self-avoiding polymer chain where monomer
beads represent 5 KB of 11 nm chromatin fiber (42 43]). Loci lengths in base
pairs are from the corresponding TAD (arrowhead) boundaries as reported in
Rao et al. (9) (see Supplementary Information). Each locus was simulated under
a confining sphere based on the GM12878 nuclear diameter reported in Sanborn
et al. (44)) and scaled to preserve a constant base pair density (PP/um?).

Identifying specific interactions from Hi-C data. The CHROMATIX
modeling pipeline is illustrated in Figure 2} Briefly, we first identify pairwise
specific contacts from measured Hi-C interaction frequencies by following the
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general approach of Giirsoy et al. (21)); namely, we identify chromatin interac-
tions with Hi-C frequencies unlikely to be observed under a uniform random
folding environment (45). We extend the approach of Giirsoy et al. by using
the method of fractal Monte Carlo weight enrichment (see Supplementary In-
formation) to uniform randomly sample an ensemble of ~400,000 3-D polymer
conformations (see Figure , and Figure S1 for examples of random polymers).
These polymers are used as a null ensemble for identifying significant Hi-C in-
teractions that are unlikely to be formed due to random chance (Figure 2b).
The assumption of spherical confinement makes this null model more stringent
in calling specific interactions as discussed in (22)), although our tool supports
other confinement models (e.g. ellipsoid). Details on p-value calculations can
be found in Methods.

Identifying a minimal set of sufficient interactions. We conjecture that
not all specific interactions are required to produce the observed Hi-C chro-
matin folding patterns (22 46). To identify a minimal set of interactions that
are sufficient to drive chromatin polymers into a folded ensemble that exhibit
the observed Hi-C frequencies, we retain roughly 5% of the identified specific
contact interactions using clustering (47; 48) (see Supplementary Information
for more details). We call this procedure coarse-graining of the specific con-
tacts (Figure ); coarse-graining also regularizes our model to help prevent
overfitting.

Single-cell contact state deconvolution. Many-body interactions occur
probabilistically in individual cells. To reconstruct the 3-D chromatin polymer
for each cell of a modeled population, we must predict which contacts among the
set of minimally sufficient interactions are co-occurring within each individual
cell. We call these co-occurring interactions the single-cell contact states (Fig-
ure ) Once a single-cell contact state is properly generated, we then construct
a set of 3-D chromatin polymers that are all consistent with this single-cell con-
tact state. By generating a large number of single-cell contact states, we can
obtain an ensemble of 3-D chromatin polymers which accurately reproduce the
observed population Hi-C measurements. Structural analysis of the ensemble of
single-cell chromatin conformations can then reveal specific spatial many-body
interactions.

The key to properly generating single-cell contact states is to account for
dependencies among chromatin interactions; namely, how certain physical in-
teractions may cooperatively induce formation of other interactions due to poly-
mer folding. These dependencies are identified by in silico knock-in perturbation
studies, where differential contact probabilities are assessed between two ensem-
bles of chromatin polymers, one with and another without the target contact
knocked-in. A large number of possible dependencies are identified through
these extensive polymer knock-in simulations (see Methods and Supplementary
Information). Such simulations also identify geometrically infeasible contact
combinations.
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To properly deconvolve population Hi-C interactions into single-cell con-
tact states, we adopt a Bayesian generative approach. The dependencies and
infeasible geometries among contacts are incorporated as a Bayesian prior.
This physically-based prior along with the measured Hi-C data enables effi-
cient Bayesian inference over the posterior distribution of single-cell contact
states. Specifically, we use Gibbs sampling for this inference (see Supplemen-
tary Information). For efficiency, we first coarse-grain the called specific Hi-C
interactions before carrying out knock-in simulations and Gibbs sampling. Only
about 5% of the specific interactions are retained, which substantially reduces
the computational cost, making this approach highly practical.

Reconstructing 3-D chromatin folds. For a given deconvolved single-cell
state of chromatin contacts, we uniformly sample among the set of 3-D folds
satisfying the spatial proximity interactions specified by the single-cell state.
Specifically, we sample from the uniform distribution of chromatin chains con-
ditioned on the deconvolved contact state of each cell, where two regions are
spatially interacting if their Euclidean distance is < 80 nm (46). This procedure
is repeated for each sampled single-cell contact state (see Figure S2 for examples
of sampled chromatin polymers).

Overall, we aggregate ~50 folds per single-cell to generate an ensemble of
25,000 3-D chromatin polymers at each of the 39 modeled genomic loci. These
sampled conformations form the reconstructed ensemble of intrinsic 3-D folds
underlying the population-aggregated Hi-C.

Simulated 3-D polymer ensembles strongly correlate with
Hi-C measurements

We find the chromatin interaction frequencies from the computed 3-D polymer
ensembles (called simulated Hi-C) to strongly correlate with measured Hi-C
frequencies (Figure [3)). The Pearson correlations between the simulated and
measured Hi-C frequencies have approximate mean and standard error of the
mean (SEM) of 0.970 & 0.003 over the 39 modeled genomic loci (see details in
Supplementary Information). Here, correlations were computed at 5 KB res-
olution after the measured Hi-C counts were quantile normalized according to
the uniform randomly sampled polymer ensemble (Figure ) This approach is
motivated by similar methods for comparing gene expression microarrays (49);
it allows direct comparison between simulated ensemble frequencies and mea-
sured Hi-C counts. To exclude proximity effects owing to genomic distance,
we further remove the first two diagonals from the Hi-C heatmaps; namely, all
Hi-C frequencies within 10 KB are excluded. The simulated and measured Hi-C
data again exhibit excellent Pearson correlations, with an approximate mean
and SEM of 0.96 +0.003; more details on simulations of the 39 loci are shown in
Figure S3. We also computed the distance corrected Pearson correlations (50)
and obtained a mean and SEM of 0.64 + 0.02 (more details in Table S1 and
Figure S4). These results indicate that our 3-D ensembles are consistent with
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the measured Hi-C interaction patterns.

Reconstructed single-cell chromatin structures

We have compared our single-cell chromatin models with publicly-available
single-cell Dip-C data for GM12878 (I5). For each cell in the Dip-C ensem-
ble, we identified the corresponding CHROMATIX cell with maximal overlap
of contacts. Fig [4] shows the overall pattern of agreement and examples of in-
dividual single-cells. In general, CHROMATIX single-cell models contain more
contacts (grey regions in Fig -c) than that of Dip-C, but there is overall good
agreement, with many long-range contacts appearing in both Dip-C and CHRO-
MATIX single cells (Fig [dh-c). The median overlap coefficient is ~ 65% for the
n = 976 cell-loci.

Analysis of single-cell chromatin domains

Motivated by single-cell optical imaging studies of Bintu et al (5I]), we exam-
ined the 3-D chromatin structures at locus chrX:19,560,000-20,170,000 to assess
if single-cell domains are present (Fig . Our key findings are similar to that
of (5I)), even though the cells we modeled are of different cell lineage. Specifi-
cally, diverse patterns of chromatin contacts are seen in reconstructed chromatin
folds of single cells: domain-like patterns appear among single-cell distance plots
(Fig[Bk), which resemble the domains in the mean distance plots (Fig[Bp). Sim-
ilar to (5I)), there are many instances where the domain patterns are less clear.
Furthermore, there is non-zero probability of forming domain boundaries at all
locations of the locus, and the precise boundaries shift from cell to cell. How-
ever, we observe similarly consistent boundary strengths at similar genomic

coordinates (Fig[5p and [5d).

3-body complexes, maximal many-body complexes, and
principal loops

For each of the 39 loci, we are interested in fully-interacting 3-body complezes,
which are formed by three genomic regions where the Euclidean spatial distances
among all pairs of regions are < 80 nm (46]). These 3-body complexes may be
a component of a larger (k > 3) fully-interacting complex.

We are also interested in maximal many-body complexes which are formed
by k > 3 genomic regions, where all pairwise Euclidean distances are < 80
nm, and cannot be extended to include additional regions while satisfying the
distance requirement. We characterize a maximal 3-, 4-, 5-, or higher-order k-
body complex by its principal loop, which is the longest genomic span in base
pairs within each k-body complex (Figure [1)).

Furthermore, we are interested in specific 3-body complexes and specific
maximal many-body complexes, whose spatial interaction frequencies are un-
likely to be observed under a uniform random folding environment (see Meth-
ods).
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SPRITE concordance

We compared our predicted 3-bodies and mazimal many-body principal loops,
generated from population-averaged Hi-C, with publicly available SPRITE (split-
pool recognition of interactions by tag extension) data for GM12878 cells (18).
The SPRITE technique captures clusters of co-occurring chromatin interac-
tions. However, SPRITE does not distinguish direct from indirect cross-linking
among chromatin fragments (I8) - i.e, some chromatin regions present within
a SPRITE cluster may not have direct spatial interactions, but, rather, may
have been co-captured through a sequence of cross-links among spatially proxi-
mal regions that could extend to distances beyond the cross-linking threshold.
Nevertheless, a high proportion of our predicted many-body interactions were
also observed to co-occur within a SPRITE cluster; we term this proportion the
found fraction. Specifically, across all 39 modeled genomic loci, we saw fairly
similar median found fractions for specific and non-specific 3-bodies (approxi-
mately 90% and 86% respectively) as well as for principal loops (both medians
approximately 99%) at 5 KB resolution.

To adjust for bias due to genomic distance, we stratified principal loops of
many-body complexes by base pair span and computed their respective SPRITE
coverage fractions, i.e. proportion of SPRITE clusters containing the princi-
pal loop. Specifically, we computed the median SPRITE coverage fraction at
each 5 KB genomic distance span for both specific and non-specific principal
loops (Figure S5). We found the proportion of specific median coverage fractions
exceeding the corresponding non-specific coverage was significantly elevated in
29 of 39 (~74.4%) modeled genomic loci (FDR < 0.05, see Methods).

We performed a similar procedure for 3-body interactions, with stratification
by both principal and minor (lowest bp span) loops. In this case, the proportion
of specific median coverage fractions exceeding the corresponding non-specific
coverage was significantly elevated in 25 of 39 (~64.1%) modeled loci (FDR
< 0.05, see Methods).

Overall, we find that after controlling for genomic distance, our many-body
predictions are concordant with SPRITE clusters such that specific many-bodies
generally exhibit elevated SPRITE coverage over the corresponding class of
non-specific many bodies. More details can be found in the Supplementary
Information.

Specific 3-body complexes are enriched in direct interac-
tions among functional genomic regions

Our 3-D chromatin ensembles contain rich structural information. Despite the
strong effects of nuclear confinement and genomic connectivity that likely in-
duce many bystander proximity ligations (Figure ) (21} 22)), our model can
identify specific many-body interactions. Figure [f] provides an overview of our
findings for specific 3-body interactions across the 39 super-enhancer containing
loci. While functional genomic regions (i.e., super-enhancers, enhancers, and
promoters) participate in both specific and non-specific 3-body interactions, the
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proportion of interactions with no known functional associations is markedly in-
creased for non-specific (33+3% SEM, Figure[6h) compared to specific (19+2%
SEM, Figure @) 3-body interactions. Further, the medians of non-specific vs.
specific 3-body interactions without functional associations (31% and 17% re-
spectively) are significantly different (p-value = 4.5 x 1075 by Mann-Whitney
U test, Figure S6a).

Functional landscape of specific 3-body complexes shows
interactions among super-enhancers and promoters

The functional landscape of 3-body spatial interactions is shown in Figure [6b
and [6d. We observe a higher proportion of specific 3-body interactions involv-
ing multiple (> 2) super-enhancers directly co-interacting with promoters, when
compared to non-specific 3-body interactions (approximately 5.5 &+ 0.6% SEM
vs. 1.240.3% SEM respectively, with p-value = 1 x 10~ by Mann-Whitney U
test on the corresponding medians of 4.5% and 0.8%, respectively, Figure S6b).
Similarly, we observe a slightly higher proportion of specific 3-body interactions
with at least 3 distinct super-enhancers relative to non-specific 3-body interac-
tions (approximately 1.24+0.4% SEM wvs. 0.24+0.1% SEM respectively at p-value
= 8.4 x 107 by Mann-Whitney U test on the corresponding medians of 0.5%
and 0.0% respectively, Figure S6¢).

Functional landscape of maximal 4- and 5-body complexes
shows specific principal loops bridging super-enhancers

Our high-resolution 3-D chromatin ensembles also contain information on maz-
1mal higher-order many-body interactions. Figure[7|provides an overview of the
functional landscape of maximal k-body complexes (k > 3) among the 39 SE-
associated loci. Here a maximal k-body complex is defined such that it cannot
be extended to form a fully interacting k+ 1 or higher complex; this is unlike the
3-body complexes depicted in Figure [f], which may be part of still higher order
(k > 4) fully-interacting complexes. These maximal many-body complexes are
grouped together by principal loop, namely, the longest genomic span in base
pairs within each k-body interaction.

Overall, we observe an increased proportion of specific maximal 4- and 5-
body complexes relative to their non-specific counterparts (29 + 30 = 59+ 0.9%
SEM wvs. 21419 = 40+0.5% SEM respectively, Figure [7h and ) Correspond-
ingly, we observe a markedly decreased proportion of specific maximal 3-body
complexes relative to non-specific maximal 3-body complexes (12+1% SEM and
29 4+ 1% SEM respectively, Figure and ) That is, maximal higher-order
interactions beyond 3-body are preferred in the SE-associated loci.

Furthermore, we observe a higher proportion of specific principal loops bridg-
ing > 2 super-enhancers when compared to non-specific complexes, at 7.6+1.4%
SEM ws. 1.9£0.5 SEM respectively (Figure and )7 with a significant p-value
of 6.1 x 10~7 (Mann-Whitney U test on the corresponding medians of 4.1% and
0.7% respectively, Figure S7a). In addition, we observe a higher proportion of
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specific principal loops bridging super-enhancers to promoters when compared
to principal loops of non-specific complexes, at 8.2 & 0.9% SEM vs. 5.6 = 0.7%
SEM respectively (Figure[7p and[7{d), with a p-value of 0.026 (Mann-Whitney U
test on the corresponding medians of 7.0% and 4.6% respectively, Figure S7b).
Taken as a whole, these findings suggest that specific principal loops within
higher order complexes serve the important role of bridging functional genomic
regions to allow spatial coupling.

Open and transcriptionally active chromatin is predictive
of regions enriched in principal loops of many-body inter-
actions

We then asked whether biological markers along the linear genome, such as epi-
genetic modifications, contained information on the specific higher-order physi-
cal interactions uncovered through our extensive 3-D modeling. While these loci
with super-enhancers are enriched in active markers such as H3K27ac, we want
to know if there are markers within the context of the enriched background that
can differentiate regions of specific from non-specific many-body interactions.
Notably, we asked whether biological markers could predict regions enriched in
anchors of specific many-body principal loops.

To this end, we tested whether 5 KB intervals enriched in specific princi-
pal loop participation could be predicted using publicly available data, e.g.,
the ENCODE reference epigenome for GM12878 cells (ENCSR447YYN, Ta-
ble S2) (52 53)). For this task, we built a machine learning classifier based on
random forest (Figure |8 Methods) (54% [55]).

Our predictor achieved good performance, with a mean ROC AUC of 0.804
and an out-of-bag error of 21.5% over 5-fold cross-validation (Figure [8k). Our
results indicate that genomic intervals enriched with specific principal loop an-
chors can be identified by biological markers.

Inspection of our model revealed biological markers most predictive of prin-
cipal loop enrichment are consistent with open chromatin and active transcrip-
tion — i.e., increased signal intensities for DNase accessibility, POLR2A binding,
H3K4mel, and nuclear fraction RNA (Figure@. Box plots of the corresponding
z-score signal distributions revealed significant differences among principal loop
enriched versus non-enriched regions (Figure@b and Ek) The active chromatin
marker H3K27ac was also significantly increased in principal loop enriched re-
gions (p-value = 4.0 x 10723); however, likely due to close correlations with
both DNase accessibility and H3K4mel (Pearson coefficients of 0.81 and 0.68
respectively), H3K27ac itself was not considered as informative according to the
feature importance criteria of our classifier (Figure [0F).

We also found that chromatin architectural protein CTCF and cohesin-
subunit RAD21 exhibited significantly increased ChIP-seq signal intensities in
principal loop enriched regions (p-value = 5.0 x 10~# and 7.0 x 1074 respec-
tively); although RAD21 was found to be a more important predictor (Figure@h

and [Ok).
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Consistent with increased active markers, we found decreased ChIP-seq sig-
nal intensities for the repressive mark H3K27me3 to be predictive of principal
loop enrichment (Figure @a and @1) Overall, we found that open and active
chromatin markers, along with decreased repressive markers, to be strongly
predictive of 5 KB intervals enriched for anchors of specific principal loops.

Discussion

We have developed a computational model for identifying specific chromatin
many-body interactions and for reconstructing their functional landscapes from
population Hi-C contact frequencies. Our method exploits extensive biophysical
folding simulations to infer dependencies among chromatin contacts. By incor-
porating the inferred dependencies into a Bayesian generative model (39), our
method deconvolves the intrinsic single-cell chromatin contact states underlying
the pairwise, population-averaged Hi-C data.

Our 3-D chromatin ensembles are highly realistic as they exhibit spatial
interaction frequencies across many loci at Pearson correlations of 96-97% to
the measured Hi-C. This close level of correlation is significant, as only basic
biophysical assumptions are made (e.g., an 80 nm interaction distance threshold
and nuclear volume confinement) with no adjustable parameters. This is in
contrast to several prior studies where each domain or bead modeled requires a
separate adjustable parameter (56} [57)).

Furthermore, the reconstructed 3-D chromatin ensembles are generated from
a very sparse set of interactions — just ~5% of the predicted specific Hi-C in-
teractions are sufficient to produce polymer ensembles with contact frequencies
consistent with Hi-C measurements (Figure . Notably, our models indicate
that only 15-32 interactions are sufficient to reconstruct loci of size 480 KB to
1.94 MB. Hence, these sparsely selected sets are likely enriched with interactions
driving the chromatin fold (22 [46)).

Our computed 3-D chromatin ensembles contain rich structural informa-
tion, allowing prediction of specific, i.e., highly non-random, many-body (> 3)
chromatin interactions. Our predictions are overall concordant with SPRITE,
with a majority of modeled genomic loci exhibiting significantly elevated median
coverages for specific vs. non-specific many-body interactions.

The landscape of many-body interactions emerging from our analysis of 39
active genomic loci showed super-enhancers (SE) as enriched in specific many-
body principal loop participation compared to non-SE regions (p=2.24 x 107129,
Figure S8), with overall levels of SE-SE and SE-promoter interactions elevated
in specific many-bodies (Figures |§| and . While the loci studied were a pri-
ori selected based on SPRITE clusters containing multiple super-enhancers,
SPRITE measurements per se cannot distinguish direct from indirect cross-
linking. Therefore, to our knowledge, this work is the first to provide computa-
tional evidence, with measurable Euclidean distances estimated from our modes,
that super-enhancers are directly and non-randomly interacting spatially with
other functional genomic regions in many-body complexes (18). These predic-
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tions can be tested experimentally.

Our principal loop heatmaps can reveal important insight into the higher-
order spatial organization of chromatin. As an example, Figure [10]shows that at
the SH3KBP1 locus, regions participating in many-body principal loops gener-
ally do not appear to be forming domains, with the exception of 3-body principal
loops which appear to resemble the patterns of the original pairwise Hi-C (Fig-
ure ) Instead, as evidenced by the banding patterns of the 4-, 5-, and 6-body
heatmaps (bottom row of Figure [10]), principal loops may primarily be facil-
itating direct, long-range interactions among functional genomic regions such
as super-enhancers, enhancers, and promoters. Such banding patterns at 5 KB
are likely not due to A/B compartmentalization (100 KB - 1 MB scale), as
our loci are mostly (> 90%, Table S1) in A compartments. This is consistent
with our functional landscapes exhibiting decreased preference for maximal 3-
body complexes and relatively increased functional associations among specific
many-bodies (Figures [6] and [7)).

In contrast to other models which focus on heterochromatin condensation (29)),
we instead examine highly active chromatin regions. Our analysis showed that
even in super-enhancer loci where active markers are enriched at baseline, open
chromatin (DNase hypersensitivty) and the presence of active transcriptional
marks such as POLR2A and nuclear fraction RNA are predictive of 5 KB re-
gions enriched for anchors of specific many-body principal loops. Our findings
are consistent with the opinion that nuclear RNAs may be important factors
for nuclear organization through promotion of phase separation and ultimately
enhancer-promoter looping (58} 59)).

Conclusions

We have developed CHROMATIX, a computational framework for predict-
ing the intrinsic 3-D structural ensembles underlying population-averaged Hi-C
data; our method is general and can be applied to other cell lines where pairwise
chromatin contact information is available. We demonstrate our predicted 3-D
structural ensembles have close correlation with the measured Hi-C data over
39 modeled genomic loci. Our CHROMATIX framework can also identify spe-
cific many-body chromatin interactions, and we show the predicted many-body
interactions to be broadly concordant with SPRITE clusters.

We find our predicted specific many-body interactions to be significantly as-
sociated with functional genomic regions such as SEs and promoters; further,
they preferentially form maximal 4- or higher-order interactions over 3-body
interactions. These findings are consistent with specific principal loops likely
playing the important role of bridging many genomically distant regions and
allowing them to condense into functional assemblies through direct spatial con-
tact. Overall, the many-body interactions uncovered in this study may serve
as the 3-D manifestations of phase-separated, multi-valent assemblies among
super-enhancer regions (I0)).

Further, we have shown that genomic regions enriched in anchors of princi-
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pal loops are also enriched in open and active chromatin marks such as DNase
accessibility, POLR2A, H3K4mel, H3K27ac, and nuclear fraction RNA, and
depleted in the repressive mark H3K27me3. These biological markers are likely
representative of factors needed to condense distant chromatin regions into or-
dered, spatial complexes necessary to regulate fundamental cellular processes
such as gene transcription.

The CHROMATIX method has the promise of generating high-resolution 3-
D ensembles of chromatin structures with detailed information of spatial many-
body interactions using abundantly available population-averaged Hi-C data.
As only about 5% of specific interactions are sufficient to reproduce measured
Hi-C frequencies, CHROMATIX can provide higher resolution details beyond
that of input Hi-C measurement.

Our method enables quantification of the extent of specific 3-, 4-, and higher-
order many-body interactions at a large scale. It also elucidates the functional
implications by providing details on how super-enhancers, enhancers, promoters,
and other functional units probabilistically assemble into a spatial apparatus
with measurable Euclidean distances. Our method can predict specific many-
body interactions solely from markers along the linear genome and allows insight
into the biological factors that drive the spatial coordination among genomic
regions. Finally, our method can simulate multiple independent loci located on
separate chromosomes within the same confining nuclear volume, and can be
applied to identify specific inter-chromosomal many-body interactions.

Methods

We now provide technical details on key components of the CHROMATIX
method (Figure [2).

Calculating p-values for calling specific Hi-C interactions

To assign statistical significance p-values to each Hi-C measured interaction,
we use a scalable Bag of Little Bootstraps resampling procedure (60) over the
uniform random 3-D polymer ensemble, with 10,000 outer replicates, to obtain a
null distribution over random chromatin contacts. P-values are assigned to each
Hi-C contact frequency based on the proportion of bootstrap replicate contact
frequencies exceeding the measured Hi-C at the same genomic distance.

Polymer simulation of structural perturbations

To predict which specific contacts are likely co-occurring within individual cells
of the population, we carried out extensive structural perturbation simulations.
These biophysical simulations were used to elucidate dependencies and infeasi-
ble geometries among chromatin contacts. We incorporated information from
the perturbed simulations into a sparsity-inducing Bayesian prior distribution
over hypothetical folding mechanisms among the specific contacts, where each
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mechanism is encoded in the form of a directed acyclic graph (DAG) (61, 62).
A considered DAG, in which each edge represents a possible causal dependency
between two contacts, is restricted according to computational knock-in per-
turbations supporting such a hypothesis; specifically, if knocking-in a contact
is observed to significantly upregulate the frequency of another contact beyond
random, a directed edge from the knocked-in contact to the upregulated contact
is then available to be sampled when generating folding mechanisms. Given the
observed population Hi-C data and the results of simulated biophysical pertur-
bations, we infer the posterior distribution of single cell contact states through
Gibbs sampling (see Supplementary Information for details on sampling proce-
dures). We find that our models for 38 out of the 39 loci have higher posterior
probabilities than the naive models of product of independent pairwise contacts.
The naive models further suffer from the inability to recognize geometrically in-
feasible combinations of pairwise contacts.

Functional annotation and loci selection

We used LILY (63) to detect functional genomic regions containing super-
enhancers, enhancers, and promoters based on H3K27ac ChIP-seq data of GM12878
cells (64) (see Table S3). We used publicly available SPRITE data for GM12878
cells (I8) to select clusters containing multiple (> 2) super-enhancers as a basis
for investigating if many-body interactions may form among multiple super-
enhancers. We then used publicly available Hi-C data for GM12878 at 5 KB
resolution (9)) to identify the median TAD (< 2 MB, arrowhead domain) bound-
aries for the considered SPRITE clusters. After discarding regions with greater
than ~25% overlap, we obtained 39 genomic loci (Table S1), 35 of which have
no overlap, for further investigation of many-body interactions. Hi-C contact
counts at each locus, normalized via Knight-Ruiz matrix balancing (65]), were
obtained using Juicer (66]) also at 5 KB resolution.

Cliques and maximal many-body interactions

We extend the nCSAC approach of Giirsoy et al. (21} 22)) to identify specific
many-body (> 3) chromatin interactions. We define a many-body interaction
as a complex of 5 KB chromatin regions such that the FEuclidean distances
between all pairs of regions in the complex are within a cross-linking threshold
of < 80 nm (406). Using graph theory terminology, a many-body interaction is
equivalent to a cliqgue (67), i.e., a fully connected graph such that all pairs of
vertices are connected by undirected edges. Further, a many-body complex, or
clique, is mazimal if no additional chromatin regions may be added such that
all pairs remain within the cross-linking threshold. We use the highly optimized
graph analysis library igraph to detect many-body interactions within a 3-D
polymer (68)).
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Calling specific many-body interactions

To generate a null distribution over many-body chromatin interactions, we first
tally the frequency of each observed many-body interaction within a uniform
randomly folded ensemble of 75,000 polymers. We repeat the tally procedure by
bootstrap resampling over the full polymer ensemble for 1,000 total replicates;
this produces a distribution over the many-body interaction frequencies under
a null hypothesis of random folding. For 3-body interactions (Figure @, we
detect all cliques consisting of exactly 3 distinct chromatin regions and do not
require them to be maximal; that is, these 3-bodies may be part of a larger
fully-connected complex. For principal loop analysis, we detect cliques con-
sisting of at least 3 distinct chromatin regions and require that each clique is
maximal (Figure [7).

We then identify specific many-body interactions at a locus by first tallying
the corresponding many-body frequencies within each sample of the CHRO-
MATIX deconvolved Hi-C ensemble (i.e., simulated Hi-C') of 25,000 polymers.
We stratify the many-body frequencies (random and simulated Hi-C) according
to both genomic distance and clique size. Specifically, for 3-body interactions
shown in Figure |§|, we stratify all frequencies based on principal (i.e., longest)
and minor (i.e., shortest) loop spans in base pairs. For maximal principal loop
interactions shown in Figure[7] we stratify based on clique size and the base pair
span of the principal loop. Stratification is necessary to control for genomic
distance bias, i.e., the fact that genomic regions with short genomic separa-
tion tend to spatially co-locate (21]), and that larger clique sizes tend to allow
correspondingly longer genomic distances to interact spatially with increased
frequency. We assign a p-value to each simulated Hi-C many-body frequency
as the within-stratum proportion of random (bootstrap-replicated) many-body
frequencies that exceed the simulated Hi-C many-body frequency. Finally, to
control for multiple testing, a simulated Hi-C many-body interaction is called
specific if the FDR-adjusted (69) p-value is < 0.05.

Concordance with SPRITE

We compared our 3-body and mazimal many-body principal loop predictions
with publicly available SPRITE data for GM12878 (18)). To adjust for genomic
distance bias, we stratified principal loops according to base pair span and com-
puted the SPRITE coverage fraction, i.e., proportion of SPRITE clusters that
contained each principal loop complex. Specifically, we computed the median
SPRITE coverage fraction at each 5 KB genomic distance span for both spe-
cific and non-specific principal loops (Figure S5). At each of the 39 modeled
loci, we assessed the significance of the proportion of specific medians exceeding
the corresponding non-specific medians by permutation testing: we randomly
permuted the specific and non-specific labels assigned to each principal loop
and re-computed the proportion of specific medians exceeding non-specific me-
dians for 1,000 total replicates. We then assigned a p-value to each locus by
the fraction of permutation replicates exceeding the observed proportion. A
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similar procedure was performed for 3-body predictions, with stratification by
both principal and minor loop. To control for multiple testing, p-values where
called significant if < 0.05 after FDR-correction (69).

Predictive model for principal loop enrichment

We built a random forest machine learning classifier (54)) to identify biological
markers predictive of regions enriched in the principal loop anchors of many-
body complexes. We used publicly available biological datasets (Table S2), pri-
marily from ENCODE reference epigenome for GM12878 (ENCSR447YYN) (52}
53), as our input features (Figure[8h). At each of the 39 modeled loci, genomic
regions corresponding to non-overlapping 5 KB bins were sorted based on prin-
cipal loop participation; a subset of those occurring above the “elbow” inflection
point (Figure ) were labeled as enriched; those occurring below the inflection
point were labeled as not enriched. To avoid ambiguous labels and to provide a
more robust decision boundary among enriched versus not enriched regions, we
retained the top 20% of the above-elbow fraction at each locus and discarded
the remainder, while still retaining all samples below the elbow. Our final data
set consisted of 231 regions enriched (i.e. positive) in many-body interactions
and 5,800 regions not-enriched (i.e. negative). To control for potential class im-
balance issues during training, we used the randomForest R package (55) with
stratified resampling to present equal number of positive and negative samples
to each decision tree (n = 500) in the random forest. Classifier performance
results, mean ROC AUC of 0.805 and out-of-bag error of 21.5% (Figure ),
were obtained on a held out test set (~20% of labeled samples) over 5-fold
cross-validation using the caret R package (70]).

Availability of data and materials

All C++ source code for chromatin polymer folding as well as comprehensive tu-
torials demonstrating how to configure polymer folding simulations are publicly
available via git repository (71)). Similarly, C++ source code for our Bayesian
Hi-C deconvolution Gibbs sampler and loci modeling scripts are also available
via git (72 [73)).
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Figures

a

b 4-body c 5-body

Figure 1: Diagrams of 3-, 4-, and 5-body chromatin interactions. a, b,
c Diagrams illustrating 3-, 4-, and 5-body chromatin interactions respectively
(green and blue dots). Grey arrows represent spatial Euclidean distances within
80 nm (46). The principal loop is the longest loop (in bp) among chromatin
regions forming a many-body (> 3) interaction, and genomic regions serving as
anchors of principal loops are represented by green dots.
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Figure 2: CHROMATIX modeling pipeline. a Random polymers are gen-
erated using fractal Monte Carlo sampling. b Specific contacts are identified
from measured Hi-C using a random polymer ensemble as the null distribu-
tion (2I). ¢ Specific contacts are coarse-grained and single-cell contact states
are deconvolved then folded to generate simulated Hi-C (see Supplementary
Information).
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Figure 3: CHROMATIX Hi-C reconstruction. 4 representative genomic
regions (a, b, ¢, d), with the measured Hi-C () on the upper triangle and the
simulated Hi-C from aggregation of 3-D polymer folds on the lower triangle. The
Pearson correlations between simulated and measured Hi-C for all 39 modeled
genomic loci have approximate mean of 0.96 + 0.003 SEM, after removal of the
first 2 diagonals. DNase data are from ENCODE (52} £3) (ENCSROO0EMT)
with corresponding signal, gene, and chromosome diagrams from UCSC genome
browser (74} [75]). All heatmaps are in units of 5 KB.
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Figure 4: Comparison with Dip-C single-cell data (GSE117874) (15).
a, b, c Plots of pairwise contacts between representative Dip-C cells (upper
triangle, black dots) and the corresponding CHROMATIX cells (lower triangle,
grey dots) of maximal overlap coefficient. Contacts present in both models are
outlined in red. d Scatter plot of maximal overlap coefficient (Y-axis) versus
number of contacts present within each Dip-C model (X-axis) of single-cell chro-
matin at different loci (n = 976). The horizontal boxplot shows the distribution
of Dip-C contacts per cell (median ~ 50). The vertical boxplot shows the dis-
tribution of maximal overlap coefficients between the Dip-C and CHROMATIX
ensembles (median ~ 65%). The inner and outer ellipses contain 5% and 95%
of the single-cells, respectively. More details can be found in Supplementary
Information.
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Figure 5: Reconstructed ensemble of 25,000 single-cell chromatin
structures of the locus chr X: 19,560,000 - 20,170,000 at 5 KB resolu-
tion. a Heatmap of mean pairwise Euclidean distance in A. Corresponding Hi-C
heatmaps (experimental and simulated) can be seen in Figure 3d. b Boundary
strength of mean pairwise distances computed following (51) at each 5 KB bin.
c Single-cell pairwise distance heatmaps for two representative cells. d Heatmap
of single-cell boundary strengths, each row is the boundary strength curve of an
individual cell among the 25,000 cell ensemble.
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Figure 6: Functional landscape of 3-body chromatin interactions. Pie
(a,c) and corresponding sunburst (b,d) charts for the proportion of specific
(bottom) and non-specific (top) 3-body interactions involving the functional ge-
nomic regions of super-enhancer (SE), enhancer (E), and promoter (P). The
innermost ring of the sunburst charts (b,d) are the same as the corresponding
pie charts of (a,c), with outer rings representing the sub-fractions of interacting
partners with SE, E, or P functional associations. Gaps in the sunburst charts
represent the fractions of interacting partners with no known SE, E, or P anno-
tation. Here, 3-body interactions are not required to be mazimal, and can be
part of a larger many-body complex where all regions are within 80 nm. Plots
shown are the averages across all 39 modeled genomic loci.
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Figure 7: Functional landscape of principal loops in many-body chro-
matin interactions. A principal loop is the longest loop (in bp) among chro-
matin regions forming a many-body (> 3) interaction, where all pairs of bodies
(i.e. chromatin regions) forming the interaction are within < 80 nm Euclidean
distance (46). The pie (a,c) and innermost ring of the sunburst (b,d) plots
both show the proportion of specific (bottom) and non-specific (top) principal
loops within maximal 3-, 4-, 5-, or >6-body interactions; the 2 outer rings(b,d)
show the corresponding fraction of principal loops with functional annotations
— super-enhancer (SE), enhancer (E), promoter (P) — where gaps represent the
fractions of principal loop regions with no known SE, E, or P annotation. Only
mazrimal many-body interactions are represented, i.e., no other chromatin re-
gion exits within the interaction distance such that all pairs are within 80 nm.
Plots shown are the averages across all 39 modeled genomic loci.
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Figure 8: Predictive model for principal loop enrichment. a Publicly
available biological datasets (Table S2), primarily from ENCODE reference
epigenome for GM12878 (ENCSR447YYN) (52} [53)), were used as predictive in-
puts to a random forest (54} [55) machine learning classifier. Illustrative signals
shown are from the UCSC genome browser (74} [75)) for locus chr 12: 11,690,000 —
12,210,000. b Cartoon illustration of enriched versus not enriched regions. Ge-
nomic regions, each corresponding to a non-overlapping 5 KB bin, were sorted
based on principal loop participation; a subset of those occurring above the elbow
inflection point were labeled as enriched; those occurring below the inflection
point were labeled as not enriched (see Methods). ¢ Receiver operating charac-
teristic (ROC) curve (76) showing performance of our random forest classifier
in discriminating principal loop enriched from not enriched genomic regions.
Trained random forest model showed a mean area under the curve (AUC) of
0.805 on test set and a mean out-of-bag (OOB) error, an unbiased estimate of
generalization error (54), of 21.5% over 5-fold cross-validation.
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Figure 9: Predictive biological markers for principal loop enrichment.
a Top 5 most important random forest predictors (i.e., variables or features) ac-
cording to mean decrease in: accuracy (left) and gini coefficient (right) (54} 55)).
b,c Box plots of z-score distributions of predictive biological markers for princi-
pal loop enriched (black) and not enriched (grey) regions. P-values, according
to Mann Whitney U testing for median difference among enriched versus not
enriched regions, are listed below each box plot.
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Figure 10: Principal loop heatmaps. Heatmaps are for the TAD (arrowhead)
region containing the SH3KBP1 genomic locus (chr X: 19,560,000 — 20,170,000).
For reference, the corresponding measured Hi-C is shown in Figure[3d. Columns,
from left to right, are for principal loops within 3-, 4-, 5-, and 6-body chromatin
interactions respectively. The rows show the principal loop interaction frequen-
cies captured under random (top) and deconvolved, single-cell (bottom) folding
after aggregation. Axes of all heatmaps are in units of 5 KB.
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