

1    **Bacteriophages can be used as infection control agents: A proof-of concept**  
2    **study involving anti-*Acinetobacter baumannii* phage**

3    Aamir Hussain<sup>1,2,3</sup>, Amna Manzoor<sup>2</sup>, Ihsan Ullah<sup>3</sup>, Atif Aziz<sup>2</sup>, Mubashar Aziz<sup>2</sup>, Muhammad Qamar Saeed<sup>2\*</sup>  
4

5    <sup>1</sup>Combined Military Hospital, Multan, Punjab, Pakistan

6    <sup>2</sup>Dr. Ghulam Nabi Chaudhry Laboratory of Microbial Technologies, Department of Microbiology, Institute of Pure  
7    and Applied Biology, Bahauddin Zakariya University, Multan, Punjab, Pakistan

8    <sup>3</sup>Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhah, Pakistan

9    **\*Corresponding author**

10    [mqamarsaeed@bzu.edu.pk](mailto:mqamarsaeed@bzu.edu.pk) (MQS)

11

12 **Abstract**

13 Hospital acquired infections are responsible for morbidity and mortality worldwide. *Acinetobacter spp.*

14 infections are particularly notorious for complicating patient management in ICU settings. Extremely high

15 mortality rates are associated with *Acinetobacter* infections because of their resistance to first- and

16 second-line drugs. There is imminent need to develop infections control systems that are specific and

17 environment friendly. Here, we report a proof-of-concept anti-*Acinetobacter spp.* bacteriophage-based

18 infection control assay that is very target specific as well as innocuous to environment. extensively drug

19 resistant (XDR) *Acinetobacter baumannii* strain was inoculated at various solid surfaces. A

20 bacteriophage, enriched in the same strain, was applied on the inoculated surfaces. Phenol (carbolic acid)

21 was used as a positive control. We show that bacteriophages can be used as infection control agents. In

22 our assay, they killed XDR *Acinetobacter baumannii* present on solid surfaces. Our bacteriophage was

23 extremely effective at reducing the CFU of inoculated strain to almost undetectable levels.

24

## 25 **Introduction**

26 Different surfaces in healthcare facilities may serve as reserves of pathogens. These pathogens are  
27 originally contributed by infected hospitalized patients [1]. Bacteria are well known to be promiscuous in  
28 terms of exchange of genetic material. They can donate or accept genes even from distantly related  
29 species and strains directly or indirectly [2,3]. Under selective evolutionary pressures in hospitals, these  
30 pathogens, having genetic capability of horizontal gene transfer, gradually evolve increased virulence and  
31 antibiotic resistance—the characteristic of hospital acquired infections [2]. Critical first step of infection  
32 control, therefore, is providing aseptic environment to patients so that cost of treatment as well as  
33 transmission of multidrug resistant (MDR) infections can be avoided.

34 There are many routes of transmission of infection in hospital settings. Direct contact between patients is  
35 a rare occurrence. A health care worker who may carry some pathogen on his/her skin or clothing may be  
36 the source of infection [1,4]. Similarly, patients are in direct contact with ward and ICU surfaces.

37 Pathogens can also hide in medical devices, which, when applied to patients, can transmit infections [1].  
38 MDR *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Acinetobacter baumannii* infections are  
39 mostly acquired in hospital settings [5].

40 Clinically isolated strains of *Acinetobacter spp.* are particular notorious for their extreme drug resistance.  
41 This organism has the ability to cause different systemic infections which include bacteremia, pneumonia,  
42 urinary tract infections, superficial and deep wound infections, and meningitis etc. [3]. Ability to cause  
43 multiple types of infections, coupled with drug resistance greatly limits treatment options. The best  
44 options against it is to develop targeted infection control regimes which are effective at clearing  
45 *Acinetobacter spp.* from various surfaces acting as their reservoirs.

46 Many hospitals rely on carbolic acid (phenol) as their method of disinfection. However, phenolics are  
47 damaging to both environment and humans [6,7]. These compounds may cause skin corrosion, germ cell  
48 mutagenicity and organ toxicity on repeated exposures. Moreover, use of phenolics in nurseries is highly

49 discouraged. In one study, phenolics exposed infants were found to have higher bilirubin levels as  
50 compared to non-exposed, even when disinfectant was prepared according to manufacturer's  
51 recommendation [6]. Therefore, such methods must not be used in medical instruments such as  
52 ventilators. There is need of bactericidal agents that are effective as well as non-toxic to patients.

53 Bacteriophages are natural bacterial parasites. They have the benefit of being extremely specific to their  
54 host species and are innocuous to environment and humans [8]. Additionally, as they reproduce in their  
55 host, they keep on growing on the surfaces where their host is available. Thirdly, they are self-limiting.  
56 They survive only as long as their host survives [9]. Use of bacteriophages in critical health care  
57 instrument, therefore, can be very useful in controlling infections in health care settings.

58 We designed a proof-of-concept study to show that bacteriophage raised against *XDR Acinetobacter*  
59 *baumannii* could effectively reduce bacterial load on solid surfaces. Our assay shows that it was almost as  
60 effective as phenol in reducing the colony forming units on inoculated surfaces.

## 61 **Materials and Methods**

### 62 **Selection of *Acinetobacter* spp. for Phage Isolation**

63 A patient isolated strain of *Acinetobacter baumannii* was selected because it was resistant to all the tested  
64 drugs. This strain was provided by Armed Forces Institute of Pathology, Rawalpindi. This strain was used  
65 to isolate bacteriophage from sewage samples.

66 *Acinetobacter baumannii* was cultured on Blood and MacConkey agar plates a day before the start of  
67 bacteriophage isolation. For the isolation of bacteriophages, sewage water samples were collected from  
68 multiple sites in sterile pre-labeled bottles. Sampling sites included effluents from combined military  
69 hospital (CMH) Multan, Nishtar Hospital Multan, Children Hospital Multan and some dairy farms  
70 effluent from Multan region.

### 71 **Phage enrichment**

72 A heavy inoculum of sub cultured *Acinetobacter baumannii* was prepared from a randomly selected  
73 colony on MacConkey agar in a 10 ml tube by overnight culture. Pre-labeled glass flasks were poured

74 with 10 ml of 2x Luria-Bertani (LB) broth (Oxoid, Catalog no. 0264) followed by addition of 10 ml  
75 sterile sewage samples filtrate and 500  $\mu$ l of bacterial culture. Sewage samples were sterilized using 0.2  $\mu$ l  
76 syringe filters (Corning, Catalog no. 411224). All these flasks were incubated at 37°C for 24 hours.

77 After 24 hours, 12-13 ml suspension from each flask was transferred into pre labelled 15 ml tubes. After  
78 centrifugation of 10 minutes at 4200 RPM, the supernatant from each tube was syringe filtered. This  
79 filtrate was used for two more rounds of enrichment to increase titers of possible anti-acinetoviruses.

80 **Plaque assay**

81 After three enrichments, suspected bacteriophage containing filtrates were taken and serially diluted ten  
82 times (10<sup>-1</sup> through 10<sup>-10</sup>) in sterile saline solution in ten tubes. An early log phase bacterial inoculum was  
83 prepared by adding 300  $\mu$ l of bacterial suspension in 30 ml LB broth in a flask, followed by the  
84 incubating it for 2-4 hours at 37°C. After that, a mixture of bacterial isolate, bacteriophage dilution and  
85 soft LB agar (normal solid media contain 1.5% agar) was prepared by adding 0.6% agar in LB broth. For  
86 this purpose, 100  $\mu$ l of early log phase inoculum was added into 20 ml glass tube followed by the addition  
87 of 10 $\mu$ l of each of the ten phage dilutions. Then 20 ml of soft LB agar was added. All these tubes were  
88 incubated at 37°C for 20 minutes for adsorption to take place.

89 After that about 8 ml of the mixture from each tube was poured on pre labeled LB agar plates and  
90 incubated at 37°C for 24 hours or until appearance of plaques on phage positive plates. Plaques were  
91 observed and virus titer was calculated by counting plaques on 10<sup>-7</sup> plate (Fig 1).

92 **Acinetobacter Clearance Assay**

93 A 0.5 McFarland inoculum of *Acinetobacter baumannii* was prepared in 10 ml tube. Three circles of one-  
94 inch diameter each were drawn on a pre-sterilized lab bench surface (Fig 2) and labeled as “phenol”,  
95 “phage” and “saline”. Then 2ml of bacterial inoculum was poured in each circle. After 20-25 min, 250  $\mu$ l  
96 of 90% phenol, normal saline, and bacteriophage suspension was added on respective inoculated circles.  
97 Phage was added at 10 MOI (multiplicity of infection: ratio between no. of infectious phage particles and

98 no. of host bacterial cells). Same procedure was adopted for two more surfaces; top of the incubator and  
99 office table.

100 After overnight exposure of inoculated circles with phenol (positive control), saline (negative control) and  
101 phage, any remaining bacteria were collected with a moistened sterile swab by rolling it over each circle  
102 thoroughly. Then cotton part of swab was aseptically cut into 10ml sterile saline and vortexed to collect  
103 bacteria in the saline. Subsequently, 1  $\mu$ l calibrated loop (SPL Life Sciences, Catalog no. 90001) was  
104 dipped into the saline containing inoculum from circles and LB agar plates were semi-quantitatively  
105 streaked. Colonies from phenol exposed, saline exposed and phage exposed circles were counted to  
106 determine the bactericidal effects of phage (Table 1).

## 107 **Results and Discussion**

### 108 **Phage Isolation and Titer**

109 We collected some 50 sewage samples from various sites and one sample from Children Hospital Multan  
110 yielded bacteriophage. For purification of single phage, a single well isolated plaque was picked from the  
111 plate and subjected to enrichment. After every round of enrichment isolated plaque was collected and  
112 process was repeated three time in order to get a pure single type of phage (Fig 1). Titer was measured in  
113 terms of plaque forming units per milliliter (PFU/ml). There are many ways of measuring virus  
114 concentration in a sample. Some of them are based on measuring quantity of physical particles based on  
115 viral proteins or antibodies (Such as ELISA and Western blotting). Others measure concentration of virus  
116 nucleic acid by qPCR methods. Many particles in a given sample may be incapable of causing productive  
117 infection. Most reliable approach, therefore, is measurement of infectious particles because methods  
118 based on physical measurements are not always linearly correlated to infectivity [10]. Therefore, PFU/ml  
119 gives us infectious titer and hence approximates number of “physically fit” particles. Plates containing 10<sup>-7</sup>  
120 dilution of phage were used to count plaques as it had isolated and hence countable plaques (Fig 1C).  
121 All work was done in triplicate and averages were calculated. PFU/ml were extrapolated from the plaque  
122 count to be  $2 \times 10^{12}$ .

123 **Fig 1:** Virus plaques are visible on the lawn of XDR *Acinetobacter baumannii* strain. Ten plates were prepared but lysis became  
124 observable from  $10^{-5}$  dilution and plaques became countable on plate containing  $10^{-7}$  phage dilution. For reference, plate  
125 containing  $10^{-5}$  to  $10^{-10}$  dilutions are shown. Note decreasing plaque number from A through F.

## 126 **Use of Phage as Bactericidal Agent**

127 Hospital acquired infections are increasingly becoming a great challenge due to drug resistance and  
128 augmented virulence. Several hospital strains hide themselves on solid surfaces such as work benches of  
129 hospital staff, side tables of patient beds, and medical instruments such as ventilators [1,4]. Fortunately,  
130 more and more health establishments are implementing infection control regimes in their hospitals. Most,  
131 however, use phenolics to decontaminate environment due to their low cost, ready availability and great  
132 microbial potential. But it is not an agent of choice when it comes to its undesired effects. Many  
133 studies have shown it to be toxic to animals and humans and especially infants [7]. Its unfriendliness to  
134 environment and patients precludes its use in disinfection of medical devices.

135 In this backdrop, we set out to determine potential of our acinetophage isolate in clearing clinically  
136 relevant XDR *Acinetobacter* strain from solid surfaces. For our experiment, we decided to mimic  
137 conditions that are common to hospital inhabiting pathogens (Fig 2). We inoculated different solid  
138 surfaces with XDR *Acinetobacter baumannii* strain in known quantities and applied our phage on those  
139 surfaces to determine its clearing potential. We infected our bacterial inoculums at 10 MOI because  
140 calculations based on Poisson distribution model predict that at 10 MOI almost all bacterial cells receive  
141 at least one virus particle. Same volumes of 90% phenol and normal saline were used to serve as positive  
142 and negative controls respectively. Purpose was to observe effectiveness of phage as compared to phenol  
143 which is an established bactericidal.

144 **Fig 2: A:** Representative illustration of the circled solid surfaces where XDR *Acinetobacter baumannii* strain was inoculated.  
145 Three different surfaces were selected and inoculated as explained in the text and table 1. **B:** Representative plates showing  
146 clearance of *Acinetobacter* from surfaces exposed with either phenol (B1, positive control) or Phage (B2). Plate streaked with  
147 saline (B3, negative control) shows much higher growth of bacteria. Note that plates B1 and B2 only have sporadic colonies  
148 which do not necessarily represent specific growth originating from the inoculated surfaces.

149 After overnight exposure to phage, phenol and saline, we collected any remaining bacteria from those  
150 surfaces and cultured on LB agar plates in quantitative manner using calibrated 1 $\mu$ l loops. Therefore,  
151 colony count represented CFU per microliter after the exposure of our bactericidal agents.

152 We observed that phenol, quite expectedly, was the most efficient antibacterial as its exposure resulted in  
153 least number of CFU from all three surfaces; 3, 5 and 2 from lab bench, incubator top and office table  
154 respectively (Table 1). Saline exposed surfaces gave much higher colony count (78, 103 and 91 CFU/µl  
155 for three surfaces in above mentioned order). Again, it was an expected observation as saline has no  
156 antimicrobial potential. Phage exposed surfaces gave 15, 13 and 11 CFU/µl which, although, was higher  
157 number when compared to phenol but is significantly smaller than in case of saline treatment (Table 1).

158 *Table 1: Colony forming units (CFU/µL) of Acinetobacter baumannii from phenol, saline and phage exposed surfaces*

| Surface          | Phenol          | Phage       | Saline            |
|------------------|-----------------|-------------|-------------------|
| Lab Bench        | 3               | 15          | 78                |
| Top of Incubator | 5               | 13          | 103               |
| Office Table     | 2               | 11          | 91                |
| <b>Avg±SD</b>    | <b>3.33±1.5</b> | <b>13±2</b> | <b>90.67±12.5</b> |

159  
160 Colonies appearing from phenol and phage exposed samples were sporadic (Fig 2: B1 and B2). They  
161 were not neatly present on the streaked area, rather, they were randomly located on the plates. It can  
162 therefore, be concluded that those colonies did not necessarily originate from inoculated surfaces and may  
163 have grown from accidental trapping of bacteria from incubator environment. Why, then, we did not see  
164 similar number of nonspecific colonies in both phage and phenol exposed inoculums? This apparent  
165 anomaly can be explained on the basis of broad-spectrum effect of phenol but not phage. As swabs were  
166 used to collect bacteria from inoculated surfaces (as explained in materials and methods), they could have  
167 also carried traces of phenol and phages along with bacteria. When these were subsequently cultured on  
168 LB plates, phenol and phages (albeit, in small quantities) would have entered in the plates. Any bacteria  
169 entering from incubator environment would have been killed by broad-spectrum effect of phenol but not  
170 by a narrow-spectrum phage; resulting in more colonies in latter case.

171 **Conclusion**

172 This experimental assay provides a proof of concept that phages can be used as infection control agents in  
173 hospitals. In contrast to phenolics, they have the advantage of being environment friendly, very specific to  
174 their bacterial host and completely safe for humans. Their safety is such that they are being investigated  
175 systematically for use as human therapeutics worldwide [11,12]. However, their extreme specificity also  
176 affords certain limitations. Unlike broad spectrum chemical agents, one type of phage can usually target  
177 one bacterial species. Effective broad range phage based bactericidals, therefore, must contain more than  
178 one type of phage. Such phage cocktails can be used to kill a spectrum of hospital inhabiting pathogens  
179 while being environment, healthcare worker and patient friendly. An effective phage cocktail must  
180 contain phages against pathogens implicated in causing hospital acquired infections (e.g. *Acinetobacter*  
181 *baumannii*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae* etc.) [5].

182 **Competing Interests:** None to declare

183

184

185

186

187 **References**

- 188 1. Mehta Y, Gupta A, Todi S, Myatra S, Samaddar DP, Patil V, et al. Guidelines for prevention of  
189 hospital acquired infections. Indian J Crit Care Med Peer-Rev Off Publ Indian Soc Crit Care Med.  
190 2014;18: 149–163. doi:10.4103/0972-5229.128705
- 191 2. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic  
192 resistance. Nat Rev Microbiol. 2014;13: 42–51. doi:10.1038/nrmicro3380
- 193 3. Lee C-R, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of *Acinetobacter baumannii*:  
194 Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell  
195 Infect Microbiol. 2017;7. doi:10.3389/fcimb.2017.00055
- 196 4. Vanhems P, Barrat A, Cattuto C, Pinton J-F, Khanafer N, Régis C, et al. Estimating Potential Infection  
197 Transmission Routes in Hospital Wards Using Wearable Proximity Sensors. PLoS ONE. 2013;8.  
198 doi:10.1371/journal.pone.0073970
- 199 5. Ali II, Khan IA, Munir MK. Frequency of Multi Drug Resistant Nosocomial Pathogens in Intensive  
200 Care Units of a Tertiary Care Hospital in Karachi. Ann King Edw Med Univ. 2017;23. Available:  
201 <http://www.annalskemu.org/journal/index.php/annals/article/view/1543>
- 202 6. Doan HM, Keith L, Shennan AT. Phenol and Neonatal Jaundice. : 4.
- 203 7. pubmeddev, al CM et. Association of exposure to phenols and idiopathic male infertility. - PubMed  
204 - NCBI. [cited 31 Oct 2019]. Available: <https://www.ncbi.nlm.nih.gov/pubmed/23435201>
- 205 8. Gohar M, Ali HA, Saeed MQ. Use of lytic bacteriophages in controlling multi drug resistant  
206 *staphylococcus aureus*. J Pak Med Assoc. 2018;68: 2.
- 207 9. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage.  
208 2011;1: 66–85. doi:10.4161/bact.1.2.15845
- 209 10. Qamar Saeed M, Dufour N, Bartholmae C, Sieranska U, Knopf M, Thierry E, et al. Comparison  
210 Between Several Integrase-defective Lentiviral Vectors Reveals Increased Integration of an HIV  
211 Vector Bearing a D167H Mutant. Mol Ther Nucleic Acids. 2014;3: e213. doi:10.1038/mtna.2014.65
- 212 11. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1: 111–114.  
213 doi:10.4161/bact.1.2.14590
- 214 12. Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, et al. Efficacy and tolerability of a cocktail  
215 of bacteriophages to treat burn wounds infected by *Pseudomonas aeruginosa* (PhagoBurn): a  
216 randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19: 35–45.  
217 doi:10.1016/S1473-3099(18)30482-1

218

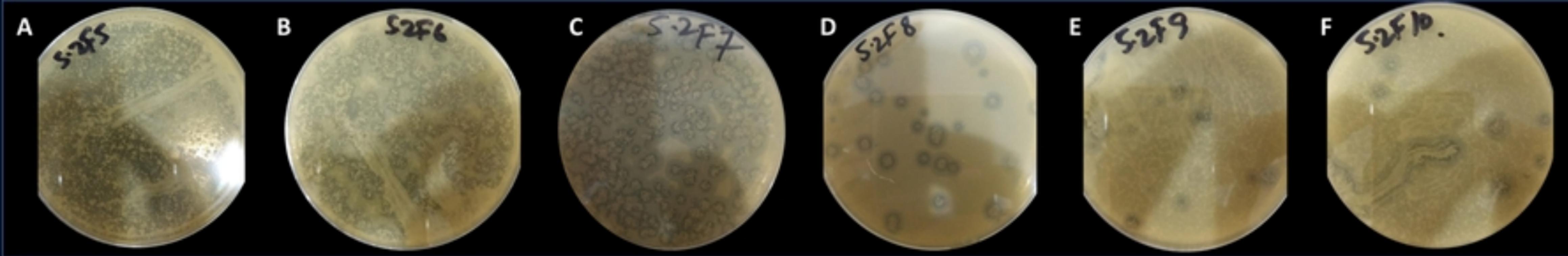



Fig1



Pheno.



Phage.



Saline.



Fig2