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Abstract  

While children with economic disadvantage are at risk for poorer outcomes in cognitive and brain 

development, less understood is the contribution of other factors in the broader socioeconomic context 

that may more closely index the underlying mechanisms influencing risk and resilience.  We examined 

brain structure and cognitive test performance in association with economic disadvantage and 22 

measures in the broader socioeconomic context among n = 8,158 demographically diverse 9-10-year-old 

children from the ABCD Study.  Total cortical surface area and total cognition scores increased as a 

function of income-to-needs, with the steepest differences most apparent among children below and near 

poverty relative to their wealthier peers.  We found three latent factors encompassing distinct 

relationships among our proximal measures, including social, economic, and physiological well-being, 

each associated with brain structure and cognitive performance independently of economic advantage.  

Our findings will inform future studies of risk and resilience in developmental outcomes for children 

with economic disadvantage. 
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INTRODUCTION 

According to the Census Bureau for 2017, 38.8% of children in the United States were living in 

households with economic disadvantage, ranging from deep poverty to near poverty1.  Economic 

disadvantage is a socioeconomic risk factor that has been extensively reported in association with poorer 

outcomes in cognitive, psychosocial and physical health2–4.  Childhood economic disadvantage has also 

been linked to increased risk of emergence of mental and physical health problems in adulthood5,6.  

Most recently, studies have reported differences in characteristics of whole-brain structure among 

children with economic disadvantage compared to more economically advantaged peers7,8.  While these 

recent studies suggest the associations between economic disadvantage and brain structure are primarily 

driven by children from families with the lowest incomes, inter-individual variability among children in 

cognition and brain structure across the SES spectrum is not well understood7,8.  

 

Children with economic disadvantage experience more exposure to stressors that emerge from 

disadvantage across various economic, social, physiological, and perinatal factors that may possibly 

influence a child’s well-being9–11.  For example, economic disadvantage can be accompanied by 

economic insecurity, such as food and housing insecurity, and adverse childhood experiences (ACEs), 

such as violence in the home and parental poor adaptive functioning9,10.  Chronic exposure to stressors 

can lead to a dysregulation in the stress response, influencing the activation of the hypothalamic-

pituitary axis (HPA), responsible for secretion of the stress response hormones like cortisol12.  In turn, 

chronic elevation of stress hormones is thought to contribute to a dysfunction in physiological systems 

that support healthy brain and cognitive development2,3,13.   
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However, economic disadvantage, as measured by family income, is a distal measure of the potential 

mechanisms underlying risk and resilience in developmental outcomes.  Economic disadvantage is often 

embedded within other economic, social, physiological, and perinatal contexts that could be described 

by more proximal measures in the broader socioeconomic context.  Importantly, while some proximal 

measures in the broader socioeconomic context may encompass risk for poorer developmental 

outcomes, other measures may index resilience in the context of economic disadvantage.  For example, 

findings from other studies suggest social and community support, such as positive parenting and 

positive school environments, may be linked to resilience in developmental outcomes among children 

with economic disadvantage14,15.   

 

Further, adverse perinatal factors, such as low birth weight16 and maternal substance use17, have also 

been associated with stress dysregulation in childhood and adolescence.  These same adverse perinatal 

factors are associated with cortical alterations18,19. Children with economic disadvantage are at risk for 

prematurity and low birth weight 20,21.   Despite these connections, associations of economic, social, and 

perinatal  risk with childhood brain and cognitive outcomes have not previously been examined within a 

single model22.  

 

Notably, among economically advantaged and disadvantaged children, there are striking individual 

differences in cognitive and brain development, as well as substantial variability in the quality of 

economic, social, physiological, and perinatal contexts that influence children’s development.  

Investigating relationships among more proximal measures of the broader socioeconomic context will be 

crucial for understanding the contexts in which economic disadvantage is embedded and whether these 

contexts contribute to developmental outcomes beyond economic advantage.  Here, we aimed to 
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examine inter-individual variability across proximal measures of socioeconomic context in association 

with developmental measures and increase our understanding of the possible mechanisms underlying the 

relationship between economic disadvantage and brain and cognitive development that may ultimately 

be remediable with public awareness.  

 

RESULTS 

Greater total cortical surface area and higher total cognition scores associated with higher 

economic advantage   

In a large sample of children 9 – 10 years of age, diverse across socioeconomic and cultural 

backgrounds, we tested economic disadvantage in association with developmental outcomes (see table 2 

for sample demographics).  Economic disadvantage was estimated using the income-to-needs percent 

ratio, i.e., household income relative to the federal poverty threshold for a given household size.  A 

greater income-to-needs ratio indicated more economic advantage. Initial analyses using generalized 

additive mixed-effects models determined that the best fit was the smooth transformation of the income-

to-needs measure, which allowed for modeling of non-linear relationships (supplementary table 2) and 

thus the s(income-to-needs) term was used in all models below.  Effect sizes, i.e., change in R2, were 

calculated by comparing each hypothesized model to a null model that included fixed-effect covariates 

of age, sex, self-declared race-ethnicity, and the random effects of scanner identification number nested 

by family (i.e., siblings) only as predictors of each dependent variable. 
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We observed a significant non-linear relationship between income-to-needs and each developmental 

measure, such that both cortical surface area and cognition were more strongly related to income-to-

needs among children near poverty and below, i.e., < 200% for the federal poverty level, (total cortical 

surface area: F = 34.82, edf = 3.77, p < .001, ∆R2adjusted = 0.012, X2(1, N =8,158) = 120.66, p < .001; total 

cognition scores: F = 94.13, edf = 6.43, p < .001, ∆R2adjusted = 0.064, X2(1, N =8,158) = 557.57, p < .001).  

The full model results are shown in supplementary table 4 (model 1) for total cortical surface area and in 

supplementary table 5 (model 1) for total cognition scores.  The plot for the predicted values for the 

smooth term of income-to-needs for models for total cortical surface area and total cognition scores is 

shown in supplementary figure 1. 

 

 

 Deep 
Poverty 
<50% 

Poverty 
50 - <100% 

Near 
Poverty 

100 - <200% 

Mid   
Income 

200 - <400% 

High 
Income 

>= 400% 
Total 

Sample 
Age Mean (SD)  9.83 (0.61) 9.87 (0.61) 9.92 (0.63) 9.90 (0.63) 9.94 (0.62) 9.91 (0.62) 
       
Sex  N (%)      N (%) 

Female  303 (49.0) 225 (46.2) 628 (48.4)  981 (48.0) 1776 (47.8) 3913 (48.0) 
Male  315 (51.0) 262 (53.8) 670 (51.6) 1061 (52.0) 1937 (52.1) 4245 (52.0) 

Race-Ethnicity N 
(%)        

Whitea 92 (14.9) 126 (25.9) 515 (39.7) 1215 (59.5) 2772 (74.7) 4720 (57.9) 
Hispanic 178 (28.8)  181 (37.2) 362 (27.9) 433 (21.2) 362 (9.7) 1516 (18.6) 
Blacka 276 (44.7) 133 (27.3) 266 (20.5) 200 (9.8) 116 (3.1) 991 (12.1) 
Asian a 4 (0.6) 4 (0.8) 13 (1.0) 18 (0.9) 91 (2.5) 130 (1.6) 
Other a 68 (11.0) 43 (8.8) 142 (10.9) 176 (8.6) 372 (10.0) 801 (9.8) 

Total Sample  
N (%) 618 (7.6) 487 (6.0) 1298 (15.9) 2042 (25.0) 3713 (45.5) 8,158 (100) 
U.S. Population 
Under 18 years b % 8.0 9.5 21.3 28.9 32.3 -- 

a Non-Hispanic  
b U.S. Census Bureau, Current Population Survey, 2018 Annual Social and Economic Supplement. 
 

Table 2. Distributions for age, sex, and race-ethnicity by income-to-need relative to federal 
poverty thresholds are shown.    
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 Figure 1.  Plots showing the non-linear relationship between income-to-needs (A) total cortical surface 
area and (B) total cognition scores, such that increases in each developmental measure were steepest 
for children near poverty and below, i.e., < 200% of the federal poverty level.   
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Latent factors encompassing economic, social, physiological, and perinatal well-being   

We implemented a Group Factor Analysis23 to better understand the distinct relationships among our 22 

proximal measures encompassing the broader socioeconomic environment (see supplementary table 2 

for the correlations among all measures).  In supplementary table 3 we report the factor loading values 

and show consistent replication of factor loadings in two split-half samples, in a sample with singleton 

participants only, and in a sample randomly assigned only one participant per family.  We found the first 

latent factor explained 13.68% of the variance across all proximal measures, and described coupled 

relationship among measures that indexed general social, economic, and physiological well-being 

(figure 2).  Specifically, this latent factor loaded highly on endorsement of food security, ability to pay 

bills, housing security, and access to medical/dental care.  Latent factor 1 also captured social well-

being, loading highly on higher parental education and loading moderately on dual parent households 

and lower endorsement of ACEs, i.e., less endorsement across measures of parent poor adaptive 

functioning, history of one or more traumatic events, and family conflict.  Latent factor 1 equally loaded 

highly on social-perinatal measures of older maternal age at birth and planned pregnancies.  Lastly, 

latent factor 1 also encompassed physiological well-being, loading moderately on sufficient sleep, lower 

body-mass-index (BMI) z-scores, and on measures of physiological-perinatal health, i.e., lower prenatal 

conditions and lower endorsement of history of prenatal substance use.  Latent factor 2 explained 6.5% 

of the variance across all measures and encompassed measures of youth perceived social support, 

loading highly on higher parental monitoring, caregiver acceptance, school engagement, and a positive 

school environment, and lower family conflict.  Latent factor 2 also loaded to a lesser extent on lower 

maternal age at birth, unplanned pregnancies, and less endorsement in ability to pay bills, food and 

housing security (figure 2).  Latent factor 3 (perinatal health) explained 5.91% of the variance and 

loaded on higher birth weight and gestational age, relative to lower total prenatal conditions (figure 2).  
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Figure 2.  Median values for 
variable loadings for the 
three GFA latent factors 
shown with 95% confidence 
intervals, with the total 
variance each latent factor 
explained across all 
proximal measures.  

Latent Factor 1 (13.68%) 

 Latent Factor 2 (6.5%) 

  Latent Factor 3 (5.91%) 
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Latent factors positively associated with total cortical surface area and total cognition scores 

The first latent factor (economic, social, and physiological well-being) was strongly associated with 

income-to-needs (F = 399.7, edf =7.18, p < 0.001, ∆R2adjusted = 0.25, X2(1, N =8,158) = 2375.4, p < 

0.001), suggesting that the structure of relationships among the proximal measures encompassed by this 

latent factor was more prevalent among families with economic advantage. The income-to-needs 

associations were not significant for the second latent factor of youth perceived social support (p = .97), 

nor for the third latent factor of perinatal well-being (p = 0.90).  In separate analyses for each latent 

factor, adjusting for fixed covariates of age, sex, self-declared race-ethnicity, s(income-to-needs), and 

random effects of scanner identification number nested by family, each latent factor was positively 

associated with total cortical surface area (latent factor 1: economic, social, and physiological well-

being, β (CI) = 0.086 (0.06, 0.112), ∆R2adjusted = 0.014, X2 (2, N =8,158) = 162.68, p < 0.001; latent 

factor 2: social support, β (CI)  = 0.033 (0.012, 0.053), ∆R2adjusted = 0.012, X2 (2, N =8,158) = 130.46, p 

< 0.001; latent factor 3: perinatal health, β (CI)  = 0.123 (0.101, 0.145), ∆R2adjusted = 0.027, X2 (2, N 

=8,158) = 236.03, p < 0.001); and each was also positively associated with the total cognition scores 

(latent factor 1: economic, social, and physiological well-being, β (CI) = 0.149 (0.122, 0.176), ∆R2adjusted 

= 0.076, X2(2, N =8,158) = 672.81, p < 0.001; latent factor 2: social support, β (CI) = 0.049 (0.027, 

0.071), ∆R2adjusted = 0.066, X2 (2, N =8,158) = 576.89, p < 0.001; latent factor 3: perinatal health, β (CI) 

= 0.075 (0.052, 0.098), p < 0.001, ∆R2adjusted = 0.071, X2 (2, N =8,158) = 597.95, p < 0.001).  The effect 

sizes for models for income-to-needs and each latent factor predicting total cortical surface area and 

total cognition scores are plotted in figure 3.  Importantly, these associations were significant when 

including income-to-needs in the models, which demonstrates that variability in individual differences in 

the developmental measures was statistically attributable to these proximal measures above and beyond 

economic advantage.  The full model results are in supplementary tables 4 and 5.   
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Figure 3. For each developmental measure (A) total cortical surface area and (B) total cognition 
scores, effect sizes are shown as the percent of variance statistically attributable to income-to-needs 
only, each latent factor, and to the additive effect of income-to-needs and all latent factors combined.  
Change in adjusted R2 was calculated by comparing each separate model to the null model (fixed and 
random effects only).     
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Intercation of income-to-needs and latent factor 1 on total cognition scores 

To determine if there were any interactions between income-to-needs and the latent factors predicting 

total cortical surface area and total cognition scores, we generated a categorical variable of income-to-

needs based on federal guidelines (deep poverty: <50; poverty: 50 - <100; near poverty: 100 - <200; mid 

income: 200 - <400; higher income: >=400).  There was a significant interaction of the categorical 

variable of income-to-needs by latent factor 1 scores on total cognition scores (∆R2adjusted = 0.003, X2(4, 

N =8,158) = 34.8, p < 0.001).  To interpret the interaction, we plotted the latent factor 1 scores 

predicting total cognition scores by income-to-needs groups (figure 4).  Interestingly, the interaction plot 

suggess that on average, there were no apparent differences in cognition scores between income-to-

needs groups among children with higher latent factor 1 scores.  This suggests that children in near 

poverty and below with a higher relative endorsement of economic, social, and physiological well-being 

(as represented in latent factor 1), show comparable total cognition scores relative to their higher income 

peers.  There was no significant interaction for latent factor 1 with income-to-needs groups on total 

cortical surface area (X2(4, N =8,158) = 3.76, p = 0.44), nor any significant interactions of latent factor 2 

or latent factor 3 with income-to-needs groups on total cortical surface area (X2(4, N =8,158) <= 5.66, ps 

> 0.22) or on total cognition scores (X2(4, N =8,158) <= 4.13, ps > 0.39).  
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Figure 4. The plot of the interaction of income-to-needs by latent factor 1 scores in association with 
total cognition scores shows differences in total cognition scores between income-to-need groups 
varied as a function of latent factor 1 scores.  While total cognition scores steadily increased with 
higher latent factor 1 scores for children in mid to high income households, total cognition scores for 
children in poverty (<100%) showed a protracted shift in scores, revealing an advantage in total 
cognition scores for children in mid to high income households for middle-range latent factor 1 
scores.  Importantly, the gap in total cognition scores between children in poverty relative to children 
in mid to high income households narrowed for children with higher latent factor 1 scores (i.e., higher 
endorsement of economic, social, and physiological well-being).    
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Cortical Surface Area Effect Size Maps 

A vertex-wise mass univariate analysis across the surface of the cortex was conducted to visualize the 

predictive effect of each independent variable, income-to-needs and each of the latent factors, on surface 

area at each vertex (figure 5).  Figure 5A shows the vertex-wise association between income-to-needs 

(non-transformed) and surface area.  Figures 5B-D show the vertex-wise association between each latent 

factor and surface area (in separate models) all including income-to-needs and the other latent factors as 

covariates.  They therefore display the unique variance in surface area predicted by each latent factor 

independent of income-to-needs and the other orthogonal latent factors.  The maximum vertex-wise beta 

coefficients for each predictor were b = 0.10 for income-to-needs, b =0.096 for latent factor 1, b = 0.052 

for latent factor 2 and b = 0.17 for latent factor 3.  The distribution of effect sizes across the cortex for 

income-to-needs and each of the latent factors seemed to be continuous and distributed across the cortex. 

The associations between surface area and latent factor 2 showed the smallest effect sizes and only a 

small number of vertices survived correction for multiple comparisons (see supplementary figure 4 for 

maps of FDR-corrected p-values).  However, we cannot infer any causality or directionality from these 

observational associations.     
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Figure 5. Mass univariate vertex-wise estimated effect size maps predicting surface area from 
each independent variable (A: income-to-needs, B: latent factor 1, C: latent factor 2 and D: latent 
factor 3) were created using general linear models at each vertex controlling for age, sex, 
race/ethnicity, and scanner.  Maps B-D also included income-to-needs and the other latent factors 
as additional covariates such that these maps show the unique contribution of each latent factor 
and surface area.  The maps show unthresholded standardized beta coefficients.  All of the 
independent variables showed positive effects with surface area. 
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DISCUSSION 

Socioeconomic factors (e.g., family income and poverty) have long been known to impact cognitive 

development and school performance, with more recent research relating family income and parental 

education to brain development7,8.  Our results from a large demographically diverse cohort illuminate 

other factors in the broader socioeconomic context that may impart risk or resilience for negative brain 

and cognitive outcomes in American youth.  We found associations between income-to-needs and total 

cortical surface area and cognitive performance, as well as independent contributions from other 

economic, social, physiological and perinatal measures hypothesized to be related to economic 

disadvantage and measures of development.  We have replicated previous findings showing a non-linear 

relationship between income-to-needs and developmental measures, with the largest associations among 

children with the most economic disadvantage7,8.  We then examined the latent structure across 22 

variables hypothesized to be associated with economic disadvantage to understand how 

multidimensional relationships among these more proximal measures associated with individual 

variability in total cortical surface area and total cognition scores beyond income-to-needs.  

 

Each of the latent factors appeared to approximate separable relationships among our proximal measures 

that encompassed: (1) a general factor of economic, social and physiological well-being; (2) youth 

perceived social support; and (3) perinatal well-being.  Each latent factor showed positive associations 

with each of the developmental measures.  Associations between each latent factor and the brain and 

cognitive outcomes were significant even when including income-to-needs in the model as a covariate.  

Initial analyses suggested that the relative contribution of measures described by latent factor 1 

(economic, social, physiological well-being) were particularly prevalent among economically 

advantaged children.  However, we found total cognition scores varied as a function of latent factor 1 
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scores between income-to-needs groups.  Notably, children in poverty who had higher relative 

endorsement of economic, social, and physiological well-being, on average, showed comparable 

cognition scores to more economically advantaged peers.  It is likely that higher parental education 

affords children with more opportunities for enriching learning and recreational activities, such as 

participating in music or sports24,25.  Children in poverty with higher latent factor 1 scores, were in 

households with potentially more enriching opportunities (i.e., higher parental education), higher 

availability of parent resources (i.e., higher maternal age at birth, planned pregnancy, and dual parent 

households), and in secure environments that provided basic needs (i.e., food and housing security, 

ability to pay bills, access to medical/dental care, and sufficient sleep), as well as in healthy socio-

emotional home environments (i.e., better parent adaptive functioning, no history of traumatic events, 

and low family conflict).  While the associations between latent factor 2, youth perceived social support, 

and each developmental measures were moderate, our findings suggested that having a positive family 

and community environment was associated with positive developmental outcomes, even when coupled 

with some degree of risk, i.e., young maternal age at birth, unplanned pregnancies, lower endorsement 

of ability to pay bills and food and housing security.   

 

While studies in children often index socioeconomic disadvantage using measures of family income and 

parental education, each measure studied here is thought to represent a different component of 

socioeconomic disadvantage by which family environments and developmental outcomes in children are 

influenced differently26.  Given the limited number of studies on brain structure in children and 

socioeconomic disadvantage, it is not yet clear how each component may uniquely contribute to 

differences in brain structure7,8.   
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Previous studies reporting on the association between family income and cortical surface area, suggested 

a regional specificity7,8.  However, those studies were with smaller sample sizes.  In the present study, 

with increased sample size and power for detection, we see that the vertex-wise cortical surface area 

associations for income-to-needs and the latent factors are much more continuous and distributed across 

cortex, and we therefore cannot infer any regional specificity.  It is unclear whether the regional 

distribution of effect sizes for cortical surface area associations are distinct between income-to-needs 

and the latent factors, which would be suggestive of differences in underlying mechanisms by which 

income-to-needs and the latent factors associate with total cortical surface area.  However, such 

hypotheses can be tested in future research using multivariate analyses.  Such studies could help unravel 

whether there are independent neurobiological mechanisms contributing to individual variability in brain 

structure and function arising from different socioeconomic or perinatal factors.  

 

Limitations   

Although the composition of the study sample analyzed is overrepresented in the number of households 

in the higher income range relative to the population income distribution in the United States, our study 

sample includes a larger representation of children with economic disadvantage than previous studies27.  

The duration and extent under which children in this cohort have experienced economic and social 

adversity during their early childhood is not yet known.  While it is challenging to differentiate between 

transitory poverty and chronic poverty, previous literature suggests that even children who have 

experienced transitory poverty have poorer outcomes compared to children who never experienced 

poverty9,28.  The relative effect sizes are small, although this is perhaps to be expected from studies 

examining behavioral and brain outcomes with large samples, given the heterogeneity in  individual 
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differences in the population being studied as well as the wide range of factors that could influence 

development.  There are many other risk factors that are closely related to economic disadvantage not 

directly examined in this study, such as the child’s mental health and environmental toxins3.  In addition, 

there are many other experiences that may contribute to resilience in developmental outcomes among 

children with economic disadvantage, including participation in enriching activities like art, music, and 

sports, that were not considered in our analysis.  Future studies should examine whether there are 

measurable differences in the quality and access of enriching activities that stimulate learning at all 

levels of parental education, and whether participation in enriching activities for children among lower 

educated parents can be linked to positive developmental outcomes.  

 

Conclusion 

Given the complexity of the relationships among measures of risk and resilience for children with 

economic disadvantage, it has been difficult to understand how such relationships between various 

economic, social, physiological, and perinatal factors contribute individually or multiplicatively in 

explaining differences in developmental outcomes24,29,30.    We report findings from a comprehensive set 

of analyses that examined the extent to which separable relationships among measures of more proximal 

aspects of economic, social, physiological and perinatal well-being related to economic advantage and 

developmental measures in a large sample of healthy children.  Our study reports timely findings that 

point to future areas of research to help identify factors, that if targeted appropriately with interventions, 

could possibly reduce risk and promote resilience for children experiencing economic disadvantage.  
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Methods 

Participants 

Data used here were obtained from the Adolescent Brain Cognitive Development (ABCD) Study.  The 

ABCD data repository grows and changes over time. The ABCD 2.0.1 data release was downloaded 

from the NIMH Data Archive ABCD Collection (10.15154/1504041) and contained baseline data for a 

total of N = 11,875 children ages 9 – 10 years old.  Baseline data that passed quality assurance and had 

complete cases for FreeSurfer imaging data, demographic measures, and environment measures, were 

included in the analyses for a total of N = 8,158.  Participants that had any incomplete data across all 

measures were excluded (See supplementary table 1 for details).   

 

The recruitment strategy has been described in detail previously31.  Children were recruited from 22 

study sites and ABCD is following children at 21 study sites across the United States.  A school-based 

recruitment strategy was developed to achieve a cohort of families that was diverse in income, race-

ethnicity, and cultural background and has been described in detail by Garavan, et al., (2018).  

Demographic information for age, sex (female: 1, male: 0), and race/ethnicity were examined.  

Race/ethnicity was recoded to include 5 categories: Hispanic, and non-Hispanic White, Black, Asians, 

and more than one race.   

 

Economic advantage: Income-to-needs 

Gross household income and the number of household members was reported by the study caregiver in 

the Parent Demographics Survey. Income was reported in categories1, and was adjusted to the median 

 
1 Income bins: Less than $5000, $5000 to $11999, $12000 to $15999, $16000 to $24999, $25000 to $34999, $35000 to 
$49999, $50000 to $74999, $75000 to $99999, $100000 to $199999, $200000 and greater.  
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for each category. The income-to-needs ratio was calculated for each participant by dividing the 

household income median by the corresponding 2017 federal poverty level based on the Department of 

Human and Health Services (HHS) poverty guidelines32 for the reported household size.  The HHS 

federal poverty level is the necessary income needed for a family of a given size to meet the cost of 

living, including shelter, food, clothing, transportation, and other necessities and determines eligibility 

for federal government benefit programs.  

 

Proximal measures in the broader socioeconomic environment 

We examined 22 measures across economic, social, physiological, and perinatal well-being that we 

hypothesized to be related to income-to-needs and developmental measures.  A complete list of 

measures examined is shown in table 1.  We categorized the 22 measures into 6 groups thought to 

represent constructs that would capture within-group variability across the range of income-to-needs, 

specifically: (1) economic factors, (2) parental characteristics, (3) school/community environment, (4) 

risk for adverse childhood experiences (ACEs), (5) physiological health, and (6) perinatal well-being.  

Importantly, dual parent household was defined by the study caregiver report of whether he/she had a 

partner who was involved in at least 40% or more of the daily activities of the child.  Economic security 

was measured by a set of questions that determined food security, housing security, ability to pay bills, 

and access to medical or dental care.  Highest parental education was from parent report of highest 

education attained among both caregivers when available.  For detailed information for each specific 

variable name and transformation, as well as missing and excluded values, see supplementary table 1.  A 

detailed description of the ABCD baseline protocol and rationale for inclusion of measures on 

demographics, culture and environment have been reported previously33,34. 
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Cognition scores  

The NIH Toolbox® cognition battery35,36 was administered as part of the ABCD study baseline 

neurocognition battery37.  From the NIH Toolbox® cognition battery, total cognition composite scores 

were examined.  Total cognition composite scores are derived from seven tasks within the NIH 

Toolbox® cognition battery that assess working memory and categorization, information processing, 

flexible thinking and set shifting, visuospatial sequencing, cognitive control, reading ability and verbal 

intellect.  

Table 1. List of measures and groups entered into the GFA analysis.  

  Measures 

G
FA

 G
ro

up
s 

Economic Food Security  Housing Security Ability to pay bills Access to 
Medical/Dental 

Parental Parental education Youth total caregiver 
acceptance Youth parental monitoring Dual parent 

households 

School/ 
Community 

Youth neighborhood 
safety 

Youth positive school 
environment Youth school engagement  

ACEs Youth family 
conflict 

History of traumatic 
event 

Parental poor adaptive 
functioning  

Physiological Sufficient sleep Body Mass Index Z-score 
(BMIz)  

 

Perinatal Total prenatal 
conditions 

Planned 
pregnancy 

Maternal 
age at 
birth 

History of 
prenatal 
substance use 

Gestational 
age (weeks) 

Birth weight 
(kg) 

 

 

 

Image acquisition and processing  

The imaging procedures for ABCD imaging acquisition and preprocessing have been described 

previously38. Briefly, each site applied a standardized MRI protocol that included a T1 weighted scan. 

All imaging data was processed using FreeSurfer pipelines and procedures implemented by the ABCD 
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Data Informatics and Resource Center (DAIRC)39. A 3D model of the cortical surface was constructed 

for each subject.  Cortical surface area was calculated by mapping a standardized tessellation to the 

native space of each subject using a spherical atlas registration, which matched the cortical folding 

patterns across subjects.  Surface area of each vertex was calculated as the area of each triangle.  This 

generated a continuous vertex-wise measure of relative areal expansion or compression.  Cortical maps 

were smoothed using a Gaussian kernel of 20mm full-width half maximum (FWHM) and mapped into 

standardized spherical atlas space.  Vertexwise data for all subjects for each morphometric measurement 

were concatenated into matrices in MATLAB R2017a and entered into general linear models for mass 

univariate statistical analysis using custom written code.   

 

Mass univariate effect size estimation for cortical surface area 

Vertexwise imaging data was obtained from the ABCD 2.0.1 fixed release and was available for 11,536 

participants.  Imaging data that did not pass quality assurance were excluded from our analyses using the 

FreeSurfer quality control variable for the ABCD baseline tabulated dataset. A total of 8,158 participants 

who had complete vertexwise data and complete data on all other behavioral measures were included in 

the vertexwise surface area analyses.  To measure the vertexwise effects of income-to-needs, we 

conducted a GLM at every vertex predicting income-to-needs from surface area.  The following fixed 

effects were included as covariates of no interest: age, sex, scanner identification number and race-

ethnicity.  To determine the vertexwise effects uniquely predicted by each latent factor from the GFA 

we conducted the same mass univariate vertexwise analysis including additional fixed effects of income-

to-needs and the other respective latent factors.  All behavioral and imaging variables were standardized 

with zero mean and unit variance before analysis.  All estimated effect size maps show the mass 

univariate standardized beta coefficients.  Additional maps were created showing the distribution of 
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mass univariate p-values across the scalp adjusted for a false discovery rate (FDR) of 5% using the 

Benjamini-Hochberg procedure implemented in Matlab 2017a using the ‘mafdr’ function.  All p-value 

maps were thresholded based on an alpha level  of adj-p<0.05. 

 

Statistical analysis   

All statistical analyses were done in R (3.4.4)40 using R studio (1.1.463)41.  A Group Factor Analysis23 

was implemented using the R-package GFA42. Generalized Additive Mixed-Effect Models (GAMMs) 

were fitted using the R-package gamm443 to test income-to-needs and latent factor associations with 

total cortical surface area and cognition scores.  Only participants with complete data across all 22 

measures, demographic covariates, and dependent variables were included in the analyses 

(supplementary table 1). Continuous measures were standardized to a zero mean and unit variance.  

First, we tested the associations between income-to-needs and total cortical surface area and cognitive 

performance.  Second, we conducted a group factor analysis to describe patterns of relationships among 

measures hypothesized to broadly encompass socioeconomic context across the entire range of income-

to-needs. Third, we tested the latent factor associations with income-to-needs and each developmental 

measure to examine whether patterns of relationships among variables were related to income-to-needs 

and whether they predicted total cortical surface area and total cognition scores. Lastly, we examined 

interactions between income-to-needs groups and latent factors on total cortical surface area and total 

cognition scores.    

 

Group Factor Analysis (GFA).  A GFA solution identifies linear latent factors that describe 

relationships among grouped variables, while also taking into account dependencies between groups.  

GFA is similar to a Bayesian exploratory factor analysis, except unique to the GFA approach is the 
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implementation of a structural sparsity prior that allows modeling of the dependencies between groups.  

The GFA outputs linear factors that contain a projection vector comprised of the measures with non-zero 

loadings for that factor.  All 22 measures (described in table 1) were submitted to a GFA.  To test the 

stability and robustness of the latent factors, we completed 10 different iterations of the GFA.  Robust 

latent factors were chosen based on latent factor loadings that met a 0.9 correlation threshold across all 

10 iterations.  Robust factor loadings across all 10 GFA iterations were averaged.  Separate robust GFAs 

were examined in split-half samples to test replication of the latent factor loadings.  Robust GFA latent 

factors accounting for more than 5% of the GFA variance were chosen.    

 

Testing Associations.  Null GAMMs for each dependent measure, i.e., total cortical surface area and 

total cognition scores, were constructed with only the covariates.  The covariates included were the fixed 

effects of age, sex, race-ethnicity, and random effects of scanner identification number nested by family 

membership. The associations of income-to-needs with the dependent measures were tested by entering 

the smooth term of income-to-needs and the covariates as predictors of each dependent measure and 

comparing this model to the null model (covariates only).  The associations between the latent factor 

variables and the dependent measures were tested by entering the latent factors, income-to-needs and 

covariates as predictors of each dependent measure, and these models were compared to the null model 

(covariates only).  Each sequential model comparison was tested using a likelihood ratio test with the 

“anova” function in R.  The variance statistically attributable by each model was interpreted as the 

change in R2 between model comparisons and significance was determined by the chi-square (X2) 

statistic and corresponding p-value.  Since all continuous measures were standardized, the model 

regression coefficients were interpreted as standard betas.   
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