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Abstract

Alzheimer’'s disease is a highly heritable and severe neuropsychiatric condition. Genome-
wide association studies have identified multiple genetic risk factors underlying susceptibility
to Alzheimer's disease, however their functional impact remains poorly understood. To
overcome this shortcoming, we integrated genome-wide association summary statistics
(71,880 cases, 338,378 controls) with tissue-specific gene co-expression networks derived
from GTEXx to identify functional gene co-expression networks underlying the disease. We
found genetic variants associated with Alzheimer's disease are enriched in gene co-
expresson networks involved in immune response-related biological processes. The
implicated gene co-expression networks are preserved across multiple brain and peripheral
tissues, highlighting the potential utility of peripheral tissues in genetic studies of
Alzheimer’s disease. We aso performed a computational drug repositioning analysis by
integrating gene expression changes within Alzheimer's disease modules with drug-gene
signatures from the Connectivity Map, and show disease implicated networks retrieve known
Alzheimer’'s disease drugs and novel drug repurposing candidates for follow-up functional
studies. Our results improve the biological interpretation of recent genetic data for
Alzheimer's disease and provide a list of potential anti-dementia drug repositioning

candidates of which the efficacy should be investigated in functional validation studies.
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Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disorder, characterised in its early
stages by mild memory loss and progressing to severe impairment of broad executive and
cognitive functions. The most common form of Alzheimer’'s disease (late onset Alzheimer's
disease) typically affects those age over 65 years of age and has a complex molecular
background, driven in part by a polygenic mode of inheritance. A recent genome-wide
association study (GWAS) meta-analysis of 71,880 AD cases and proxy cases and 383,378
controls identified 20 disease-associated loci [1]. Detailed functional studies showed these
loci harbour common (minor allele frequency, MAF > 0.01) single nucleotide polymorphisms
(SNPs) that regulate the activity of genes in immune-related peripheral tissues (whole blood,
liver, and spleen), as well as microglia cells—the chief immune cells of the brain.
Furthermore, biological pathway analysis of the implicated genes showed enrichment of
previously associated lipid system pathways, highlighting a potential integrated mechanism

between dysfunctional lipid metabolism and immune responsesin the brain [2].

Genetic risk factors for disease may converge on highly correlated groups of genes that
interact with one-another to alter the activity of multiple biological pathways and cellular
processes in a disease relevant tissue [3]. Gene expression is an intermediate molecular
phenotype that is directly modified by DNA sequence variation (expression quantitative trait
loci; eQTLS), epigenetic marks such as DNA methylation, and the environment, as well as
the expression of other genes [4]. Gene expression analyses of post-mortem brain tissue have
identified distinct cell types and biological pathways underlying AD pathogenesis [5,6].
These studies are largely based on tests of association with individual genes or groups of
curated genes with a common biological function. An alternative approach is to study how

genes interact with one-another using gene co-expression analysis, which take the correlation
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between every gene pair expressed in a particular (tissue) sample to generate a molecular
substrate for association testing with a disease state [7]. We recently built gene co-expression
networks using 48 human tissues and cell types collected for the Genotype-Tissue Expression
(GTEX) study [8]. We used these data to test for the enrichment of depression GWAS signals
within gene co-expression modules (or groups of highly correlated genes), under the
biologically valid assumption that connectivity among genes may be leveraged to identify

genes not directly implicated in disease.

Co-expression networks can also be used as a functional substrate for the integration of other
types of molecular data for the identification and function of disease-associated genes. This
includes new types of chemical libraries that describe the effects of a given drug compound
on gene expression, known as a drug-gene database. The Connectivity Map, known as CMap
[9], contains gene expression signatures resulting from genetic and pharmacologic
perturbagens measured across multiple cell types. Drug-gene signatures—that is, gene
expression changes following a genetic or pharmacologic perturbagen—can be integrated
with disease-associated gene expression changes to identify compounds that might
“normalise” gene expression. Characterising the complex interactions between genes in a
network-based framework may identify targets for potential treatments through
computational drug repositioning. Therefore, we aim to integrate tissue-specific gene co-
expression networks with AD association signals and drug-gene signature data to identify and

prioritise drug compounds that target disease processes.

M ethods

Alzheimer’s disease GWAS summary statistics
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Detailed methods, including a description of population cohorts, quality control of raw SNP
genotype data, and association analyses for the Alzheimer’s disease GWAS is described in
detail elsewhere [1]. The Alzheimer’s disease GWAS was performed in a three-stage meta-
analysis. The first phase consisted of 24,087 AD cases and 55,058 controls collected by the
Alzheimer’'s disease working group of the Psychiatric Genomics Consortium (PGC-ALZ),
the International Genomics of Alzheimer's Project (IGAP), and the Alzheimer's Disease
Sequencing Project (ADSP). All cases in phase 1 received clinical confirmation of late-onset
Alzheimer's disease. The second phase included 47,793 proxy cases and 328,320 proxy
controls from the UK Biobank (UKBB); proxy cases where defined as individuals with one
or both parents diagnosed with AD, while proxy controls were defined as individuals with
parents who do not have AD. Phase 3 involved the meta-analysis of phase 1 and phase 2
cohorts, the results of which were tested for replication in an additional independent case-
control sample from deCODE (6,593 AD cases and 174,289 controls). Raw genotype data for
each cohort were processed according to a standardised quality control pipeline [1,10].
Logistic regression association tests were performed on imputed marker dosages and binary
phenotypes in Phase 1, and linear regression for continuous phenotypes in phase 2. For phase
1 phenotypes, the association tests were adjusted for sex, batch, and the first four principal
components, with age aso included as a covariation in the AD-PGC cohort. For phase 2
(UKBB) data, age, sex, batch, and assessment centre were included as covariates. Summary
statistics for 13,367,301 autosomal SNPs from Phase 3 of the analyses described in reference
[1] (N samples=455,258) were made available by the Complex Trait Genetics Laboratory at

VU University and VU Medical Centre, Amsterdam and were utilized in our study.

| dentification of gene expression modules
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Fully processed, filtered and normalised gene expression data for 48 tissues were downloaded

from the Genotype-Tissue Expression (GTEX) project portal (http://www.gtexportal.org)

(version 7). Only genes with ten or more donors with expression estimates > 0.1 Reads Per
Kilobase of transcript (RPKM) and an aligned read count of six or more within each tissue
were considered significantly expressed. Within each tissue, the distribution of RPKMs in
each sample was quantile-transformed using the average empirical distribution observed
across al samples. Expression measurements for each gene in each tissue were subsequently

transformed to the quantiles of the standard normal distribution.

Gene co-expression modules were individually constructed for 48 tissues (Table S1),
including 13 brain tissues, using the weighted gene co-expression network analysis
(WGCNA) package in R [7]. An unsigned pairwise correlation matrix — using Pearson’s
product moment correlation coefficient — was calculated. An appropriate “soft-thresholding”
value, which emphasises strong gene-gene correlations at the expense of weak correlations,
was selected for each tissue by plotting the strength of correlation against a series (range 2 to
20) of soft threshold powers. The correlation matrix was subsequently transformed into an
adjacency matrix, where nodes correspond to genes and edges to the connection strength
between genes. Each adjacency matrix was normalised using a topological overlap function.
Hierarchical clustering was performed using average linkage, with one minus the topological
overlap matrix as the distance measure. The hierarchical cluster tree was cut into gene
modules using the dynamic tree cut algorithm [11], with a minimum module size of 50 genes.
We amalgamated modules if the correlation between their eigengenes — defined as the first

principal component of their genes' expression values — was greater or equal to 0.8.

Gene-set analysis of gene co-expr ession modules
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We performed gene-based analysis using MAGMA v1.06 [12] to (i) identify risk genes
associated with AD; and (ii) test the enrichment of AD risk genes in gene co-expression
modules using gene-set analysis. To identify risk genes, MAGMA assigns SNPs to ther
nearest gene using a pre-defined genomic window (35 kb upstream or 10 kb downstream of a
gene body) and computes a gene-based statistic based on the sum of the assigned SNP —
log(10) P values while accounting for the correlation (i.e. linkage disequilibrium) between
nearby SNPs. To identify tissue-specific modules enriched with AD risk genes, we performed
gene-set analysis in MAGMA. The competitive analysis tests whether the genes in a gene-set
(i.e. gene co-expression module) are more enriched with Alzheimer’s disease risk genes than
other genes while accounting for gene size and gene density. An adaptive permutation
procedure (N=10,000 permutations) was used to obtain P values corrected for multiple testing
(FDR<0.05). The 1000 Genomes European reference panel (Phase 3) was used to account for
Linkage Disequilibrium (LD) between SNPs. For each tissue, a quantile-quantile plot of

observed versus expected P values was generated to assess inflation in the test statistic.

Biological characterisation of AD-associated gene expression modules

Gene expression modules enriched with Alzheimer’s disease GWAS association signals were
assessed for biological pathways and processes using g:Profiler
(https://biit.cs.ut.ee/gprofiler/) [13]. Ensembl gene identifiers within enriched gene modules
were used as input; we tested for the over-representation of module genes in Gene Ontology
(GO) hiological processes. The g:Profiler algorithm uses a Fisher’s one-tailed test for gene
pathway enrichment; the smaller the P value, the lower the probability a gene belongs to both
a co-expression module and a biological term or pathway purely by chance. Multiple testing
correction was done using g:SCS; this approach accounts for the correlated structure of GO

terms, and corresponds to an experiment-wide threshold of a=0.05.
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Preservation of gene co-expression networ ks acr 0ss tissues

To examine the tissue-specificity of biological pathways, we assessed the preservation (i.e.
replication) of network modules across 48 GTEXx tissues using the “modulePreservation” R
function implemented in WGCNA [14]. Briefly, the module preservation approach takes as
input “reference” and “test” network modules and calculates statistics for three preservation
classes: i) density-based statistics, which assess the similarity of gene-gene connectivity
patterns between a reference network module and a test network module; ii) separability-
based statistics, which examine whether test network modules remain distinct in reference
network modules; and iii) connectivity-based statistics, which are based on the similarity of
connectivity patterns between genes in the reference and test networks. For simplicity, we
report two density and connectivity composite statistics: “Zsummary” and “medianRank”. A
Zsummary value greater than 10 suggests there is strong evidence a module is preserved
between the reference and test network modules, while a value between 2 and 10 indicates
weak to moderate preservation and a value less than 2 indicates no preservation. The median
rank statistic ranks the observed preservation statistics; modules with lower median rank tend

to exhibit stronger preservation than modules with higher median rank.

Computational drug repurposing

Our computational drug re-purposing analysis tests the predicted effect of a drug compound
on dysregulated gene expression modules underlying AD. We used S-PrediXcan to estimate
the magnitude and direction of gene expression changes associated with AD. This approach

integrates eQTL information with GWAS summary statistics to estimate the effect of genetic
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variation underlying a disease or trait on gene expression. We used eQTL information
(expression weights) from 48 tissues generated by the GTEXx project (v7) [15], and LD
information from the 1000 Genomes Project Phase 3 [16]. These data were processed with
beta values and standard errors from the GWAS of Alzheimer's disease [1] to estimate the
expresson-GWAS association statistic. For each GTEX tissue, we extracted the S-PrediXcan
Z-scores for genes within modules enriched with AD association signals and created two lists
containing genes with either up-regulated or down-regulated expression. The gene lists were
used as the basis of drug repurposing using drug gene-signatures from the Connectivity Map
(CMAP) [9]. For each gene list, and for each unique compound in CMAP, we calculated a
“connectivity score” based on a modified Kolmogorov-Smirnov score, which summarises the
transcriptional relationship to the AD module genes. The connectivity score is a standardised
metric ranging from -100 to 100, where a highly negative score indicates predicted
expression effect from S-PrediX can and the drug-gene signatures are opposing (i.e. genes that
are up-regulated in disease cases are down-regulated by the compound, and vice versa). We
selected compounds with connectivity scores of -90 and lower (*strong scores’), which were
subsequently mapped to mechanism of action (MOA) categories to identify chemogenomic
trends. To assess the disease specificity of the CMAP enrichments, we performed a gene-
based analysis of the gene co-expression networks using GWAS summary statistics for
schizophrenia, a brain-related neuropsychiatric disorder with an immune component. The

gene-based results were used as input to CM AP, and the results were compared with AD.

To test the significance of the AD perturbational enrichments (i.e. ensuring that significant
results are not due to random chance), we grouped the observed co-expression values for
pairs of genes from a single tissue (amygdala) into 100 bins based on co-expression values.

We randomly sampled genes across bins, selecting the same number of gene co-expression
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values from each bin as the observed data. This stratified method of sampling was done to
ensure the observed and permuted data were matched on connectivity. The permuted co-
expression modules were uploaded to CMAP using the clue API client, and connectivity
scores for each compound were extracted from the output files. We calculated empirical P
values for observed compounds with connectivity scores smaller than -90 by counting the
number of times the same compound from the permuted data had a connectivity score smaller
than -90. To assess the disease specificity of the drug-gene enrichments, we ran our
methodological framework using GWAS summary statistics for schizophrenia [17] and
compared the overlap of significant (connectivity score <-90) drug-gene candidates with

Alzheimer’s disease using the hypergeometric overlap test.

Resaults

Alzheimer’s disease risk genes are enriched in gene co-expression modules associated
with theimmune system

We used MAGMA to collapse GWAS association signals to individual genes and identified
74 genes significantly associated with AD after multiple testing correction (P<2.78x10°°)
(Table S2). We tested for the enrichment of risk genes in gene co-expression modules built
from 48 GTEX tissues [8]. A single gene module in 36 tissues, including 13 brain tissues, was
enriched with AD risk genes (*AD modules”) (Table 1). No enrichment of gene-based
association signals was observed for modules identified in whole blood, despite the larger
sample size compared to many other of the tested tissues. There was moderate overlap
between genes within AD modules, with 59 percent of genes specific to a single module, and
only one gene (PIK3R5) being common to all AD modules (Figure Sl1). Despite this
moderate gene overlap between modules, gene pathway analyses found the enrichment of

immune system pathways (e.g. “immune system process’ in brain amygdala, P=2.48 x 10",
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and “immune response” in brain substantia nigra; P=2.48 x 10™) within all AD modules,
including al 13 brain tissues and 23 peripheral tissues (Table 1).

Gene co-expression modules enriched with Alzheimer’s disease risk genes are preser ved
across brain tissues

We assessed the preservation (i.e. reproducibility) of AD modules across 36 enriched tissues
using the WGCNA modulePreservation algorithm. Strong modular preservation (z-score >
10) was observed across most tissues; preservation tended to be higher between vascular-
related tissues (e.g. coronary artery, aorta, and tibial artery) and all other tissues, and among
brain-related tissues. The weakest preservation (z-score < 10) of immune modules was
observed in stomach, vagina, spleen, and lung tissues (Figure 1). These data suggest immune
changes in AD are systematic (that is, may be detected in brain and peripheral tissues), but
are likely greater (or manifest earlier) in brain tissues. Therefore, the study of gene co-
expression—that is, the connectivity between genes—across multiple brain and peripheral
tissues, such as skin, may provide a useful surrogate for genetic and molecular studies of
brain-related processesin AD.

A computational drug re-purposing analysis identifies drug compounds for further
analysis

Our gene co-expression analytical approach is built on the premise that genes do not act
alone, but rather form complex networks to influence the manifestation of a disease or trait
[18]. A similar premise can be applied to therapeutics, where drugs are likely to not only
modulate the activity of a single gene but the activity of multiple, highly connected genesin a
pathogenic tissue. Our multi-tissue gene co-expression modules provide a useful substrate for
the identification and prioritisation of drugs that may “normalise” altered gene co-expression
in AD. We used S-PrediXcan to identify genes whose expression is associated with genetic
variation underlying AD (Table S3). We assigned the S-PrediXcan Z-score for the direction

and magnitude of effect to all genes within AD modules, and generated lists of up-regulated
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and down-regulated genes. The gene lists were used as input to the connectivity map
(CMAP), which computes a “connectivity score” based on the transcriptional relationship
between the gene lists and observed drug-gene signatures across multiple cell-types. We
selected compounds with connectivity scores less than or equal to -90 (indicating a
compound is predicted to normalise predicted altered [up- or down-regulated] expression
patterns in AD) (Table S4). We collapsed significant compounds based on their mechanism
of action across cell types and brain tissues (Table S5). Top-ranked mechanisms of action
included acetylcholine receptor antagonists, which include a number of currently-used drugs
for AD (eg. memantine). Other top-ranked mechanisms included GABA receptor
modulators, which are reported to have a key role in autoimmune inflammation in the brain
[19]. Other mechanisms of action included cyclooxygenase inhibitors, which include drug
compounds that may have a protective role in Alzheimer’s disease [20]. In order to assess the
significance of drug-gene level results, we applied a permutation procedure (methods) in
Amygdala. The results show top-ranked compounds are unlikely to be due to correlated
expression (Table S6). We aso ran our network-based pipeline with GWAS summary
statistics for schizophrenia, a brain-related trait with an immune component, and found no
significant overlap (hypergeometric test) with our observed results for Alzheimer’'s disease
across cell types (Table S7). These observations strengthen the candidacy of potential AD
therapeutics and illustrate the potential of CMAP within a gene co-expression network
framework to generate novel, unbiased hypotheses on the pharmacologic modulation of

disease states.

Discussion
We applied a tissue-specific network-based gene co-expression method to identify groups of

highly correlated (and functionally related) genes associated with AD. Gene-based analyses
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of GWAS summary statistics identified 74 genes significantly associated with AD after
multiple testing correction. Gene-based associations were enriched in asingle gene module in
36 GTEX tissues, including 13 brain tissues. All tissue-specific AD modules were associated
with the immune system and immune response, despite only moderate overlap in gene
membership across modules. A computational drug repositioning analysis of genes within
AD modules identified the mechanism of action categories acetylcholine receptor antagonists
and glutamate receptor function, both of which include drug candidates, in addition to
cyclooxygenase inhibitors and other immune function-related drug classes. Our results
demonstrate a tissue-specific approach to gene discovery in AD may not only identify
candidate causal genes, tissues, and biological pathways, but also targets for therapeutic

intervention.

Many studies suggest an important role of neuroinflammation in the onset and progression of
the neuropathological changes that are observed in AD. Independent studies had identified
immune-related proteins and cells in the proximity of f-Amyloid plaques [21], for example,
and epidemiological reports suggested anti-inflammatory agents used to treat immune
disorders, such as rheumatoid arthritis, decrease the risk of AD [22]. It was not until the
publication of a large-scale GWAS on AD that the first robust evidence for a causal
association between neuroinflammation and disease onset could be established [1]. However,
the GWAS only found enrichment of immune-related tissues and cell types, rather than a
biological mechanism. The study of tissue-specific gene co-expression patterns allowed us to
investigate a larger set of genes that might be implicated in disease based on network
connectivity. Using this approach, we identified immune system-related tissue-specific
modules (groups) of co-expressed genes that are both enriched with AD association signals

and strongly preserved across tissues.
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We further demonstrate the versdtility of co-expression network-based methods with the
application of a computational drug repositioning analysis. We used al genes within disease
implicated co-expression modules as input to CMap, under the biologically valid assumption
that a drug compound not only alters the activity of a single target gene, but influences the
activity of multiple related genes through co-regulation [23]. Furthermore, by using S
PrediXcan to impute expression effects from GWAS summary statistics, we focus only
genetically regulated gene expression effects, thereby removing unwanted variation on gene
expression from environmental effects. This approach identified disease-associated gene
modules whose expression signature was predicted to be normalised by major Alzheimers's
disease drug classes, including acetylcholine receptor antagonists and glutamate receptor
antagonists. We also found several drug classes that target immune-related processes,,
consistent with current knowledge on disease pathways underlying AD. For example,
proliferator-activated receptor vy (PPAR) agonists were predicted to normalise gene
expression signatures in AD. PPARs play an important role in microglial-driven
inflammatory response, and their activation is known to increase microglia amyloid B
clearance and improve spatial memory performance in a mouse model [24]. Other
mechanism of action classes, such a cyclooxygenase inhibitors, contained compounds that
have undergone clinical trials for AD (e.g. naproxen) [25]. Collectively, these results show
our approach can uncover existing and potentially novel drugs for further functional studies

in appropriate cell types and model organisms.

Genetic associations for AD are enriched in genomic regions that encode “druggable’ gene
targets [26] and therefore has translational potential using computational repositioning

methods. So et al. [27] used GWA S-imputed transcriptome profiles and the CMAP agorithm
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to identify candidates for drug repositioning in neuropsychiatric disorders and identified
several non-steroidal anti-inflammatory drugs (NSAIDs) with possible benefitsin AD, in line
with our results. We extend this analysis with the use of a larger, more highly powered
GWAS and network-based methods to implicate additional genes with potential relevance in
AD pathology. A recently published study used genetic information and network-based
methods to develop a priority index for drug target validation in immune-mediated traits [28].
The priority index incorporated functional genomic information with protein-protein network
connectivity information, and was shown to successfully identify current therapeutics and
prioritise alternative compounds for early-stage testing. Their network annotations, however,
do not directly integrate genetic co-expression, but instead rely on disparate sources of
protein interaction data to characterise gene connectivity. Our gene co-expression-based
approach, on the other hand, directly anchors changes in genetically regulated gene
expression to observed levels of co-expression between genes, and therefore more closely

represents underlying biological relationships.

We used gene expression data from bulk human brain tissue as single cell expression datais
not available in GTEX. Bulk brain tissue is nhot homogeneous with respect to individual cell
types (e.g. microglial cells versus neurons). As a result, true Alzheimer’s disease association
signals may be diluted by non-specific expression, or expression differences may simply
reflect mosaic effects of different cell types. This is especialy problematic for AD, where
many of the risk genes are not highly expressed in bulk brain tissues [29,30] and have been
linked to immune function [31]. Genetic signals for AD are enriched in microglial cells [32],
which themselves only account for around 3% of the total brain cell population. Therefore,
RNA sequencing of individualised cells (known as single cell RNA sequencing) may

partition genetic signals to causal cell types and improve power to identify functional genes
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and mechanisms underlying AD and, in turn, improve the accuracy of drug positioning [6].
An alternative approach is to use human monocyte-induced microglia as a proxy to examine
the genetic effects of AD in microglia. This approach would remove the need for post-
mortem brain samples, which can be difficult to obtain, and thereby enable the rapid
functional validation of molecular process and drug responsesin AD.

In summary, we integrated GWAS summary statistics for AD with gene co-expression
networks from 48 tissues in GTEx. We identified gene modules within each of the tissue-
specific co-expression networks enriched with AD GWAS association signals. Biological
pathway analysis of the implicated gene modules found enrichment of immune-response
pathways, consistent with recent functional and transcriptomic analyses [5]. We estimated the
effect direction of gene expression underlying AD using S-PrediXcan and integrated these
data with drug-gene signatures from the connectivity map. This procedure identified drug
compounds whose effect on gene expression was estimated to “normalise” dysregulated
expression patterns underlying AD. We collapsed drugs to common mechanisms of action,
and found mgor drug classes in the treatment (glutamate receptor antagonists and
acetylcholinesterase inhibitors) were captured by our method, in addition to other
mechanisms of action of biological interest (e.g. cyclooxygenase). Weidentified alist of drug
compounds with genetic support that may be repositioned for the treatment of AD after
follow-up functiona studies. Our approach will help researchers to translate genetic findings

for follow-up functional studiesin the early-state drug devel opment process.
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Table 1: Gene-set enrichment analysis and biological pathway analysis of Alzheimer’s disease modules across 36 tissuesin GTEX o=
35

Gene set enrichment analysis Bioloical pathway analysis ez

Tissue N genes Beta SE P P adjust Term Term name P adjust ‘;'55
Brain Amygdala 630 0.157 0.0351 3.80E-06 0.00E+00 G0:0002376 immune system process 2.48E-73 g%
Brain Anterior cingulate cortex BA24 353 0.164 0.047 2.34E-04 4.50E-03 G0O:0006955 immune response 4.54E-78 \(7)/ =}
Brain Caudate basal ganglia 393 0.143 0.0442 6.28E-04 1.01E-02 G0:0002376 immune system process 7.84E-73 5’5
Brain Cerebellar Hemisphere 197 0.248 0.0635 4.78E-05 7.00E-04 G0:0006955 immune response 2.08E-50 g =
Brain Cerebellum 103 0.425 0.0868 4.78E-07 0.00E+00 G0:0002376 immune system process 1.60E-32 % S
Brain Cortex 233 0.226 0.0567  3.32E-05 3.00E-04 G0:0006955 immune response 1.64E-67 gé‘
Brain Frontal Cortex BA9 420 0.13 0.0423 1.02E-03 1.90E-02 GO:0006955 immune response 1.14E-76 §B
Brain Hippocampus 485 0.212 0.0395 3.98E-08 0.00E+00 G0:0002376 immune system process 1.12E-95 c %§
Brain Hypothalamus 768 0.191 0.0315 7.53E-10 0.00E+00 G0:0006955 immune response 1.83E-96 %; 8
Brain Nucleus accumbens basal ganglia 463 0.171 0.0411 1.59E-05 4.00E-04 G0:0006955 immune response 9.69E-81 ; 33
Brain Putamen basal ganglia 352 0.175 0.0469 9.61E-05 1.40E-03 G0:0006955 immune response 5.95E-72 8 3 z
Brain Spinal cord cervical c-1 1205 0.0915 0.0248 1.10E-04 1.70E-03 G0:0002376 immune system process 5.86E-77 c'gg @
Brain Substantia nigra 888 0.133 0.0291 2.44E-06 0.00E+00 G0:0002376 immune system process 3.14E-88 ;S g'
Adipose Subcutaneous 638 0.104 0.0345 1.33E-03 3.50E-02 G0O:0006955 immune response 1.60E-76 e} %.g
Adrenal Gland 293 0.136 0.0502  3.35E-03 4.17E-02 G0:0006955 immune response 2.34E-70 % g ﬁ
Artery Aorta 1102 0.0847 0.0266 7.42E-04 1.16E-02 G0:0006955 immune response 8.41E-76 IS % 3
Artery Coronary 1344 0.0794 0.0243 5.46E-04 7.30E-03 G0O:0006955 immune response 4.75E-151 °© E g
Artery Tibial 472 0.181 0.0408 4.95E-06 0.00E+00 G0O:0006955 immune response 4.41E-124 % oS
Colon Transverse 445 0.12 0.0412 1.85E-03 1.19E-02 G0:0002376 immune system process 4.38E-91 é g' g.
Esophagus Mucosa 803 0.132 0.0321 1.88E-05 2.00E-04 G0O:0006955 immune response 1.21E-143 S e
Esophagus Muscularis 495 0.122 0.0394 9.62E-04 1.72E-02 G0:0006955 immune response 9.18E-83 ;?_; 2 _ﬁ
Heart Atrial Appendage 371 0.172 0.0448 5.87E-05 1.60E-03 G0:0002376 immune system process 4.86E-95 5 g N
Heart Left Ventricle 180 0.275 0.0654 1.29E-05 2.00E-04 G0O:0006955 immune response 2.50E-69 3 -g ey
Liver 611 0.0956 0.0357 3.72E-03 4.86E-02 G0:0002376 immune system process 1.21E-31 %&’ 5|
Lung 146 0.271 0.0707 6.28E-05 1.20E-03 G0:0042119 neutrophil activation 2.49E-36 %2
Minor Salivary Gland 510 0.163 0.0383 1.04E-05 2.00E-04 G0:0006955 immune response 1.20E-76 g=K°]
Muscle Skeletal 233 0.211 0.0592 1.81E-04 2.70E-03 G0:0006955 immune response 6.63E-68 3=
Nerve Tibial 283 0.163 0.0516 8.01E-04 2.49E-02 G0:0006955 immune response 6.78E-66 5%
Pancreas 852 0.151 0.0303 3.11E-07 0.00E+00 G0:0006955 immune response 7.78E-113 5z
Skin Not Sun Exposed Suprapubic 178 0.213 0.0681 8.84E-04 1.21E-02 G0:0002376 immune system process 1.46E-59 }3 g
Small Intestine Terminal lleum 2327 0.0506 0.0181 2.65E-03 2.72E-02 G0:0002376 immune system process 6.74E-39 E g,,
Spleen 963 0.0878 0.0279 8.18E-04 2.44E-02 G0:0042119 neutrophil activation 3.42E-45 S
Stomach 72 0.339 0.104 5.59E-04 5.80E-03 G0:0006955 immune response 1.87E-17 i g
Thyroid 979 0.0879 0.0292 1.28E-03 3.49E-02 G0:0002376 immune system process 4.10E-114 g%
Uterus 355 0.198 0.0472 1.33E-05 4.00E-04 G0O:0006955 immune response 4.67E-85 30T
Vagina 149 0.269 0.0728 1.12E-04 5.00E-04 GO0:0006955 immune response 1.01E-47 %i
2%

=g
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