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Abstract

Birth-death processes have given biologists a model-based framework to answer questions
about changes in the birth and death rates of lineages in a phylogenetic tree. Therefore
birth-death models are central to macroevolutionary as well as phylodynamic analyses. Early
approaches to studying temporal variation in birth and death rates using birth-death models
faced di�culties due to the restrictive choices of birth and death rate curves through time.
Su�ciently flexible time-varying birth-death models are still lacking. We use a piecewise-
constant birth-death model, combined with both Gaussian Markov random field (GMRF)
and horseshoe Markov random field (HSMRF) prior distributions, to approximate arbitrary
changes in birth rate through time. We implement these models in the widely used statistical
phylogenetic software platform RevBayes, allowing us to jointly estimate birth-death process
parameters, phylogeny, and nuisance parameters in a Bayesian framework. We test both
GMRF-based and HSMRF-based models on a variety of simulated diversification scenarios,
and then apply them to both a macroevolutionary and an epidemiological dataset. We find
that both models are capable of inferring variable birth rates and correctly rejecting variable
models in favor of e↵ectively constant models. In general the HSMRF-based model has
higher precision than its GMRF counterpart, with little to no loss of accuracy. Applied to a
macroevolutionary dataset of the Australian gecko family Pygopodidae (where birth rates are
interpretable as speciation rates), the GMRF-based model detects a slow decrease whereas
the HSMRF-based model detects a rapid speciation-rate decrease in the last 12 million years.
Applied to an infectious disease phylodynamic dataset of sequences from HIV subtype A in
Russia and Ukraine (where birth rates are interpretable as the rate of accumulation of new
infections), our models detect a strongly elevated rate of infection in the 1990s.
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Introduction

Studying variation in the rates of speciation and extinction enables researchers to examine
the patterns and processes that shape the diversity of life on earth. Birth-death processes
have given biologists a model-based framework in which questions about the birth rate,
death rate, or diversification (birth minus death) rate of species can be studied [1]. For
example, the question, “are nectar spurs a key innovation in plant evolution leading to a
rapid radiation?” can be rephrased as, “is the rate of diversification higher in plant lineages
with nectar spurs than in lineages without them?” In infectious disease phylodynamics, the
question “was this intervention e↵ective in containing disease spread?” can be rephrased
as, “after the intervention, did the birth rate (e↵ective reproduction number) decrease?”
Questions involving variation in diversification rates can generally be broken down into two
categories. The first class of questions, including the question about nectar spurs, concerns
variation in diversification rates across lineages. In these scenarios, models are built that
allow the birth and death rates to vary across the branches of the phylogenetic tree [2, 3].
The second class of questions, including the question about intervention e�cacy, concerns
temporal variation in diversification rates shared by all lineages [4, 5, 6]. In these scenarios,
the birth and death rates are modeled as functions of time, but at any instant in time all
branches of the tree share a common birth rate and a death rate. This second class of
questions and models is our focus in this paper. Our aim is to develop flexible Bayesian
nonparametric methods for accurately estimating changes of birth and death rates over time
without sacrificing precision.

Birth-death models [7, 8] define a probability distribution on time-calibrated phylogenies—
phylogenetic trees where branch lengths are measured in time rather than in evolutionary
distances. Early approaches to inferring variability of birth and/or death rates required
the use of a time-calibrated phylogeny as data. This involved estimating parameters of
birth-death models and then either statistically testing for violations of constant birth and
death rates [9] or choosing the best functional form (e.g., two-piece piecewise constant or
exponential curves) for birth and death rate trajectories from a set of candidate models via
likelihood-ratio tests or the AIC [10, 11]. These early methods had the downside of not
accounting explicitly for missing taxa, requiring the use of Monte Carlo simulation in order
to determine if the rejection of a constant-rate (or other) model in favor of a more complex
model was an artifact of incomplete sampling of phylogenetic lineages [12, 13, 14]. However,
the underlying theory and likelihood function for arbitrary functions of birth and death
rates including unsampled taxa was already introduced by Nee et al. (1994) [8]. Later, the
introduction of the piecewise-constant, or episodic, birth-death model (EBD) [15] enabled
biologists to perform likelihood-based comparison of birth and death rates’ functional forms
while accounting for incomplete taxon sampling (see Höhna (2015) for a review of the EBD
and comparison to the work by Nee et al. (1994) [16, 8]). The EBD model was extended to
work in contexts with serial samples (e.g., fossils) and possibly sampled ancestors [17, 18].

The EBD model divides time into a finite number of intervals and assigns each interval
its own set of birth and death rates. The first uses of the EBD model assumed that a
priori birth and death rates in each interval are independent and identically distributed
(iid) [17, 18]. This assumption means that the number of intervals (or epochs) needs to
be kept small to keep estimation reasonably precise and to avoid overfitting. Further work
on Bayesian modeling using the EBD employed temporally autocorrelated models derived
from discretizing Ornstein-Uhlenbeck and Brownian motion processes [19, 20, 21], which
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provides smoothing and allows the number of episodic intervals to be larger. May et al.
(2016) propose another EBD model, where birth and death rates change at an unknown,
Poisson distributed number of change-points [22]. Wu (2014) uses a similar change-point
model [23]. These random change-point models drastically increase the dimensionality of
the parameter space and make it variable, requiring complicated reversible-jump Markov
chain Monte Carlo (MCMC) [24] algorithms to sample from the posterior distribution of
the number of change-points. However, many other Bayesian nonparametric approaches for
estimating functional forms have not been applied to EBD modeling.
Parametric and nonparametric estimation of functional forms is not unique to birth-death

processes. For example, population genetics researchers have developed a rich toolbox of
Bayesian nonparametric approaches to estimate changes of the e↵ective population size in a
neighboring class of coalescent models [25]. In fact, EBD models closely resemble piecewise
constant e↵ective population size coalescent models [26, 27, 28]. However, EBD models still
lack Bayesian regularization approaches that control the potentially high number of model
parameters. For coalescent models, such Bayesian regularization is accomplished by Gauss-
ian Markov random field (GMRF) prior distributions, which underly the skyride [27] and
skygrid [28] methods, and by their recently developed analog, the horseshoe Markov random
field (HSMRF) [29]. These models provide a rich framework for building more complicated
models with covariates [30] and are amenable to computationally e�cient MCMC sampling
techniques. Our goal is to bring GMRF and HSMRF prior distributions to EBD models and
to test their performance.
We implement birth-death models that use GMRF and HSMRF prior distributions for

the birth and/or death rates in the statistical phylogenetic software platform RevBayes
[31]. This implementation allows us to jointly estimate birth-death parameters, phylogeny,
and other (nuisance) parameters in a Bayesian framework. We develop an e�cient, tuning-
parameter-free MCMC algorithm for sampling high dimensional parameter vectors associated
with GMRF- and HSMRF-based models. We also devise a framework for setting the global
scale parameter—the key parameter controlling the degree of parameter regularization (also
called shrinkage)—for both models in terms of the implied prior on the number of “e↵ective”
rate shifts. We note that our GMRF-based model is closely related to the work of Duplessis
(2016), Condamine et al. (2018), and Silvestro et al., who use prior distributions that fall into
the class of GMRF distributions, but our work di↵ers from these approaches in important
computational and statistical details [19, 20, 21]. Namely, we develop a tuning-parameter
free MCMC algorithm that enables e�cient exploration of the high dimensional parameter
vectors associated with GMRF- and HSMRF-based models and introduce a framework for
setting the key hyperprior in an interpretable manner. To the best of our knowledge, this
is the first instance of applying HSMRF prior distributions to birth-death processes. We
test both GMRF-based and HSMRF-based models on a variety of simulated diversification
scenarios, and then apply them to a species-level and an epidemiological dataset. We find
that both models are capable of inferring variable diversification rates and correctly rejecting
variable models in favor of e↵ectively constant models. In general, in line with previous
analyses of HSMRF prior distributions [32, 29], we see that the HSMRF-based model has
higher precision than its GMRF counterpart, with little to no loss of accuracy. In empirical
applications, we show that these models are useful for detecting a speciation-rate decline in
the Australian gecko clade Pygopodidae and a complex pattern of variation in the rate of
infection of HIV subtype A in Russia and Ukraine.
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Methods

Our data, D, take the form of a multiple sequence alignment. We assume that the align-
ment D has come from the following probabilistic model. First, a tree is generated from a
time-varying birth-death process governed by time varying birth rate �(t), death rate µ(t),
serial sampling rate �(t), conditional probability of death upon sampling r(t) (primarily
for phylodynamic applications to represent becoming noninfectious when diagnosed and/or
treated), and vector of sampling probabilities � (with associated sampling times t�, we
refer to these as event sampling times). Time starts at 0 at the most recent event (or se-
rial) sampling time and increases into the past, such that the oldest bifurcation in the tree
is to, the time of origin (here also the time of the most recent common ancestor) [8]. We
call the resulting reconstructed tree T , and it consists only of lineages whose descendants
were sampled. On each branch of T , evolution proceeds at a rate governed by a molecular
clock model [33, 34, 35]. Columns in the sequence alignment evolve independently under a
continuous-time Markov chain (CTMC) model, which commonly is referred to as the substi-
tution model. We use the generalized time reversible substitution model [36] with discretized
gamma-distributed rate variation across sites (GTR+G) [37]. For notational simplicity we
refer to the vector of substitution and clock model parameters as ✓, and we discuss the
specifics of these models on a case-by-case basis. We can write the phylogenetic likelihood—
probability of the alignment under the CTMC substitution model—as Pr(D | ✓, T ). All
major statistical phylogenetic software platforms can e�ciently compute phylogenetic like-
lihood via a dynamic programming algorithm, known as the Felsenstein pruning algorithm
[38]. We will use the RevBayes implementation of this algorithm [31].
In Bayesian inference we need prior distributions for �(t), µ(t), �(t), r(t), �, and to, as

well as prior distributions on ✓. We assume that t� is fixed a priori by the user. For our
purposes there will only be one time at which event sampling may occur: the present day,
making t� a scalar t� = 0. Notice that the prior on T conditional on �(t), µ(t), �(t), �,
and to is already specified by the birth-death process. The choice of Pr(to) depends on the
particular group of taxa studied, and the form of Pr(✓) on the specifics of the group and
the data, so we discuss these on a case-by-case basis. The posterior distribution takes the
following form:

Pr(✓, T, to,�(t), µ(t),�(t), r(t),� | D) / Pr(D | ✓, T ) Pr(✓) Pr(to)

⇥ Pr(T | �(t), µ(t),�(t), r(t),�, t�, to)

⇥ Pr(�(t)) Pr(µ(t)) Pr(�(t)) Pr(r(t)) Pr(�).

In macroevolutionary analyses including extant species, there is a single event sampling at
the present (t = 0) with known probability �0 [39]. In phylodynamic analyses, there may be
no event-sampling, thus we set �0 = 0. We make the simplifying assumptions that the serial
sampling rate is a constant, �(t) = �, and that the conditional probability of becoming
noninfectious upon sampling is a known constant, r(t) = r. For any macroevolutionary
dataset r = 0, and in our phylodynamic application we assume r = 1. Additionally, in our
macroevolutionary example there are no serial samples, hence � = 0 (in which case r is not
a parameter of the simplified the model). In all analyses we make the additional simplifying
assumption that the death rate is a constant µ(t) = µ, and place a mean-0.1 exponential
prior on µ. In phylodynamic applications, there is often prior information that enables the
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use of informative prior distributions on � and µ, which we discuss in a later section. The
remaining piece of the puzzle, and our contribution in this paper, is in the specification of
Pr(�(t)), for which we use Markov random field models. (Note that our implementation and
theory of the GMRF and HSMRF can be applied to all time-varying rates; we focused on
the birth rate only for simplicity.) Our simplified posterior distribution takes the following
form:

Pr(✓, T, to,�(t), µ,�, r, | D) / Pr(D | ✓, T ) Pr(✓)

⇥ Pr(T | �(t), µ,�, r,�0, to)

⇥ Pr(�(t)) Pr(µ) Pr(�) Pr(r) Pr(to).

We note that historically �0 has been called ⇢, and � has sometimes been called ⇢.
However, ⇢ has been used to refer to both sampling probabilities [18] and mass extinction
probabilities [15, 16, 22], which creates room for confusion.

Horseshoe Markov random field prior. We define the birth rate on the log scale, �⇤(t) =
ln(�(t)). Following Stadler (2011), we discretize time into n intervals and assume that
�
⇤(t) = �

⇤
i
when t is in the ith time interval, using the parameterization �⇤ = (�⇤

1, ...,�
⇤
n
)

[15]. An HSMRF is a model in which �
⇤
i+1 | (�⇤

i
, �) ⇠ Horseshoe(�⇤

i
, �), where � is a

global scale parameter that controls the smoothness of the overall field. The horseshoe is a
distribution used as a shrinkage prior, a statistical tool designed to discern signal from noise
[40]. In our case, the HSMRF exerts strong prior belief that �⇤

i+1 ⇡ �
⇤
i
; in other words, we do

not expect much change in the birth rate between adjacent intervals. However, the horseshoe
distribution also has fat (Cauchy-like) tails, which allow the HSMRF to behave like a spike-
and-slab mixture model [41], giving the HSMRF a property known as local adaptivity. The
horseshoe distribution needs an auxiliary variables �i and is represented as a scale mixture
of normal distributions

�i ⇠ halfCauchy(0, 1),

�
⇤
i+1 | �i ⇠ Normal(�⇤

i
, �

2
i
�
2).

This mixture representation helps explain the local adaptivity of the HSMRF: one or a few
(relatively) large changes can be handled by large �i without increasing �. We place a
Normal(ln(�̂), ⇠) prior distribution on �

⇤
1, where �̂ is a rough estimate of net diversification

rate. When there are extant lineages in the tree, �̂ is the maximum likelihood estimator for
the net diversification rate, d, from Magallon and Sanderson (2001) [42]. When there are
no extant lineages in the tree, we put a lower bound on the net diversification rate using
the number of births in the tree (excluding the origin or root as appropriate), Bobs. The
expected net number of births observed in a tree by time t is given by E(Bt) = 2et·d � 2 if
starting at the time of the most recent common ancestor, and E(Bt) = e

t·d � 1 if starting
with a single lineage. By the method of moments, we can obtain (for the case of starting
with the MRCA) d̂ = (ln(Bobs + 2) � ln(2))/t, where t is the age of the tree. As not all
lineages that are born will be sampled in our tree, the number of observed births will be
an underestimate of the number of births and our rate will be underestimated, but it will
su�ce. In practice, when setting the prior for the first birth rate, we use ⇠ = 1.17481,
producing, a priori, Pr(�̂/10  �1 < 10�̂) = 0.95. We use a halfCauchy(0, ⇣) prior on �,
where ⇣ is the global shrinkage prior, and we discuss how to set it in a later section. A list
of all parameters in the model and their prior distributions can be found in Table 1. The
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�
⇤
1 �

⇤
2 �

⇤
3 �

⇤
4

�̂ ⇠ �

⇣

(a)

�
⇤
1 �

⇤
2 �

⇤
3 �

⇤
4

�1 �2 �3�̂ ⇠

�

⇣

(b)

Figure 1. Simplified versions of our MRF-based models, shown as a grid of size 4. To
highlight the structural similarities between the GMRF- and HSMRF-based models, we
draw the directed acyclic graph (DAG) as if we had an analytical form of the horseshoe
distribution (that is, we omit the local scale parameters of the HSMRF). In (a), we show the
idealized general MRF model, while in (b), we show how we can reparameterize the model
in terms of a vector � of independent random variables. This reparameterization greatly
improves the e�ciency of MCMC sampling. When drawing the model as a DAG, squares
represent constant values, closed circles stochastic values, and open circles deterministic
transformations of other nodes.

full posterior distribution of our HSMRF-based model parameters is,

Pr(T, to,✓,�
⇤
, µ, �,� | D) / Pr(D | ✓, T ) Pr(✓) Pr(T | �⇤

, µ, to, ⇢) Pr(�⇤ | �,�)
⇥ Pr(�) Pr(�) Pr(µ) Pr(to).

We approximate the above posterior distribution using the following MCMC strategy.
We use standard Metropolis-Hastings kernels available in RevBayes to update the tree T ,
time of the root to, substitution model parameters ✓, and extinction rate µ, and the first
log-speciation rate, �⇤

1 (see Höhna et al. (2017) for a description of the standard RevBayes
Metropolis-Hastings kernels [43]). Since vectors �⇤ and � can be high dimensional, we
update the vectors in blocks. First, we reparameterize the model to work with the first order
di↵erences �i = �

⇤
i+1 � �

⇤
i
, i = 1, . . . , n � 1 instead of �⇤ (see Figure 1). This allows us

to sample the vector �, where all elements are a priori independent, instead of the vector
� where the adjacent values are highly correlated, greatly increasing the e�ciency of the
MCMC. Further, under the GMRF and the hierarchical representation of the HSMRF, all
the � are Normal random variables, enabling us to employ an elliptical slice sampler [44]
for � = (�1, . . . ,�n�1). The (conditional) normality of the � also allows us to employ a
Gibbs sampler for � and �, which allows us to adequately sample the tails of the posterior
distribution. Without this elliptical slice sampler and Gibbs sampler combination, MCMC
for these models fails to converge to the posterior distribution. We defer a more thorough
discussion of our MCMC strategy to the supplemental methods.

Gaussian Markov random field prior. Our GMRF-based model can be seen as a spe-
cial case of an HSMRF-based model where �1 = · · · = �n = 1, meaning �

⇤
i+1 | �⇤

i
, � ⇠
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Normal(�⇤
i
, �

2). The lack of local scale parameters makes the GMRF-based model a non-
locally-adaptive model. For the GMRF-based model, the posterior distribution is

Pr(T, to,✓,�
⇤
, µ, �, | D) / Pr(D | ✓, T ) Pr(✓) Pr(T | �⇤

, µ, to, ⇢) Pr(�⇤ | �)
⇥ Pr(�) Pr(µ) Pr(to).

The MCMC algorithm to approximate the above posterior distribution is the same as for
the HSMRF-based model, except we do not need to update the vector �.

Setting the prior on the global scale parameter. In both HSMRF and GMRF-based
models, the global scale parameter, �, controls the smoothness of the overall field, with
smaller values favoring less variability. Following Faulkner et al., we take a hierarchical
approach and place a prior distribution on the global scale parameter, such that � ⇠
halfCauchy(0, ⇣) [29]. We choose ⇣ in terms of se, which is the number of “e↵ective shifts” in
the birth rate and we define an e↵ective shift to be an event {�i+1/�i < 1/✏ or �i+1/�i � ✏}.
That is, an e↵ective shift is the event where two adjacent birth rates are di↵erent by more
than ✏-fold. We set ✏ = 2, reflecting that a 2-fold change in the birth rate is biologically
meaningful and statistically detectable. Setting ⇣ is then accomplished implicitly by setting
the prior expected number of e↵ective shifts, E[se], which is more interpretable than ⇣. In
this setup, E[se] is the expectation of a binomial random variable with probability p that
there is an e↵ective shift between �i+1 and �i. Since we can compute p given a particular
value of ⇣, and since there is no obvious closed form solution, we use numerical methods to
solve for ⇣. Code to calculate ⇣ from E[se] is available in the GitHub repository, see section
”Code and data availability.”

We find that in practice E[se] = ln(2) produces a prior that is reasonably conservative
yet flexible. This yields ⇣HSMRF ⇡ 0.0021 for HSMRF-based models and ⇣GMRF ⇡ 0.0094
for GMRF-based models. An alternative approach to specify ⇣ examines the implied prior
distribution on �n/�1, i.e., the prior distribution on the fold change across the entire process.
A priori, for the HSMRF on a grid size n = 100, E[se] = ln(2) leads to Pr(0.5  �n/�1 <

2) ⇡ 0.76 and Pr(0.1  �n/�1 < 10) ⇡ 0.9. While we do not use this approach to set
⇣, it shows that our chosen value for ⇣ focuses the prior mass on reasonable regimes while
leaving room for rather substantial amounts of change. For completion, in the supplementary
materials we provide more context for these choices of prior, including an alternative choice
of E[se] following Drummond and Suchard (2010), and examine two additional frameworks,
bounding the marginal variance of the GMRF and HSMRF (explored by Sørbye and Rue
(2014) and Faulkner et al. (2018)), and bounding the e↵ective number of parameters in the
model (explored by Piironen and Vehtari (2017)) [45, 46, 29, 47].
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Table 1. All parameters in our models, their prior distributions, and their role in the
model. In phylodynamic applications, there may be more information to set the death rate,
µ, and the sampling rate, �. The sampling fraction at present, �0 and the probability of
death upon sampling, r are taken to be known a priori. The age of the tree, tor is fixed
to the observed height if the tree is data, else it is a variable with the prior determined by
the user. For models with 100 intervals, we set ⇣ = 0.0021 for HSMRF-based models and
⇣ = 0.0094 for GMRF-based models. The GMRF-based model lacks local scale parameters
�. We adopt an empirical Bayes approach to setting the prior on the first log-birth-rate
using, using a guess at the tree age and the number of tips to obtain �̂⇤

1 and in practice set
⇠ = 1.17481.

Parameter Prior Role

µ Exponential(10) death rate
� Exponential(10) serial sampling rate
�0 Fixed sampling fraction at present
r Fixed probability of death upon sampling
tor User choice age of tree
⇣ Fixed(0.0021) or Fixed(0.0094) global scale hyperparameter
� halfCauchy(0,⇣) global scale of the MRF
�i halfCauchy(0,1) local scale of HSMRF
�⇤
1 Normal(ln(�̂), ⇠) log-scale birth rate at present

�⇤
i>2 Normal(�⇤

i�1,�
2�2

i
) log-scale birth rates

Results

Simulation study. To understand statistical properties of both random field birth-death
models, we perform a (nonexhaustive) simulation study. Some of the most debated questions
in species diversification concern diversification-rate decreases [48, 49, 9, 50, 51, 52, 53], and
the ability to detect e↵ective epidemiological interventions hinges on the ability to accurately
estimate decreases in the rate of infection, so we consider simulation scenarios where the
birth-rate declines through time. We devise a series of piecewise-linear functions �(t) in
which the birth rate decreases through time. For each model, we use the R package TESS [54]
to simulate 100 trees conditioned on the tree age (to = 100), with complete species sampling
(�0 = 1), and choosing values for �(t) and µ to give an expectation of 200 species/tips at
the present. Given the underdeveloped infrastructure for simulating serially-sampled trees,
we focus on trees where all samples are at the present day (� = 0), but see Barido-Sottani
et al. (2019) for recent developments [55]. When analyzing these simulations, we take the
tree and sampling fraction to be known. Treating the tree as data allows us to focus on
the performance of the random field birth-death models without worrying about potential
sources of bias during time-calibrated tree estimation [56]. Taking the tree as data also
mirrors the predominant historical usage of models of rate variation, detecting variation in
trees previously inferred [11, 2, 3, 15].
We assess model performance by looking at four summaries of the inferred birth-rate

trajectories. We take as our estimate of �(t) the birth-rate trajectory defined by the median
posterior of each birth rate �i. First, to quantify bias we use the Mean Absolute Deviation
(MAD) of the estimated birth-rate trajectory, given by (1/n)

P
n�1
i

|�̂i��i|. Second, we look
at the Mean Absolute Sequential Variation (MASV) of the estimated trajectory, the gross
change inferred, given by (1/(n � 1))

P
n�1
i

|�̂i+1 � �̂i|. Where the simulated trajectory is
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Figure 2. Inferred birth-rate trajectories from four individual simulations. The dashed line
is the true simulating birth rate, the dark colored line is the posterior median trajectory (the
median is taken separately for each grid cell), and the shaded region show the 90% Credible
Interval (CI) for the rate. The leftmost column is from the constant-rate simulations, and
the right three columns demonstrate the e↵ect of changing the shift duration (the length of
the tree over which the birth rate changes), from an instantaneous shift to a constant change
model. When we focus instead on the location of the shift, all simulations are piecewise-
constant as in the second column. In each column, we show the simulation with the most
average performance measured in terms of the Mean Absolute Deviation of both the GMRF
and HSMRF.

variable, it is more useful to consider the relative MASV (RMASV), MASV(�̂)/MASV(�). If
RMASV > 1, the inferred trajectory is more variable than the true trajectory, and if RMASV
< 1, it is less variable. Third, we look at the fold change (FC) of the estimated trajectory,
�̂n/�̂1. This will show us if we capture the presence of an overall change in the birth rate,
even if we fail to capture the specific pattern. Finally, we look at the average width (across
all estimated birth rates, �i) of the 90% posterior credible interval as a measure of precision,
(1/n)

P
n

1 (�̂
0.95
i

� �̂
0.05
i

)/�̂i. This measure, which we call relative precision (RP), is both more
interpretable than the raw credible interval and more comparable across simulations.

Constant-rate simulations. Our first simulations are from a constant-rate diversification
model, such that �(t) = �. This allows us to test the tendency towards what could be
termed “false positives,” the detection of spurious rate variation. Both the GMRF and
HSMRF birth-death models can produce e↵ectively constant-rate trajectories, though their
flexibility is not without minor drawbacks. Ridge plots of performance measure histograms
across all simulations are shown in Figure 3. The trajectories estimated by both models have
low MAD, FC ⇡ 1, and small RP, indicating generally good performance. Further, compared
to fitting constant-rate models, the increase in MAD from inferring the variable-rate models
is negligible and the decrease in precision is small (Supplementary Figure S1). There are
two primary drawbacks to using these models to fit constant-rate trajectories. The models
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Figure 3. Performance of the models on simulated constant-rate datasets. MAD measures
the error in the estimated trajectory. MASV measures the total amount of change relative
in the trajectory, horizontal line at true value for reference. FC measures the fold change
from present to past, dashed line at true value for reference. RP is a measure of precision,
the average width of the 90% Credible Interval relative to the birth rate.

occasionally fit trajectories where the inferred change between the beginning and end of the
process does not appear negligible. However, comparisons to the prior make it quite clear
that both the GMRF and HSMRF are fitting e↵ectively constant-rate trajectories. For both
models roughly 99% of the prior MASV is greater than 0.01, while roughly 5% of the poste-
rior MASV is greater than 0.01, further indicating that the models are producing e↵ectively
constant trajectories. The HSMRF and GMRF produce very similar average error and fold
change, though the distributions of these metrics for the GMRF are more tightly focused
around the target values (MAD of 0, FC of 1), and the GMRF has slightly tighter credible
intervals. The GMRF generally estimates narrower credible intervals, while the HSMRF
generally estimates trajectories with lower MASV.

Piecewise linear simulations. Our primary time-variable simulations examine the impact of
the shift duration, i.e., the amount of time over which the birth-rate changes. To examine
this, we build a piecewise-linear birth-rate function, where the birth rate is �1 for 100 �
t > t1, �2 for t  t2, and a linear interpolation for t1 � t > t2. We center the shift at 50
((t1 + t2)/2 = 50), and simulate shift durations (t2 � t1) of 0%, 25%, 50%, 75%, and 100%
of the age of the tree. All simulation parameters are recorded in Supplementary Table S1.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/853960doi: bioRxiv preprint 

https://doi.org/10.1101/853960
http://creativecommons.org/licenses/by-nc/4.0/


BIRTH-DEATH MODELS WITH MARKOV RANDOM FIELD PRIOR DISTRIBUTIONS 11

0.
00

0.
03

M
AD

0 25 50 75 100

0
2

4
6

R
M

AS
V

0 25 50 75 100

GMRF
HSMRF

2
6

10
FC

0 25 50 75 100
Shift duration

0.
5

1.
5

2.
5

R
P

0 25 50 75 100
Shift duration

(a)

0.
00

0.
02

0.
04

M
AD

40 50 60 70 80 90

0
4

8
R

M
AS

V

40 50 60 70 80 90

GMRF
HSMRF

2
6

10
14

FC

40 50 60 70 80 90
Shift center

0.
5

1.
5

2.
5

R
P

40 50 60 70 80 90
Shift center

(b)

Figure 4. The e↵ect on parameter inference of (a) changing the (four-fold) rate shift from
instantaneous to the entire length of the trajectory and (b) changing the center of an instan-
taneous (four-fold) rate shift. MAD measures the error in the estimated trajectory. Relative
MASV measures the total amount of change relative to the true MASV, horizontal line at
1 for reference. FC measures the fold change from present to past, dotted line at true value
for reference. RP is a measure of precision, the average width of the 90% Credible Interval
relative to the birth rate.
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The HSMRF-based model performs better when the shift is fast (when t2 � t1 is small),
and the GMRF-based model performs better when the shift is slow (when t2 � t1 is large,
Figure 4a). For the HSMRF-based model, the MAD statistic is lower and both the MASV
and FC statistics are closer to the truth when the true shift is shorter. In contrast, for the
GMRF-based model, the MASV statistic gets closer to the truth, i.e., the error decreases,
and the RP statistic gets narrower as the shift duration increases. Both models though have
di�culty with continuous, slow declines where they have a tendency to underestimate the
total change. In some simulations, both models e↵ectively fit constant-rate trajectories. The
HSMRF-based model also has a tendency towards fitting steep shifts even in cases where
the true shift is slow (Figure 2).

Piecewise constant simulation. We also examine the e↵ect of varying the location of the
instantaneous birth-rate shift. To do this, we build a piecewise-constant birth-rate function,
where the birth rate is �1 for 100  t < tshift, �2 for t  tshift; we simulate tshift =
90, 80, ..., 40 (see for example Figure 2 second panel). The location of the rate shift should
influence the capacity for detection by altering the expected number of births in the pre-shift
portion of the tree. As the shift moves from past to present, for the HSMRF-based model
the MAD statistic decreases and the RP statistic gets smaller (Figure 4b). However, for
the GMRF-based model, as the shift becomes more recent, the RMASV statistic becomes
increasingly inflated, indicating trajectories that are too variable. This is due to the GMRF-
based model estimating rather substantial variation in the more ancient portions of the tree.
The HSMRF-based model outperforms the GMRF-based model in most statistics and for
most shift locations.

Shift magnitude. The magnitude of the birth-rate shift should also impact the capacity for
detection, so we simulate shifts of two magnitudes for all scenarios outlined above. For our
low magnitude shift, we simulate a two-fold change, and for our larger shift, we simulate a
four-fold change. Unsurprisingly, it is harder to detect smaller shifts. Results for di↵erent
functional forms are qualitatively similar between shift magnitudes, so we present only the
results for the four-fold shifts in Figure 4. In many cases with two-fold shifts, the inferred
trajectory was e↵ectively constant. Thus in general the MAD statistic is higher, the RMASV,
FC, and RP statistics are lower. Supplementary Figures S2 and S3 give full simulation results
for the two-fold case comparable to Figure 4.

Empirical analysis of Pygopodidae. Pygopodidae is a clade of approximately 46 legless
geckos [6]. Recently, Brennan et al. (2017) used several birth-death models to investigate
the history of diversification in this group, examining trends in speciation over time using
a posterior sample of 100 phylogenies estimated via BEAST 1.8.3 [6, 57]. The majority
of their analyses revealed a drastic speciation-rate decrease in the recent (2-5 million years)
past, though there was some disagreement between methods over the significance and timing
of the shift. Here we revisit the question of significance and timing of the birth-rate shift
in full joint analyses of phylogeny and both our GMRF and HSMRF birth-death models.
Details of the substitution and clock models are available in the supplemental materials, as
are details of MCMC convergence diagnostics performed.
Our dataset includes 41 out of 46 representatives of Pygopodidae, which we used to set

the species sampling fraction, �0 = 0.89. We employed calibrations on the same nodes as
Brennan et al. (2017), resulting in a calibration for the root node and one each on the genera
Delma and Apprasia [6]. Following Brennan et al. (2017), we place a Uniform(19.5, 29.0)
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Figure 5. Analyses of the Pygopodidae dataset. Plotted are posterior median trajectories
(dark lines) and 90% credible intervals (shaded regions). Time is in millions of years before
the present day. In grey is a heatmap of the inferred divergence times.

prior on the root age [6]. To set up our grid, we thus choose to divide the interval [0, 29] into
100 intervals/epochs of equal length.
GMRF and HMRF-based models produce a clear visual signature of a diversification-rate

decrease (Figure 5), with a higher rate from the origin of the clade up until at least 12 ma,
and a lower rate afterwards. The HSMRF-based model favors a steeper decrease ending
approximately 6 ma, while the GMRF-based model favors a much slower decline that starts
approximately 14 ma and lasts until approximately 2 ma. Over the range [14ma, 2ma], the
HSMRF estimates a 3.43-fold decrease (90% Credible Interval (CI) [1.12, 8.49]), while the
GMRF estimates a 2.41-fold decrease (90% CI [1.00, 7.58]). The HSMRF produces 90%
credible intervals for the speciation rate that are generally narrower than the GMRF-based
model’s intervals. The behavior of both models is in line with the simulation results for fast
to intermediate shifts, with the HSMRF inferring a faster shift of larger magnitude with
tighter credible intervals than the GMRF-based model.
Given that the posterior distributions of adjacent birth rates are highly correlated, testing

for a shift in a specific interval from �i to �i+1 could suggest there is no shift even when
there is clearly a shift present in the overall trajectory. However, we can avoid this issue
by testing hypotheses over longer timespans. The Bayes Factor [58] in support of an s-fold
decrease between tstart and tend is given by,

Pr(�(tstart)/�(tend) < s | D)

Pr(�(tstart)/�(tend) � s | D)

.Pr(�(tstart)/�(tend) < s)

Pr(�(tstart)/�(tend) � s)
.

For an s-fold increase, the inequalities are reversed. If we are interested in the evidence of
a shift over the range [2ma, 12ma], we can compare the speciation rates in the appropriate
intervals for a given shift size s. For our grid, the 7th interval ends at 2.03ma, while the
43rd starts at 12.18ma, and we would test hypotheses regarding �7/�43. Then all we need to
know are the posterior and prior probabilities of observing a shift of at least s (or less than
s if testing a decrease). If we were instead interested in testing simply for the presence of a
shift, then we choose s = 1. Under both our HSMRF-based and GMRF-based models, the
prior probability Pr(�i/�j < 1 | HSMRF ) = 0.5 (for any i 6= j), making the denominator
(the prior odds) 1 and only requiring us to compute the numerator (the posterior odds). For
the HSMRF-based model, Pr(�7/�43 < 1.0 | D, HSMRF ) = 0.98, and the 2ln(BF) in favor
of a birth-rate shift over this interval is 7.73 (using the nomenclature of Kass and Raftery
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Figure 6. Analyses of the HIV dataset. Plotted are posterior median trajectories (dark
lines) and 90% credible intervals (shaded regions). The upper CI for the GMRF-based
analysis extends to ⇡26, we have truncated the figure for a clearer view of the rest of the
trajectory. Time is plotted as calendar time. A line at Re = 1 is provided for convenience, as
below this threshold the epidemic cannot be sustained. In grey is a heatmap of the inferred
divergence times.

(1995), “strong” support [58]). For the GMRF-based model, equivalent calculations produce
a 2ln(BF) in favor of a birth-rate shift of 5.53 (“positive” support). If we had instead been
interested in testing for a shift of a particular magnitude, we could simulate under the prior
to estimate the prior odds.

HIV Dynamics in Russia and Ukraine. In Eastern Europe and Asia, the use of injected
drugs was a driving force in HIV epidemics for many years and continues to be an important
factor in the spread of HIV [59]. Russia and Ukraine have a particularly high number of
people who inject drugs, 2 million individuals combined, and a total of 1 million HIV infected
individuals [60]. These factors, plus a limited e↵ort to reduce the scope of the problem in the
beginning of the epidemic, make Russia and Ukraine a good source of data for estimating
how HIV spreads among those who inject drugs. Vasylyeva et al. (2016) used a number
of approaches, including phylodynamic methods, to study the course of the epidemic from
the 1980s through 2011 [60]. They estimated that half of all secondary infections take place
during the first month post-infection. They further identified a massive increase in the size of
the infected population during the 1990s, and estimated that during this period each newly
infected individual transmitted to at least 5 others.
When using birth-death models for infectious disease phylodynamics, the primary pa-

rameter of interest is the e↵ective reproductive number at time t, Re(t). This is defined
as the average number of individuals who will be infected by a single infectious individual
introduced into a population with the same numbers of susceptible and removed individuals
as are present in the population of interest at time t [61]. In a constant-rate birth-death-
sampling-treatment process, the average duration of an infection is the inverse of the total
rate of becoming noninfectious, or (µ + r�)�1. The expected number of infections an indi-
vidual will cause over a timespan t is given by � · t, approximately for small t. Thus, in the
constant-rate case, the expected number of secondary infections caused by an individual is
Re = �/(µ+r�). In the time-varying case, if an individual becomes infected at time t, we use
the rates at that time to compute the expectation and obtain Re(t) = �(t)/(µ(t)+ r(t)�(t)).
To understand the dynamics of HIV in Russia and Ukraine in the time period of interest, we

use the sequence alignment for the env region from Vasylyeva et al. (2016) [60]. We analyze
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this dataset (457 sites for 92 sequences) under both the HSMRF-based and GMRF-based
models, defining 2011 (the time of the most recent sample) to be the present day and dividing
the range [0,29.1] into 100 evenly-sized intervals. We employ a Normal(29.1,5.0) root age
prior, truncated to be older than the oldest sample age of 18. We fix r = 1, corresponding to
the assumption that an individual, once sequenced and diagnosed, will not cause any further
infections because they will be provided treatment and will have undetectable viral load.
As there is information about the duration of infection in HIV, and thus the death rate, we
replace our usual Exponential(10) prior with a Lognormal(-2.272,0.073) prior on the death
rate (the rate of becoming noninfectious in the absence of sampling and treatment). This
corresponds to an a priori 95% probability that an untreated individual will be infectious for
between 8.4 and 11.2 years [60, 62]. We use an Exponential(10�5) prior on the serial sampling
rate. Details of the substitution and clock models are available in the supplemental materials,
as are details of MCMC convergence diagnostics performed.
While the model we fit only has a time-varying birth rate, we plot the more informative

Re(t) instead in Figure 6. Both the HSMRF-based and GMRF-based models show evidence
for a spike in Re(t) in the early 1990s and a sharp decrease at the end of the 1990s. We
quantify support for shifts in �(t) instead of Re(t), as we do not directly parameterize e↵ective
reproductive number. The 2ln(BF) in favor of an increase between 1992 and mid-1994 (of
any magnitude) are 5.88 (positive support) for the HSMRF-based model and 7.57 (strong
support) for the GMRF-based model. Similarly, the 2ln(BF) in favor of a decrease between
1999 and 2001 are 7.37 (strong support) for the HSMRF-based model and 9.53 (strong
support) for the GRMF-based model. However, where the HSMRF-based model largely
shows evidence for a consistently elevated rate in this period, the GMRF-based model shows
a sharp dip mid-way through the decade, with the 90% CI including Re(t) = 1. The HSMRF-
based model estimates an average rate in this interval of 3.89, with rates that may be as low
as 1.65 or as high as 8.07, and the GMRF-based model estimates an average rate of 3.55
with rates possibly as low as 0.54 or as high as 11.51.
The results of our HSMRF-based model analysis are largely consistent with those of Va-

sylyeva et al. (2016), who also observe an increased rate of infection from 1995 to 2000 [60].
Our GMRF-based analysis, with its large decrease in Re(t), does not align with either the
prevalence data or any analysis performed by Vasylyeva et al. (2016) [60]. While both our
HSMRF-based and GMRF-based models estimated Re(t) < 1 throught the 2000s, there is
no evidence from HIV prevalence that the epidemic is decreasing [63, 64]. Examining the
posterior distribution on phylogenies provides some insight into this apparent conflict: there
are few infections inferred to have happened post-2000, and thus there is no information
suggesting that Re(t) > 1 in this period. Previous coalescent analyses have favored a higher
Re(t) persisting with no sign of a decrease, however such models can have di�culty infer-
ring decreases in the absence of coalescent events [26]. This highlights the fact that while
birth-death process and coalescent models are good at peering into the past, without birth
(coalescent) events there is little to no information from which to infer birth (coalescent)
rates and thus the posterior distribution is largely determined by the prior distribution. On
the other hand, there is outside evidence that the epidemic has slowed since 2005 [65], so it
is possible that our models are picking up on a real signal and simply exaggerating it.

Code and data availability. We have implemented all models and necessary samplers in
RevBayes [31]. Analysis were performed with RevBayes v1.0.11
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(https://github.com/revbayes/revbayes). Scripts used for our real data analyses and simu-
lations are available at github.com/afmagee/hsmrfbdp.

Discussion and Conclusion

In this paper, we use a piecewise-constant birth-death model, combined with both GMRF
and HSMRF prior distributions, to approximate arbitrary changes in the birth rate through
time. We implemented these models in the statistical phylogenetic software platform RevBayes,
allowing for both inference of birth-death process parameters using a phylogeny as data and
for joint inference of BDP parameters, phylogeny, and nuisance parameters directly from
molecular sequence data. We find that both GMRF and HMRF-based models are capable of
inferring variable diversification rates and correctly rejecting variable models in favor of e↵ec-
tively constant models. We see that in general the HSMRF-based model has higher precision
than its GMRF counterpart, with little to no loss of accuracy. Applied to a macroevolution-
ary dataset of the Australian gecko family Pygopodidae (where birth rates are interpretable
as speciation rates), our models detect a speciation-rate decrease in the last 12 million years.
Applied to an infectious disease phylodynamic dataset of sequences from HIV subtype A in
Russia and Ukraine, our models detect a complex pattern of variation in the rate of infection.
Through simulations we find that di↵erent functional forms of birth-rate variation produce

unique challenges in estimating these forms, even if they share the same magnitude of change.
Slow changes are easy to miss, intermediate shifts are largely detectable, and fast shifts are
generally hard for the GMRF-based model but easy for the HSMRF-based model to estimate.
Fast shifts cause issues for the GMRF-based model because they require the global scale
parameter � to be large, which results in noisy and imprecise inference of slowly changing
parts of the birth trajectory. At the same time, the GMRF-based model has a tendency
to over-smooth the rapid changes. More recent changes are generally easier to detect than
older changes, and very recent changes are often missed. Larger magnitude shifts are easier
to detect than smaller magnitude shifts for both models, regardless of the functional form.
In general, factors that make detecting shifts easier also exacerbate the poor behavior of
the GMRF-based model. The HSMRF-based model often favors a trajectory with one or
a few steeper shifts, even when the truth is a more gradual change. However, even if the
duration of the shift is not accurately estimated, the HSMRF can recover the presence of rate
variation even when the GMRF fails. Overall, we find that the performance of the HSMRF
is quite good, and it is only clearly outperformed by the GMRF on a few types of birth rate
trajectories. Therefore, we recommend using HSMRF as a Bayesian nonparametric prior for
birth/death/sampling rate trajectories.
On real datasets with full joint inference, we see evidence of many of the same patterns

observed in our simulation study. In both of our empirical analyses, there is evidence from
both the HSMRF-based and GMRF-based models of large shifts, and the HSMRF-based
model indicates periods of relatively constant rates outside of these jumps. As we see in the
simulations with more rapid shifts (shift durations of 50 or less), the HSMRF-based model
has slightly narrower credible intervals than the GMRF-based model in both analyses. In
both analyses, the HSMRF-based model favors trajectories that are much closer to piecewise-
constant than the GMRF-based model. In the HIV analysis, the GMRF-based model infers
rather extreme variation in the birth rate where the HSMRF-based model infers very little,
and based on the simulations it seems likely this is an artifact of the GMRF-based model’s
lack of local adaptivity rather than a feature that the HSMRF-based model misses. Based
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on our simulations, while we cannot confidently say whether the HSMRF-based model more
accurately estimates the duration of the observed birth-rate shifts in either case, we can be
more confident in its estimates of the magnitude of change.
There are several avenues by which random field birth-death processes might be extended.

It would be useful to devise models that can detect slower declines, situations where the mod-
els we have put forth here fail. One option for this would be to build second order Markov
random field models, which can more easily collapse to linear models. These models have
shown promise in coalescent modeling [29], but they have a higher risk of over-smoothing
than first order models. Models incorporating time-varying rates of death and sampling
are possible, though preliminary results suggest detecting time-varying death rates is very
di�cult without serial samples. Covariates may be added to time-varying birth-death mod-
els as has been done in the previous work related to our GMRF-based model [20]. Adding
covariates to the HSMRF-based model may allow for better success in inferring time-varying
death rates by providing additional information. Models that allow for the serial sampling
rate to vary may have better success (with or without covariates), as there is more direct
information about this rate. However, in cases where a number of samples have the same
recorded age but there is not a sampling event (such as when some epidemiological sam-
pling dates are available only to the year), may prove di�cult. In such a case, the apparent
variation in the sampling rate will likely overwhelm any signal of true variation in the sam-
pling rate and may lead to erroneous estimates of the birth rate. Finally, for phylodynamic
applications like HIV, it is clear that GMRF-based and HMRF-based birth-death models
would benefit strongly from the inclusion of occurrence data, which has been incorporated
into time-homogenous birth-death-sampling-treatment process by Gupta et al. (2019) [66].
In this work, we have developed and explored the performance of two flexible, time-varying

birth-death process models. Using simulations, we show that both of these models have a very
good ability to collapse to an e�ctively constant-rate model, and thus a low tendency towards
false positives. Further, we show that the HSMRF-based model is good at discerning true
signals of rate variation from spurious signals, and is capable of inferring very abrupt changes
in the birth rate, enabling precise estimation of the timing of birth-rate shifts. On real data,
we show that both models can infer complex patterns of birth-rate variation. Additionally,
we present an intuitive scheme for setting the key hyperparameter for these models, the global
shrinkage parameter, and provide an e�cient and tuning-parameter free inference framework
that enables inference for these high-dimensional models. Implementation in the software
package RevBayes allows practitioners to employ these models while simultaneously inferring
the phylogeny and all nuisance parameters (namely the substitution and clock models).
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