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Summary
Latent factor modelling applied to single-cell RNA-sequencing (scRNA-seq) data is a useful approach to

discover gene signatures associated with cell states. However, it is often unclear what method is best

suited for specific tasks and how latent factors should be interpreted from a biological perspective.

Here, we compare four state-of-the-art methods and explore their stability, predictive power and coverage

of known biology.  We then propose an approach that  leverages the derived latent  factors to  directly

assign pathway activities to specific cell subsets. By applying this framework to scRNA-seq datasets from

biopsies of rheumatoid arthritis and systemic lupus erythematosus patients, we discover both known and

novel disease-relevant gene signatures in specific cellular subsets in a fully unsupervised way. Focusing

on rheumatoid arthritis, we identify an inflammatory Oncostatin M receptor signalling signature active in a

subset  of  synovial  fibroblasts and dysregulation of  the GAS6 -  MERTK axis  in  a  subset  of  synovial

monocytes with efferocytic function.

Overall, we provide insights into strengths and weaknesses of latent factors models for the analysis of

scRNA-seq data, we develop a framework to identify cell subtypes in a function- or phenotype-driven way

and use it to identify novel pathways dysregulated in rheumatoid arthritis.

Introduction
Single-cell  RNA-sequencing  (scRNA-seq)  is  a  powerful  technique  that  enables  gene  expression

measurements  in  thousands  of  individual  cells.  Resolving  cellular  heterogeneity  by  scRNA-seq  has

enabled  groundbreaking  discovery  in  the biomedical  domain,  such as  finding key  disease drivers in

cancer1–3,  neurodegeneration4,5 and immune-mediated diseases6–9.  From a data analysis standpoint,  a
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crucial step in a standard scRNA-seq pipeline10 is clustering, where discrete cell populations sharing a

common transcriptional  profile  are defined.  These cell  clusters are used in  a  variety  of  downstream

analyses, such as differential expression11–13, compositional analysis14 and cellular interaction analysis15–

17.  Differential  expression  is  fundamental  to  aid  the  phenotypic  identification  of  cell  types,  usually

performed by means of a hybrid approach that entails prior knowledge of the biological system and gene

set enrichment analysis. An alternative, cluster-free approach to phenotypic identification of cellular states

is  trajectory  analysis18,  which  aims  to  derive  differentiation  processes  by  using  a  pseudo-temporal

ordering  of  single  cells.  However,  in  addition  to  identity-  and  differentiation-specific  activities,

transcriptional programs entail a variety of cellular processes such as metabolism, growth, stress and cell

signalling,  which  are  not  necessarily  captured  by  these  approaches.  Nevertheless,  such expression

programs are of great interest in a disease setting, where several communicating cell populations might

act in the same dysregulated pathway. Thus, an in-depth characterization of such pathogenic signalling

cascades at single-cell resolution is of great interest from a disease understanding perspective.

Latent  factor  models aim to decompose the global  expression profile  in  its underlying transcriptional

programs19.  These  models  project  both  genes  and  cells  in  a  low-dimensional  space,  with  latent

dimensions approximating cells’ transcriptional programs and summarizing the contributions of several

genes.  Standard matrix  factorization approaches,  such as  principal  component  analysis  (PCA),  non-

negative matrix factorization (NMF) and independent component analysis (ICA), have been widely applied

to  scRNA-seq  data1,2,20.  Nevertheless,  novel  methods  have  been  developed  that  account  for  the

specificities of single-cell  data,  using meaningful prior distributions and enforcing sparsity21–26. A major

challenge of these approaches is the determination of the number of latent dimensions to use. Despite a

few heuristics having been proposed20,27, it is unclear whether these strategies could be applied effectively

to datasets with different characteristics, and whether such heuristics are appropriate for different tasks.

Furthermore,  it  has  been  shown  that  different  biological  processes  are  captured  at  different

dimensionalities of the latent space28, suggesting that approaches considering a varying number of latent

dimensions could be more robust in recapitulating the underlying biological hierarchies of  the dataset

under consideration.

To explore the potential of these methods to uncover previously unidentified pathway activities, we set up

to perform a systematic comparison of four latent factor models recently proposed: scCoGAPS21, LDA29,

scHPF22 and scVI23.  We test  these models  on  two scRNA-seq  datasets  from autoimmune diseases

patients. The first dataset consists of single cells isolated from synovial biopsies of rheumatoid arthritis

(RA) patients and further sorted into four main cell subsets (monocytes, B cells, T cells and fibroblasts,

referred to as the RA dataset)9. The second dataset consists of single cells isolated from the kidney of

systemic lupus erythematosus (SLE) patients with lupus nephritis (LN) and enriched for the leukocyte

component (referred to as the SLE dataset)7. We evaluate the stability over iterations of the four methods

across the dimensionality of the latent space by using three different metrics and highlight the predictive
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power of these methods to discriminate cells isolated from patients or controls. Furthermore, we assess

the methods’ ability to recover gene signatures by evaluating the coverage across 13 different gene set

collections. Reasoning that latent factors can be used as surrogates of pathway activities, we devise a

simple method to assign gene signatures to cell clusters, thus enabling the identification of cell subsets

from a functional perspective. We then extend this analytical framework to integrate ligand – receptor

interactions  across  cell  subsets.  Finally,  we  explore  the reported gene  signatures  and discover  two

previously unidentified pathways in the RA dataset: the Oncostatin M receptor signalling pathway in a

subpopulation of fibroblasts and the MERTK receptor signalling pathway in a monocyte subset. We show

that  these  signatures  are potentially  disease-associated,  thus  highlighting  the power  of  latent  factor

modelling to inform the discovery of novel pathogenic pathways. 

Results

Evaluation of latent factor models show differences in performance across tasks

and latent dimensions

It has been shown that factorization solutions are not strictly convex, thus showing instability properties at

different  iterations19,30. A common heuristics to select  an appropriate latent  dimension is the algorithm

stability across iterations20,31. For each method, we performed 10 iterations across 13 dimensionalities of

the latent space (from k = 16 to k = 40, with step 2) and computed three stability metrics: Amari distance,

silhouette score on the k-medoids-defined clusters, and the singular value canonical correlation analysis

(SVCCA) score (see STAR Methods for details). We performed this evaluation for both the RA and the

SLE datasets (Figure 1A and 1B).  scCoGAPS and LDA emerge as the most stable methods, across

latent  dimensions  as well  as across the three chosen metrics. In contrast,  scVI shows poor  stability,

showing better performance than scHPF only for the SVCCA score. Overall, all methods report a lower

performance as the number of latent dimension increases, consistent with the increase model complexity.

Running times for the four methods were found to vary considerably, with scVI and scHPF considerably

faster than LDA and scCoGAPS, particularly at high dimensionality of the latent space (Supplementary

figure 1A).  Losses for the four methods at  different  values  of  k were also investigated and reported

(Supplementary figure 1B and 1C).

To assess whether these latent factors were useful in a classification setting to distinguish disease from

control  cells,  we  performed  elastic  net  logistic  regression  with  10  fold  cross-validation  across

dimensionalities for each of the four methods, using the latent factors as predictors and the disease state

as the response variable (Figure 1C, Supplementary figure 1D and 1E). Interestingly, the performance

varies considerably between datasets,  but not  methods.  In the RA dataset, almost all  methods fail  to

reach an AUPR > 0.5 regardless  of  the dimensionality  of  the latent  space.  In contrast,  for the SLE

dataset, all methods see a consistent increase in predictive power as the dimensionality increases, with

scCoGAPS and LDA showing the best performance at low (16-24) and high (26-40) dimensionality of the
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latent  space,  respectively.  Taken together,  these results suggest that  the dimensionality of  the latent

space is critical for extracting biological features related to the disease state of the cell.

The ability  of  latent  factor  models  to recover biological  signal  is a key  feature in  their  application to

discover cellular phenotypes. Gene set enrichment analysis is a widely used approach for this task, as it

allows mapping each latent variable to a specific pathway or biological process. To evaluate the methods’

ability to derive biologically meaningful gene signatures in a systematic manner, we used an enrichment

approach based on heterogeneous networks28. Briefly, at each dimensionality of the latent  space, we

compute the gene set coverage score (number of unique gene sets significantly associated with each

latent variable divided by the total number of gene set in the collection) for the gene set collection of

interest  (see Methods for details).  We considered thirteen gene set  collections,  covering most  of  the

known pathways and biological  processes,  as well  as several  other gene signatures (Figure 1D).  As

expected, for all methods we could observe an increase in the gene set coverage as the dimensionality of

the latent space increases. By comparing the gene set coverage on the latent variables with the standard

enrichment  on  clusters’  marker  genes  (Supplementary  figure  1F),  we  showed  that  the  number  of

significant gene sets is an order of magnitude higher for the factorization methods, pointing to a higher

sensitivity  in  the discovery  of  pathway activities.  Interestingly,  scHPF clearly  outperformed the other

methods in the majority of the gene set collections in both datasets (Supplementary figure 1G and 1H).

This suggests that scHPF can decompose the expression matrix in a latent space that retains the highest

degree of biological signal, which prompted us to use this method for all downstream analyses.

Systematic assignment of latent variables to cell clusters allows identification of

cell types based on their phenotype or function

An open challenge in single-cell transcriptomics is the phenotypic identification of cell populations after

clustering.  Usually,  this  is  performed  by  means  of  a  combination  of  prior  knowledge of  cell-specific

markers and gene set enrichment analysis performed on the marker genes list  for each cell  subset10.

However, as latent variables provide a surrogate of pathway activities across cells, we devised a simple

framework  to  assign  each  pathway  to  cell  clusters  (Figure  2A).  This  approach  directly  allows  the

identification of  cell  subsets  in  a  function-  or phenotype-driven way,  avoiding the need for clustering

based on marker genes. Briefly, for each gene set, we collapse redundant assignments to multiple latent

variables in unique pathway activities, by means of an iterative clustering approach. Then, we regress

pathway activities weights using the cluster annotation as predictors. Thus, the coefficient of each cluster

represents an indicator of how important that cell subset is to explain the pathway activity. The heat map

in Figure 2B is an example of the result, showing the values of the clusters coefficients for all the top

significant  gene sets mapped to the latent variables (using the KEGG gene set collection for the RA

dataset). Interestingly, broadly defined cell populations cluster together, showing that consistent activities
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across different  biological processes recapitulate cell  lineages. Moreover, such an approach allows to

discover activities that are unique to specific cell types or that are shared across different cell subsets in

an unsupervised way. For instance, “B cell signalling” and “NK cell cytotoxicity” pathways (Figure 2C and

2D), show a distinct activity in the expected cell populations (see Supplementary figure 1I and 1J for an

overview of the identified clusters). This strategy can also be used to discover known yet undefined cell

types, such as plasmacytoid dendritic cells (Figure 2E). Finally, in the SLE dataset, we could identify a

type I Interferon signature specifically active in a distinct  subset of B cells and T cells, as previously

reported7 (Figure 2F). Overall, we show that pathway activities are a powerful approach to assign cell

identity  to  clusters  based  on  their  function  or  phenotype.  This  framework  is  well-suited to  discover

phenotypic activities that are shared across different  cell  types,  as well as activities that  are cell-type

specific in both the RA and SLE datasets (Supplementary figure 2, and Supplementary tables 1 and 2, for

RA and SLE respectively).

Oncostatin  M  receptor  signalling  is  active  in  specific  subsets  of  rheumatoid

arthritis fibroblasts that share a similar inflammatory profile to stromal cells from

inflammatory bowel disease patients

By using latent  variables  as surrogates of  pathway activities,  we sought  to discover novel  pathways

potentially involved in RA. We focused on Oncostatin M receptor (OSMR) signalling, whose expression

level  was found to be low yet  widespread across  fibroblast  subsets  (Figure 3A).  However,  17 latent

factors were found to be enriched for OSMR signalling-related gene sets. We collapsed these redundant

gene sets in 4 pathway activities (Figure 3B) showing a distinct distribution and composition of fibroblast

subsets  (Supplementary  figure  3A and  3B).  OSMR has  been  recently  discovered  to  be  a driver  of

increased  inflammatory  state  of  stromal  cells  in  inflammatory  bowel  disease  (IBD)32.  To investigate

whether the fibroblast populations with high OSMR pathway activity also exhibited a similar inflammatory

phenotype, we retrieved the gene signature associated with OSMR-high expression32 and visualized the

mean gene expression in  the OSMR-signaling pathway activity  (Figure 3C).  Interestingly,  two of  the

OSMR activity  clusters  reported  a  high  expression  for  the  previously  identified  gene  signature,  as

compared to the other  two pathway activity clusters. Furthermore,  these activity clusters  seem to be

mostly  constituted by cells  belonging to fibroblast  clusters 1 and 2,  which exhibit  sub-lining markers

(Supplementary figure 3C and 3D). These results suggest that the OSMR signalling pathway is active in a

specific  subset  of  sub-lining  fibroblasts  characterized  by  a  gene  signature  that  recapitulates  an

inflammatory  phenotype observed in  stromal  cells  associated with  IBD, thus  pointing to OSMR as a

potential driver of such inflammatory phenotype in RA. 
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Integration of ligand – receptor interactions reveals MERTK-driven apoptotic cell

clearance by a monocyte subset in rheumatoid arthritis

To further explore the potential of  pathway activities to uncover novel gene signatures,  we sought to

integrate this information with ligand – receptor interaction analysis (see STAR Methods). In short, the

expression level of  proteins annotated in any interacting pair  was correlated with latent variables that

reported a significant  enrichment for  pathways where the protein  is present  (Figure 4A).  Among the

filtered cellular  interactions,  we found a GAS6 – MERTK link:  both monocyte clusters 1 and 3 were

reported to interact with GAS6 in fibroblasts and B cells subsets via MERTK (Supplementary figure 4A

and 4B). Furthermore, MERTK reported a distinct expression across monocyte subsets (Figure 4B). We

found MERTK-associated pathways to cluster in two main groups (Figure 4C): one with gene sets related

to cell motility and cell signalling, the other one related to endocytosis and phagocytosis. As MERTK is a

known  marker  for  endocytic  and  phagocytic  activity  (particularly  in  the  context  of  apoptotic  cell

clearance33), we set up to assess whether cells that were showing an endocytic-related activity reported

an  efferocytosis  signature34,35.  We  observed  that  cells  characterized  by  endocytic  activity  indeed

recapitulated this gene signature to a higher degree as compared to the other activity clusters (Figure

4D). This cell subset, which is mostly constituted of monocytes from cluster 3 (Supplementary figure 4C,

see Supplementary figure 4D for signature across monocyte clusters), was found to be depleted in RA

when compared to controls (Figure 5E), suggesting that reduced apoptotic cell  clearance by MERTK-

signaling monocytes could be pathogenic in RA.

Discussion
Latent  factor models  are a flexible  approach to uncover  transcriptional  programs in an unsupervised

fashion, since they do not  require prior information on the dataset  structure, in contrast  to differential

expression and trajectory analysis. However, the strengths and weaknesses of these algorithms across

different tasks are not always obvious. In addition, the biological interpretation of latent factors derived

from these methods is often difficult. Here, we conducted a comprehensive evaluation of four state-of-the-

art latent factor model, assessing stability, predictive power and gene set coverage of latent variables

across the dimensionality of the latent space. We performed the evaluation on two autoimmune disease

datasets, on which latent factor models had not been applied before. We devised a novel approach to

map latent factors to pathway activities and assign these to cell subsets, showing that this framework is

useful to discover previously unidentified cellular phenotypes. We focus on the activity of two signalling

pathways, OSMR and MERTK, and show that their related pathway activities are distinctively triggered in

specific  subsets of  fibroblasts  and  monocytes,  respectively.  Using  literature-curated gene expression

signatures, we validate the hypothesized cellular phenotypes, thus highlighting these as novel pathways

involved in the pathogenesis of RA.
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Benchmarking stability across iterations showed that scCoGAPS and LDA were the most robust methods,

while  scVI and scHPF were less  stable,  and showed  contradictory  results  depending on the metric.

Furthermore,  in  a  classification setting,  we showed  that  the predictive power  of  latent  factors  varies

greatly both at different dimensionality of the latent space and at different sample sizes. The ability to

recover a meaningful biological signal is an important feature of latent factor models. Here, by performing

a  comparison  across  13  different  gene  set  collection,  we  report  the  proportion  of  gene  signatures

retrieved by each model. As expected, the gene set coverage increases with the dimensionality of the

latent  space.   scHPF clearly outperformed the other methods in  this  task and led us  to select  it  for

downstream analysis, where the aim is to discover potentially novel pathways associated with disease.

Overall,  the comprehensive  evaluation  we  performed  highlighted  strength  and  weaknesses  of  each

method in different tasks and can be used as a starting point for method selection depending on the user

needs (stability, predictive power, discovery of biological pathways).

In order to leverage the latent factors as surrogates of pathway activities and aid the identification of cell

types, we devised a novel framework to collapse redundant gene sets into pathway activities and assign

these to cell clusters. We show that such an approach is able to retrieve known gene signatures and

previously identified cellular phenotypes (such as the type I interferon signalling active in specific subsets

of B cells and T cells in SLE7). As shown with the plasmacytoid dendritic cell subset in SLE, we also show

that it can be used to identify rare cell subpopulations based on known cell  identity signatures without

using pre-specified marker genes. As it relies heavily on gene sets annotation, the quality of the resulting

pathway activities is inevitably tied to the quality of the original gene sets in the collection. As such, some

of  the  identified  pathway  activities  might  be  false  positives.  One  example  of  this  is  the  olfactory

transduction gene set from the KEGG collection, which was found to be significantly associated with 64

latent factors, further collapsed in 19 pathway activities. Therefore, we suggest that hypothesis-driven

explorations  of  the  pathways  activities  assignments  are  needed  to  draw  meaningful  interpretations,

coupled with orthogonal  analysis to identify cell types.  While we focused on two autoimmune disease

cohorts, the described framework is generally applicable to any scRNA-seq datasets and provides an

intuitive way to directly define cell subpopulations based on their function or phenotype, without having to

rely on cell marker genes and iterative clustering procedures.

Among  the  pathways  activities  that  were  not  previously  reported  by  the  authors  of  the  original

publication9, we noticed the Oncostatin M signalling pathway to be frequently associated with different

fibroblast clusters. Interestingly, Oncostatin M has been recently reported to be a key driver of intestinal

inflammation in IBD and to be associated with response to anti-TNF alpha therapy32. We showed that

fibroblast subsets that show an OSMR signalling pathway activity also express a high level of a gene

signature found to be associated with OSMR high expression in stromal cells from the intestine of IBD

patients.  This  points  to  the  potential  involvement  of  Oncostatin  M  in  establishing  the  inflammatory

microenvironment in RA patients and suggests the pathway might be similarly dysregulated in RA and
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IBD.  Interestingly,  cells  that  report  such specific  OSMR signaling  activity  mainly  belong to  sublining

fibroblast  subsets. Since the same fibroblast  subpopulation has also been recently associated with a

specific inflammatory phenotype36 (as opposed to a more cartilage degradation phenotype of the lining

subsets) this points to the potential involvement of OSMR in driving this specific inflammatory profile in

both IBD and RA.

To further explore the potential of pathways activities to uncover novel cellular phenotypes in RA, we

integrated this approach with ligand – receptor interaction analysis and identified a GAS6 – MERTK link.

Interestingly, we found that MERTK expression correlates with two main groups of pathway activities: one

which entails gene sets related to cell motility and cell signalling, and one which entails gene sets related

to endocytosis and phagocytosis. To support the hypothesis that monocytes that display the latter might

be involved in apoptotic cell clearance, we evaluated the expression of genes related to an efferocytosis

signature34,35. Interestingly,  we were able to show that  this monocyte subset well recapitulates such a

signature. The subset mostly corresponds to a monocyte cluster which is reported to interact via MERTK

with a number  of  infiltrating lymphocytes  and  fibroblasts,  and  is  depleted in  disease.  These results

replicate the clusters reported by the authors (SC-M2 and SC-M3)9, who were, however,  not  able to

assign  a  function  to  these  monocyte  subsets.  Interestingly,  a  recent  paper37 seems  to  support  the

presence  of  an  infiltrating  macrophage  subpopulation  that  exhibits  such  a  resolving  phenotype,

substantiating our findings. Overall, these results highlight how integrating cellular interaction analysis and

pathway activities  might  help in the identification of  previously  unidentified pathways dysregulated in

specific cell subsets.

In  conclusion,  our  benchmarking results  highlight  strengths  and  weaknesses of  latent  factor  models

applied to scRNA-seq data for different tasks. We focused our work on the application of these methods

for the purpose of signature discovery, yet latent factor models have been implemented for a variety of

purposes (such as denoising38,39 and multi-omics integration40,41). We propose a framework that makes

use of  the full  spectrum of  latent  variables  and allows to directly define cell  subtypes based on their

function or cellular phenotype. Finally, we apply the framework to scRNA-seq data from synovial biopsies

of  RA patients  and  implicate two novel  pathways  in  the disease  pathogenesis:  activation  of  OSMR

signalling in a subset  of inflammatory fibroblasts and dysregulation of the GAS6 – MERTK axis in an

efferocytic monocyte subtype.

STAR Methods

Datasets 

The two datasets that we considered for the analysis were collected and provided by the NIH Accelerating

Medicine  Partnership  (AMP)  consortium,  via  Immport.  The  RA  dataset  consisted  of  cells  from  3

osteoarthritis (OA) patients and 22 rheumatoid arthritis (RA) patients,  isolated from the synovium and

further sorted via fluorescent activated cell sorting (FACS) into 4 subpopulations: fibroblasts, monocytes,
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B cells and T cells. The SLE dataset consisted of cells from 3 healthy donors and 15 lupus nephritis (LN)

patients, a complication of SLE which involves the kidney. Cells were isolated from the kidney and further

sorted for CD45+ markers, in order to retain an enriched population of leukocytes.

QC, feature selection and clustering

scRNA-seq  raw  counts  were  downloaded  from  ImmPort  (study  number  SDY998  and  SDY999

https://www.immport.org/shared/home). QC was performed, in both datasets, with the Scater package42

with the following thresholds:  cells had to have > 1000 and < 5000 UMI counts to filter out potential

doublets as well as dead cells. Also, the percentage of mitochondrial reads had to be below 0.25. Genes

had to have at  least  3 UMI in at  least  3 cells.  Further gene filtering was performed by means of  the

deviance43 definition.  6000  genes  and  3000  genes  were  selected  for  the  RA  and  SLE  dataset

respectively. Clustering was performed with SNN-cliq44 via the scran package45 and the selection of the

clustering granularity was aided by the  clustree package46. UMAPs47 of the 2 datasets and respective

clusters are reported in Supplementary figure 1I and 1J.

Latent factor modelling algorithms

Four methods were selected for evaluation:  scCoGAPS21, LDA29,  scHPF22 and scVI23. The number of

dimensions for the latent space (16 to 14 latent variables, step 2) has been selected for efficiency and for

consistent evaluation across models (i.e. a running time suitable to all models, see Supplementary figure

1A).  Here,  the loading matrix refers to the matrix latent  variables v. genes, whereas the factor matrix

refers to the matrix cell v. latent variables. At each dimensionality of the latent space, we run the methods

for 10 iterations. For scCoGAPS, we employed a parallelization approach as suggested by the authors48,

and set the maximum iteration parameter to 7000. For scVI we made use of the implementation of the

linear decoder49, so that the decoder weight matrix could be used as a surrogate of the loadings matrix.

Model hyperparameters were set based on those selected for datasets of similar size and characteristics,

as reported by  the authors23.  For  LDA we employed hyperparameters  as  described in  a  similar  use

case27. For scHPF, we employed hyperparameters as suggested by the authors22.

Stability evaluation

Stability evaluation was performed across iterations and latent dimensions. Three metrics were used:

 Amari-like distance30: a correlation-based metrics, that we computed for each pairs of iterations.

The mean of all the comparisons is reported.

 Silhouette  score:  similar  to Kotliar  et  al.20,  the silhouette  score was calculated  based on the

clusters of the concatenated loading matrices. Briefly, ten loading matrices, computed for each

iteration, were concatenated and further clustered with a k-medoids approach.  The number of

clusters was set equal to the number of latent dimensions. The mean of all the comparisons is

reported.
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 SVCCA50: similar to Way et al.28, SVCCA computes singular value decomposition on two loading

matrices,  and then perform canonical  correlation analysis,  to align matching components and

derive correlation coefficients between them. The mean of all the comparisons is reported. 

Gene set coverage evaluation

Gene set coverage score was computed by means of heterogeneous networks51, as described in Way et

al.28. Briefly, we made use of heterogeneous network made available by Way et al. or generated as part

of this study from several gene set  collections (MSigDB52, KEGG, REACTOME, Biocarta,  MetaBase18

(Clarivate Analytics  MetaBase® version  6.15.62452),  WikiPathways53).  We also generated  respective

shuffled networks in  order  to calculate a Z-score for  each gene set  – latent  variable pair.  We then

converted the Z-score to a p-value and filtered using a Bonferroni correction (p-value threshold defined as

0.01 divided by the number of latent variables for the specific model – latent space dimensionality pair).

For each gene set collection and each latent variable, the top gene set was selected to be mapped to that

latent variable. Ultimately, for each model, we would have an equal number of gene sets according to the

dimensionality of  the latent  space.  The number  of  unique gene sets was then used to calculate the

coverage score (number of unique gene sets divided by the number of total gene sets in that collection).

In Supplementary figure 1G and 1H, the mean collection coverage value was calculated across iterations

for each dimensionality of the latent space, for the RA and SLE datasets, respectively. In Figure 1C, the

mean collection coverage, across collections, was calculated for the best iteration at a fixed k, for each

method. The selection of the best (i.e.: run with lowest reported loss) factorization result for a given k, was

used for all  downstream analyses.  To perform the comparison with gene lists generated by means of

differential  expression across clusters,  we assumed that  each cluster-specific signatures represent  a

latent feature. We used -log10 (p-value) as gene weights, so to have a genes by clusters table, which we

then used as input for the gene set coverage evaluation. Since the number of clusters is 17, we showed a

comparison of gene set coverage with the other methods at k=16 and k=18 (Supplementary figure 1F).

Gene set assignment to cell clusters

After matching each latent variable to its most significant gene set in each collection, we reasoned that we

could use the latent variable as a surrogate of the respective pathway activity. Furthermore, we decided

to use all the latent variables derived by the models, without selecting a single dimensionality of the latent

space. For this and downstream analysis, we made use of the latent variables as computed by scHPF,

selecting the best run (as assessed by the loss) for each dimensionality of the latent space. To account

for the duplicated instances of the gene sets (same gene set mapped to multiple latent variables), we

implemented a simple iterative algorithm. If a gene sets mapped to 3 or more latent variables, we would

cluster the correlation matrix of the latent variables and compute the mean Silhouette width at different cut

(H) of the hierarchical tree (where 1<H<= # latent variables – 1). Then, for all the clusters that had a mean

Silhouette width > 0.5 we collapsed them by computing the medians of the weights of the latent variables

belonging to the respective clusters. If the Silhouette width <= 0.5 or the gene set mapped to only 1 or 2
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latent variables, we just collapsed all the latent variables mapping to that gene set into the mean. This

would provide us with collapsed latent variables for downstream analysis that we refer to as pathway

activities. If the pathway activities were split during this clustering step, then it would be reported with a

unique identifier (e.g. pathway_A_C2, representing the additional instance of pathway_A).

Furthermore, we devised an approach to assign these pathway activities to cell clusters: each pathway

activity was set as the response variable in a regression setting where the cluster labels function as the

predictors. Thus, a cell cluster that comprises several cells that have a high weight for that specific latent

variable, would also be assigned a large coefficient. The pathway activities were standardized before the

regression step. The pathway activities reported in Figure 2B represent the cell clusters’ coefficients for all

the pathway activities (see Supplementary figure 2 for the remaining collections). If the gene set was

collapsed in several different pathway activities, those assignments are also reported. 

Gene signature analysis

Oncostatin M receptor signature

Pathways  mapping  to  OSMR signalling  were clustered  and  processed as  described  above.  Median

weights of the four selected clusters (Figure 3B) were used to filter cells (weights > 0.5 quantile). The

mean gene expression signatures for the selected genes were calculated for cells that were specifically

filtered in one of the four clusters but did not intersect with others. The expression of the same gene list

was also reported for the fibroblast clusters (Supplementary figure 3C). The gene signature was retrieved

from West et al.32.

MERTK signature

CellPhoneDB17 was run with following parameters:  statistical_analysis, --iterations 5000, --threshold 0.2.

All gene sets activities (i.e.: weights of the latent variables) where MERTK is present were correlated with

MERTK expression levels, in monocyte cells. All gene sets that showed an R2>0.3 were then filtered and

the correlation matrix was clustered (Figure 4B). Two clusters were selected: the cell motility cluster and

the endocytosis cluster. Medians of the latent factor weights were calculated for these two clusters, and

cells were filtered for their  respective activity (as described above).  Cells that showed the activity for

either, both or none of the two clusters were filtered and mean expression values were reported for genes

retrieved from a gene from Waterborg et al. 201834 and Robert et al. 201735. Supplementary figure 4D

shows the  mean expression  of  genes  belonging  to  the  efferocytosis  signature  based  on  clustering.

Supplementary figure 4E shows the composition of the different pathway activities in terms of monocyte

clusters.

Visualization and software

All visualizations were produced with  the ggplot2 package54.  Methods and comparison analysis were

wrapped in a Snakemake pipeline55
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Code availability

All code of the analysis can be found at https://github.com/giovp/latent_factors_autoimmune

Abbreviations
AMP: Accelerating Medicine Partnership

FACS: fluorescent activated cell sorting

IBD: inflammatory bowel disease

ICA: independent component analysis

LN: lupus nephritis

NMF: negative matrix factorization

OA: osteoarthritis

PCA: principal component analysis

RA: rheumatoid arthritis

SLE: systemic lupus erythematosus

SVCCA: singular value canonical correlation analysis
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Figures

Figure 1: Evaluation of methods across latent dimensions. Stability metrics in A) the RA dataset and B) the SLE 
dataset. Y-axis reports the mean value of the metric across 10 iterations. X-axis reports k, the number of latent 
dimensions. C) Mean gene set collection coverage across latent dimensions, in the RA dataset and the SLE dataset. 
Y-axis reports mean collection coverage value, averaged across 13 gene set collections. X-axis reports K, the 
number of latent dimensions. Cross-validation AUPR curve in a disease – control classification task using latent 
variables as predictors, in the RA dataset and the SLE dataset. Y-axis reports cross-validation AUPR value across 10
iterations. X-axis reports the number of latent dimensions.
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Figure 2: Overview of cell type-specific and activity-specific gene sets assigned to cell subsets. A) schematic of the 
framework to derive pathway activities and assign them to cell subsets. B) heatmap of the KEGG collection’s gene 
sets assigned to cell clusters in RA. The reported value represents the coefficient of the regression model and the “# 
loadings” colour scale represents the number of latent variables that were found significant for that specific gene set. 
C) factor weights for NK-cell cytotoxicity from the KEGG collection, D) factor weights for the B-cell receptor signalling 
pathway gene set from the KEGG collection, E) factor weights for the plasmacytoid dendritic cell signature from the 
C7 Immunological signature collection, F) factor weights for the type I interferon signaling from the REACTOME 
collection.
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Figure 3: OSMR signalling pathway is specifically active in a subset of fibroblasts in RA. A) Expression levels of 
OSMR across fibroblast clusters, B) Correlation matrix of latent variables that maps to OSMR signalling pathways, as
annotated by the METABASE gene set collection. Black frames enclose the correlation clusters that were selected to
be representative of specific pathways activity, C) Mean expression level of genes found to be associated with 
OSMR-high-stromal cells in IBD.

Figure 4: A) Ligand – receptor interaction network as computed by Cellphone Db and filtered as described in the 
main text. B) Expression levels of MERTK across monocyte clusters. C) Correlation matrix of latent factors that are 
associated with MERTK expression. Black frames enclose the correlation clusters that were selected to be 
representative of specific pathways activities. D) Mean expression levels of genes found to be associated with 
infiltrating macrophages showing an efferocytic activity. E) Proportion of cell types from disease (RA) or control (OA) 
across monocytes clusters.
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