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Abstract

Epigenomic profiling enables unique insights into human development and diseases. Often
the analysis of bulk samples remains the only feasible option for studying complex tissues and
organs in large patient cohorts, masking the signatures of important cell populations in
convoluted signals. DNA methylomes are highly cell type-specific, enabling recovery of hidden
components using advanced computational methods without the need of reference profiles.
We propose a three-stage protocol for reference-free deconvolution of DNA methylomes
comprising: (i) data preprocessing, confounder adjustment and feature selection, (ii)
deconvolution with multiple parameters, and (iii) guided biological inference and validation of
deconvolution results. Our protocol simplifies the analysis and integration of DNA methylomes
derived from complex tissues, including tumors. Applying this protocol to lung cancer
methylomes from TCGA revealed components linked to stromal cells, tumor-infiltrating
immune cells, and associations with clinical parameters. The protocol takes less than four
days to complete and requires basic R skills.

1 Introduction

DNA methylation, preferentially occurring at CpG dinucleotides in mammalian genomes,
correlates with cell type identity and differentiation stage®. Importantly, methylation states of
particular CpGs can be used as powerful biomarkers for various conditions, including cancer®”
* inflammatory diseases® and aging®. To facilitate such findings, large international consortia,
including IHEC’, DEEP?, and BLUEPRINT®, are generating genome-wide DNA methylation
maps (or DNA methylomes) of primary tissue samples and isolated cell populations. However,
DNA methylomes obtained from bulk samples are intrinsically heterogeneous, and can be
additionally affected by aging, sex and other confounders. Computational methods for the
integration of large-scale DNA methylation datasets, and capable of delineating such complex
methylomes into biologically distinct variability components, are of paramount importance®.

Deconvolution methods dissect methylomes of cell mixtures into their basic constituents™. In
case reference DNA methylomes of purified cell types are available, these can be used to
infer the proportions of different cell types across the samples. MultiPIe reference-based
methods have been proposed™™ and are reviewed elsewhere'® (summarized in
Supplementary Table 1). Another class of methods allows for composition-adjusted
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identification of differentially methylated regions in epigenome-wide association studies
(EWAS) without explicitly computing the cell type proportions™*°. When reference
methylomes and other prior information is partially or completely absent, semi-reference-free
(BayesCCE™) or fully reference-free (RefFreeCellMix*®, EDec'®, MeDeCom?®) deconvolution
methods can be applied (Supplementary Table 1). Reference-free methods are of particular
benefit for poorly characterized, complex systems, where adequate reference profiles are
especially hard to obtain. These tissues include for instance brain, and solid tumors. We
earlier found that in a large variety of applications, reference-free deconvolution methods are
only marginally different in their accuracy, and a thorough preprocessing, as well as careful
feature selection are more important than the choice of the deconvolution tool?*. Furthermore,
interpretation of deconvolution results is challenging in case prior information about the
investigated biological system is limited. Here, we present a comprehensive pipeline that
facilitates reference-free deconvolution, starting from raw DNA methylation data down to
result interpretation. Although we focus on MeDeCom as a representative method, the
protocol is not limited to a single deconvolution method and can be used in combination with
other available tools.

1.1 Development of the protocol

Reference-free deconvolution is a challenging computational task, for which several methods
have been proposed, along with the tools implementing them (Supplementary Table 1).
However, in a pilot benchmark of several published reference-free deconvolution tools, we
found that their performance differences were marginal, both on fully synthetic and in silico
mixed experimental datasets?. In fact, the quality and information content of the input DNA
methylation matrix had a higher impact upon the accuracy, than the choice of the
deconvolution tool itself. Thus, deconvolution algorithms a priori rely on thorough data
processing and feature selection, especially if the differences between underlying components
are small. Furthermore, biological interpretation of deconvolution results is often challenging,
in particular for beginners with limited bioinformatic experience. Facilitating the generation of
biological insights about the investigated system is similarly important as the deconvolution
itself. To overcome these limitations, we developed a comprehensive, three-stage protocol,
which includes critical preprocessing and interpretation steps in addition to the actual
deconvolution. The protocol, schematically outlined in Fig. 1, consists of three main stages: (i)
state-of-the-art DNA methylation data preparation, including stringent, quality-adapted CpG
filtering, elimination of potential confounding factors using Independent Component Analysis
(ICA) and feature selection; (ii) reference-free methylome deconvolution; (iii) interpretation of
deconvolution results with a user-friendly R/Shiny-based interface, enabling generating novel
biological insights.

As earlier described, data preparation is key to the overall success of deconvolution. The first
stage of our protocol thus comprises quality-adapted removal of unreliable or otherwise
problematic measurements using the widely used RnBeads software package for data
handling®®*. Confounding factors, such as age, sex or donor genotype, can have a strong
influence on the methylome, and investigators might want to adjust for those in their
analyses®*®. Therefore, we argue that accounting for confounders, using methods such as
Independent Component Analysis (ICA)?, is crucial to obtain biologically relevant results. As
the final data preparation step, a CpG subset selection determines sites that are linked to, for
instance, cell type identity or any other phenotypic trait of interest.
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The prepared, high-quality data matrix can be subjected to one of the deconvolution tools
(Supplementary Table 1). As a rule, these methods decompose input DNA methylation
matrix into a matrix of latent methylation components (LMCs, T) and a matrix of proportions
(A). In the second stage of the protocol, we use MeDeCom?®, our own method based on
regularized non-negative matrix factorization (NMF). To enforce the bimodality of LMCs, it
regularizes the entries of T towards extreme values zero and one. A MeDeCom solution is
defined by two user-specified parameters: the number of LMCs K (the inner dimension of T
and A), and the quadratic regularization parameter A (zero for no, and larger than one for
strong regularization). Although, the generated cross validation error provides a rational
criterion for parameter selection, it is often useful to consider several alternative solutions.
MeDeCom therefore stores all results obtained on a reasonable parameter grid for
subsequent in-depth exploration.

Although reference-free deconvolution is flexible with respect to the investigated system, the
interpretation of deconvolution results, especially of the LMC matrix T, can be challenging. In
addition to cell type profiles, LMCs reflect multiple drivers of biological and technical
variability, including age or sex. Furthermore, validating the proportions and LMCs is not
trivial, since the space of possible solutions is large and the cellular composition is typically
unknown. In order to guide users, we implemented most of the interpretation functionality in
the form of a specialized R/Shiny-based graphical user interface (FactorViz). A detailed
description of the annotation and inference features implemented in FactorViz is given in the
Outline of the Procedure section below.

1.2 Applications of the methods

Reference-free deconvolution is the method of choice for studying heterogeneity of DNA
methylomes in biological systems with Ilimited prior knowledge about their cellular
composition, or in case of missing reference profiles. This includes EWAS using material from
hardly-accessible or insufficiently-characterized organs and tissues, such as human brain, as
well as solid tumors. Previously, we and others used this approach to understand cellular
heterogeneity in placenta?’ , multiple sclerosis®®, breast cancer'®, and cholangiocarcinoma®.
Reference-free deconvolution is particularly useful to dissect tumor heterogeneity, e.g. to
study the effect of tumor-infiltrating immune cells on the tumor microenvironment®.
Furthermore, identified LMCs can be correlated to tumor size, location, metastasis state, and
mutational burden. Since tumors in general show a high degree of sample-to-sample
variation, methylome deconvolution can be used to detect similarities among different types of
cancers to define pan-cancer and cancer type-specific markers. If a particular cancer induces
changes in the DNA methylation pattern of the tumor stroma, these changes are likely to be
missed by reference-based, but not by reference-free methods.

In the original publication, after the validation on simulated data and in-silico cell type
mixtures, MeDeCom was applied to a brain frontal cortex dataset, successfully separating it
into neuronal and glia fractions, as well as detecting additional LMCs, which could be linked to
features of Alzheimer’s disease®. We anticipate successful application of MeDeCom in similar
scenarios. Furthermore, although for blood-based studies reference methylomes exist and
reference-based methods perform generally well, reference-free deconvolution can be useful
in case of severely altered blood composition, e.g. due to an overproduction of rare cell types.
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Finally, in the case of blood and other similarly well characterized tissues, MeDeCom can be
applied in a semi-supervised fashion using spiked-in reference profiles. This enables easy
recovery of known signatures, and allows for detection of additional unknown LMCs.

Single-cell technology is steadily improving, and cell-level DNA methylomes will become
increasingly available in the near future®?. Nevertheless, we expect that deconvolution of
large-scale bulk tissue datasets will remain a useful complement of single cell DNA
methylation profiling, which still suffers from high costs, low sample throughput and data
sparsity. We envisage that both approaches can be successfully used in combination, e.g.
single-cell profiling in several reference samples followed by deconvolution of bulk
methylomes from large patient cohorts, where single-cell profiles can be used for
interpretation of the LMCs or as pivot profiles in semi-reference-free scenarios. Finally,
deconvolution of more accessible bulk methylomes can be used to integrate them with easier
to obtain single-cell profiles of other omics layers, including single-cell transcriptomes and
chromatin accessibility maps.

1.3 Outline of the procedure

Our protocol is divided into three main stages: (i) Data preparation, (ii) Deconvolution and (iii)
Interpretation, which are described in detail below (see also Fig. 1).

1.3.1 Data preparation

We implemented the data preparation stage of the protocol as a new R-package
(DecompPipeline) that integrates quality filtering, confounding factor adjustment and feature
selection steps into an easy-to-use workflow
(http://github.com/CompEpigen/DecompPipeline). For loading, formatting and storing DNA
methylation data we recommend our recently updated RnBeads package.

Data import. Genome-wide DNA methylation can be profiled by different technologies such
as whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing
(RRBS) or the lllumina Infinium microarrays. In this protocol we focus on microarray datasets
due to their larger sample sizes that increase the efficiency of deconvolution. Nevertheless,
our pipeline is similarly applicable to any other data type that provides DNA methylation calls
at single CpG resolution, given at least a dozen samples are available. In addition to raw DNA
methylation data, phenotypic information is required and converted into the internal
RnBeads?*?® data structure. The input is checked for data quality using RnBeads’ reporting
functionality.

Quality filtering. DecompPipeline performs quality-based filtering of CpGs across the
samples in several steps (Table 1). First, CpGs are filtered according to a coverage threshold
across the samples, and overall signal intensity (microarrays) or coverage (bisulfite
sequencing) outliers are removed. Missing values can either be completely discarded from the
dataset or imputed®. We further remove sites overlapping annotated or estimated single
nucleotide polymorphisms (SNPs), sites on the sex chromosomes and cross-reactive sites®*.
Infinium data should be normalized prior to downstream analysis, and further sample
properties can be inferred, such as the overall immune cell content using the LUMP
algorithm* or the epigenetic age®.
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Covariate adjustment using ICA. DNA methylomes can be affected by various sources of
variability, both of biological and technical nature that might mask the signals of interest.
Independent component analysis (ICA)® is a data-driven dimensionality reduction method
that performs a matrix decomposition, dividing the experimentally observed data matrix Dmn
into k independent signals S« mixed with the coefficients of Myn:

D ~ Sk X Min

where m and n are the number of features (methylation sites) and samples, respectively. S
represents the contributions of methylation sites in different components. The weight matrix M
can be linked to clinical outcomes, such as cancer type and patient survival, and confounding
factors, including sex, experimental batch effects or platform biases. As the method separates
the original methylation profiles into statistically independent signals, the influence of potential
confounding factors on the methylation profiles can be attributed to particular CpGs, which
can ggther be removed or the weights (rows of M) of corresponding components can be set to
zero™.

A pitfall of ICA that is specific to methylation data analysis is the smoothing of the original beta
value distribution after ICA-based normalization. Therefore, a post-processing step is required
in order to bring beta values into the expected range. To achieve this, reconstructed values
are linearly rescaled in order to set the 1% and 99" percentiles to beta values of zero and one.
Finally, in order to reduce stochasticity of ICA decomposition, we apply the consensus ICA
approach®’. ICA was run multiple times and the resulting matrices S and M were mapped and
averaged between the runs. The stability of the components is estimated as the coefficient of
determination (R?) between the columns of S observed in different runs.

Selection of informative CpG subsets. In order to obtain satisfactory deconvolution results,
further feature selection is required, since, for instance, lowly variable CpGs do not contribute
to signature recovery, but add to the computational runtime. From our experience, using prior
knowledge about the underlying cell types is the best option, given such knowledge is
available™*°. In the absence of prior knowledge about the biological system of interest, typical
strategies for feature selection include selecting the most variable sites, the ones with the
highest loadings on the first few principal components, or a random selection.
DecompPipeline provides 14 options to select CpG subsets (Table 2°%%°%), and multiple of
these options can be included in a single execution of the pipeline.

1.3.2 Performing deconvolution using MeDeCom

Reference-free deconvolution methods, such as RefFreeCellMix*®, EDec'® or MeDeCom?°,
estimate the matrix of latent methylation components (T) and the matrix of proportions (A)
based on the DNA methylation matrix of sites selected in the previous step (D) by means of
non-negative matrix factorization. We focus on MeDeCom, but the pipeline similarly supports
RefFreeCellMix and EDec. MeDeCom optimizes the squared Frobenius norm of the
difference between the true (measured) methylation matrix D and the matrix product of T and
A (Fig. 1). Desired properties of the factor matrices, i.e. restriction to the [0, 1] interval (T and
A) and column-sums equal to one (A), are enforced by respective constraints on their entries.
Furthermore, MeDeCom penalizes the entries of T not equal to zero and one using quadratic
regularization (maximum at entries equal to 0.5) controlled by the regularization parameter A.
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The optimization problem is solved using an alternating optimization scheme, which fixes
either of A or T while fitting the other at each of its steps. Selecting suitable values for the
regularization parameter (A) and the number of latent components (K) is assisted by a cross-
validation scheme that leaves out columns of D. Typically, a grid search for different values of
K and A is performed to determine the best number of components and regularization,
respectively. In order to reduce running time substantially, we recommend activating the
parallel processing options on standalone workstations, or to use a high-performance
computing cluster. The resulting solutions of the deconvolution problem are stored on disk
and can be used for downstream interpretation.

1.3.3 Interpretation of deconvolution results

In contrast to reference-based deconvolution, interpretation of reference-free deconvolution
results is non-trivial. MeDeCom produces a matrix of LMCs and a matched proportion matrix,
both of which need to be biologically validated and interpreted. To facilitate an interactive
interpretation, we created the semi-automated visualization tool FactorViz
(https://github.com/CompEpigen/FactorViz). FactorViz is an R/Shiny-based user interface with
guidelines and functions for comprehensive biological inference. Initially, one of the possible
MeDeCom solutions has to be chosen by selecting the parameters K and A based on the
cross-validation error. In order to investigate potential influences of covariates upon the
estimated proportions and corresponding LMCs, the resulting proportion matrix is linked to
technical or phenotypic traits, such as experimental batch or subject age, using association
tests. Furthermore, proportions can be linked to marker gene expression values, or specific
properties of the analyzed dataset such as survival time. To functionally annotate LMCs, we
determine the sites that are specifically hypomethylated in a particular LMC in comparison to
the median of the remaining LMCs, and treat the obtained sites as LMC-specific. Those sites
are then used for GO* and LOLA* enrichment analysis in order to associate respective
LMCs with functional categories, pathways and various genomic features. Finally, the matrix
of LMCs can be compared with available reference cell type profiles.

1.4 Level of expertise needed to implement the method

DecompPipeline, MeDeCom, and FactorViz are R-packages and thus require some minimal
prior experience with the R programming language. Basic knowledge of the Unix command
line interface is recommended for data handling. To follow the steps of this protocol, one only
needs a few R function calls, but the function parameters need to be tailored to the target
dataset. The graphical user interface FactorViz presents plots, which require a minimum
knowledge of DNA methylation data and matrix factorization.

1.5 Limitations

Since MeDeCom tests all possible combinations of the regularization parameter A, the number
of LMCs K and several feature selection methods, the number of basic deconvolution jobs can
reach 1,000 — 10,000. Reference-free deconvolution is thus a computationally demanding
task that requires high-performance computing infrastructure. When applied to larger
datasets, the deconvolution can take several days to finish even on larger machines.
Furthermore, the obtained LMC matrix needs to be biologically interpreted, which requires
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user interaction and input. A fully-automated interpretation of deconvolution results will be part
of the next development steps of the protocol. Accounting for confounding factors, especially
for those that might have a strong influence on the methylome, can lead to a substantially
modified DNA methylation data matrix. The proposed pipeline provides diagnostic plots, but
user interaction is still required to determine if the effect of a particular covariate is to be
removed.

2 Materials

2.1 Hardware

We recommend to apply the proposed protocol on large systems with, e.g. 128 GB of main
memory and 32 cores for a dataset of this size. For larger datasets such as bisulfite
sequencing data, we recommend a transition to a high-performance compute cluster or a
cloud environment, such that the pipeline can automatically distribute jobs across different
machines. MeDeCom, FactorViz and DecompPipeline can be directly installed from GitHub on
Unix-like systems, and a Docker container is available also for Windows 10 systems
(https://hub.docker.com/r/mscherer/medecom).

2.2 Input data

We used publicly available data from The Cancer Genome Atlas (TCGA,
https://www.cancer.gov/tcga) investigating lung adenocarcinoma (dataset TCGA-LUAD,
https://portal.gdc.cancer.gov/legacy-archive/search/f) in 461 samples assayed using the
lllumina 450k microarray, since lung cancer has high cellular and molecular heterogeneity™.
The clinical metadata and the manifest file of the samples is available at
https://portal.gdc.cancer.gov/projects/ TCGA-LUAD and have been downloaded through the
TCGA legacy archive on 2019-01-23. We used the Genomic Data Commons (GDC) data
download tool (https://gdc.cancer.gov/access-data/gdc-data-transfer-tool) together with the
manifest file to download the intensity data (IDAT) files and associated metadata.

3 Procedure

Installation TIMING 1 h

1. The pipeline needs R installed on your machine. If it is not yet installed, follow the
instructions at https://cran.r-project.org/.

2. Invoke R on the command line and install the devtools package. Then, install the software
packages needed for deconvolution directly from GitHub: MeDeCom, DecompPipeline and
FactorViz, and RnBeads from Bioconductor.

install.packages(c(“devtools”,”BiocManager”))
BiocManager::install(“RnBeads”)
library(devtools)

devtools::install_github(
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c("lutsik/MeDeCom”,”"CompEpigen/DecompPipeline”,"CompEpigen/FactorViz”)

)
library(DecompPipeline)

Data retrieval TIMING 5 h

3. Use the Genomic Data Commons (GDC) data download tool
(https://gdc.cancer.gov/access-data/gdc-data-transfer-tool) to download the IDAT files listed in
the manifest file and its associated metadata. This metadata also includes the mapping
between each of the samples and the IDAT files.

gdc-client download -m gdc_manifest.2019-07-03.txt

clinical.data <- read.table(“annotation/clinical.tsv”,
sep ="\ 17,
header = TRUE )
idat.files <- list.files(“idat”,full.names = TRUE)
meta.files<-list.files(idat.files[1],full.lnames = TRUE)
untar(meta.files[3],exdir = idat.files[1])
meta.files <- untar(meta.files[3],list = TRUE)
meta.info <- read.table(file.path(idat.files[1],meta.files[5]),
sep ="\t",
header = TRUE)
meta.info <- meta.info[match(unique(meta.info$Comment.. TCGA.Barcode.),
meta.info$Comment..TCGA.Barcode.),]
match.meta.clin <- match(clinical.data$submitter _id,
substr(meta.infofComment..TCGA.Barcode.,1,12))
anno.frame <- na.omit(data.frame(clinical.data,
meta.info[match.meta.clin,]))
anno.frame$barcode <- unlist(
lapply(
lapply(as.character(anno.frame$Array.Data.File),
function(x)strsplit(x,"_")),
function(x)paste(X[[111[1],x[[1]1[2].sep = "_")))
anno.frame$Sentrix_ID <- unlist(
lapply(
lapply(as.character(anno.frame$Array.Data.File),
function(x)strsplit(x, "_")),
function(x)paste(x[[1]][1])))
anno.frame$Sentrix_Position<-unlist(
lapply(
lapply(as.character(anno.frame$Array.Data.File),
function(x)strsplit(x,"_")),
function(x)paste(x[[1]][2])))
write.table(anno.frame,”annotation/sample_annotation.tsv”,
quote = FALSE, row.names = FALSE, sep = “\t")
anno.frame <- read.table(*annotation/sample_annotation.tsv”,
quote = FALSE, row.names = FALSE, sep = “\t")

4. Copy the IDAT files into a single directory for downstream analysis.

lapply(idat.files,function(x){
is.idat<-list.files(x, pattern = ".idat”, full.names = TRUE)
file.copy(is.idat,"idat/")
unlink(x,recursive = TRUE)
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)

Data import TIMING 2 h

5. RnBeads converts the files into a data object and performs basic quality control steps. Most
notably, analysis options have to be specified for RnBeads, either through an XML file or
through the command line. Deactivate the preprocessing, exploratory, covariate inference,
export and differential methylation modules, such that RnBeads only performs data import and
quality control.

library(RnBeads)

rnb.options(
assembly = “hg19”,
identifiers.column = “submitter_id”,
import = TRUE,
import.default.data.type = “idat.dir”,
import.table.separator = “\t”,
import.sex.prediction = TRUE,
qc = TRUE,
preprocessing = FALSE,
exploratory = FALSE,
inference = FALSE,
differential = FALSE,
export.to.bed = FALSE,
export.to.trackhub = NULL,
export.to.csv = FALSE

)

6. Specify the input to RnBeads: the sample annotation sheet created at the data retrieval
step, the folder in which the IDAT files are stored and a folder to which the HTML report is to
be saved. Additionally, specify a temporary directory and start the RnBeads analysis.

sample.anno <- "annotation/sample_annotation.tsv"
idat.folder <- "idat/"
dir.report <- pasteO(“report”,Sys.Date(),"/")
temp.dir <- "tmp"
options(fftempdir = temp.dir)
rnb.set <- rnb.run.analysis(
dir.reports = dir.report,
sample.sheet = sample.anno,
data.dir = idat.folder

)

7. RnBeads creates an interactive HTML report, specifying the steps performed and the
associated results. Data should meet the quality criteria in Table 3 to be used for downstream
analysis (see also the Anticipated Results section).

Preprocessing and filtering TIMING 22 h
8. Use the DecompPipeline package (https://qgithub.com/CompEpigen/DecompPipeline) for

further analysis. Processing options are provided through individual function parameters.
Follow a stringent filtering strategy: (i) Filter CpGs covered by less than 3 beads, and probes
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that are in the 0.001 and 0.999 overall intensity quantiles (low and high intensity outliers). (ii)
Remove all probes containing missing values in any of the samples. (iii)) In the sequence
context filtering, sites outside of CpG context, overlapping annotated SNPs, located on the
sex chromosomes and potentially cross-reactive probes are discarded. Finally, upon
successful filtering, apply BMIQ normalization* to account for the bias introduced by the two
Infinium probe designs™.

CRITICAL STEP Removing too few or too many sites might have a strong influence on the
final deconvolution results. Thus, we recommend to carefully check the available options
(Table 1) and only change the default setting in case of low-quality data.

9. Accounting for potential confounding factors is crucial in epigenomic studies and the
influences of, for instance, donor sex, age, and genotype on the DNA methylation pattern are
well-studied®*®. Use Independent Component Analysis (ICA, see Materials) to account for
DNA methylation differences that are due to sex, age, race, and ethnicity.

CRITICAL STEP Confounding factor adjustment changes the overall data distribution, which
might harm the overall bimodality of DNA methylation. The diagnostic plots provided by
DecompPipeline should be carefully checked.

library(DecompPipeline)
data.prep <- prepare_data(RNB_SET = rnb.set,
analysis.name = “TCGA_Deconvolution”,
NORMALIZATION = “bmiq”,
FILTER_BEADS = TRUE,
MIN_N_BEADS = 3,
FILTER_INTENSITY = TRUE,
MIN_INT_QUANT = 0.001,
MAX_INT_QUANT = 0.999,
FILTER_NA = TRUE,
FILTER_CONTEXT = TRUE,
FILTER_SNP = TRUE,
FILTER_SOMATIC = TRUE,
FILTER_CROSS_REACTIVE = TRUE,
execute.lump = TRUE,
remove.ICA = TRUE,
conf.fact.ICA = c(*age_at_diagnosis”,"race”,“gender”,”ethnicity"),
ica.setting = c(“alpha.fact’= 1e-5, “save.report’=TRUE,
"ntry”’= 10,”"nmax”"= 50,“ncores’= 10)

)

Selection of CpG subsets TIMING 1 min

10. Select a subset of sites to be used for deconvolution. DecompPipeline provides a number
of options (Table 2) through the prepare_CG_subsets function. Focus on selecting the 5,000
most variable sites across the samples.

cg_subset <- prepare_CG_subsets(
rnb.set = data.prep$rnb.set.filtered,
MARKER_SELECTION = “var”,
N_MARKERS = 5000
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Methylome deconvolution TIMING 54 h

11. Perform the deconvolution experiment. Focus on MeDeCom as a robust deconvolution
tool and specify a grid of values for the number of components (K) ranging from 2 to 15, which
covers homogeneous to heterogeneous samples. Also, specify a grid for the regularization
parameter (A) from strong (0.01) to no regularization (0).

md.res <- start_medecom_analysis(
rnb.set = data.prep$rnb.set.filtered,
Ccg_groups = cg_subset,
Ks = 2:15,
LAMBDA_GRID = ¢(0,10"-(2:5)),
factorviz.outputs = TRUE,
analysis.name = “TCGA_LUAD”,
cores =15

)

Downstream analysis TIMING 1 h

12. Visualize and interactively explore the deconvolution results with FactorViz
(Supplementary Fig. 1).

library(FactorViz)
startFactorViz(file.path(getwd()," TCGA_LUAD","FactorViz_outputs”))

13. Determine the number of components and the regularization parameter from the provided
list of parameters (Supplementary Fig. 2).

14. Associate the proportion matrix with quantitative (mutation count, fraction of genome
altered, LUMP estimate, stromal score) and qualitative (sex, ethnicity, health state, copy
number states) traits using correlation- and t-tests, respectively (Supplementary Fig. 3).

CRITICAL STEP Interpretation of deconvolution results is crucial to obtain biological insights
about the investigated system. In addition to the interpretation functions provided by
FactorViz, prior knowledge about the system can be used to validate and interpret
deconvolution results.

15. Compare LMC proportions per sample to expression of epithelial, endothelial, stromal,
and immune cell marker genes in lung tissue*® (Supplementary Text).

16. To determine sites that are specifically hypo- and hypermethylated in an LMC, compare

the methylation values in the LMC matrix for each LMC to the median of the remaining LMCs
and then employ GO and LOLA enrichment analysis (Supplementary Fig. 4).

4 Troubleshooting
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We provide troubleshooting advice in Table 4. For further support questions, feature requests
or help, use GitHub’s issue system or write a mail to the tool developers.

5 Anticipated Results

5.1 Quality control and feature selection

Deconvolution analysis requires input DNA methylation data of good technical quality, which
we verified using RnBeads’ QC module. In the example analysis, quality control probes on the
Infinium array did not reveal low-quality samples to be removed. Verifiable phenotypic
information matched the inferred sample properties, such as predicted sex of all subjects (Fig.
2). We used several criteria to select a set of high-confidence CpGs as input to MeDeCom.
Most of the discarded sites (39.5%) were removed, because they were covered by less than
three beads in any of the samples, or showed unusually high or low intensity. Further CpG
filtering steps, including sequence context (SNPs, sites on the sex chromosomes, 10.5%) and
removal of cross-reactive probes® (2.5%) eliminated further problematic sites. As a final
outcome of the filtering procedure, 230,223 sites (47.4% of 485,577) passed our stringent
quality criteria and were used for downstream analysis (Fig. 2).

5.2 Confounding factor analysis

To evaluate ICA, we applied the proposed workflow to the TCGA dataset twice: once without
correcting for age, sex, race, and ethnicity, and once with the adjustment using ICA (Fig. 3A).
ICA detected 22 components, of which two were significantly associated with sex and
ethnicity, respectively (Fig. 3B). The overall distribution of the DNA methylation matrix was
still bimodal after ICA adjustment, although there were notable peaks at methylation values
zero and one, respectively. We argue that these peaks are a consequence of the linear
scaling (Fig. 3C). After employing MeDeCom independently on the modified and the
unadjusted DNA methylation matrix, three of the detected components were significantly
linked to sex in the unadjusted (p-values: LMC1: 6x10™, LMC4: 1.4x10°, LMC5: 3x10®), but
only one component was mildly linked to sex in the adjusted run (LMC7, p-value: 7.8x10™,
Fig. 3D). Although ICA component 11 was linked to ethnicity, we could not find a similar
association with LMCs. Notably, neither age nor race variables were significantly linked to any
component produced by either ICA or MeDeCom.

5.3 Deconvolution results

The results of applying the proposed protocol to the TCGA LUAD dataset are shown in Fig. 4.
Since we did not have prior knowledge on the expected number of underlying cell types to
select, we resorted to the cross-validation procedure of MeDeCom. We chose 7 LMCs as the
value of K at which the cross-validation error started to level out (Supplementary Fig. 5A).
Similarly, we selected A=0.001 as the regularization parameter (Supplementary Fig. 5B).
Notably, LMC5 was particularly hypomethylated and LMC6 showed a high overall methylation
level, while the remaining LMCs were rather intermediately methylated (Supplementary Fig.
5C, D).
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We further investigated the biological implications of the detected LMCs. To this end, we
found that LMC5 had substantially higher proportions in the healthy tissue samples (Fig. 4A).
This indicated that reference-free deconvolution was able to capture the inherent methylation
signatures specific to cancerous and healthy tissues. When we conducted enrichment
analysis for the sites that were particularly hypomethylated in LMC5, we found that
transcription factor binding sites for the Polycomb repressive complex (SUZ12, EZH2) were
overrepresented. Cancers have a strong influence on the Polycomb repressive complex,
which typically represses oncogenes; a process that becomes distorted when its binding sites
are hypermethylated*’~*°. What is more, proportion of LMC5 in tumor tissues provided a
generic estimate of tumor sample purity, i.e. degree of contamination by adjacent normal
tissue. Thus, we were able to capture tumor-specific methylation signatures without
conducting differential analysis between two phenotypic groups.

Next, LMC3 showed highly variable proportions across the samples and was the main driver
of the overall sample clustering. LMC3 proportions were strongly correlated with the LUMP
estimate (Fig. 4B), which predicts the overall immune cell content of a sample®. Furthermore,
we detected enrichments of LMC3-speficic hypomethylated sites towards leukocyte (B-
lymphocyte) specific transcription factor binding sites and immune response related GO terms
(Fig. 4C, D, Supplementary Fig. 6). We concluded that LMC3 most likely represented tumor
infiltrating immune cells. The extent of tumor infiltration might be relevant to associate cancer
state to patient prognosis.

To determine whether the detected LMCs reflected the expression of known marker genes of
lung tissue cell types, we selected EPCAM as an epithelial, CLDN5 as an endothelial,
COL1A2 as a stromal, and PTPRC as an immune cell marker®®. We collected gene
expression data from TCGA for the samples (data processing is described in the
Supplementary Text) and found LMC3 to be correlated to PTPRC expression. Furthermore,
LMC1 was strongly associated with the epithelial marker expression and LMC5 with the
endothelial marker CLDNS (Fig. 4E).

Many of the detected components were linked to cancer mutational status, such as overall
mutation count or chromosomal gain or loss (Supplementary Fig. 7), or cancer stemness
(Supplementary Fig. 8). For instance, LMC1 was inversely linked to copy number gain of
chromosome 1p and 16p. We further investigated the sites that were particularly hypo- or
hypermethylated in LMC4, since LMC4 showed a high proportion in a small subset of samples
that clustered separately from the remaining cancer samples (Fig. 4A). One of these sites,
€g26992600, is located 3 kb upstream of the TSS of NKX2-8, a gene that has potential roles
in the progression of lung cancers® (Supplementary Fig. 9, Supplementary Table 2).
Finally, in a survival analysis of LMC proportions, we found that proportions of LMC5 and
LMC6 were associated with survival time (p-values: LMC5: 0.18, LMC6: 0.03,
Supplementary Fig. 10), warranting further investigation of their biological nature, which,
however, exceeded the scope of our example analysis.

Conclusions

Taken together, our methylome deconvolution protocol was able to provide novel biological
insights about the cellular and intra-tumor heterogeneity of lung cancer. We expect the
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protocol to be of great benefit to all investigators performing DNA methylation analysis in
complex and underexplored experimental systems, including bulk samples of highly
heterogeneous tissues and tumors.
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Figure legends

Figure 1. Overview of the proposed deconvolution protocol. DNA methylation data can be
used from any technology vyielding single CpG methylation calls. Methylation data is first
processed using DecompPipeline, which includes data import, preprocessing, accounting for
confounders and feature selection. MeDeCom can be used to perform deconvolution of the
input methylation matrix (dimension m CpGs x n samples) into the latent methylation
components (LMCs) and the proportions matrix (dimension K LMCs x n samples), while the
protocol is also applicable to different deconvolution tools. The obtained matrices are then
validated and interpreted using the R/Shiny visualization tool FactorViz.

Figure 2: Quality control of TCGA data. A Boxplot for hybridization control probes for the
green and the red channel, respectively. B Sex prediction based on the intensities of the
probes on the sex chromosomes. A logistic regression classifier was employed to differentiate
between female and male samples. C Outline of the CpG filtering procedure. The sites on the
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450k array are filtered according to quality scores (coverage, overall intensity), genomic
sequence context (SNPs, sex chromosomes), and cross-reactive sites are discarded.

Figure 3: Evaluation of ICA on the TCGA LUAD dataset. A Overview of the ICA procedure.
Components linked to confounding factors (here sex, age, ethnicity or race) are removed from
the contribution matrix and an adjusted DNA methylation matrix is constructed. B Associations
between the confounding factor sex and ethnicity with the entries of the proportion matrix M
produced by ICA. C Beta-value distributions of the transformed (D*) and the untransformed
(D) DNA methylation matrices. D Associations between LMC proportions and qualitative
phenotypic traits. The color represents the absolute difference of the mean LMC proportions
in the different groups defined by the phenotypic traits and significant p-values according to a
t-test are indicated by a bold border.

Figure 4: Interpreting MeDeCom results with FactorViz. A Proportion heatmap of LMCs in the
different samples. We selected K=7 LMCs and set A=0.001. The samples were hierarchically
clustered according to the Euclidean distance between the proportions using complete
linkage. We annotated samples using disease status and with the sample-specific LUMP
estimate. B Associations between the phenotypic traits and LMC proportions. For quantitative
traits, the correlations are shown as ellipses that are directed to the upper right for positive
and to the lower right for negative correlations, respectively. For qualitative traits, the absolute
difference of the proportions in the two groups (e.g. female vs. male) is shown. P-values
(correlation test for quantitative and t-test for categorical variables) less than 0.01 are
indicated by bold borders. LOLA* (C) and GO* (D) enrichment analysis of the LMC-specific
hypomethylated sites for LMCs 1, 3 and 5. No significant GO enrichment was found for LMC 1
and 5. Sites were defined as LMC-specific hypomethylated if the difference between the LMC
value and the median of all other LMCs was lower than 0.5. P-values have been adjusted for
multiple testing with the Benjamini-Hochberg method®. E Scatterplots between LMC
proportions per sample and known marker gene expression of different lung cell types. The
gene expression was measured using counts per million (CPM).
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Table 1: Quality filtering steps and default parameters in DecompPipeline.

STEP

SITES FILTERED

DEFAULT PARAMETERS

BEAD FILTERING

INTENSITY FILTERING

MISSING VALUE
FILTERING
SNP FILTERING

SOMATIC SITE
FILTERING
CROSS-REACTIVE
FILTERING

Covered by less than MIN_N_BEADS
beads in any of the samples

High or low coverage outliers according
to the overall intensity quantiles
specified via MIN_INT_QUANT and
MAX_INT_QUANT

Containing a missing value in any of the
samples

Annotated to SNPs according to the
dbSNP* database

Located on the sex chromosomes

Reported to be cross reactive®

Table 2: CpG selection options available in DecompPipeline.

MIN_N_BEADS=3
MIN_INT_QUANT=0.01
MAX_INT_QUANT=0.99
FILTER_NA=TRUE
FILTER_SNP=TRUE
FILTER_SOMATIC=TRUE

FILTER_CROSS_REACTIVE
=TRUE

CPG SELECTION CPG SUBSET SELECTED DETAILS

METHOD

ALL All that fulfill the quality criteria

PHENO Differentially methylated according to specified Ritchie et al.*®
phenotypic groups using the limma method

HOUSEMAN2012 | 50,000 listed as cell-type specific in the Houseman et al.™
reference-based deconvolution method by
Houseman et al.

HOUSEMAN2014 | According to the RefFreeEWAS method Houseman et al.'®

JAFFE2014 Cell-type specific in Jaffe et al. Jaffe et al.*

ROWFSTAT Linked to given reference profiles using the F- Requires reference profiles
statistics

RANDOM Random subset

PCA Highest loadings on the first N_PRIN_COMP Default N_PRIN_COMP=10
principal components

VAR Most variable across the samples

HYBRID Half as most variable, half randomly

RANGE Largest range across the samples

PCADAPT Principal Component Analysis implemented in Privé et al.*

EDEC_STAGEO

CUSTOM

the bigstatsr R-package
According to Stage 0 of the EDec approach.

User-specified list

Requires reference profiles
Onuchic et al.*®
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Table 3: Quality criteria for different quality control steps

STEP QUALITY CRITERION

CONTROL All background control probes should show background intensity values in the

PROBES range of 1,000-2,000. The low, medium and high control probes should show a
substantially higher signal intensity in the range >10,000. Samples with high
background intensity or low signal intensity should be discarded from the
analysis.

SNP The Illumina BeadArrays contain a few highly variable SNP probes, which should

METHYLATION have methylation values close to 0, 0.5 and 1. In a genetically matched setup,

SEX PREDICTION

samples from a similar genotype (e.g. the same family) should cluster together
using the methylation values of these SNP probes. By this approach, potential
sample mix-ups can be detected.

Patient sex can be reliably predicted from the signal intensities of the sites on

the sex chromosomes. RnBeads trained a robust logistic regression classifier on
a large training dataset. If predicted sex does not match the annotated sex, this
might indicate a sample mix-up.

Table 4: Troubleshooting for the individual steps of the reference-free deconvolution protocol.

STEP PROBLEM POSSIBLE REASON SOLUTION

2 MeDeCom is not installed  Package dependencies are Use a Unix-like operating system.
properly. missing

6 RnBeads stops The report directory Specify a path to a non-existing
unexpectedly. already exists. directory.

6 RnBeads throws an error Package dependencies Check the RnBeads website
message. are not properly (http://rnbeads.org) for

configured. potential solutions.

8 All sites are removed during The provided quality Provide less stringent quality
filtering. criteria were too criteria. Particularly,

stringent. MAX_INT_QUANT, MIN_INT_
QUANT and MIN_N_BEADS have a
strong influence.

9 DecompPipeline stops The system runs out of Reduce the number of components
during confounding factor  memory. tested (nmax), the number of cores
adjustment. used (ncores) or the number of

independent ICA runs (ntry).

11  MeDeCom does not finish ~ The system runs out of Check the log-files in the project
properly. memory. directory and potentially get a

larger machine to perform
deconvolution.
FactorViz does not show MeDeCom has not Check the log-files in the project

12 | any of the plots described  finished properly. directory.
here.
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