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Abstract 
 

Alzheimer’s disease is a highly heritable and severe neuropsychiatric condition. Genome-

wide association studies have identified multiple genetic risk factors underlying susceptibility 

to Alzheimer’s disease, however their functional impact remains poorly understood. To 

overcome this shortcoming, we integrated genome-wide association summary statistics 

(71,880 cases, 338,378 controls) with tissue-specific gene co-expression networks derived 

from GTEx to identify functional gene co-expression networks underlying the disease. We 

found genetic variants associated with Alzheimer’s disease are enriched in gene co-

expression networks involved in immune response-related biological processes. The 

implicated gene co-expression networks are preserved across multiple brain and peripheral 

tissues, highlighting the potential utility of peripheral tissues in genetic studies of 

Alzheimer’s disease. We also performed a computational drug repositioning analysis by 

integrating gene expression changes within Alzheimer’s disease modules with drug-gene 

signatures from the Connectivity Map, and show disease implicated networks retrieve known 

Alzheimer’s disease drugs and novel drug repurposing candidates for follow-up functional 

studies. Our results improve the biological interpretation of recent genetic data for 

Alzheimer’s disease and provide a list of potential anti-dementia drug repositioning 

candidates of which the efficacy should be investigated in functional validation studies.  
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Introduction 
 
Alzheimer’s disease (AD) is a common neurodegenerative disorder, characterised in its early 

stages by mild memory loss and progressing to severe impairment of broad executive and 

cognitive functions. The most common form of Alzheimer’s disease (late onset Alzheimer’s 

disease) typically affects those age over 65 years of age and has a complex molecular 

background, driven in part by a polygenic mode of inheritance. A recent genome-wide 

association study (GWAS) meta-analysis of 71,880 AD cases and proxy cases and 383,378 

controls identified 20 disease-associated loci [1]. Detailed functional studies showed these 

loci harbour common (minor allele frequency, MAF > 0.01) single nucleotide polymorphisms 

(SNPs) that regulate the activity of genes in immune-related peripheral tissues (whole blood, 

liver, and spleen), as well as microglial cells—the chief immune cells of the brain. 

Furthermore, biological pathway analysis of the implicated genes showed enrichment of 

previously associated lipid system pathways, highlighting a potential integrated mechanism 

between dysfunctional lipid metabolism and immune responses in the brain [2]. 

 

Genetic risk factors for disease may converge on highly correlated groups of genes that 

interact with one-another to alter the activity of multiple biological pathways and cellular 

processes in a disease relevant tissue [3]. Gene expression is an intermediate molecular 

phenotype that is directly modified by DNA sequence variation (expression quantitative trait 

loci; eQTLs), epigenetic marks such as DNA methylation, and the environment, as well as 

the expression of other genes [4]. Gene expression analyses of post-mortem brain tissue have 

identified distinct cell types and biological pathways underlying AD pathogenesis [5,6]. 

These studies are largely based on tests of association with individual genes or groups of 

curated genes with a common biological function. An alternative approach is to study how 

genes interact with one-another using gene co-expression analysis, which take the correlation 
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between every gene pair expressed in a particular (tissue) sample to generate a molecular 

substrate for association testing with a disease state [7]. We recently built gene co-expression 

networks using 48 human tissues and cell types collected for the Genotype-Tissue Expression 

(GTEx) study [8]. We used these data to test for the enrichment of depression GWAS signals 

within gene co-expression modules (or groups of highly correlated genes), under the 

biologically valid assumption that connectivity among genes may be leveraged to identify 

genes not directly implicated in disease. 

 

Co-expression networks can also be used as a functional substrate for the integration of other 

types of molecular data for the identification and function of disease-associated genes. This 

includes new types of chemical libraries that describe the effects of a given drug compound 

on gene expression, known as a drug-gene database. The Connectivity Map, known as CMap 

[9], contains gene expression signatures resulting from genetic and pharmacologic 

perturbagens measured across multiple cell types. Drug-gene signatures—that is, gene 

expression changes following a genetic or pharmacologic perturbagen—can be integrated 

with disease-associated gene expression changes to identify compounds that might 

“normalise” gene expression. Characterising the complex interactions between genes in a 

network-based framework may identify targets for potential treatments through 

computational drug repositioning. Therefore, we aim to integrate tissue-specific gene co-

expression networks with AD association signals and drug-gene signature data to identify and 

prioritise drug compounds that target disease processes. 

 
 
Methods 
 
Alzheimer’s disease GWAS summary statistics 
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Detailed methods, including a description of population cohorts, quality control of raw SNP 

genotype data, and association analyses for the Alzheimer’s disease GWAS is described in 

detail elsewhere [1]. The Alzheimer’s disease GWAS was performed in a three-stage meta-

analysis. The first phase consisted of 24,087 AD cases and 55,058 controls collected by the 

Alzheimer’s disease working group of the Psychiatric Genomics Consortium (PGC-ALZ), 

the International Genomics of Alzheimer’s Project (IGAP), and the Alzheimer’s Disease 

Sequencing Project (ADSP). All cases in phase 1 received clinical confirmation of late-onset 

Alzheimer’s disease. The second phase included 47,793 proxy cases and 328,320 proxy 

controls from the UK Biobank (UKBB); proxy cases where defined as individuals with one 

or both parents diagnosed with AD, while proxy controls were defined as individuals with 

parents who do not have AD. Phase 3 involved the meta-analysis of phase 1 and phase 2 

cohorts, the results of which were tested for replication in an additional independent case-

control sample from deCODE (6,593 AD cases and 174,289 controls). Raw genotype data for 

each cohort were processed according to a standardised quality control pipeline [1,10]. 

Logistic regression association tests were performed on imputed marker dosages and binary 

phenotypes in Phase 1, and linear regression for continuous phenotypes in phase 2. For phase 

1 phenotypes, the association tests were adjusted for sex, batch, and the first four principal 

components, with age also included as a covariation in the AD-PGC cohort. For phase 2 

(UKBB) data, age, sex, batch, and assessment centre were included as covariates. Summary 

statistics for 13,367,301 autosomal SNPs from Phase 3 of the analyses described in reference 

[1]  (N samples=455,258) were made available by the Complex Trait Genetics Laboratory at 

VU University and VU Medical Centre, Amsterdam and were utilized in our study. 

 

Identification of gene expression modules 
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Fully processed, filtered and normalised gene expression data for 48 tissues were downloaded 

from the Genotype-Tissue Expression (GTEx) project portal (http://www.gtexportal.org) 

(version 7). Only genes with ten or more donors with expression estimates > 0.1 Reads Per 

Kilobase of transcript (RPKM) and an aligned read count of six or more within each tissue 

were considered significantly expressed. Within each tissue, the distribution of RPKMs in 

each sample was quantile-transformed using the average empirical distribution observed 

across all samples. Expression measurements for each gene in each tissue were subsequently 

transformed to the quantiles of the standard normal distribution. 

 

Gene co-expression modules were individually constructed for 48 tissues (Table S1), 

including 13 brain tissues, using the weighted gene co-expression network analysis 

(WGCNA) package in R [7]. An unsigned pairwise correlation matrix – using Pearson’s 

product moment correlation coefficient – was calculated. An appropriate “soft-thresholding” 

value, which emphasises strong gene-gene correlations at the expense of weak correlations, 

was selected for each tissue by plotting the strength of correlation against a series (range 2 to 

20) of soft threshold powers. The correlation matrix was subsequently transformed into an 

adjacency matrix, where nodes correspond to genes and edges to the connection strength 

between genes. Each adjacency matrix was normalised using a topological overlap function. 

Hierarchical clustering was performed using average linkage, with one minus the topological 

overlap matrix as the distance measure. The hierarchical cluster tree was cut into gene 

modules using the dynamic tree cut algorithm [11], with a minimum module size of 50 genes. 

We amalgamated modules if the correlation between their eigengenes – defined as the first 

principal component of their genes’ expression values – was greater or equal to 0.8.  

 

Gene-set analysis of gene co-expression modules 
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We performed gene-based analysis using MAGMA v1.06 [12] to (i) identify risk genes 

associated with AD; and (ii) test the enrichment of AD risk genes in gene co-expression 

modules using gene-set analysis. To identify risk genes, MAGMA assigns SNPs to their 

nearest gene using a pre-defined genomic window (35 kb upstream or 10 kb downstream of a 

gene body) and computes a gene-based statistic based on the sum of the assigned SNP –

log(10) P values while accounting for the correlation (i.e. linkage disequilibrium) between 

nearby SNPs. To identify tissue-specific modules enriched with AD risk genes, we performed 

gene-set analysis in MAGMA. The competitive analysis tests whether the genes in a gene-set 

(i.e. gene co-expression module) are more enriched with Alzheimer’s disease risk genes than 

other genes while accounting for gene size and gene density. An adaptive permutation 

procedure (N=10,000 permutations) was used to obtain P values corrected for multiple testing 

(FDR<0.05). The 1000 Genomes European reference panel (Phase 3) was used to account for 

Linkage Disequilibrium (LD) between SNPs. For each tissue, a quantile-quantile plot of 

observed versus expected P values was generated to assess inflation in the test statistic.  

 

Biological characterisation of AD-associated gene expression modules 

Gene expression modules enriched with Alzheimer’s disease GWAS association signals were 

assessed for biological pathways and processes using g:Profiler 

(https://biit.cs.ut.ee/gprofiler/) [13]. Ensembl gene identifiers within enriched gene modules 

were used as input; we tested for the over-representation of module genes in Gene Ontology 

(GO) biological processes. The g:Profiler algorithm uses a Fisher’s one-tailed test for gene 

pathway enrichment; the smaller the P value, the lower the probability a gene belongs to both 

a co-expression module and a biological term or pathway purely by chance. Multiple testing 

correction was done using g:SCS; this approach accounts for the correlated structure of GO 

terms, and corresponds to an experiment-wide threshold of α=0.05. 
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Preservation of gene co-expression networks across tissues 

To examine the tissue-specificity of biological pathways, we assessed the preservation (i.e. 

replication) of network modules across 48 GTEx tissues using the “modulePreservation” R 

function implemented in WGCNA [14]. Briefly, the module preservation approach takes as 

input “reference” and “test” network modules and calculates statistics for three preservation 

classes: i) density-based statistics, which assess the similarity of gene-gene connectivity 

patterns between a reference network module and a test network module; ii) separability-

based statistics, which examine whether test network modules remain distinct in reference 

network modules; and iii) connectivity-based statistics, which are based on the similarity of 

connectivity patterns between genes in the reference and test networks. For simplicity, we 

report two density and connectivity composite statistics: “Zsummary” and “medianRank”. A 

Zsummary value greater than 10 suggests there is strong evidence a module is preserved 

between the reference and test network modules, while a value between 2 and 10 indicates 

weak to moderate preservation and a value less than 2 indicates no preservation. The median 

rank statistic ranks the observed preservation statistics; modules with lower median rank tend 

to exhibit stronger preservation than modules with higher median rank. 

 

Computational drug repurposing 

Our computational drug re-purposing analysis tests the predicted effect of a drug compound 

on dysregulated gene expression modules underlying AD. We used S-PrediXcan to estimate 

the magnitude and direction of gene expression changes associated with AD. This approach 

integrates eQTL information with GWAS summary statistics to estimate the effect of genetic 
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variation underlying a disease or trait on gene expression. We used eQTL information 

(expression weights) from 48 tissues generated by the GTEx project (v7) [15], and LD 

information from the 1000 Genomes Project Phase 3 [16]. These data were processed with 

beta values and standard errors from the GWAS of Alzheimer’s disease [1] to estimate the 

expression-GWAS association statistic. For each GTEx tissue, we extracted the S-PrediXcan 

Z-scores for genes within modules enriched with AD association signals and created two lists 

containing genes with either up-regulated or down-regulated expression. The gene lists were 

used as the basis of drug repurposing using drug gene-signatures from the Connectivity Map 

(CMAP) [9]. For each gene list, and for each unique compound in CMAP, we calculated a 

“connectivity score” based on a modified Kolmogorov-Smirnov score, which summarises the 

transcriptional relationship to the AD module genes. The connectivity score is a standardised 

metric ranging from -100 to 100, where a highly negative score indicates predicted 

expression effect from S-PrediXcan and the drug-gene signatures are opposing (i.e. genes that 

are up-regulated in disease cases are down-regulated by the compound, and vice versa). We 

selected compounds with connectivity scores of -90 and lower (‘strong scores’), which were 

subsequently mapped to mechanism of action (MOA) categories to identify chemogenomic 

trends. To assess the disease specificity of the CMAP enrichments, we performed a gene-

based analysis of the gene co-expression networks using GWAS summary statistics for 

schizophrenia, a brain-related neuropsychiatric disorder with an immune component. The 

gene-based results were used as input to CMAP, and the results were compared with AD.  

 

To test the significance of the AD perturbational enrichments (i.e. ensuring that significant 

results are not due to random chance), we grouped the observed co-expression values for 

pairs of genes from a single tissue (amygdala) into 100 bins based on co-expression values. 

We randomly sampled genes across bins, selecting the same number of gene co-expression 
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values from each bin as the observed data. This stratified method of sampling was done to 

ensure the observed and permuted data were matched on connectivity. The permuted co-

expression modules were uploaded to CMAP using the clue API client, and connectivity 

scores for each compound were extracted from the output files. We calculated empirical P 

values for observed compounds with connectivity scores smaller than -90 by counting the 

number of times the same compound from the permuted data had a connectivity score smaller 

than -90. To assess the disease specificity of the drug-gene enrichments, we ran our 

methodological framework using GWAS summary statistics for schizophrenia [17] and 

compared the overlap of significant (connectivity score ≤-90) drug-gene candidates with 

Alzheimer’s disease using the hypergeometric overlap test. 

 
Results 
 
Alzheimer’s disease risk genes are enriched in gene co-expression modules associated 
with the immune system 
 
We used MAGMA to collapse GWAS association signals to individual genes and identified 

74 genes significantly associated with AD after multiple testing correction (P<2.78×10-6) 

(Table S2). We tested for the enrichment of risk genes in gene co-expression modules built 

from 48 GTEx tissues [8]. A single gene module in 36 tissues, including 13 brain tissues, was 

enriched with AD risk genes (“AD modules”) (Table 1). No enrichment of gene-based 

association signals was observed for modules identified in whole blood, despite the larger 

sample size compared to many other of the tested tissues. There was moderate overlap 

between genes within AD modules, with 59 percent of genes specific to a single module, and 

only one gene (PIK3R5) being common to all AD modules (Figure S1). Despite this 

moderate gene overlap between modules, gene pathway analyses found the enrichment of 

immune system pathways (e.g. “immune system process” in brain amygdala, P=2.48 × 10-73, 
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and “immune response” in brain substantia nigra; P=2.48 × 10-88) within all AD modules, 

including all 13 brain tissues and 23 peripheral tissues (Table 1).  

Gene co-expression modules enriched with Alzheimer’s disease risk genes are preserved 
across brain tissues 
 
We assessed the preservation (i.e. reproducibility) of AD modules across 36 enriched tissues 

using the WGCNA modulePreservation algorithm. Strong modular preservation (z-score ≥ 

10) was observed across most tissues; preservation tended to be higher between vascular-

related tissues (e.g. coronary artery, aorta, and tibial artery) and all other tissues, and among 

brain-related tissues. The weakest preservation (z-score < 10) of immune modules was 

observed in stomach, vagina, spleen, and lung tissues (Figure 1). These data suggest immune 

changes in AD are systematic (that is, may be detected in brain and peripheral tissues), but 

are likely greater (or manifest earlier) in brain tissues. Therefore, the study of gene co-

expression—that is, the connectivity between genes—across multiple brain and peripheral 

tissues, such as skin, may provide a useful surrogate for genetic and molecular studies of 

brain-related processes in AD. 

 
A computational drug re-purposing analysis identifies drug compounds for further 
analysis 
 
Our gene co-expression analytical approach is built on the premise that genes do not act 

alone, but rather form complex networks to influence the manifestation of a disease or trait 

[18]. A similar premise can be applied to therapeutics, where drugs are likely to not only 

modulate the activity of a single gene but the activity of multiple, highly connected genes in a 

pathogenic tissue. Our multi-tissue gene co-expression modules provide a useful substrate for 

the identification and prioritisation of drugs that may “normalise” altered gene co-expression 

in AD. We used S-PrediXcan to identify genes whose expression is associated with genetic 

variation underlying AD (Table S3). We assigned the S-PrediXcan Z-score for the direction 

and magnitude of effect to all genes within AD modules, and generated lists of up-regulated 
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and down-regulated genes. The gene lists were used as input to the connectivity map 

(CMAP), which computes a “connectivity score” based on the transcriptional relationship 

between the gene lists and observed drug-gene signatures across multiple cell-types. We 

selected compounds with connectivity scores less than or equal to -90 (indicating a 

compound is predicted to normalise predicted altered [up- or down-regulated] expression 

patterns in AD) (Table S4). We collapsed significant compounds based on their mechanism 

of action across cell types and brain tissues (Table S5). Top-ranked mechanisms of action 

included acetylcholine receptor antagonists, which include a number of currently-used drugs 

for AD (e.g. memantine). Other top-ranked mechanisms included GABA receptor 

modulators, which are reported to have a key role in autoimmune inflammation in the brain 

[19]. Other mechanisms of action included cyclooxygenase inhibitors, which include drug 

compounds that may have a protective role in Alzheimer’s disease [20]. In order to assess the 

significance of drug-gene level results, we applied a permutation procedure (methods) in 

Amygdala. The results show top-ranked compounds are unlikely to be due to correlated 

expression (Table S6). We also ran our network-based pipeline with GWAS summary 

statistics for schizophrenia, a brain-related trait with an immune component, and found no 

significant overlap (hypergeometric test) with our observed results for Alzheimer’s disease 

across cell types (Table S7). These observations strengthen the candidacy of potential AD 

therapeutics and illustrate the potential of CMAP within a gene co-expression network 

framework to generate novel, unbiased hypotheses on the pharmacologic modulation of 

disease states. 

 

Discussion 

We applied a tissue-specific network-based gene co-expression method to identify groups of 

highly correlated (and functionally related) genes associated with AD. Gene-based analyses 
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of GWAS summary statistics identified 74 genes significantly associated with AD after 

multiple testing correction. Gene-based associations were enriched in a single gene module in 

36 GTEx tissues, including 13 brain tissues. All tissue-specific AD modules were associated 

with the immune system and immune response, despite only moderate overlap in gene 

membership across modules. A computational drug repositioning analysis of genes within 

AD modules identified the mechanism of action categories acetylcholine receptor antagonists 

and glutamate receptor function, both of which include drug candidates, in addition to 

cyclooxygenase inhibitors and other immune function-related drug classes. Our results 

demonstrate a tissue-specific approach to gene discovery in AD may not only identify 

candidate causal genes, tissues, and biological pathways, but also targets for therapeutic 

intervention. 

 

Many studies suggest an important role of neuroinflammation in the onset and progression of 

the neuropathological changes that are observed in AD. Independent studies had identified 

immune-related proteins and cells in the proximity of β-Amyloid plaques [21], for example, 

and epidemiological reports suggested anti-inflammatory agents used to treat immune 

disorders, such as rheumatoid arthritis, decrease the risk of AD [22]. It was not until the 

publication of a large-scale GWAS on AD that the first robust evidence for a causal 

association between neuroinflammation and disease onset could be established [1]. However, 

the GWAS only found enrichment of immune-related tissues and cell types, rather than a 

biological mechanism. The study of tissue-specific gene co-expression patterns allowed us to 

investigate a larger set of genes that might be implicated in disease based on network 

connectivity. Using this approach, we identified immune system-related tissue-specific 

modules (groups) of co-expressed genes that are both enriched with AD association signals 

and strongly preserved across tissues.   
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We further demonstrate the versatility of co-expression network-based methods with the 

application of a computational drug repositioning analysis. We used all genes within disease 

implicated co-expression modules as input to CMap, under the biologically valid assumption 

that a drug compound not only alters the activity of a single target gene, but influences the 

activity of multiple related genes through co-regulation [23]. Furthermore, by using S-

PrediXcan to impute expression effects from GWAS summary statistics, we focus only 

genetically regulated gene expression effects, thereby removing unwanted variation on gene 

expression from environmental effects. This approach identified disease-associated gene 

modules whose expression signature was predicted to be normalised by major Alzheimers’s 

disease drug classes, including acetylcholine receptor antagonists and glutamate receptor 

antagonists. We also found several drug classes that target immune-related processes,, 

consistent with current knowledge on disease pathways underlying AD. For example, 

proliferator-activated receptor γ (PPAR) agonists were predicted to normalise gene 

expression signatures in AD. PPARs play an important role in microglial-driven 

inflammatory response, and their activation is known to increase microglial amyloid β 

clearance and improve spatial memory performance in a mouse model [24]. Other 

mechanism of action classes, such a cyclooxygenase inhibitors, contained compounds that 

have undergone clinical trials for AD (e.g. naproxen) [25]. Collectively, these results show 

our approach can uncover existing and potentially novel drugs for further functional studies 

in appropriate cell types and model organisms. 

 

Genetic associations for AD are enriched in genomic regions that encode “druggable” gene 

targets [26] and therefore has translational potential using computational repositioning 

methods. So et al. [27] used GWAS-imputed transcriptome profiles and the CMAP algorithm 
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to identify candidates for drug repositioning in neuropsychiatric disorders and identified 

several non-steroidal anti-inflammatory drugs (NSAIDs) with possible benefits in AD, in line 

with our results. We extend this analysis with the use of a larger, more highly powered 

GWAS and network-based methods to implicate additional genes with potential relevance in 

AD pathology. A recently published study used genetic information and network-based 

methods to develop a priority index for drug target validation in immune-mediated traits [28]. 

The priority index incorporated functional genomic information with protein-protein network 

connectivity information, and was shown to successfully identify current therapeutics and 

prioritise alternative compounds for early-stage testing. Their network annotations, however, 

do not directly integrate genetic co-expression, but instead rely on disparate sources of 

protein interaction data to characterise gene connectivity. Our gene co-expression-based 

approach, on the other hand, directly anchors changes in genetically regulated gene 

expression to observed levels of co-expression between genes, and therefore more closely 

represents underlying biological relationships. 

 

We used gene expression data from bulk human brain tissue as single cell expression data is 

not available in GTEx. Bulk brain tissue is not homogeneous with respect to individual cell 

types (e.g. microglial cells versus neurons). As a result, true Alzheimer’s disease association 

signals may be diluted by non-specific expression, or expression differences may simply 

reflect mosaic effects of different cell types. This is especially problematic for AD, where 

many of the risk genes are not highly expressed in bulk brain tissues [29,30] and have been 

linked to immune function [31]. Genetic signals for AD are enriched in microglial cells [32], 

which themselves only account for around 3% of the total brain cell population. Therefore, 

RNA sequencing of individualised cells (known as single cell RNA sequencing) may 

partition genetic signals to causal cell types and improve power to identify functional genes 
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and mechanisms underlying AD and, in turn, improve the accuracy of drug positioning [6]. 

An alternative approach is to use human monocyte-induced microglia as a proxy to examine 

the genetic effects of AD in microglia. This approach would remove the need for post-

mortem brain samples, which can be difficult to obtain, and thereby enable the rapid 

functional validation of molecular process and drug responses in AD. 

In summary, we integrated GWAS summary statistics for AD with gene co-expression 

networks from 48 tissues in GTEx. We identified gene modules within each of the tissue-

specific co-expression networks enriched with AD GWAS association signals. Biological 

pathway analysis of the implicated gene modules found enrichment of immune-response 

pathways, consistent with recent functional and transcriptomic analyses [5]. We estimated the 

effect direction of gene expression underlying AD using S-PrediXcan and integrated these 

data with drug-gene signatures from the connectivity map. This procedure identified drug 

compounds whose effect on gene expression was estimated to “normalise” dysregulated 

expression patterns underlying AD. We collapsed drugs to common mechanisms of action, 

and found major drug classes in the treatment (glutamate receptor antagonists and 

acetylcholinesterase inhibitors) were captured by our method, in addition to other 

mechanisms of action of biological interest (e.g. cyclooxygenase). We identified a list of drug 

compounds with genetic support that may be repositioned for the treatment of AD after 

follow-up functional studies. Our approach will help researchers to translate genetic findings 

for follow-up functional studies in the early-state drug development process. 
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Table 1: Gene-set enrichment analysis and biological pathway analysis of Alzheimer’s disease modules across 36 tissues in GTEx 

 
Gene set enrichment analysis Bioloical pathway analysis 

Tissue N genes Beta SE P P adjust Term Term name P adjust 

Brain Amygdala 630 0.157 0.0351 3.80E-06 0.00E+00 GO:0002376 immune system process 2.48E-73 

Brain Anterior cingulate cortex BA24 353 0.164 0.047 2.34E-04 4.50E-03 GO:0006955 immune response 4.54E-78 

Brain Caudate basal ganglia 393 0.143 0.0442 6.28E-04 1.01E-02 GO:0002376 immune system process 7.84E-73 

Brain Cerebellar Hemisphere 197 0.248 0.0635 4.78E-05 7.00E-04 GO:0006955 immune response 2.08E-50 

Brain Cerebellum 103 0.425 0.0868 4.78E-07 0.00E+00 GO:0002376 immune system process 1.60E-32 

Brain Cortex 233 0.226 0.0567 3.32E-05 3.00E-04 GO:0006955 immune response 1.64E-67 

Brain Frontal Cortex BA9 420 0.13 0.0423 1.02E-03 1.90E-02 GO:0006955 immune response 1.14E-76 

Brain Hippocampus 485 0.212 0.0395 3.98E-08 0.00E+00 GO:0002376 immune system process 1.12E-95 

Brain Hypothalamus 768 0.191 0.0315 7.53E-10 0.00E+00 GO:0006955 immune response 1.83E-96 

Brain Nucleus accumbens basal ganglia 463 0.171 0.0411 1.59E-05 4.00E-04 GO:0006955 immune response 9.69E-81 

Brain Putamen basal ganglia 352 0.175 0.0469 9.61E-05 1.40E-03 GO:0006955 immune response 5.95E-72 

Brain Spinal cord cervical c-1 1205 0.0915 0.0248 1.10E-04 1.70E-03 GO:0002376 immune system process 5.86E-77 

Brain Substantia nigra 888 0.133 0.0291 2.44E-06 0.00E+00 GO:0002376 immune system process 3.14E-88 

Adipose Subcutaneous 638 0.104 0.0345 1.33E-03 3.50E-02 GO:0006955 immune response 1.60E-76 

Adrenal Gland 293 0.136 0.0502 3.35E-03 4.17E-02 GO:0006955 immune response 2.34E-70 

Artery Aorta 1102 0.0847 0.0266 7.42E-04 1.16E-02 GO:0006955 immune response 8.41E-76 

Artery Coronary 1344 0.0794 0.0243 5.46E-04 7.30E-03 GO:0006955 immune response 4.75E-151 

Artery Tibial 472 0.181 0.0408 4.95E-06 0.00E+00 GO:0006955 immune response 4.41E-124 

Colon Transverse 445 0.12 0.0412 1.85E-03 1.19E-02 GO:0002376 immune system process 4.38E-91 

Esophagus Mucosa 803 0.132 0.0321 1.88E-05 2.00E-04 GO:0006955 immune response 1.21E-143 

Esophagus Muscularis 495 0.122 0.0394 9.62E-04 1.72E-02 GO:0006955 immune response 9.18E-83 

Heart Atrial Appendage 371 0.172 0.0448 5.87E-05 1.60E-03 GO:0002376 immune system process 4.86E-95 

Heart Left Ventricle 180 0.275 0.0654 1.29E-05 2.00E-04 GO:0006955 immune response 2.50E-69 

Liver 611 0.0956 0.0357 3.72E-03 4.86E-02 GO:0002376 immune system process 1.21E-31 

Lung 146 0.271 0.0707 6.28E-05 1.20E-03 GO:0042119 neutrophil activation 2.49E-36 

Minor Salivary Gland 510 0.163 0.0383 1.04E-05 2.00E-04 GO:0006955 immune response 1.20E-76 

Muscle Skeletal 233 0.211 0.0592 1.81E-04 2.70E-03 GO:0006955 immune response 6.63E-68 

Nerve Tibial 283 0.163 0.0516 8.01E-04 2.49E-02 GO:0006955 immune response 6.78E-66 

Pancreas 852 0.151 0.0303 3.11E-07 0.00E+00 GO:0006955 immune response 7.78E-113 

Skin Not Sun Exposed Suprapubic 178 0.213 0.0681 8.84E-04 1.21E-02 GO:0002376 immune system process 1.46E-59 

Small Intestine Terminal Ileum 2327 0.0506 0.0181 2.65E-03 2.72E-02 GO:0002376 immune system process 6.74E-39 

Spleen 963 0.0878 0.0279 8.18E-04 2.44E-02 GO:0042119 neutrophil activation 3.42E-45 

Stomach 72 0.339 0.104 5.59E-04 5.80E-03 GO:0006955 immune response 1.87E-17 

Thyroid 979 0.0879 0.0292 1.28E-03 3.49E-02 GO:0002376 immune system process 4.10E-114 

Uterus 355 0.198 0.0472 1.33E-05 4.00E-04 GO:0006955 immune response 4.67E-85 

Vagina 149 0.269 0.0728 1.12E-04 5.00E-04 GO:0006955 immune response 1.01E-47 
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