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Abstract 
 
Epigenomic profiling enables unique insights into human development and diseases. Often 
the analysis of bulk samples remains the only feasible option for studying complex tissues and 
organs in large patient cohorts, masking the signatures of important cell populations in 
convoluted signals. DNA methylomes are highly cell type-specific, enabling recovery of hidden 
components using advanced computational methods without the need of reference profiles. 
We propose a three-stage protocol for reference-free deconvolution of DNA methylomes 
comprising: (i) data preprocessing, confounder adjustment and feature selection, (ii) 
deconvolution with multiple parameters, and (iii) guided biological inference and validation of 
deconvolution results. Our protocol simplifies the analysis and integration of DNA methylomes 
derived from complex tissues, including tumors. Applying this protocol to lung cancer 
methylomes from TCGA revealed components linked to stromal cells, tumor-infiltrating 
immune cells, and associations with clinical parameters. The protocol takes less than four 
days to complete and requires basic R skills. 
 

1 Introduction 
 
DNA methylation, preferentially occurring at CpG dinucleotides in mammalian genomes, 
correlates with cell type identity and differentiation stage1. Importantly, methylation states of 
particular CpGs can be used as powerful biomarkers for various conditions, including cancer2–

4, inflammatory diseases5 and aging6. To facilitate such findings, large international consortia, 
including IHEC7, DEEP1, and BLUEPRINT8, are generating genome-wide DNA methylation 
maps (or DNA methylomes) of primary tissue samples and isolated cell populations. However, 
DNA methylomes obtained from bulk samples are intrinsically heterogeneous, and can be 
additionally affected by aging, sex and other confounders. Computational methods for the 
integration of large-scale DNA methylation datasets, and capable of delineating such complex 
methylomes into biologically distinct variability components, are of paramount importance9. 
 
Deconvolution methods dissect methylomes of cell mixtures into their basic constituents10. In 
case reference DNA methylomes of purified cell types are available, these can be used to 
infer the proportions of different cell types across the samples. Multiple reference-based 
methods have been proposed11–13 and are reviewed elsewhere14 (summarized in 
Supplementary Table 1). Another class of methods allows for composition-adjusted 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2019. ; https://doi.org/10.1101/853150doi: bioRxiv preprint 

https://doi.org/10.1101/853150
http://creativecommons.org/licenses/by/4.0/


identification of differentially methylated regions in epigenome-wide association studies 
(EWAS) without explicitly computing the cell type proportions15,16. When reference 
methylomes and other prior information is partially or completely absent, semi-reference-free 
(BayesCCE17) or fully reference-free (RefFreeCellMix18, EDec19, MeDeCom20) deconvolution 
methods can be applied (Supplementary Table 1). Reference-free methods are of particular 
benefit for poorly characterized, complex systems, where adequate reference profiles are 
especially hard to obtain. These tissues include for instance brain, and solid tumors. We 
earlier found that in a large variety of applications, reference-free deconvolution methods are 
only marginally different in their accuracy, and a thorough preprocessing, as well as careful 
feature selection are more important than the choice of the deconvolution tool21. Furthermore, 
interpretation of deconvolution results is challenging in case prior information about the 
investigated biological system is limited. Here, we present a comprehensive pipeline that 
facilitates reference-free deconvolution, starting from raw DNA methylation data down to 
result interpretation. Although we focus on MeDeCom as a representative method, the 
protocol is not limited to a single deconvolution method and can be used in combination with 
other available tools. 
 
1.1 Development of the protocol 
 
Reference-free deconvolution is a challenging computational task, for which several methods 
have been proposed, along with the tools implementing them (Supplementary Table 1). 
However, in a pilot benchmark of several published reference-free deconvolution tools, we 
found that their performance differences were marginal, both on fully synthetic and in silico 
mixed experimental datasets21. In fact, the quality and information content of the input DNA 
methylation matrix had a higher impact upon the accuracy, than the choice of the 
deconvolution tool itself. Thus, deconvolution algorithms a priori rely on thorough data 
processing and feature selection, especially if the differences between underlying components 
are small. Furthermore, biological interpretation of deconvolution results is often challenging, 
in particular for beginners with limited bioinformatic experience. Facilitating the generation of 
biological insights about the investigated system is similarly important as the deconvolution 
itself. To overcome these limitations, we developed a comprehensive, three-stage protocol, 
which includes critical preprocessing and interpretation steps in addition to the actual 
deconvolution. The protocol, schematically outlined in Fig. 1, consists of three main stages: (i) 
state-of-the-art DNA methylation data preparation, including stringent, quality-adapted CpG 
filtering, elimination of potential confounding factors using Independent Component Analysis 
(ICA) and feature selection; (ii) reference-free methylome deconvolution; (iii) interpretation of 
deconvolution results with a user-friendly R/Shiny-based interface, enabling generating novel 
biological insights. 

 
As earlier described, data preparation is key to the overall success of deconvolution. The first 
stage of our protocol thus comprises quality-adapted removal of unreliable or otherwise 
problematic measurements using the widely used RnBeads software package for data 
handling22,23. Confounding factors, such as age, sex or donor genotype, can have a strong 
influence on the methylome, and investigators might want to adjust for those in their 
analyses24,25. Therefore, we argue that accounting for confounders, using methods such as 
Independent Component Analysis (ICA)26, is crucial to obtain biologically relevant results. As 
the final data preparation step, a CpG subset selection determines sites that are linked to, for 
instance, cell type identity or any other phenotypic trait of interest. 
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The prepared, high-quality data matrix can be subjected to one of the deconvolution tools 
(Supplementary Table 1). As a rule, these methods decompose input DNA methylation 
matrix into a matrix of latent methylation components (LMCs, T) and a matrix of proportions 
(A). In the second stage of the protocol, we use MeDeCom20, our own method based on 
regularized non-negative matrix factorization (NMF). To enforce the bimodality of LMCs, it 
regularizes the entries of T towards extreme values zero and one. A MeDeCom solution is 
defined by two user-specified parameters: the number of LMCs K (the inner dimension of T 
and A), and the quadratic regularization parameter λ (zero for no, and larger than one for 
strong regularization). Although, the generated cross validation error provides a rational 
criterion for parameter selection, it is often useful to consider several alternative solutions. 
MeDeCom therefore stores all results obtained on a reasonable parameter grid for 
subsequent in-depth exploration. 
 
Although reference-free deconvolution is flexible with respect to the investigated system, the 
interpretation of deconvolution results, especially of the LMC matrix T, can be challenging. In 
addition to cell type profiles, LMCs reflect multiple drivers of biological and technical 
variability, including age or sex. Furthermore, validating the proportions and LMCs is not 
trivial, since the space of possible solutions is large and the cellular composition is typically 
unknown. In order to guide users, we implemented most of the interpretation functionality in 
the form of a specialized R/Shiny-based graphical user interface (FactorViz). A detailed 
description of the annotation and inference features implemented in FactorViz is given in the 
Outline of the Procedure section below. 
 
1.2 Applications of the methods  
 
Reference-free deconvolution is the method of choice for studying heterogeneity of DNA 
methylomes in biological systems with limited prior knowledge about their cellular 
composition, or in case of missing reference profiles. This includes EWAS using material from 
hardly-accessible or insufficiently-characterized organs and tissues, such as human brain, as 
well as solid tumors. Previously, we and others used this approach to understand cellular 
heterogeneity in placenta27 , multiple sclerosis28, breast cancer19, and cholangiocarcinoma29. 
Reference-free deconvolution is particularly useful to dissect tumor heterogeneity, e.g. to 
study the effect of tumor-infiltrating immune cells on the tumor microenvironment30. 
Furthermore, identified LMCs can be correlated to tumor size, location, metastasis state, and 
mutational burden. Since tumors in general show a high degree of sample-to-sample 
variation, methylome deconvolution can be used to detect similarities among different types of 
cancers to define pan-cancer and cancer type-specific markers. If a particular cancer induces 
changes in the DNA methylation pattern of the tumor stroma, these changes are likely to be 
missed by reference-based, but not by reference-free methods. 
  
In the original publication, after the validation on simulated data and in-silico cell type 
mixtures, MeDeCom was applied to a brain frontal cortex dataset, successfully separating it 
into neuronal and glia fractions, as well as detecting additional LMCs, which could be linked to 
features of Alzheimer’s disease20. We anticipate successful application of MeDeCom in similar 
scenarios. Furthermore, although for blood-based studies reference methylomes exist and 
reference-based methods perform generally well, reference-free deconvolution can be useful 
in case of severely altered blood composition, e.g. due to an overproduction of rare cell types. 
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Finally, in the case of blood and other similarly well characterized tissues, MeDeCom can be 
applied in a semi-supervised fashion using spiked-in reference profiles. This enables easy 
recovery of known signatures, and allows for detection of additional unknown LMCs. 
 
Single-cell technology is steadily improving, and cell-level DNA methylomes will become 
increasingly available in the near future31,32. Nevertheless, we expect that deconvolution of 
large-scale bulk tissue datasets will remain a useful complement of single cell DNA 
methylation profiling, which still suffers from high costs, low sample throughput and data 
sparsity. We envisage that both approaches can be successfully used in combination, e.g. 
single-cell profiling in several reference samples followed by deconvolution of bulk 
methylomes from large patient cohorts, where single-cell profiles can be used for 
interpretation of the LMCs or as pivot profiles in semi-reference-free scenarios. Finally, 
deconvolution of more accessible bulk methylomes can be used to integrate them with easier 
to obtain single-cell profiles of other omics layers, including single-cell transcriptomes and 
chromatin accessibility maps. 
 
1.3 Outline of the procedure 
 
Our protocol is divided into three main stages: (i) Data preparation, (ii) Deconvolution and (iii) 
Interpretation, which are described in detail below (see also Fig. 1).  
 
1.3.1 Data preparation  
 
We implemented the data preparation stage of the protocol as a new R-package 
(DecompPipeline) that integrates quality filtering, confounding factor adjustment and feature 
selection steps into an easy-to-use workflow 
(http://github.com/CompEpigen/DecompPipeline). For loading, formatting and storing DNA 
methylation data we recommend our recently updated RnBeads package. 
 
Data import. Genome-wide DNA methylation can be profiled by different technologies such 
as whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing 
(RRBS) or the Illumina Infinium microarrays. In this protocol we focus on microarray datasets 
due to their larger sample sizes that increase the efficiency of deconvolution. Nevertheless, 
our pipeline is similarly applicable to any other data type that provides DNA methylation calls 
at single CpG resolution, given at least a dozen samples are available. In addition to raw DNA 
methylation data, phenotypic information is required and converted into the internal 
RnBeads22,23 data structure. The input is checked for data quality using RnBeads’ reporting 
functionality. 
 
Quality filtering. DecompPipeline performs quality-based filtering of CpGs across the 
samples in several steps (Table 1). First, CpGs are filtered according to a coverage threshold 
across the samples, and overall signal intensity (microarrays) or coverage (bisulfite 
sequencing) outliers are removed. Missing values can either be completely discarded from the 
dataset or imputed33. We further remove sites overlapping annotated or estimated single 
nucleotide polymorphisms (SNPs), sites on the sex chromosomes and cross-reactive sites34. 
Infinium data should be normalized prior to downstream analysis, and further sample 
properties can be inferred, such as the overall immune cell content using the LUMP 
algorithm35 or the epigenetic age25.  
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Covariate adjustment using ICA. DNA methylomes can be affected by various sources of 
variability, both of biological and technical nature that might mask the signals of interest. 
Independent component analysis (ICA)26 is a data-driven dimensionality reduction method 
that performs a matrix decomposition, dividing the experimentally observed data matrix Dmn 
into k independent signals Smk mixed with the coefficients of Mkn: 

��� ~ ��� � ��� 
 
where m and n are the number of features (methylation sites) and samples, respectively. S 
represents the contributions of methylation sites in different components. The weight matrix M 
can be linked to clinical outcomes, such as cancer type and patient survival, and confounding 
factors, including sex, experimental batch effects or platform biases. As the method separates 
the original methylation profiles into statistically independent signals, the influence of potential 
confounding factors on the methylation profiles can be attributed to particular CpGs, which 
can either be removed or the weights (rows of M) of corresponding components can be set to 
zero36. 
 
A pitfall of ICA that is specific to methylation data analysis is the smoothing of the original beta 
value distribution after ICA-based normalization. Therefore, a post-processing step is required 
in order to bring beta values into the expected range. To achieve this, reconstructed values 
are linearly rescaled in order to set the 1st and 99th percentiles to beta values of zero and one. 
Finally, in order to reduce stochasticity of ICA decomposition, we apply the consensus ICA 
approach37. ICA was run multiple times and the resulting matrices S and M were mapped and 
averaged between the runs. The stability of the components is estimated as the coefficient of 
determination (R2) between the columns of S observed in different runs.  
 
Selection of informative CpG subsets. In order to obtain satisfactory deconvolution results, 
further feature selection is required, since, for instance, lowly variable CpGs do not contribute 
to signature recovery, but add to the computational runtime. From our experience, using prior 
knowledge about the underlying cell types is the best option, given such knowledge is 
available11,19. In the absence of prior knowledge about the biological system of interest, typical 
strategies for feature selection include selecting the most variable sites, the ones with the 
highest loadings on the first few principal components, or a random selection. 
DecompPipeline provides 14 options to select CpG subsets (Table 238–40), and multiple of 
these options can be included in a single execution of the pipeline.  
 
1.3.2 Performing deconvolution using MeDeCom 
 
Reference-free deconvolution methods, such as RefFreeCellMix18, EDec19 or MeDeCom20, 
estimate the matrix of latent methylation components (T) and the matrix of proportions (A) 
based on the DNA methylation matrix of sites selected in the previous step (D) by means of 
non-negative matrix factorization. We focus on MeDeCom, but the pipeline similarly supports 
RefFreeCellMix and EDec. MeDeCom optimizes the squared Frobenius norm of the 
difference between the true (measured) methylation matrix D and the matrix product of T and 
A (Fig. 1). Desired properties of the factor matrices, i.e. restriction to the [0, 1] interval (T and 
A) and column-sums equal to one (A), are enforced by respective constraints on their entries. 
Furthermore, MeDeCom penalizes the entries of T not equal to zero and one using quadratic 
regularization (maximum at entries equal to 0.5) controlled by the regularization parameter λ. 
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The optimization problem is solved using an alternating optimization scheme, which fixes 
either of A or T while fitting the other at each of its steps. Selecting suitable values for the 
regularization parameter (λ) and the number of latent components (K) is assisted by a cross-
validation scheme that leaves out columns of D. Typically, a grid search for different values of 
K and λ is performed to determine the best number of components and regularization, 
respectively. In order to reduce running time substantially, we recommend activating the 
parallel processing options on standalone workstations, or to use a high-performance 
computing cluster. The resulting solutions of the deconvolution problem are stored on disk 
and can be used for downstream interpretation. 
 
1.3.3 Interpretation of deconvolution results 
 
In contrast to reference-based deconvolution, interpretation of reference-free deconvolution 
results is non-trivial. MeDeCom produces a matrix of LMCs and a matched proportion matrix, 
both of which need to be biologically validated and interpreted. To facilitate an interactive 
interpretation, we created the semi-automated visualization tool FactorViz 
(https://github.com/CompEpigen/FactorViz). FactorViz is an R/Shiny-based user interface with 
guidelines and functions for comprehensive biological inference. Initially, one of the possible 
MeDeCom solutions has to be chosen by selecting the parameters K and λ based on the 
cross-validation error. In order to investigate potential influences of covariates upon the 
estimated proportions and corresponding LMCs, the resulting proportion matrix is linked to 
technical or phenotypic traits, such as experimental batch or subject age, using association 
tests. Furthermore, proportions can be linked to marker gene expression values, or specific 
properties of the analyzed dataset such as survival time. To functionally annotate LMCs, we 
determine the sites that are specifically hypomethylated in a particular LMC in comparison to 
the median of the remaining LMCs, and treat the obtained sites as LMC-specific. Those sites 
are then used for GO41 and LOLA42  enrichment analysis in order to associate respective 
LMCs with functional categories, pathways and various genomic features. Finally, the matrix 
of LMCs can be compared with available reference cell type profiles. 
 
1.4 Level of expertise needed to implement the method 
 
DecompPipeline, MeDeCom, and FactorViz are R-packages and thus require some minimal 
prior experience with the R programming language. Basic knowledge of the Unix command 
line interface is recommended for data handling. To follow the steps of this protocol, one only 
needs a few R function calls, but the function parameters need to be tailored to the target 
dataset. The graphical user interface FactorViz presents plots, which require a minimum 
knowledge of DNA methylation data and matrix factorization. 
 
1.5 Limitations 
 
Since MeDeCom tests all possible combinations of the regularization parameter λ, the number 
of LMCs K and several feature selection methods, the number of basic deconvolution jobs can 
reach 1,000 – 10,000. Reference-free deconvolution is thus a computationally demanding 
task that requires high-performance computing infrastructure. When applied to larger 
datasets, the deconvolution can take several days to finish even on larger machines. 
Furthermore, the obtained LMC matrix needs to be biologically interpreted, which requires 
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user interaction and input. A fully-automated interpretation of deconvolution results will be part 
of the next development steps of the protocol. Accounting for confounding factors, especially 
for those that might have a strong influence on the methylome, can lead to a substantially 
modified DNA methylation data matrix. The proposed pipeline provides diagnostic plots, but 
user interaction is still required to determine if the effect of a particular covariate is to be 
removed. 
 

2 Materials  
 
2.1 Hardware  
 
We recommend to apply the proposed protocol on large systems with, e.g. 128 GB of main 
memory and 32 cores for a dataset of this size. For larger datasets such as bisulfite 
sequencing data, we recommend a transition to a high-performance compute cluster or a 
cloud environment, such that the pipeline can automatically distribute jobs across different 
machines. MeDeCom, FactorViz and DecompPipeline can be directly installed from GitHub on 
Unix-like systems, and a Docker container is available also for Windows 10 systems 
(https://hub.docker.com/r/mscherer/medecom).   
 
2.2 Input data 
 
We used publicly available data from The Cancer Genome Atlas (TCGA, 
https://www.cancer.gov/tcga) investigating lung adenocarcinoma (dataset TCGA-LUAD, 
https://portal.gdc.cancer.gov/legacy-archive/search/f) in 461 samples assayed using the 
Illumina 450k microarray, since lung cancer has high cellular and molecular heterogeneity43. 
The clinical metadata and the manifest file of the samples is available at 
https://portal.gdc.cancer.gov/projects/TCGA-LUAD and have been downloaded through the 
TCGA legacy archive on 2019-01-23. We used the Genomic Data Commons (GDC) data 
download tool (https://gdc.cancer.gov/access-data/gdc-data-transfer-tool) together with the 
manifest file to download the intensity data (IDAT) files and associated metadata. 
 

3 Procedure 
 
Installation TIMING 1 h 
 
1. The pipeline needs R installed on your machine. If it is not yet installed, follow the 
instructions at https://cran.r-project.org/. 
 
2. Invoke R on the command line and install the devtools package. Then, install the software 
packages needed for deconvolution directly from GitHub: MeDeCom, DecompPipeline and 
FactorViz, and RnBeads from Bioconductor. 
 
install.packages(c(“devtools”,”BiocManager”)) 
BiocManager::install(“RnBeads”) 
library(devtools) 
devtools::install_github( 
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c("lutsik/MeDeCom”,”CompEpigen/DecompPipeline”,"CompEpigen/FactorViz”) 
) 
library(DecompPipeline) 
 
Data retrieval TIMING 5 h 
 
3. Use the Genomic Data Commons (GDC) data download tool 
(https://gdc.cancer.gov/access-data/gdc-data-transfer-tool) to download the IDAT files listed in 
the manifest file and its associated metadata. This metadata also includes the mapping 
between each of the samples and the IDAT files. 
 
gdc-client download -m gdc_manifest.2019-07-03.txt 
 
clinical.data <- read.table(“annotation/clinical.tsv”, 

sep =“\ t”, 
header = TRUE ) 

idat.files <- list.files(“idat”,full.names = TRUE) 
meta.files<-list.files(idat.files[1],full.names = TRUE) 
untar(meta.files[3],exdir = idat.files[1]) 
meta.files <- untar(meta.files[3],list = TRUE) 
meta.info <- read.table(file.path(idat.files[1],meta.files[5]), 

sep =“\t”, 
header = TRUE) 

meta.info <- meta.info[match(unique(meta.info$Comment..TCGA.Barcode.), 
meta.info$Comment..TCGA.Barcode.),] 

match.meta.clin <- match(clinical.data$submitter_id, 
substr(meta.info$Comment..TCGA.Barcode.,1,12)) 

anno.frame <- na.omit(data.frame(clinical.data, 
meta.info[match.meta.clin,])) 

anno.frame$barcode <- unlist( 
lapply( 

lapply(as.character(anno.frame$Array.Data.File), 
function(x)strsplit(x,"_”)), 

function(x)paste(x[[1]][1],x[[1]][2],sep = "_”))) 
anno.frame$Sentrix_ID <- unlist( 

lapply( 
lapply(as.character(anno.frame$Array.Data.File), 

function(x)strsplit(x, "_”)), 
function(x)paste(x[[1]][1]))) 

anno.frame$Sentrix_Position<-unlist( 
lapply( 

lapply(as.character(anno.frame$Array.Data.File), 
function(x)strsplit(x,"_”)), 

function(x)paste(x[[1]][2]))) 
write.table(anno.frame,”annotation/sample_annotation.tsv”, 

quote = FALSE, row.names = FALSE, sep = “\t”) 
anno.frame <- read.table(“annotation/sample_annotation.tsv”, 

quote = FALSE, row.names = FALSE, sep = “\t”) 
 
4. Copy the IDAT files into a single directory for downstream analysis. 
  
lapply(idat.files,function(x){ 

is.idat<-list.files(x, pattern = ".idat”, full.names = TRUE) 
file.copy(is.idat,”idat/”) 
unlink(x,recursive = TRUE) 
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}) 
 
Data import TIMING 2 h 
 
5. RnBeads converts the files into a data object and performs basic quality control steps. Most 
notably, analysis options have to be specified for RnBeads, either through an XML file or 
through the command line. Deactivate the preprocessing, exploratory, covariate inference, 
export and differential methylation modules, such that RnBeads only performs data import and 
quality control. 
 
library(RnBeads) 
rnb.options( 

assembly = “hg19”, 
identifiers.column = “submitter_id”, 
import = TRUE, 
import.default.data.type = “idat.dir”, 
import.table.separator = “\t”, 
import.sex.prediction = TRUE, 
qc = TRUE, 
preprocessing = FALSE, 
exploratory = FALSE, 
inference = FALSE, 
differential = FALSE, 
export.to.bed = FALSE, 
export.to.trackhub = NULL, 
export.to.csv =  FALSE 

) 
 
6. Specify the input to RnBeads: the sample annotation sheet created at the data retrieval 
step, the folder in which the IDAT files are stored and a folder to which the HTML report is to 
be saved. Additionally, specify a temporary directory and start the RnBeads analysis. 
 
sample.anno <- ”annotation/sample_annotation.tsv" 
idat.folder <- ”idat/" 
dir.report <- paste0(“report”,Sys.Date(),”/”) 
temp.dir <- ”/tmp" 
options(fftempdir = temp.dir) 
rnb.set <- rnb.run.analysis( 

dir.reports = dir.report, 
sample.sheet = sample.anno, 
data.dir = idat.folder 

) 
 
7. RnBeads creates an interactive HTML report, specifying the steps performed and the 
associated results. Data should meet the quality criteria in Table 3 to be used for downstream 
analysis (see also the Anticipated Results section). 
 
Preprocessing and filtering TIMING 22 h 
 
8. Use the DecompPipeline package (https://github.com/CompEpigen/DecompPipeline) for 
further analysis. Processing options are provided through individual function parameters. 
Follow a stringent filtering strategy: (i) Filter CpGs covered by less than 3 beads, and probes 
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that are in the 0.001 and 0.999 overall intensity quantiles (low and high intensity outliers). (ii) 
Remove all probes containing missing values in any of the samples. (iii) In the sequence 
context filtering, sites outside of CpG context, overlapping annotated SNPs, located on the 
sex chromosomes and potentially cross-reactive probes are discarded. Finally, upon 
successful filtering, apply BMIQ normalization44 to account for the bias introduced by the two 
Infinium probe designs45. 
 
CRITICAL STEP Removing too few or too many sites might have a strong influence on the 
final deconvolution results. Thus, we recommend to carefully check the available options 
(Table 1) and only change the default setting in case of low-quality data. 
 
9. Accounting for potential confounding factors is crucial in epigenomic studies and the 
influences of, for instance, donor sex, age, and genotype on the DNA methylation pattern are 
well-studied24,25. Use Independent Component Analysis (ICA, see Materials) to account for 
DNA methylation differences that are due to sex, age, race, and ethnicity. 
 
CRITICAL STEP Confounding factor adjustment changes the overall data distribution, which 
might harm the overall bimodality of DNA methylation. The diagnostic plots provided by 
DecompPipeline should be carefully checked. 
  
library(DecompPipeline) 
data.prep <- prepare_data(RNB_SET = rnb.set, 

analysis.name = “TCGA_Deconvolution”, 
NORMALIZATION = “bmiq”, 
FILTER_BEADS = TRUE, 
MIN_N_BEADS = 3, 
FILTER_INTENSITY = TRUE, 
MIN_INT_QUANT = 0.001, 
MAX_INT_QUANT = 0.999, 
FILTER_NA = TRUE, 
FILTER_CONTEXT = TRUE, 
FILTER_SNP = TRUE, 
FILTER_SOMATIC = TRUE, 
FILTER_CROSS_REACTIVE = TRUE, 
execute.lump = TRUE, 
remove.ICA = TRUE, 
conf.fact.ICA = c(“age_at_diagnosis”,”race”,“gender”,”ethnicity"), 
ica.setting = c(“alpha.fact”= 1e-5, “save.report”=TRUE, 

”ntry”= 10,”nmax”= 50,“ncores”= 10) 
) 
 
Selection of CpG subsets TIMING 1 min 
 
10. Select a subset of sites to be used for deconvolution. DecompPipeline provides a number 
of options (Table 2) through the prepare_CG_subsets function. Focus on selecting the 5,000 
most variable sites across the samples. 
 
cg_subset <- prepare_CG_subsets( 

rnb.set = data.prep$rnb.set.filtered, 
MARKER_SELECTION = “var”, 
N_MARKERS = 5000 

) 
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Methylome deconvolution TIMING 54 h 
 
11. Perform the deconvolution experiment. Focus on MeDeCom as a robust deconvolution 
tool and specify a grid of values for the number of components (K) ranging from 2 to 15, which 
covers homogeneous to heterogeneous samples. Also, specify a grid for the regularization 
parameter (λ) from strong (0.01) to no regularization (0).  
 
md.res <- start_medecom_analysis( 

rnb.set = data.prep$rnb.set.filtered, 
cg_groups = cg_subset, 
Ks = 2:15, 
LAMBDA_GRID = c(0,10^-(2:5)), 
factorviz.outputs = TRUE, 
analysis.name = “TCGA_LUAD”, 
cores = 15 

) 
 
Downstream analysis TIMING 1 h 
 
12. Visualize and interactively explore the deconvolution results with FactorViz 
(Supplementary Fig. 1).   
 
library(FactorViz) 
startFactorViz(file.path(getwd(),”TCGA_LUAD”,”FactorViz_outputs”)) 
 
13. Determine the number of components and the regularization parameter from the provided 
list of parameters (Supplementary Fig. 2). 
 
14. Associate the proportion matrix with quantitative (mutation count, fraction of genome 
altered, LUMP estimate, stromal score) and qualitative (sex, ethnicity, health state, copy 
number states) traits using correlation- and t-tests, respectively (Supplementary Fig. 3).  
 
CRITICAL STEP Interpretation of deconvolution results is crucial to obtain biological insights 
about the investigated system. In addition to the interpretation functions provided by 
FactorViz, prior knowledge about the system can be used to validate and interpret 
deconvolution results. 
 
15. Compare LMC proportions per sample to expression of epithelial, endothelial, stromal, 
and immune cell marker genes in lung tissue46 (Supplementary Text). 
 
16. To determine sites that are specifically hypo- and hypermethylated in an LMC, compare 
the methylation values in the LMC matrix for each LMC to the median of the remaining LMCs 
and then employ GO and LOLA enrichment analysis (Supplementary Fig. 4).  
 

4 Troubleshooting 
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We provide troubleshooting advice in Table 4. For further support questions, feature requests 
or help, use GitHub’s issue system or write a mail to the tool developers. 
 

5 Anticipated Results 
 
5.1 Quality control and feature selection 
 
Deconvolution analysis requires input DNA methylation data of good technical quality, which 
we verified using RnBeads’ QC module. In the example analysis, quality control probes on the 
Infinium array did not reveal low-quality samples to be removed. Verifiable phenotypic 
information matched the inferred sample properties, such as predicted sex of all subjects (Fig. 
2). We used several criteria to select a set of high-confidence CpGs as input to MeDeCom. 
Most of the discarded sites (39.5%) were removed, because they were covered by less than 
three beads in any of the samples, or showed unusually high or low intensity. Further CpG 
filtering steps, including sequence context (SNPs, sites on the sex chromosomes, 10.5%) and 
removal of cross-reactive probes34 (2.5%) eliminated further problematic sites. As a final 
outcome of the filtering procedure, 230,223 sites (47.4% of 485,577) passed our stringent 
quality criteria and were used for downstream analysis (Fig. 2). 
 
5.2 Confounding factor analysis 
 
To evaluate ICA, we applied the proposed workflow to the TCGA dataset twice: once without 
correcting for age, sex, race, and ethnicity, and once with the adjustment using ICA (Fig. 3A). 
ICA detected 22 components, of which two were significantly associated with sex and 
ethnicity, respectively (Fig. 3B). The overall distribution of the DNA methylation matrix was 
still bimodal after ICA adjustment, although there were notable peaks at methylation values 
zero and one, respectively. We argue that these peaks are a consequence of the linear 
scaling (Fig. 3C). After employing MeDeCom independently on the modified and the 
unadjusted DNA methylation matrix, three of the detected components were significantly 
linked to sex in the unadjusted (p-values: LMC1: 6x10-4, LMC4: 1.4x10-5, LMC5: 3x10-3), but 
only one component was mildly linked to sex in the adjusted run (LMC7, p-value: 7.8x10-4, 
Fig. 3D). Although ICA component 11 was linked to ethnicity, we could not find a similar 
association with LMCs. Notably, neither age nor race variables were significantly linked to any 
component produced by either ICA or MeDeCom.  
 
5.3 Deconvolution results 
 
The results of applying the proposed protocol to the TCGA LUAD dataset are shown in Fig. 4. 
Since we did not have prior knowledge on the expected number of underlying cell types to 
select, we resorted to the cross-validation procedure of MeDeCom. We chose 7 LMCs as the 
value of K at which the cross-validation error started to level out (Supplementary Fig. 5A). 
Similarly, we selected λ=0.001 as the regularization parameter (Supplementary Fig. 5B). 
Notably, LMC5 was particularly hypomethylated and LMC6 showed a high overall methylation 
level, while the remaining LMCs were rather intermediately methylated (Supplementary Fig. 
5C, D).  
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We further investigated the biological implications of the detected LMCs. To this end, we 
found that LMC5 had substantially higher proportions in the healthy tissue samples (Fig. 4A). 
This indicated that reference-free deconvolution was able to capture the inherent methylation 
signatures specific to cancerous and healthy tissues. When we conducted enrichment 
analysis for the sites that were particularly hypomethylated in LMC5, we found that 
transcription factor binding sites for the Polycomb repressive complex (SUZ12, EZH2) were 
overrepresented. Cancers have a strong influence on the Polycomb repressive complex, 
which typically represses oncogenes; a process that becomes distorted when its binding sites 
are hypermethylated47–49. What is more, proportion of LMC5 in tumor tissues provided a 
generic estimate of tumor sample purity, i.e. degree of contamination by adjacent normal 
tissue. Thus, we were able to capture tumor-specific methylation signatures without 
conducting differential analysis between two phenotypic groups. 
 
Next, LMC3 showed highly variable proportions across the samples and was the main driver 
of the overall sample clustering. LMC3 proportions were strongly correlated with the LUMP 
estimate (Fig. 4B), which predicts the overall immune cell content of a sample35. Furthermore, 
we detected enrichments of LMC3-speficic hypomethylated sites towards leukocyte (B-
lymphocyte) specific transcription factor binding sites and immune response related GO terms 
(Fig. 4C, D, Supplementary Fig. 6). We concluded that LMC3 most likely represented tumor 
infiltrating immune cells. The extent of tumor infiltration might be relevant to associate cancer 
state to patient prognosis50. 
 
To determine whether the detected LMCs reflected the expression of known marker genes of 
lung tissue cell types, we selected EPCAM as an epithelial, CLDN5 as an endothelial, 
COL1A2 as a stromal, and PTPRC as an immune cell marker46. We collected gene 
expression data from TCGA for the samples (data processing is described in the 
Supplementary Text) and found LMC3 to be correlated to PTPRC expression. Furthermore, 
LMC1 was strongly associated with the epithelial marker expression and LMC5 with the 
endothelial marker CLDN5 (Fig. 4E). 
 
Many of the detected components were linked to cancer mutational status, such as overall 
mutation count or chromosomal gain or loss (Supplementary Fig. 7), or cancer stemness 
(Supplementary Fig. 8). For instance, LMC1 was inversely linked to copy number gain of 
chromosome 1p and 16p. We further investigated the sites that were particularly hypo- or 
hypermethylated in LMC4, since LMC4 showed a high proportion in a small subset of samples 
that clustered separately from the remaining cancer samples (Fig. 4A). One of these sites, 
cg26992600, is located 3 kb upstream of the TSS of NKX2-8, a gene that has potential roles 
in the progression of lung cancers51 (Supplementary Fig. 9, Supplementary Table 2). 
Finally, in a survival analysis of LMC proportions, we found that proportions of LMC5 and 
LMC6 were associated with survival time (p-values: LMC5: 0.18, LMC6: 0.03, 
Supplementary Fig. 10), warranting further investigation of their biological nature, which, 
however, exceeded the scope of our example analysis. 
 

Conclusions 
 
Taken together, our methylome deconvolution protocol was able to provide novel biological 
insights about the cellular and intra-tumor heterogeneity of lung cancer. We expect the 
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protocol to be of great benefit to all investigators performing DNA methylation analysis in 
complex and underexplored experimental systems, including bulk samples of highly 
heterogeneous tissues and tumors. 
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Figure legends 
 
Figure 1: Overview of the proposed deconvolution protocol. DNA methylation data can be 
used from any technology yielding single CpG methylation calls. Methylation data is first 
processed using DecompPipeline, which includes data import, preprocessing, accounting for 
confounders and feature selection. MeDeCom can be used to perform deconvolution of the 
input methylation matrix (dimension m CpGs x n samples) into the latent methylation 
components (LMCs) and the proportions matrix (dimension K LMCs x n samples), while the 
protocol is also applicable to different deconvolution tools. The obtained matrices are then 
validated and interpreted using the R/Shiny visualization tool FactorViz. 
 
Figure 2: Quality control of TCGA data. A Boxplot for hybridization control probes for the 
green and the red channel, respectively. B Sex prediction based on the intensities of the 
probes on the sex chromosomes. A logistic regression classifier was employed to differentiate 
between female and male samples. C Outline of the CpG filtering procedure. The sites on the 
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450k array are filtered according to quality scores (coverage, overall intensity), genomic 
sequence context (SNPs, sex chromosomes), and cross-reactive sites are discarded. 
 
Figure 3: Evaluation of ICA on the TCGA LUAD dataset. A Overview of the ICA procedure. 
Components linked to confounding factors (here sex, age, ethnicity or race) are removed from 
the contribution matrix and an adjusted DNA methylation matrix is constructed. B Associations 
between the confounding factor sex and ethnicity with the entries of the proportion matrix M 
produced by ICA. C Beta-value distributions of the transformed (D*) and the untransformed 
(D) DNA methylation matrices. D Associations between LMC proportions and qualitative 
phenotypic traits. The color represents the absolute difference of the mean LMC proportions 
in the different groups defined by the phenotypic traits and significant p-values according to a 
t-test are indicated by a bold border. 
 
Figure 4: Interpreting MeDeCom results with FactorViz. A Proportion heatmap of LMCs in the 
different samples. We selected K=7 LMCs and set λ=0.001. The samples were hierarchically 
clustered according to the Euclidean distance between the proportions using complete 
linkage. We annotated samples using disease status and with the sample-specific LUMP 
estimate. B Associations between the phenotypic traits and LMC proportions. For quantitative 
traits, the correlations are shown as ellipses that are directed to the upper right for positive 
and to the lower right for negative correlations, respectively. For qualitative traits, the absolute 
difference of the proportions in the two groups (e.g. female vs. male) is shown. P-values 
(correlation test for quantitative and t-test for categorical variables) less than 0.01 are 
indicated by bold borders. LOLA42 (C) and GO41 (D) enrichment analysis of the LMC-specific 
hypomethylated sites for LMCs 1, 3 and 5. No significant GO enrichment was found for LMC 1 
and 5. Sites were defined as LMC-specific hypomethylated if the difference between the LMC 
value and the median of all other LMCs was lower than 0.5. P-values have been adjusted for 
multiple testing with the Benjamini-Hochberg method52. E Scatterplots between LMC 
proportions per sample and known marker gene expression of different lung cell types. The 
gene expression was measured using counts per million (CPM). 
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Table 1: Quality filtering steps and default parameters in DecompPipeline. 
STEP SITES FILTERED DEFAULT PARAMETERS 

BEAD FILTERING Covered by less than MIN_N_BEADS 

beads in any of the samples 

MIN_N_BEADS=3 

INTENSITY FILTERING High or low coverage outliers according 

to the overall intensity quantiles 

specified via MIN_INT_QUANT and 

MAX_INT_QUANT 

MIN_INT_QUANT=0.01 

MAX_INT_QUANT=0.99 

MISSING VALUE 

FILTERING 

Containing a missing value in any of the 

samples 

FILTER_NA=TRUE 

SNP FILTERING Annotated to SNPs according to the 

dbSNP
33

 database 

FILTER_SNP=TRUE 

SOMATIC SITE 

FILTERING 

Located on the sex chromosomes FILTER_SOMATIC=TRUE 

CROSS-REACTIVE 

FILTERING 

Reported to be cross reactive
34

  FILTER_CROSS_REACTIVE 

=TRUE 

 
 
 
Table 2: CpG selection options available in DecompPipeline. 
CPG SELECTION 

METHOD 

CPG SUBSET SELECTED DETAILS 

ALL All that fulfill the quality criteria  

PHENO Differentially methylated according to specified 

phenotypic groups using the limma method 

Ritchie et al.
38

 

HOUSEMAN2012 50,000 listed as cell-type specific in the 

reference-based deconvolution method by 

Houseman et al. 

Houseman et al.
11

  

HOUSEMAN2014 According to the RefFreeEWAS method Houseman et al.
18

  

JAFFE2014 Cell-type specific in Jaffe et al. Jaffe et al.
39

 

ROWFSTAT Linked to given reference profiles using the F-

statistics 

Requires reference profiles 

RANDOM Random subset  

PCA Highest loadings on the first N_PRIN_COMP 

principal components 

Default N_PRIN_COMP=10 

VAR Most variable across the samples  

HYBRID Half as most variable, half randomly  

RANGE Largest range across the samples  

PCADAPT Principal Component Analysis implemented in 

the bigstatsr R-package 

Privé et al.
40

  

EDEC_STAGE0 According to Stage 0 of the EDec approach. Requires reference profiles  

Onuchic et al.
19

 

CUSTOM User-specified list  
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Table 3: Quality criteria for different quality control steps 
STEP QUALITY CRITERION 

CONTROL 

PROBES 

All background control probes should show background intensity values in the 

range of 1,000-2,000. The low, medium and high control probes should show a 

substantially higher signal intensity in the range >10,000. Samples with high 

background intensity or low signal intensity should be discarded from the 

analysis. 

SNP 

METHYLATION 

The Illumina BeadArrays contain a few highly variable SNP probes, which should 

have methylation values close to 0, 0.5 and 1. In a genetically matched setup, 

samples from a similar genotype (e.g. the same family) should cluster together 

using the methylation values of these SNP probes. By this approach, potential 

sample mix-ups can be detected. 

SEX PREDICTION Patient sex can be reliably predicted from the signal intensities of the sites on 

the sex chromosomes. RnBeads trained a robust logistic regression classifier on 

a large training dataset. If predicted sex does not match the annotated sex, this 

might indicate a sample mix-up. 

 
 
Table 4: Troubleshooting for the individual steps of the reference-free deconvolution protocol. 

 

STEP PROBLEM POSSIBLE REASON SOLUTION 

2 MeDeCom is not installed 

properly. 

Package dependencies are 

missing 

Use a Unix-like operating system. 

6 RnBeads stops 

unexpectedly. 

The report directory 

already exists. 

Specify a path to a non-existing 

directory. 

6 RnBeads throws an error 

message. 

Package dependencies 

are not properly 

configured. 

Check the RnBeads website 

(http://rnbeads.org) for 

potential solutions. 

8 All sites are removed during 

filtering. 

The provided quality 

criteria were too 

stringent. 

Provide less stringent quality 

criteria. Particularly, 

MAX_INT_QUANT, MIN_INT_ 

QUANT and MIN_N_BEADS have a 

strong influence. 

9 DecompPipeline stops 

during confounding factor 

adjustment. 

The system runs out of 

memory. 

Reduce the number of components 

tested (nmax), the number of cores 

used (ncores) or the number of 

independent ICA runs (ntry). 

11 MeDeCom does not finish 

properly. 

The system runs out of 

memory. 

Check the log-files in the project 

directory and potentially get a 

larger machine to perform 

deconvolution. 

 

12 

FactorViz does not show 

any of the plots described 

here. 

MeDeCom has not 

finished properly. 

Check the log-files in the project 

directory. 
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