

1 **De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal**
2 **cells**

3
4 **Short title:** Identification of toxicants of the parasitic nematode intestine

5
6 Douglas P. Jasmer^{1*}, Bruce A. Rosa², Rahul Tyagi³, Christina A. Bulman⁴, Brenda Beerntsen⁵, Joseph F. Urban
7 Jr⁶, Judy Sakanari⁴, and Makedonka Mitreva^{2,3*†}

8 ¹Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington
9 99164, USA

10 ²Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523
11 Clayton Ave., CB 8051, St. Louis MO, 63110, USA

12 ³McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis,
13 Missouri 63108, USA

14 ⁴Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St, San Francisco,
15 California 94158, USA

16 ⁵Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211, USA.

17 ⁶U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural
18 Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet
19 Genomics and Immunology Laboratory, Beltsville, MD 20705, USA.

20

21 **Corresponding author:** [†]Correspondence and request for material should be addressed to M.M. (email:
22 mmitreva@wustl.edu). Makedonka Mitreva ORCID: 0000-0001-9572-3436

23 *Authors contributed equally to overall design and conduct of research.

24 **Emails:**

25 djasmer@wsu.edu
26 barosa@wustl.edu
27 rtyagi@wustl.edu
28 cabulman@dons.usfca.edu
29 BeerntsenB@missouri.edu
30 Joe.Urban@USDA.gov
31 Judy.Sakanari@ucsf.edu
32 mmitreva@wustl.edu

33
34 **Keywords:** Nematode, intestine, omics, drug targets, bioinformatics, systems biology

35 **Abstract**

36 Efforts to identify new drugs for therapeutic and preventive treatments against parasitic nematodes have gained
37 increasing interest with expanding pathogen omics databases and drug databases from which new anthelmintic
38 compounds might be identified. Here, a novel approach focused on integrating a pan-Nematoda multi-omics
39 data targeted to a specific nematode organ system (the intestinal tract) with evidence-based filtering and
40 chemogenomic screening was undertaken. Based on *de novo* computational target prioritization of the 3,564
41 conserved intestine genes in *A. suum*, exocytosis was identified as a high priority pathway, and predicted
42 inhibitors of exocytosis were tested using the large roundworm (*Ascaris suum* larval stages), a filarial worm
43 (*Brugia pahangi* adult and L3), a whipworm (*Trichuris muris* adult), and the non-parasitic nematode
44 *Caenorhabditis elegans*. 10 of 13 inhibitors were found to cause rapid immotility in *A. suum* L3 larvae, and five
45 inhibitors were effective against the three phylogenetically diverse parasitic nematode species, indicating
46 potential for a broad spectrum anthelmintics. Several distinct pathologic phenotypes were resolved related to
47 molting, motility, or intestinal cell and tissue damage using conventional and novel histologic methods.
48 Pathologic profiles characteristic for each inhibitor will guide future research to uncover mechanisms of the
49 anthelmintic effects and improve on drug designs. This progress firmly validates the focus on intestinal cell
50 biology as a useful resource to develop novel anthelmintic strategies.

51 **Author summary**

52 The intestinal cells of parasitic nematodes are not known to regenerate, therefore disruption of essential
53 processes that cause irreparable damage to intestinal cells is expected to promote worm expulsion. To facilitate
54 improved methods of therapy we need to better understand the basic intestinal cell and tissue functions of this
55 critical organ. To that end have undertaken a comprehensive analysis of multi-omics omics data and identify
56 and prioritize intestinal genes/pathways with essential functions and associated drugs and established a
57 foundational model of the STH intestinal system using the large roundworm *Ascaris suum* to test and validate
58 inhibitors of these functions. We found 10 inhibitors to impacted motility, and seven of those showed severe
59 pathology and an apparent irreparable damage to intestinal cells. Furthermore, five inhibitors were effective
60 against the three phylogenetically diverse parasitic nematode species, indicating potential for a broad spectrum
61 anthelmintics. Our results firmly validate the focus on intestinal cell biology as a useful resource to develop
62 novel anthelmintic strategies.

63 **Introduction**

64 Nematode Infections in humans produce substantial mortality and morbidity, especially in tropical regions of
65 Africa, Asia, and the Americas, leading to a number of important neglected tropical diseases. These pathogens
66 include, but are not limited to, the intestinal worms referred to as soil transmitted helminths (STHs; mainly
67 hookworms, ascarids, and whipworms) and filarial nematodes. STHs have high health impacts on the adult
68 population as well as children by impairing growth and cognitive development, and causing anemia. STHs (with
69 >0.5-1 billion infections for each of the three species listed) alone cause more morbidity than all parasitic
70 diseases except malaria [1]. The filarial nematodes that cause, lymphatic filariasis and river blindness together
71 affect hundreds of millions of people worldwide, particularly people living in impoverished conditions [2]. In
72 addition, immune modulation by parasitic nematodes appears to interfere with immunity and vaccination
73 against other pathogens [3-5]. Parasitic nematodes that infect livestock also reduce production of meat, milk
74 and fiber; resources that play critical roles in the health and well-being of people, particularly in those regions
75 most affected by nematode pathogens that directly impact human health.

76 As there are no vaccines, we must rely on behavior (hygienic practices), use of anthelmintics, and
77 management of vector populations to limit health impacts of these pathogens. However, rapid re-infection after
78 treatment which leads to temporary relief, the differential effectiveness of available anthelmintics and increasing
79 emergence of nematode resistance against them [6] necessitate development of new therapeutics with possibly
80 novel modes of action, broader parasite specificity and less susceptibility to the development of resistance.

81 The intestinal tract of parasitic nematodes is a high-priority drug target because 1) cells that comprise
82 this organ system form a single polarized cell layer in direct contact with the outside host environment, 2) it
83 performs essential functions associated with nutrient digestion and acquisition, reproduction, protection against
84 environmental toxins [7, 8], and produces components implicated in interacting with the host immune system
85 [9-11], and 3) intestinal cells are not known to regenerate, therefore disruption of essential processes that
86 cause irreparable damage to intestinal cells is expected to promote worm expulsion. Many functions located at
87 this host interface present targets for novel therapies to treat and control nematode infections, such as
88 glycoproteins located on the apical intestinal membrane (AIM) that are effective targets for vaccines against
89 human/animal parasitic nematodes [12, 13]. AIM proteins also stimulate host mucosal immune responses
90 during infections [10] that may contribute to local immunity. Intestinal cells of some nematodes are also

91 hypersensitive to benzimidazole (BNZ) anthelmintics [14, 15], which cause disintegration of intestinal cells, and
92 the AIM is also a primary target for pore-forming crystal toxins produced by *Bacillus* spp. [16], which are
93 effective against human/animal parasitic nematodes [17]. In each case, characteristics unique to intestinal cells
94 appear to account for the anthelmintic effects related to these immunization, drug, and protein-toxin treatments.

95 To better understand the basic intestinal cell and tissue functions of this critical organ in parasitic
96 nematodes and facilitate improved methods of therapy, we have established a foundational model of the STH
97 intestinal system using *Ascaris suum*. With this model, we have identified 1) genes, proteins and predicted
98 functions characterizing 10 different adult *A. suum* tissues (including the intestine) using microarrays [18] and
99 RNA-seq [19], 2) transcripts, proteins and functions that are preferentially or constitutively expressed among
100 three contiguous regions of the intestine [20], and 3) intestinal proteins that differentially localize to several
101 intestinal cellular compartments by LC-MS/MS [21, 22]. This information was integrated with pan-Nematoda
102 intestinal protein family databases [23] developed for the purpose of broad application of intestinal research to
103 many different nematode pathogens. One intended use of these resources has been to predict intestinal cell
104 targets and identify corresponding inhibitors for advancing anthelmintic research, the first test of which is
105 reported here. We intersect results of interest from these multi-omics databases and demonstrate that using
106 advanced computational, functional genomic and experimental screens, we can enable systematic and
107 comprehensive identification of therapeutic targets and associated small molecule inhibitors on STHs (*A. suum*
108 and *Trichuris muris*), the filarial nematode *Brugia pahangi*, and the non-parasitic nematode *C. elegans*. This
109 long-term effort culminated in the identification of inhibitors and successful demonstration of activity against
110 nematodes from across the phylum. Pathologic effects induced in intestinal cells and tissue illustrate an array
111 of detrimental effects, including apparent irreparable damage, that is caused by several repurposed drugs and
112 other inhibitors. Thus, this omics-based approach and focus on intestinal cells and tissue of parasitic
113 nematodes provides a unique and powerful approach with application to identify new anthelmintic candidates,
114 while also opening multiple avenues of future research on understanding global cellular responses of
115 pathogens to treatment at a multi-omics level and basic nematode biology.

116

117

118

119 **Results**

120 **A comprehensive multi-omics approach to prioritize targets**

121 We have developed a knowledge-driven scoring system for prioritizing nematode intestinal drug target
122 candidates (**Fig. 1A, Fig. 1B**) using the wide range of high-quality genomic, transcriptomic and proteomic data
123 generated from previous studies [19, 21, 23] (and several available annotation programs [24-27]), in the context
124 of phylogenetic relationships, to assure broad control potential. The prioritization (**Fig. 1A**) was applied on the
125 3,564 *A. suum* genes belonging to Conserved Intestinal Families (cIntFams; conserved expression in *A. suum*,
126 *H. contortus* and *T. suis* [23]), and performed scoring based on orthology, intestinal proteomic evidence [21],
127 high intestinal gene expression (spanning the core species [19, 23, 28], functional annotations including KEGG
128 annotations [29] and RNAi phenotypes in *C. elegans* [30-33], and having many predicted protein-protein
129 interactions [27] (see Methods for additional details). In our preliminary prioritization scheme (**Fig. 1A**), the
130 maximum **gene prioritization score** is 11, and the top-scoring gene (score 10.76) was 2,3-
131 bisphosphoglycerate-independent phosphoglycerate mutase (iPGM, GS_11702). iPGM has previously been
132 identified as a promising macro-filarial drug target for adult filarial worms because it is present, conserved and
133 essential in nematode parasites (and their endosymbiont *Wolbachia* when present) but is absent in humans
134 [34, 35]. Recently, a series of cyclic peptides and analogs exhibiting potent and isozyme-selective inhibition
135 against iPGM orthologs have been developed (“ipglycermides” [36]). The top 50 overall genes and their
136 properties are shown in **S2 Table**.

137

138 **13 inhibitors are prioritized based on the target prioritization**

139 The overall approach to identify small molecule inhibitors with anthelmintic potential is depicted in **Fig.**
140 1. Briefly, *A. suum* intestinal genes were first prioritized as potentially good inhibitor targets based on their
141 biological properties (see Methods), and based on these results, enriched target KEGG pathways were
142 identified and prioritized. Specifically, “exocytosis/synaptic vesicle cycle pathway was identified as the most
143 significantly enriched. Independently, inhibitors were matched to *A. suum* genes based on homologous targets
144 in the ChEMBL database and scored according to their known properties. The scores from all 3 of these broad
145 approaches were combined to compute a final inhibitor score and to generate a short list of the 25 best-scored
146 inhibitors, expected to target exocytosis related functions. The top 25 inhibitors and their respective scores are

147 shown in **S1 Table**, and included Albendazole (a widely used broad spectrum anthelmintic [37]) as the 16th
148 ranked candidate, which supports confidence in the prioritization approach. Based on availability and cost, a
149 subset of 13 inhibitors was selected for experimental screening using a phenotypic motility assay and parasitic
150 stages of three nematode species spanning the phylum Nematoda. The top 50 gene targets and their detailed
151 scoring criteria are provided in **S2 Table**, all enriched pathways are provided in **S3 Table**, and detailed scoring
152 for all scored exocytosis genes are provided in **S4 Table**.

153

154 **Fig. 1** Overview of computational prioritization process. **(A)** Scoring scheme for prioritizing intestinal *A. suum*
155 genes for inhibitor targeting. **(B)** The overall computational target / inhibitor prioritization scheme used to
156 prioritize inhibitors for experimental validation, divided into the broader steps of (i) gene prioritization score
157 calculation, (ii) pathway enrichment testing, (iii) inhibitor prioritization score calculation and (iv) final inhibitor
158 selection. The final 13 inhibitors included 9 computationally prioritized inhibitors and 4 inhibitors manually
159 selected because they are known to target the exocytosis pathway.

160

161 **Prioritized inhibitors are effective against *A. suum* lung larval stages**

162 Several considerations went into the design of experiments to test inhibitors identified from the screening
163 strategy described above. First to provide for a more inclusive screen, primary assays were done using a
164 relatively high concentration (1 mM) for all inhibitors tested, with the exception of Staurosporine for which a
165 lower starting point (100 µM) was justified by previous findings [38]. Our assessment of movement considered
166 no movement or normal movement by comparisons to controls. We noted slow movement but found these data
167 unnecessary for reaching conclusions on motility assays. Second, although identified with a focus on inhibitors
168 of exocytosis in intestinal cells, inhibitors of this process are likely to impact other cells and other cellular
169 pathways. Therefore, an exclusive impact on inhibition of secretion in intestinal cells is not expected from
170 experiments conducted here. Third, morphologic phenotypes induced by inhibitor treatments are expected to
171 facilitate future identification of anthelmintic targets and dissect underlying mechanisms of potency. Thus, effort
172 was devoted to clarifying whole worm, tissue and cellular phenotypes presented by the experimental system.

173

174 Effects on motility and molting of *A. suum* L3 identified 10 hits

175 The 13 inhibitors (**S1 Fig**, **Fig. 2**) were tested for effects on motility of 8-day old L3 *A. suum* obtained from
176 rabbit lungs (**Fig. 3**). The observed motility inhibition patterns over the period of 5 days could be categorized
177 into four groups: A) relatively rapid acting inhibitors that showed motility inhibition of 70-100% of the worms by
178 24 hours after treatment (**1**, Leflunomide; **2**, Staurosporine; **3**, Ruxolitinib); B) inhibitors causing motility
179 inhibition of 100% of the L3 after 5 days of treatment (**4**, Combretastatin; **5**, Alvocidib; **6**, Sunitinib and **7**, CID
180 1067700); C) inhibitors causing motility inhibition in over 70% of the worms but never up to 100% by day 5 (**8**,
181 Taltobulin; **9**, Camptothecin and **10**, Tofacitinib); and D) relatively ineffective inhibitors with greater than 70%
182 of the worms motile (**11**, Podofilox; **12**, KW-2449 and **13**, Fasudil) within the time frame tested.

183 All 13 inhibitors tested in this primary screen inhibit molting, in that no molting (shed cuticles) was
184 observed in any wells of the treated larvae during the 5-day course of treatments (**S2 Fig.**), whereas shed
185 cuticles occur in wells of control larvae by day 3 in culture (mean 88%, triplicate wells).

186 The primary phenotypic screens show that each of the 13 inhibitors have some impact on *A. suum*
187 L3, at minimum on molting, with at least 10 that inhibit motility of >70% of worms at day 4 in culture, and hence
188 are considered hits. The 10 hits in L3 were thus tested on *A. suum* L4.

189

190

191 **Fig. 2:** Summary of motility inhibition and observed phenotypes for the 13 tested Inhibitors in four species.

192

193 **Fig. 3** Motility inhibition of inhibitor-treated L3 and L4 *A. suum* larvae (1 mM, except for Staurosporine at 100
194 μ M). (**A**) Inhibitors with rapid and complete efficacy in both L3 and L4 (**B**) Inhibitors with slower but complete
195 efficacy in both L3 and L4. (**C**) Inhibitors with moderate efficacy in L3 and low efficacy in L4. (**D**) Inhibitors with
196 low efficacy in L3 (not tested in L4). (**E**) Controls corresponding to L3 and L4 experiments. Green dashed lines
197 indicate the threshold for inhibitors considered in further testing ($\leq 30\%$ motility inhibition, after 4 days). Error
198 bars represent standard error. *Samples corresponding to Control 1 L3, which had some moderate motility
199 reduction (~25%) compared to other controls. (**F**) IC_{50} determination for motility inhibition after 2, 4, and 5 days
200 of inhibitor exposure in *Ascaris suum*. *only includes concentrations of 125, 250, and 500 μ M for L4. **Significant
201 lack of curve fit observed (see **S3 Fig.** for an example of lack of fit).

202

203

204 Similar effects on motility are observed for *A. suum* L4

205 *A. suum* L4 experiments focus on the 10 hit inhibitors for L3. The effects on L4s are similar to L3s for 7 inhibitors

206 (**Fig. 3A and 2B**), with inhibitors **1-3** inhibiting motility rapidly to the highest levels, inhibitors **4-7** having less

207 rapid effects, while **8-10** had lower effects on L4 motility which was below the 70% inhibition by day 4 (**Fig. 3C**).

208 Overall 7 of the 10 inhibitors that are effective on L3 also effectively inhibit L4 motility.

209

210 IC₅₀ determinations on *A. suum* L3 and L4

211 IC₅₀ values were determined in motility assays using *A. suum* L3 and L4, although see results below on

212 morphological phenotypes, are more potent on the L3 compared to the L4 on Day 5 of the assays (**Fig. 3F**, see

213 **S3A Fig.** and methods for details). Inhibitor **2** is the most potent of the 10 inhibitors with IC₅₀s of less than 1.55

214 μM after only two days for both L3 and L4, followed by inhibitor **3** with IC₅₀s of 94 μM and 32 μM after two days

215 for L3 and L4, respectively), although other inhibitors are comparatively effective after 4 or 5 days (including

216 inhibitor **4**, with IC₅₀ of 3.1 μM after 5 days).

217 Because inhibition of molting reflects a biological process that may have application to targeting by
218 anthelmintics, we also assessed concentrations of inhibitors at which L3 cuticles are first observed in the
219 dilution series. Shed cuticles first occurred at 62.5 μM and below (**1** and **10**), or only at 31.3 μM (**7** and **9**), and
220 no shed cuticles occurred in wells for the remaining 6 inhibitors at any concentration tested. The results indicate
221 that the molting process is quite sensitive to the inhibitors investigated, and apparently as sensitive as, or more
222 sensitive than, overall motility.

223

224 **A variety of morphological phenotypes are induced by inhibitor treatments**

225 In many cases, the morphology of immotile worms resulting from inhibitor treatments is either straight or slightly
226 curved as shown in low power, end point (5 days, but achieved earlier in association with lack of immotility)
227 images for *A. suum* L3 (**Fig. 4A**), and representative phenotypes for **2-5**, **7** and **9**. However, some remarkable
228 caveats and exceptions are documented below for **1**, **6**, **9** and **10**.

229

230 **Fig. 4** Observed phenotypes among tested inhibitors in *A. suum* L3 larvae. **(A)** Non-motile - Alvocidib,
231 Ruxolitinib, Staurosporine, CID 1067700, Taltobulin, Combretastatin. **(B)** Larvae ensheathed deformed (LED);
232 showing detached cuticle and deformed anterior and posterior ends of the larvae induced by Sunitinib treatment
233 (also, replicated with Tofacitinib, Camptothecin, Leflunomide, Staurosporine). **(C)** Somatic vacuoles (white
234 arrow). **(D)** Coiling (Leflunomide). **(E)** The proportion of larvae with the coiled phenotype over time. Controls
235 were all zero values. **(F)** Motility comparison after 90 minutes of larvae exposure to Leflunomide. For E and F,
236 asterisks represent the results of two-tailed T tests with unequal variance (* P < 0.05, ** P < 0.01, *** P < 0.001,
237 *** P < 0.0001).

238

239 Although molting of *A. suum* L3 was inhibited by all 13 inhibitors in the primary screen, an unexpected
240 morphology occurs with 2 inhibitors (**6** and **10**). The morphology involves partial or complete apolysis without
241 ecdysis resulting in larvae ensheathed in the L3 cuticle, and there was obvious deformation of the anterior and
242 posterior ends of worms, leading to the LED phenotype (“larvae ensheathed with deformation”; **Fig. 4B**). We
243 interpret this morphology to reflect an abortive molting process from L3 to L4, making it unclear if the effects
244 are on L3, L4, both, or a transition phase between the two. These effects differ from those of the other inhibitors
245 tested that prevent molting from proceeding this far. Hence, the different effects suggest that different inhibitors
246 inhibit L3 at different steps in the process of molting to L4. The unusual LED phenotype that Sunitinib (**6**) and
247 Tofacitinib (**10**) induce includes outright degenerative effects, suggesting activation of degenerative cellular
248 responses that may have value for targeting in anthelmintic strategies.

249 Inhibitor **5** uniquely induces somatic vacuoles visible within what normally constitutes the
250 pseudocoelomic cavity in L3 and L4 (**Fig. 4C**), and these are obvious by 3 days post-treatment. Additional
251 information on this phenotype is provided below.

252 Inhibitor **1** induces another whole worm phenotypic effect. **1** routinely induces a coiled (spiral)
253 morphology in *A. suum* L3 and L4, which also ensues when these larvae were exposed to the neurotoxic
254 anthelmintic levamisole (**Fig. 4D**). However, compared to levamisole, which induces coiling in the population
255 after only 10 minutes, **1** took more than two hours to cause coiling in more than half of the larvae (**Fig. 4E**),
256 although motility is inhibited by almost 80% after only 90 minutes of exposure (**Fig. 4F**). While levamisole
257 treated worms show some recovery after 24 hours, **1** had a longer lasting effect with over 90% of larvae being

258 coiled at 24 hours (**Fig. 4G**). This overall similarity in morphology as induced by levamisole coupled with very
259 rapid immotility suggests that **1** can be neurotoxic in nematodes, a possibility that has not been previously
260 documented for this inhibitor. Nevertheless, **1** also causes extensive cellular and tissue damage, described
261 below, and the final end point morphology with this inhibitor becomes straight to curved, as in **Fig. 4A**, with
262 further time in culture. This second phenotype probably indicates toxicity that extends beyond neurotoxic effects
263 causing the coiled phenotype, which is supported in subsequent experiments described below.

264 Thus, a variety of phenotypes were documented by gross microscopic assessment that can differentially
265 be attributed to individual inhibitors or subsets of inhibitors tested.

266

267 Larvae ensheathed with deformation (LED) phenotype in *Ascaris suum* L3

268 The extensive pathology in association with LED led us to further investigate this phenotype. Both, **6** and **10**
269 are known kinase inhibitors [39, 40] (**S5 Table**), which raises the possibility that inhibition of kinase activity is
270 responsible for inducing LED. However, **2** is a more general kinase inhibitor, but does not noticeably induce
271 LED within constraints of the primary assay. **2** inhibits motility within 24 hours at high concentrations and
272 prevents progression into molting at all concentrations tested. Thus, when presented to L3 at time 0, **2** may act
273 at an earlier step in molting that prevents acquisition of the phenotype induced by the other two kinase inhibitors
274 and masks its ability to induce LED. We tested this hypothesis by adding **2** to L3 after two days in culture and
275 near the time when normal molting occurs. Motility and LED were both assessed on day 5 post-treatment. In
276 this case, the LED phenotype did occur, although some larvae underwent molting, which may reflect variability
277 in the precise developmental position at the time of treatment (not fully synchronized populations; **Fig. 5**). The
278 results indicate that if presented just prior to molting **2** can produce LED, which may indicate that kinase
279 inhibition contributes to causing this phenotype.

280

281 **Fig. 5** Larvae ensheathed with deformation (LED) responses to varying Staurosporine timing and Sunitinib
282 concentrations. (**A**) The observed phenotypes are quantified after 1 μ L of 25 μ M Staurosporine was delivered
283 to *A. suum* L3 (from 8-day rabbit infections) at time 0 (Day 0) and after 2 days in culture (Day 2), compared to
284 control larvae. P values indicate the results of a two-tailed T-test with unequal variance, compared to control.
285 (**B**) *A. suum* treated at Day 2 demonstrate the non-motile and LED phenotypes, 5 days following treatment.

286 The second panel is magnified to highlight the anterior and posterior damage to the worm. **(C)** *A. suum* treated
287 at Day 0 are immotile and do not have a visible LED phenotype 5 days after treatment. **(D)** Untreated controls
288 are motile and have molted to L4. **(E)** Increasing concentrations of Sunitinib (applied to Day 0 L3 larvae for 5
289 days) result in a lower occurrence of the LED phenotype. A one-way analysis of variance (ANOVA) indicated
290 significant variation among conditions ($P = 1.7 \times 10^{-5}$). Samples grouped significantly into groups a and b (as
291 indicated) according to Tukey HSD *post-hoc* test.

292

293 IC₅₀ experimental results provided additional insight on the LED phenotype. First, the percentage of
294 larvae that display the LED phenotype increases with decreasing concentrations of **6** over the range used in
295 these experiments (~30% for 1000 μ M, ~40% for 500 μ M and 250 μ M, and ~80% for 125, 62.5 and 31.3 μ M;
296 **Fig. 5E**), but molting did not proceed to completion at any concentration used. As with **2**, these results suggest
297 that higher concentrations of **6** inhibit entry, or a very early step, into the molt and prevents acquisition of the
298 LED phenotype. Thus, while lower concentrations of **6** permit increased entry into the molting process, inhibition
299 of a subsequent step(s) appears to lead to the LED phenotype.

300 A second observation was that rapid inhibition of motility by day 1 post-treatment with **1** is not observed
301 below 250 μ M, whereas at 125 μ M, the motility curve (**S3B Fig.**) resembles curves observed with **6** and **10**
302 (**Fig. 3B and C**) in that inhibition of motility is delayed and then ensues fairly steeply after 3, or 2 days,
303 respectively in culture. The LED phenotype only occurs at this concentration of **1** in the dilution series, and
304 below 125 μ M most L3 remain motile and undergo molting. In addition to DHODH inhibitor effects (**Table 3**), **1**
305 is known to inhibit kinase activity [41]. Thus, the dilution series resolved an additional phenotype that **1** induces
306 and may reflect different levels of inhibition on a single target, or differential sensitivities of multiple targets at
307 different concentrations of **1** in *A. suum* larvae.

308 Third and last, L3 treated with **9** displayed the LED phenotype at concentrations beginning at 500 μ M.
309 Although **9** is a topoisomerase I inhibitor it can also indirectly inhibit kinase activity [42]. In total 5 inhibitors (**1**,
310 **2**, **6**, **9**, **10**) induce the unusual LED phenotype.

311 *A. suum* L4 do not progress to L5 in the culture system used here. Consequently, there is no evidence
312 of the LED phenotype in L4s at any concentration of the top 10 inhibitors tested. From a morphologic
313 perspective, the analysis is complicated by the fact that less than 100% of L3 molt to L4 (mean 88%, triplicate

314 wells), and hence the remaining L3 which do not undergo molting might still be able to acquire the phenotype,
315 if induced. Indeed, a phenotype resembling LED sporadically occurs in experiments involving L4 larvae. We
316 attribute this low-level occurrence of the phenotype to the presence of unmolted L3.

317

318 **Inhibitor effects are observed in phylogenetically diverse nematode species**

319 *A. suum* is a clade III representative of the Nematoda[43]. The 10 inhibitors that are hits in *A. suum* L3 and L4
320 (hit defined as having motility inhibition of at least 70% by day 4; **Fig. 3**) were next tested *in vitro* with adult *B.*
321 *pahangi* (another clade III representative) and adult *T. muris* (a clade I representative) (**Fig. 6**). Single dose
322 preliminary screens were carried out at 100 μ M for all except **2** (25 μ M). Using the same motility cut-off of at
323 least 70% inhibition but over 6-day exposure (due to 10-fold lower concentration used compared to the primary
324 *A. suum* screen), 6 inhibitors are hits in *B. pahangi* (**2, 3, 5-8**), although response to **3** is variable between days
325 5 and 6. Interestingly, 5 of these inhibitors (**2, 3, 5, 6** and **7**) are also effective in inhibiting motility of adult *T.*
326 *muris*. Thus, each of these 5 inhibitors (**2, 3, 5, 6** and **7**) are hits with all 3 parasitic nematode species
327 representing nematode clades I and III, whereas **8** is a hit for *A. suum* and *B. pahangi*, but not *T. muris*, leaving
328 4 additional inhibitors as hits (**1, 4, 9**, and **10**) only for *A. suum* larvae.

329

330 **Fig. 6** Motility responses of inhibitor treated *B. pahangi* and *T. muris* (100 μ M, except for Staurosporine at 25
331 μ M).

332

333 Four of the top 10 inhibitors that were tested with *A. suum* L3 (**2, 6, 9** and **10**) were tested with *B.*
334 *pahangi* L3. As all 4 of these inhibitors interfered with motility and molting at some concentration, they were
335 selected primarily on the basis of their ability to induce the LED phenotype in *A. suum* L3. **2** at 25 μ M inhibits
336 motility by 73% within 24 hours following addition of the drug and inhibits larval motility by 100% on day 7, the
337 day before most control larvae begin to molt. Thus, **2** apparently kills the L3 before they can molt. Sunitinib (**6**)
338 at 8 μ M, on the other hand, inhibits larval motility by 44% but completely inhibits larval molting on day 8
339 suggesting that even when larvae are actively moving, they are unable to continue through the molting process.
340 Consequently, both **2** and **6** had similar effects on *A. suum* L3, i.e. these drugs inhibit both motility and molting.
341 Interestingly, **9**, a topoisomerase 1 inhibitor, does not appear to inhibit motility throughout the course of the 12-

342 day assay but it does inhibit molting by 79% with 62.5 μ M by Day 12. **10**, which is a JAK1 and JAK3 inhibitor,
343 does not appear to have a significant effect on larval motility nor molting even at a higher concentration of 125
344 μ M. By contrast to *A. suum*, none of the inhibitors cause a phenotype resembling LED in *B. pahangi* L3. There
345 was an occasional lesion evident emanating from the body of L3 treated with **6**, by comparison to controls (**S4**
346 **Fig.**). Nevertheless, *B. pahangi* L3 that fail to molt, even in untreated cultures occasionally exhibit a phenotype
347 resembling LED (**S4 Fig.**), and a related phenotype has been more commonly observed in cultures of *B. pahangi*
348 lacking exogenous ascorbic acid (vitamin C). Thus, while LED is potentially inducible in *B. pahangi*
349 L3 the conditions required to initiate it may differ among nematode species.

350 *C. elegans* is a clade V nematode representative and as a well-developed model nematode offers
351 potential to investigate mechanisms and cellular targets by which inhibitors confer toxicity. Each of the original
352 13 inhibitors were also tested in motility assays with *C. elegans* initiated with 1 day or 2 days old larval stages
353 (**S5 Fig.**). Of the 13 inhibitors tested, three (**1, 2, 6**) inhibit motility of over 70% for both 1 day and 2 days old
354 larvae by 2 days of treatment. Several other inhibitors cause moderate levels of inhibition (20% to 70%) for 1
355 day and/or 2 days old larvae (**3, 4, 7-9**), while several have minimal (<20%) to no effects on either (**5, 10, 12,**
356 **13**). Thus, inhibitors **2** and **6** have activity based on our definition of 'hit' in each of the 4 species tested, while
357 **1** is a hit for both *C. elegans* and *A. suum*. Next the ability of inhibitor **1** to very rapidly inhibit motility in *C.*
358 *elegans* larvae was tested in 30 minute assays, and it was found to do so (**S5B Fig.**). In this case, larvae do
359 not present with a coiled phenotype as in *A. suum*. Regarding the LED phenotype and in contrast to *A. suum*,
360 **6** does not appear to cause this phenotype in *C. elegans* in assays at 1 mM, although it does cause high level
361 immotility within 24 hours. Nevertheless, no larvae present with the LED phenotype in assays using lower
362 concentrations of **6**, or with other chemical inhibitors tested against *C. elegans*. Overall, *C. elegans* responses
363 indicate potential to aid in dissecting anthelmintic mechanisms for some, but not all of the inhibitors that
364 displayed activity against the parasitic species tested.

365

366 **Prioritized inhibitors induce an array of intestinal cell and tissue pathology**

367 To investigate the hypothesis that inhibitors identified so far are toxic to intestinal cells, we established three
368 complementary approaches that were applied to *A. suum* L3: 1) use of DIC microscopy, 2) live worm
369 bisbenzimide nuclear staining, and 3) standard histological staining of sections of treated worms. Experiments

370 were focused on *A. suum* L3 treated with each of 5 inhibitors (**1, 2, 5, 6, 7**) that were selected based on overall
371 performance in collective experiments and diversity of potential targets. Concentrations were chosen that were
372 likely to cause pathology by day 2 of treatment (25 μ M for **2**; 500 μ M for all others). Assessment for DIC and
373 bisbenzimide assays focus on the region immediately posterior to the intestino-esophageal junction to provide
374 consistency across treatments. This localization was not possible for tissue sections because the small size of
375 larvae precluded an ordered orientation in the histological preparations.

376 DIC microscopy resolved general tissue and cellular characteristics of control larvae, to the extent that
377 intestinal cells show apparent outlines of cell membranes and nuclei (**Fig. 7A**). In contrast, larvae treated with
378 **1, 2, 7** show vacuolization and otherwise disruption of intestinal cell organization (**Fig. 7B, 6C, 6F**), which is
379 relatively extreme with **7** in that no cellular organization is evident between the basal margins of the intestine
380 (**Fig. 7F**). L3 treated with **5** and **6** appear to have a more normal pattern for intestinal tissue (**Fig. 7D, 6E**),
381 although the yellow background stain of **6** interferes with resolution of effects by DIC (**Fig. 7E**).

382 Following treatment with **5** and **6** in bisbenzimide assays, L3 intestinal cell nuclei routinely show fully
383 rounded morphology and regular distribution of nuclei similar to that with control L3 (**Fig. 7J, 7K, 7G**,
384 respectively). In contrast, treatments with **1, 2** and **7** each induce altered nuclear morphology and disruption of
385 the regular distribution of intestinal cell nuclei within tissue (**Fig. 7H, 7I, 7L**) compared to control L3 (**Fig. 7G**),
386 suggesting significant histological damage to intestinal cells and tissues. Histopathologic comparisons confirm
387 this suggestion and demonstrate a loss of intestinal tissue integrity and either pyknotic or poorly stained nuclei
388 in intestinal cells of L3 from these treatments (**Fig. 7N, 7O, 7R**) by comparison to control L3 (**Fig. 7M**).

389 L3 treated with **5** and **6** also display histopathologic changes by comparison to control L3, but not the
390 gross cellular degeneration observed with the other inhibitors. With **5**, a noticeable reduction in the diameter of
391 the intestinal lumen occurs, and intestinal cells show enlargement (swelling), along with a similar change
392 involving swelling of muscle cells (**Fig. 7P**), as was independently observed in end-point morphology (**Fig. 4C**).
393 L3s treated with **6** regularly display less organized apical membranes, as indicated by altered and less defined
394 staining at the apical surface, a distended and more rounded lumen, and more compressed intestinal cells (**Fig.**
395 **7Q**), with some variable presentations of nuclei not evident in the bisbenzimide assay. Although information
396 from other tissue assays do not explain the **6**-induced alterations to the apical membrane (**Fig. 7Q**), the
397 distended lumen of **6**-treated worms may reflect less turgor pressure of intestinal cells, leading to less volume

398 and enlargement of the lumen compared to control L3. The overall presentation with **6**-treated larvae is opposite
399 to the swollen appearance of intestinal and muscle cells associated with **5**-treated larvae (**Fig. 7P**).

400 Collectively, the data support the hypothesis that the selection process can identify inhibitors that are
401 toxic to *A. suum* intestinal cells. At least 5 inhibitors selected by our model confer toxicity to intestinal cells of
402 *A. suum* L3. In addition to intestinal tissue, treatments of L3 with the inhibitors cause apparent pathology to
403 other tissues, including what appears to be frank disruption of tissue, pyknotic nuclei in lateral lines (hypodermal
404 and apparent seam cell nuclei) among other morphologic changes (**Fig. 7N-6R**), which will be more fully
405 documented elsewhere.

406

407 **Fig. 7** Microscopy of L3-stage *A. suum* treated with five of the prioritized inhibitor candidates (500 μ M, except
408 Staurosporine at 25 μ M) at day 2. (**A-F**) Differential interference contrast (DIC) microscopy, with the pharynx
409 positions indicated by yellow arrows and the intestinal phenotype for CID 1067700 indicated by blue arrows.
410 Note that Sunitinib itself fluoresces yellow. (**G-L**) Bisbenzimidole fluorescent staining indicating the nuclei and
411 nuclear morphology in treated larvae. The orientation of the pharynx is indicated in the control image with a
412 yellow arrow. Red lines indicate the boundaries of the intestine. (**M-R**) Histopathology of larval cross-sections
413 stained with eosin and hematoxylin. Red arrows point to intestinal cell nuclei, green arrows point to the intestinal
414 lumen and apical intestinal membrane, and blue arrows indicate the enlarged muscle cells resulting from
415 Alvocidib treatment. In some cases, the arrows point to apparent locations of these structures because of the
416 level of histopathologic damage. Images shown are representative of five biological replicate images taken for each
417 inhibitor (with no substantial variability among replicates for any of them).

418

419 At this point, an array of different phenotypic effects, summarized in **Fig. 2**, reflect pathologic signatures
420 that distinguish among the 13 inhibitors investigated in this research. Although the selection process was
421 guided by a bias to elements of exocytosis, potential to inhibit functions of multiple proteins was integrated into
422 the selection process, and the different signatures support that individual inhibitors impact distinct cellular
423 targets that collectively confer an array of distinct pathologic sequelae, specific to individual or subgroups of
424 inhibitors. Because many pathways either directly or peripherally converge on exocytosis, the possibility of this

425 outcome was anticipated and adds to the significance of our findings. Because of the irreparable damage these
426 inhibitors showed to the nematode intestinal cells we classified them as nematode intestinal toxicants.

427

428 **Discussion**

429 Research reported here integrates information from a multi-omic, pan-Nematoda approach focused on
430 investigating the biology of a single tissue of parasitic nematodes, the intestine, to derive cellular pathways and
431 predict targets for which existing approved drugs (or prospective inhibitors) have potential pharmacologic
432 applications. Information distilled from this approach identified exocytosis as a compelling pathway for
433 investigation of the nematode intestine. Information on existing drugs and drug targets in the ChEMBL database
434 was interleaved with parasite intestinal cell information to select inhibitors for testing. A system utilizing *A. suum*
435 lung stage larvae [44] was used for experiments and improved upon by incorporating methods that facilitate
436 demonstration of pharmacological effects on intestinal cells. In all, 13 of 13 inhibitors selected and tested (either
437 approved drugs or rationally selected inhibitors) inhibit at least one process (molting), the lowest effective
438 concentration of which varies among inhibitors. 10 inhibitors meet threshold levels of inhibition of motility for *A.*
439 *suum* larvae ($\geq 70\%$ mean inhibition by day 4 post-treatment when used at 1 mM (100 μ M, Staurosporine), and
440 5 out of 5 of these selected for further investigation cause demonstrable intestinal cell/tissue pathology in *A.*
441 *suum* L3 (at 500 μ M, except Staurosporine, 25 μ M). An overlapping subset of 5 inhibitors cause pathology in
442 context of the LED phenotype. Importantly of those tested, several of the inhibitors score as hits against the
443 adult (5 inhibitors) and L3 (3 inhibitors) of the filarial nematode *B. pahangi*, the adult whipworm *T. muris* (5
444 inhibitors), and larvae of the non-parasitic nematode *C. elegans* (one or more larval stages, 4 inhibitors). Thus,
445 several of the inhibitors identified have activity against nematode representatives from clades that span much
446 of the phylogenetic diversity of the phylum Nematoda. The predicted specificities of the inhibitors tested, the
447 nature and diversity of pathologic sequelae that they induce, and specific endpoint data from assays
448 established in this research will collectively inform ongoing research and provide methods to investigate
449 underlying mechanisms and cellular targets responsible for the anthelmintic effects observed.

450

451 **Evidence-based computational target and inhibitor prioritization**

452 The computational scoring procedure (**Fig. 2**) utilized existing genomic, transcriptomic and proteomic datasets
453 to strategically select protein targets to be matched to inhibitors, based on existing knowledge. Similar approach
454 at a smaller scale or aimed at specific processes has been successfully applied before (e.g. [38, 45]), but in
455 this case our focus was on a single tissue, highlighting this computational approach's flexibility when studying
456 specific tissues or pathogens or other systems of interest. The prioritization includes criteria to select targets
457 based on orthology (conserved across parasitic nematode species), intestinal proteomic detection (providing
458 evidence that the gene target is active and produces proteins in the worm intestine), high gene transcription
459 levels in the intestine across several nematode species (providing supporting evidence of cross-species
460 conserved intestinal function), and knowledge-based evidence of the gene's biological functions (providing
461 evidence that inhibiting the target could be lethal in the nematodes based on RNAi phenotype of orthologous
462 targets in *C. elegans*). The prioritization procedure identifies Albendazole (a widely used broad spectrum
463 anthelmintic [37]) as the 16th ranked candidate, which adds confidence for the rest of the prioritized list.
464 Although unclear that inhibitor hits identified will have practical anthelmintic applications, several interesting
465 and diverse pathologic phenotypes were induced, rendering both the actual cellular targets and the
466 mechanisms involved of interest to elucidate. Nevertheless, several inhibitors are approved drugs or in clinical
467 trials (**S5 Table**) for use in humans, which can hasten achievement of anthelmintic applications if warranted.
468 Therefore, the approach was unusually successful in producing a rich source of results from which future
469 research can be prioritized. It seems clear that both refinement and extension of the general approach has
470 applications toward further dissecting basic functions of parasitic nematodes that are essential for their survival.
471 Future bioinformatics prioritizations with different goals can utilize the database constructed for this study or
472 can be built with similar criteria for phylogenetic conservation, functional annotations, evidence of expression,
473 and favorable matched inhibitor properties.

474

475 **Link to exocytosis**

476 Despite factoring in exocytosis databases for selection of inhibitors, demonstrating inhibition of exocytosis or
477 secretion in intestinal cells has been challenging and is complicated by many technical hurdles that will require
478 research effort to overcome. This consideration notwithstanding, at least 5 selected inhibitors produce
479 detectable pathology in intestinal cells of *A. suum* L3, 3 of which (Leflunomide, Staurosporine and CID

480 1067700) caused outright cellular disintegration, nuclear anomalies and nuclear disorganization within
481 intestinal tissue. The other 2 (Alvocidib and Sunitinib) cause morphologic changes (narrow lumen and swelling
482 of cells, or distended lumen and compression of cells, respectively), but without the cellular disintegration
483 regularly observed with the first 3. Both Alvocidib and Sunitinib also induce other pathologic changes discussed
484 below. Therefore, while not demonstrating a direct link with exocytosis, our approach identified inhibitors that
485 are highly toxic to intestinal cells. This general outcome was anticipated and made the approach an attractive
486 one to investigate and potentially identify novel therapeutics despite the challenges of providing direct links to
487 exocytosis.

488

489 **Pathologic effects of the active inhibitors**

490 The array of phenotypic changes identified (summarized in **Fig. 2**) go far beyond simple inhibition of movement
491 or molting. These more specific pathologic effects represent processes that when disrupted have lethal
492 consequences for the parasite, and the range of different pathologic presentations must involve diverse targets
493 and cellular pathways. As such, the pathologic presentations provide criteria to begin to uncover the different
494 mechanisms involved. The more remarkable presentations include the LED phenotype (Sunitinib and others),
495 the very rapid immotility response (Leflunomide), and frank disintegration of intestinal cells and tissues
496 (Leflunomide, Staurosporine and CID 1067700).

497

498 LED: The LED phenotype involves the process of molting from L3 to L4, with apolysis but not ecdysis, followed
499 by deformation (gross disintegration) of larval tissue most obviously at the head and tail of the presumptive *A.*
500 *suum* L4. This unusual phenotype is distinct from one in which inhibition either prevents entry into molt or blocks
501 earlier steps prior to apolysis, which was induced by all inhibitors tested at concentrations used in the initial
502 screen. Inhibition of molting by protease-class specific inhibitors was previously reported for *A. suum* L3 [46],
503 but, with no reference to an LED-like phenotype. The tissue disintegration with LED is also distinct from well-
504 established examples in which apolysis but no ecdysis occurs, with naturally ensheathed infective L3 of the
505 Strongylid nematode pathogens, as one example, that infect humans and animals, or in *C. elegans* molting
506 mutants [47, 48]. Further, realization of the full phenotype apparently depends on progression of L3 into a
507 susceptible phase of the molting process. For instance, Sunitinib either induced frank immotility of unmolted

508 L3, or the LED pathology, while decreasing concentrations in our dilution series unexpectedly elevate the
509 occurrence of LED, and no minimal concentration was discerned in this series. Further, addition of
510 Staurosporine at day 0 of L3 culture caused rapid immotility and no LED, but when added at the interface of
511 the molting process (day 2 of L3 culture), LED became evident. Thus, toxic effects conferred prior to some
512 specific molting step apparently can prevent induction of the LED phenotype by inhibitors unless specific
513 concentration or timing requirements are met.

514 All five inhibitors (Leflunomide, Staurosporine, Sunitinib, Camptothecin and Tofacitinib) found to induce
515 LED can be linked to kinase inhibition, which may indicate involvement of kinase inhibition in inducing the
516 phenotype. Nevertheless, testing of a wider range of inhibitors with different specificities at day 2 of L3 culture
517 could be informative here. In any case, LED-inducing inhibitors have identified a distinct developmental step(s)
518 later in molting that when inhibited prevents ecdysis and activates a destructive pathologic response at the L3-
519 L4 developmental interface in *A. suum* larvae. Because of the remarkable destruction associated with this
520 phenotype, the mechanism of activation and mediators of this pathologic process are of interest to elucidate.
521 One possible lead relates to the loss of volume evident in intestinal cells of *A. suum* L3 following treatment with
522 Sunitinib, suggesting dysfunction of cellular fluid regulation. Hence, while not necessarily linked to intestinal
523 cells, the LED phenotype could stem from other cells experiencing similar toxicity. In contrast, inhibitors that
524 induce LED in *A. suum* larvae fail to do so with *B. pahangi* L3, although an LED-like phenotype occurs
525 occasionally with these larvae that fail to molt completely, even in control wells as with *A. suum*, raising the
526 possibility that the phenotype might be inducible in *B. pahangi* under yet identified permissive conditions.

527 The unexpected findings on LED coupled with the inhibition of entry into molting caused by all inhibitors
528 tested on *A. suum* has potential practical value given that larval stages of numerous nematode pathogens are
529 targets in existing control strategies, e.g. hypobiotic larvae of many strongylid nematodes (including hookworms
530 [49]), and vector transmitted L3 of filarial nematodes such as the heartworm in the vertebrate host [50], as
531 some examples. Relatedly, it may be significant that inhibitors such as Staurosporine and Sunitinib each
532 blocked molting of *B. malayi* from L3 to L4 and caused immotility of adult worms. The pathologic relationship
533 of these observations with those from *A. suum* larvae, inclusive of intestinal cell pathology (**Fig. 7**) is yet unclear
534 and our observations make this a topic of research interest.

535

536 ***Very Rapid immobility:*** In addition to inducing LED at a narrow concentration range, Leflunomide was unique
537 among inhibitors tested in very rapidly causing immobility after exposure of *A. suum* L3 and L4. Affected larvae
538 display a tightly coiled morphology in high percentage that occurs following treatment with the neurotoxic
539 anthelmintic levamisole. A related morphology sporadically occurs with other treatments and even in untreated
540 *A. suum* larvae, but not to the level induced by treatment with Leflunomide (see **Fig. 4E**). *C. elegans* larvae
541 also are very rapidly immobilized by Leflunomide, but do not display the coiled morphology, as is the case for
542 levamisole treatment of *C. elegans*. Thus, Leflunomide appears to have neurotoxic effects that have not
543 previously been reported for this drug in nematodes. Toxic effects of Leflunomide on *C. elegans* were reported
544 [51], but observations were made only after 12 hours, obviating detection of more immediate effects.
545 Leflunomide is an approved drug for treatment of rheumatoid arthritis and its principle mode of action is
546 inhibition of DHODH and mitochondria-based synthesis of pyrimidines, one of two pathways that typically
547 supply pyrimidines to cells. Reversible neuropathy has been noted following treatment with this drug in human
548 patients [52]. Nevertheless, Leflunomide can inhibit other cellular targets, including kinases [41], and it induces
549 several diverse effects in *A. suum* larvae (very rapid immobility, LED, disintegration of intestinal cells). Whether
550 the diverse effects relate to a focal point of disruption expressed differently among tissues or involve disruption
551 of diverse targets and pathways remains to be determined. What is clear is that Leflunomide causes multiple
552 phenotypes that have potential value in application to anthelmintic approaches and warrants further
553 investigation. Findings that *C. elegans* displays at least one of the phenotypes, rapid immobility, may identify a
554 direction that can be taken to investigate this effect.

555

556 ***Disintegration of intestinal cells:*** Separate from the preceding pathologic outcomes, remarkable intestinal cell
557 and tissue disruption ensues in *A. suum* L3 with treatment by 3 inhibitors (Leflunomide, Staurosporine and CID
558 1067700). For each, the normal regular cell morphology observed by DIC microscopy is disrupted, the normal
559 morphology and distribution of intestinal cell nuclei become altered as shown in bisbenzimide assays, and
560 intestinal tissue displays disintegration along with altered morphology and staining of nuclei in histopathologic
561 sections. Although evaluated with 5 of the original 13 inhibitors, not all that were tested induce this pathologic
562 profile (e.g. Alvocidib and Sunitinib) under the experimental conditions used. Even though all 5 inhibit L3 molting
563 at the concentrations used, the additional pathologic presentations characteristic of each indicate specificity

564 according to the inhibitor, and hence specificity of the target(s)/pathway(s) they disrupt, and the pathologic
565 mechanism(s) involved. The altered distribution of nuclei in the bisbenzimidazole assays suggests disruption of cell
566 membranes, which is supported by histopathologic results for each of the 3 inhibitors under discussion. Altered
567 shapes of nuclei observed in bisbenzimidazole assays do not address DNA content, which may be reduced, and
568 both pyknotic nuclei and poorly staining nuclei are apparent on histopathologic analysis of tissue sections.
569 Thus, while not identical, the general pictures agreed between these two complementary methods for each of
570 the 3 inhibitors, and each complementary method adds to more general information provided by DIC
571 microscopy.

572 Elements of cellular processes leading to the disruption of intestinal cells are not clear from our results,
573 only that the three different inhibitors induce similar features of pathology. CID1067700 is a reported Rab
574 GTPase inhibitor, and Rab GTPases evidently are key regulators of endocytosis, which ultimately influences
575 exocytosis in *C. elegans* intestinal cells [53, 54]. In addition to DHODH, Leflunomide can inhibit kinases
576 (PTK2B) [55] and is an agonist for aryl hydrocarbon receptor (AHR) [56], and it inhibits secretion in inflammatory
577 cells [57] by yet unresolved mechanisms. As a more general inhibitor of kinases, Staurosporine has potential
578 to inhibit a wide array of intestinal cell functions, inclusive of exocytosis and others. Thus, while inhibition of
579 exocytosis is a possible antecedent of the pathology described, there are multiple other possibilities which may
580 vary according to inhibitor. More importantly at this point, it is clear that pathological processes can be induced
581 by diverse inhibitors in intestinal cells of *A. suum* larvae, apparently reflecting irreparable damage. Again in this
582 case, the mechanisms of induction and mediators of damage are of keen interest to elucidate, as they each
583 may represent high value targets for anthelmintics. Of possible relevance here, necrotic processes can be
584 induced in intestinal cells of *C. elegans* by multiple different stimuli, and apparent protease mediators of this
585 pathology can vary according to the stimulus applied [58]. As found here, toxicity of two of the inhibitors,
586 Leflunomide [51] and Staurosporine [59], was shown for *C. elegans*, thus identifying *C. elegans* as a possible
587 resource to dissect mechanisms of intestinal pathology induced by these inhibitors in both species.

588

589 **Microtubule inhibitors**

590 Because of the pathology induced by benzimidazole anthelmintics in intestinal cells of parasitic nematodes, we
591 selected two additional inhibitors that bind beta-tubulin (Combretastatin and Taltobulin) for our experiments,

592 and Podofilox was identified by the screening process. Albendazole is an effective anthelmintic and had an IC₅₀
593 of about 3.8 mM *in vitro* motility experiments with *A. suum* L4 (isolated from swine [60]). Although not strictly
594 comparable, Combretastatin and Taltobulin each caused immotility of *A. suum* L3 at 1 mM (IC₅₀s of 3.1 and
595 2.1 μ M at day 5, respectively), while Podofilox had more modest effects on L3 motility. Combretastatin was
596 significantly more effective in inhibiting motility of *A. suum* L4 than Taltobulin (IC₅₀s 61.2 and 222.4 μ M at day
597 5, respectively). Similar to benzimidazoles, Combretastatin binds at or near the colchicine domain of beta-
598 tubulin [61], whereas Taltobulin binds at or near the vinca domain [62], together providing some diversity in
599 coverage of tubulin domains. Although both inhibitors had more modest effects on *B. pahangi*, and *T. muris*
600 adult worms, their overall performance raises interest in better clarifying relative binding affinities to beta-
601 tubulins from mammals and nematodes, effectiveness against benzimidazole resistant-parasitic nematodes,
602 and potency among analogues that exist for each of these inhibitors [63-65].

603

604 **Advances on histopathologic methods and applications**

605 Although the experimental focus here was on intestinal cells, DIC and bisbenzimide staining can rapidly provide
606 information on most, or all, organs and tissues of the whole *A. suum* L3 and L4. While histopathologic sections
607 provide obvious application to the research, we found *A. suum* L3 and L4 unexpectedly receptive to assessment
608 by DIC microscopy of unfixed specimens and live staining by bisbenzimide (Hoescht 33258), a cell permeable
609 DNA dye superior to the more commonly used DAPI for this purpose [66]. Although bisbenzimide stain may
610 present a confounding factor during treatment, concordance between results from this assay and
611 histopathology sections of non-bisbenzimide stained larvae greatly reduce this concern, and there was no
612 indication of ill-effects in control larvae treated with bisbenzimide. Otherwise this live staining method has high
613 value for monitoring many if not all nuclei among organ systems during larval development and in response to
614 experimental treatments. The real time assessment capabilities supported by DIC and bisbenzimide provide
615 important adjuncts to histopathologic analyses using fixed and sectioned material, and has potential application
616 to numerous nematode species.

617

618 In conclusion, we have established a systems biology approach that integrates omics-based and
619 chemogenomics-based predictive models to identify multiple inhibitors (prospective anthelmintics) with activity

620 against phylogenetically diverse parasitic nematodes. These were coupled with methods that delineate
621 pathologic profiles for each inhibitor that are based on multiple criteria (pathologic signatures) for application to
622 multiple lines of future experiments. The approach reflects a first culminating step of a long-range design that
623 integrates multiomics databases, evidence-based information and experimental methods focused on the
624 nematode intestinal tract, to elucidate nematode intestinal toxicants with potential application to anthelmintic
625 research. The general approach can be extended to additional cellular pathways identified in this research as
626 well as multiple other tissues of parasitic nematodes.

627

629 **ACKNOWLEDGMENETS**

630 We thank Susan Smart (WSU) for excellent technical support, and Dr. Allan Pessier (WSU) for insightful
631 discussions. The research was supported by the National Institute of General Medical Sciences Grant
632 R01GM097435 to M.M. The funders had no role in study design, data collection and analysis, decision to
633 publish, or preparation of the manuscript.

634

635 **AUTHOR CONTRIBUTIONS**

636 M.M and D.P.J. designed the study and directed the systems biology analysis. B.A.R. and R.T performed the
637 data analysis. D.P.J., C.A.B. and J.S. performed the in vitro assays. B.B. and J. F. U. provided adult stage
638 parasites and aided the in vitro assays. D.P.J., M.M., B.A.R and R.T. designed and prepared the illustrations
639 and wrote the paper. All authors read and approved the final paper.

640

641 **DECLARATION OF INTERESTS**

642 The authors have declared that no competing interests exist.

643

644 **FINANCIAL DISCLOSURE**

645 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
646 the manuscript.

647

649 **MATERIALS AND METHODS**

650 **Ethics Statement**

651 All animal experiments were carried out under protocols approved by Washington State University Institutional
652 Animal Care and Use Committee approved protocol 4097, the University of Missouri Animal Care and Use
653 Committee approved protocol 9537) and United States Department of Agriculture the Institutional Animal Care
654 and Use Committee (IACUC), approved protocol 18-029. Protocols meets requirements of AVMA Guidelines
655 for the Euthanasia of Animals: 2013 Edition; Guide for the Care and Use of Laboratory Animals: 2011 Edition,
656 National Research Council, and USA Animal Welfare Act and Animal Welfare Regulations: 2017 Edition (AWA),
657 US Department of Agriculture.
658

659 **Prioritizing intestinal genes as potential anthelmintic targets**

660 Since the most data was available for *Ascaris suum*, our intestinal gene target database was
661 constructed for scoring targets based on the complete *A. suum* gene set [67]. Data from the other two core
662 species (*Trichuris suis* and *Haemonchus contortus*) and from *C. elegans* was integrated in the dataset by
663 identification of the best predicted protein sequence match to each predicted *A. suum* protein (using BLAST,
664 $E \leq 10^{-5}$). Prioritized candidates from this *A. suum*-based scoring system can be used to identify candidates
665 across species using our comprehensive and high-quality orthologous group and intestinal expression
666 database [23].

667 The prioritization (**Fig. 2**) consisted of target scoring based on four broad criteria, each of which had
668 several individual scores assigned: A. Orthology - Only gene members belonging to Conserved Intestinal
669 Families (cIntFams [23]; *A. suum*, *H. contortus* and *T. suis*) were considered (3,564 of the 18,542 total genes
670 in *A. suum* gene set [67]). Genes are further prioritized based on orthology if they shared orthologs across all
671 10 nematode species (in order to prioritize conserved targets; score of 1 assigned if true; *T. suis*, *T. muris*, *T.*
672 *spiralis*, *A. suum*, *B. malayi*, *L. loa*, *H. contortus*, *A. ceylanicum*, *C. elegans* and *N. americanus* [23]), and if
673 they had low homology to host counterparts (in order to prioritize targets that have less of a possibility of
674 disrupting host protein functions; score of 1 assigned if true); B. Intestinal proteomic evidence - being detected
675 in a previously published *A. suum* intestinal proteomics study [21] (in any intestinal compartment, score of 1
676 assigned if true), and based on the level of detection in the intestine as quantified by spectral counts (scaled
677 up to a maximum score of 1, using [number of spectra detected / 100]); C. Intestine expression level - Intestinal

678 gene expression scores were calculated for *A. suum* (two different experiments [19, 28]), *H. contortus* and *T.*
679 *suis* [23] according to 1- (expression rank after FPKM normalization / number of expressed genes). For *A.*
680 *suum*, the average of the scores from the two datasets was used, and the scores for the other species (1 point
681 each) were aligned to the *A. suum* genes according to the best sequence match to the protein sequences
682 (BLAST, $E \leq 10^{-5}$). The maximum total expression score between the three species was 3, prioritizing genes
683 with high intestinal expression levels; D. Functional annotations - First, *A. suum* genes with a top-matched *C.*
684 *elegans* ortholog that has a severe RNAi phenotype (e.g. lethal, sterile, intestine-specific phenotype, according
685 to WormBase [30-33]) were assigned a score of 1, to prioritize targets with known desired phenotypes. Second,
686 KEGGScan [68] (using KEGG release 78 [29]) was used to assign KEGG Orthologous Groups (KOs) and these
687 were assigned to KEGG pathways for each protein; a score of 0 was assigned for proteins mapped to no
688 pathways, and proteins in pathways were scored according to $0.5 + [0.1 * [\text{Number of KEGG pathways the}$
689 $\text{protein's KO was annotated}]]$ (maximum value of 1), where more pathways were scored higher in order to
690 prioritize proteins with a high impact to cellular function if they are inhibited. Third, in order to reduce the
691 possibility that proteins serve a redundant biological function (and would therefore not have a severe
692 phenotype), proteins with unique KOs among the total protein set were scored higher according to $1 - [\# \text{ of}$
693 $\text{other genes sharing KO}/10]$, with a minimum value of zero when 10 or more other proteins in the *A. suum* gene
694 set share the function. Fourth, all protein-protein interaction data from the Worm Interactome Database [27]
695 (version 8) was matched to *A. suum* based on the best *C. elegans* sequence match (as described above).
696 Proteins with no predicted PPIs were assigned a score of 0, and other proteins received a higher score for
697 being matched to more protein-protein interactions according to $0.5 + [0.05 * [\text{Number of KEGG pathways the}$
698 $\text{protein's KO was annotated}]]$ (maximum value of 1).

699

700 **Chemogenomic screening for small molecule inhibitor prioritization**

701 Inhibitors were prioritized using available data from the ChEMBL [69] database (**Fig. 1**). ChEMBL [69] targets
702 were annotated for all *A. suum* inferred protein sequences (blastp E-value $\leq 10^{-10}$). Hereafter, the term “inhibitor”
703 will be used here to represent all prospective small molecule inhibitors based on our computational and
704 experimental process, although not all of the compounds are FDA-approved drugs, and some may potentially
705 act as activators rather than inhibitors. ChEMBL was then used to match inhibitors to the assigned targets,

706 identifying target:inhibitor pairs with a pChEMBL score ≥ 5 . The number of *A. suum* genes matched to each
707 inhibitor was used to calculate the **scaled gene count score** (# / 50, maximum value of 1), for each inhibitor
708 that had a “Quantitative Estimate of Druglikeness” (weighted QED) score [70], an **inhibitor property**
709 **prioritization score** (scaled to a maximum value of 1) was calculated by adding (i) the weighted QED scores
710 (scaled between 0 and 1) and (ii) a value of 1 if the inhibitor could be administered orally or topically.

711

712 **Pathway enrichment among prioritized intestinal genes**

713 All of the 3,564 scored *A. suum* genes were ranked according to their gene prioritization scores, and this ranked
714 list was used as input for Gene Set Enrichment Analysis (GSEA [71]) based on KEGG [72] pathways (annotated
715 per gene using KEGGScan [68]; **Fig. 1B**). This approach identified the KEGG non-metabolism and metabolism
716 pathways (**S3 Table**) that were significantly enriched among higher-scoring gene targets. This approach
717 allowed for the identification of the most biologically interesting inhibitor target pathways, independent of
718 inhibitor information (which will be addressed in the following steps). Of particular interest was the most
719 significantly enriched pathway, the exocytosis [73] / synaptic vesicle cycle pathway (ko04721, $P < 10^{-10}$), which
720 contained 37 clntFam [23] genes, many of which were high-scoring (**S4 Table**). This pathway had 5 members
721 among the 50 top-ranking genes, which included 3 ATPases (GS_07654 [#3 ranked overall], GS_12676 and
722 GS_02407), one clathrin heavy chain gene (GS_17518 [#6 ranked overall]), and one MFS transporter
723 (GS_06670). Due to the large number of high-scoring genes, the coverage of strong inhibitor target candidates
724 across the pathway, and the biological significance of this pathway in terms of parasite survival and host
725 interactions [11, 74], these genes were prioritized for downstream drug targeting.

726

727 **Final prioritization of the top enriched pathway (exocytosis)**

728 Based on the pathway enrichment analysis (**Fig. 1B**), only inhibitors matched to *A. suum* genes from the
729 exocytosis KEGG pathway were included for the final prioritization. Additionally, inhibitors with an annotation
730 of “NULL” in the ChEMBL database were also excluded since these are relatively untested and unstudied. After
731 this filtering, the **final inhibitor prioritization score** was calculated (**Fig. 1D**) by multiplying the maximum
732 matched **gene prioritization score** (to target the most biologically relevant *A. suum* genes), the **inhibitor**
733 **prioritization score** (to choose inhibitors with properties likely to result in treatment success) and the **scaled**

734 **gene count score** (to choose inhibitors which target multiple *A. suum* gene targets, for maximum potential
735 effect). The top 25 inhibitors and their respective scores are shown in **S1 Table**.

736 To expand on targeting the exocytosis function, inhibitors targeting exocytosis-associated proteins were
737 also selected for testing independent of the scoring approach. As one example, tubulin is the target of the highly
738 efficacious benzimidazole anthelmintics [75], which disrupts microtubules, a critical component in exocytosis
739 [76]. Among our highest-scoring tubulin genes was GS_01240 (score 8.7/11), that was (A) conserved across
740 nematode species; (B) identified in the *A. suum* intestine by proteomics; (C) more highly expressed in the
741 intestine than 97.3% of genes in all 3 model intestinal species; (D) predicted to have an “embryonic lethal”
742 RNAi phenotype in *C. elegans* and (E) predicted to be druggable according to its best hit PDB entry. In previous
743 research, its ortholog (ben-1) was identified as the only benzimidazole-sensitive beta-tubulin in *C. elegans* [77],
744 highlighting the value of the prioritization system in *de-novo* identification of inhibitor targets. A second beta-
745 tubulin gene (GS_23993; score 8.7) had similar properties to GS_01240. Although there are 37 predicted
746 tubulins in the *A. suum* genome, our prioritization approach identifies those that are intestine-associated.

747 From the foregoing rational, two beta-tubulin inhibitors were included that either showed toxic effects
748 against *C. elegans* (Taltobulin [78]) or is undergoing clinical trials for use in humans (Combretastatins [79]). To
749 gain additional breadth in anticipated targets, a Rab GTPase inhibitor was included, CID 1067700 [80], because
750 Rab GTPases are apparently involved in cycling of endosomal/exosomal vesicles in *C. elegans* intestinal cells
751 [53, 54]. Staurosporine was also include and is a broad specificity kinase inhibitor, and inhibitor of protein kinase
752 C/exocytosis [81, 82]. Staurosporine was previously found to have low IC₅₀ levels of potency on parasitic
753 nematodes, but without target tissues identified [38], and we wanted to determine if intestinal cells are one of
754 the targets.

755 The thirteen inhibitors prioritized by both approaches (**Fig. 1**) are listed in **Fig. 2**, and their structures
756 are provided in **S1 Fig**. The following are the suppliers used to obtain the inhibitors for performing the
757 phenotypic screens: Alvocidib (S1230), Sunitinib (S7781), Selleckchem Houston, TX; CID 1067700 (SML054),
758 Combretastatin A4 (C7744), Fasudil HCl (CDS021620), Leflunomide (L5025), Podophyllotoxin (Podofilox;
759 P4405), Tofacitinib (PZ0017), Sigma-Aldrich, St. Louis, MO; KW2449 HCl (B1208), BioVision, Milpitas, CA;
760 Ruxolitinib (tirl-rux), InvivoGen, San Diego, CA; Staurosporine (S-9300), LC Laboratories, Woburn, MA;
761 Taltobulin (HY15584), MCE Monmouth, NJ.

762

763 ***In vitro* inhibitors screening in lung stages of *A. suum***

764 All animal protocols were approved by the Washington State University Institutional Animal Care and Use
765 Committee. To produce *A. suum* lung stage larvae, adult female *A. suum* were collected from the intestines of
766 swine that were processed at the University of Idaho Meat Science Laboratory (Moscow, Idaho). Eggs were
767 stripped from the last 3 cm of *A. suum* uterus, washed in PBS then decoated using 0.25% hypochlorite until
768 decoating was observed to have occurred (usually within 4 minutes). Decoated eggs were rinsed in 50 mL
769 double distilled water 3 times, and eggs were then cultured to the infective stage at 20°C for 60 days in 0.1 M
770 H₂SO₄ [83]. Larvated eggs were then washed in 50 mL distilled water 3 times and stored at 4°C until used.

771 Third-stage larvae (L3) were obtained from lungs [84] and trachea of New Zealand white rabbits (5.5 to
772 6.5 weeks old, Western Oregon Rabbit Company, Philomath, OR) after oral infection with 2,000 to 4,000
773 larvated eggs. Intact lungs, including trachea, were dissected from euthanized rabbits at 8 days post-infection,
774 and L3 obtained by first flushing the trachea with approximately five 1 mL aliquots of warm PBS (37°C, starting
775 temperature), using a micropipettor (Gilson) and 1 mL micropipette tip. Larvae were aspirated into the pipette
776 tip and pooled. Approximately 2.5 cm of trachea were then removed from the anterior end, allowing access to
777 bronchi with the pipette tip, and PBS was lavaged into left and right lobes of the lungs. Larvae extracted with
778 each volume were visible in the pipette tip. The entire process involved lavage of 1 mL aliquots for up to a total
779 of about 25 mL. Lavage was ended when no more larvae were observed in lavage extract. L3 obtained in this
780 manner were settled by gravity and then washed in 3 sequential 50 mL volumes of warm PBS followed by 3
781 sequential 15 mL volumes, with intervening gravity sedimentation and discard of supernatant PBS. The lavage
782 method required about 1 hour to remove lungs and produce approximately 300 larvae from each rabbit,
783 although the number of larvae varied somewhat among preparations. Extracted and cleaned larvae were then
784 suspended in RPMI medium containing 10% swine serum, 100 units penicillin and 100 µg Streptomycin/mL
785 (P0781, Sigma Aldrich, St. Louis MO) and then dispensed into wells of 96-well plates (Costar, Corning Inc.,
786 Corning, NY, triplicate wells for each treatment), with a total volume of 100 µL culture medium containing 1 µL
787 of inhibitor treatment dissolved in DMSO, or 1 µL of DMSO alone in medium for control wells. L3 were then
788 cultured at 37°C for 5 days in 5% CO₂. When fewer than 5 larvae were dispensed in a well (6 times out of 369

789 wells (1.6%); all in L3 IC₅₀ experiments), this was noted and results obtained were evaluated relative to adjacent
790 time points and adjacent inhibitor concentrations. In no case were comparatively erratic outcomes observed.

791 L4 (fourth-stage larvae) were obtained by routine culture of L3s for 3 days (about 88% of L3 molted
792 between days 2 and 3 in culture (see results) without treatments and with daily replacement of media. L4 were
793 then dispensed into wells of 96-well plates for culture and experimental treatment under conditions identical to
794 those used for L3. In other reports, lung stage L3 were collected on day 7 [46] and molting occurred 1 day later
795 in culture (between days 3 and 4) than observed here. Thus, molting occurs in both systems around 10 to 11
796 days post-infection irrespective of when lung stage L3 are collected.

797 Motility of *A. suum* L3 and L4 was routinely assessed microscopically, but daily on days 1 through 5,
798 using a Nikon Diaphot 300 inverted microscope equipped with a Nikon D5100 digital camera and
799 epifluorescence capabilities. Otherwise immotile larvae that displayed an occasional twitch were considered
800 immotile. In addition, treated *A. suum* L3 were scored for presence of shed cuticles, indicating molting to L4,
801 but percentage shed was not quantified in all experiments. Other effects on morphology were noted, some of
802 which were quantified as described in results. Effects of inhibitor treatments were expressed as mean
803 percentage motile, or with a given morphology, compared to respective wells on day 0.

804 IC₅₀ experiments were conducted on *A. suum* L3 and L4 using two-fold dilutions beginning with 500 µM
805 to 31.25 µM final concentrations (5 treatment levels each in triplicate wells) for all inhibitors tested, except
806 Staurosporine which ranged from 50 µM to 3.125 µM. Treatments were delivered in a 1 µL volume of DMSO.

807

808 ***In vitro* inhibitor screening in adult whipworm *Trichuris muris* and adult filarial worm *Brugia pahangi***
809 Adult *Trichuris muris* were removed from the cecum and proximal colon of infected C57Bl/6/STAT6 deficient
810 mice (Beltsville IACUC protocol #18-029) using forceps between 32-35 days after inoculation with infective
811 eggs and washed by sedimentation three times with media (RPMI-1640 with 25 mM HEPES, 2.0 g/L NaHCO₃,
812 5% heat inactivated FBS, and 1X Antibiotic/Antimycotic solution). The worms were incubated for 1-2hrs at 37C
813 in a water bath and then washed again as above and shipped to UCSF overnight. On the day of arrival (day
814 0), adult worms were wash as described above plated into 24-well plates containing 500 µl media per well, with
815 two worms per well. Based on IC₅₀ values obtained in *A. suum* L3 and L4 were treated with 100 µM, except for
816 Staurosporine, which was tested at 25 µM and 2.5 µM. Control worms were treated with 1% DMSO. Four

817 replicate wells (8 worms total) were used per inhibitor and worms were maintained in a 37° C incubator with
818 5% CO₂. Motility was measured using the Consensus Voting Luminance Difference algorithm WormAssay
819 software as described by Marcellino et al. 2012 [85]. Motility readings were taken daily on days 0 to 6.

820 *Brugia pahangi* adult females were collected from male Mongolian gerbils (*Meriones unguiculatus*,
821 Charles Rivers Labs) and incubated in media (RPMI-1640 with 25 mM HEPES, 2.0 g/L NaHCO₃, 5% heat
822 inactivated FBS, and 1X Antibiotic/Antimycotic solution) and maintained in a 37°C incubator with 5% CO₂
823 overnight. The following day (Day 0), media was exchanged and worms were plated individually into 24-well
824 plates containing 500 µl media per well. Worms were treated with 100 µM inhibitor, except for Staurosporine,
825 which was tested at 25 µM. Control worms were treated with 1% DMSO and each inhibitor was tested with 4
826 replicates. Motility was measured using the Lucas-Kanade Optical Flow algorithm WormAssay software as
827 described by Marcellino et al. 2012 [85]. Motility readings were taken daily on days 0 to 6. Results for both the
828 *T. muris* and *B. pahangi* motility assays were reported as percent inhibitions based on the motility of their
829 respective DMSO controls.

830

831 ***Brugia pahangi* L3 *in vitro* molt assay**

832 *B. pahangi* L3 were collected from *Aedes aegypti* Liverpool (LVP) strain mosquitoes 13 days after infection via
833 blood meal and shipped to UCSF overnight. On the day of arrival (day 0), L3 were washed 3X with wash media
834 (RPMI-1640 + 1X Antibiotic/Antimycotic solution + 10 µg/mL gentamycin + 2 µg/mL ciprofloxacin), then washed
835 once with culture media (MEM alpha with nucleosides [Gibco catalog #12571-063] + 10% heat-inactivated fetal
836 bovine serum + 1X penicillin/streptomycin + 10 µg/mL gentamycin + 2 µg/mL ciprofloxacin + 2 µg/mL
837 ceftazidime), plated into 96-well plates with about 5 larvae in 200 µL of culture media per well and were
838 maintained in a 37°C, 5% CO₂ incubator. On day 4 of culture, 100 µL of media was removed from each well
839 and replaced with culture media containing the test inhibitor. The inhibitors were tested at the following
840 concentrations: Sunitinib - 100, 62.5, 31.25, 15.6 and 7.8 µM; Staurosporine - 25 µM, Tofacitinib - 125 and 62.5
841 µM; Camptothecin - 62.5 and 31.25 µM and control worms were treated with 1% DMSO. On the following day,
842 100 µL of media was removed and replaced with culture media containing 30 µg/mL ascorbic acid (Sigma
843 catalog #A4544) for a final concentration of 15 µg/mL [86] plus sufficient drug to maintain the concentrations
844 listed previously. Motility was rated by visual examination on a scale of 0 (no movement) to 5 (fully active) on

845 day 4 (before drug treatment), day 5 (before the addition of ascorbic acid), and days 7, 8, 9, and 12. Percent
846 inhibition of motility was calculated by dividing the mean motility units of treated larvae by the mean motility of
847 control larvae, subtracting this number from 1 and multiplying by 100%. Molting was measured by counting the
848 number of casts present in the wells on days 8, 9, and 12. Percent inhibition of molting was determined by
849 calculating the percentage of L3 that molted to L4 within each treated well, dividing this by the molting
850 percentage of DMSO controls, and subtracting this number from 1 and multiplying by 100%. Prism (version
851 6.0f 2014, GraphPad Software, Inc) was used to calculate and graph the IC₅₀s.

852

853 ***In vitro* inhibitors screening in *C. elegans***

854 The *C. elegans* N2 strain was used to test inhibitors for inhibition of movement and morphological effects.
855 Synchronized larval populations initiated with eggs from adult worms were prepared by a standard protocol
856 [87]. Eggs obtained by treatment of adult worms with 1% hypochlorite were washed 3 times in 4 mL of M9
857 medium and pipetted onto agar plates with lawns of OP50 bacteria and cultured overnight. Hatched larvae
858 were collected by suspension in M9 media, pelleted and resuspended in M9 media, then dispensed into wells
859 of 48 well plates (BioLite, Thermo Fisher Scientific, Rochester, NY) in a total volume of 100 µL, including 10 µL
860 of OP 50 resuspended in M9 media from a pellet of a fresh 6-hour culture, and 1 µL of inhibitor solution in
861 DMSO, or DMSO alone for control wells. A minimum of 5 larvae were included per well. Plates for 1- or 2-day
862 old larvae received inhibitor treatments (in triplicate wells) and observations were made at 48 hrs post-initiation
863 of cultures, as described for *A. suum* larvae. Motility was scored as movement or no movement (with agitation
864 of the plate), along with notes of overall movement in a well compared to control worms. Otherwise immotile
865 larvae that displayed an occasional twitch were considered immotile. Effects of inhibitor treatments were
866 expressed as mean percentage motile compared to respective wells on day 0.

867

868 **Pathological effects in whole *A. suum* larvae, and intestinal cells and tissue**

869 Endpoint morphologies of treated larvae were typically recorded after day 5 of treatment, but timing was
870 adjusted as needed to capture relevant results, using a Nikon Diaphot 300 inverted microscope equipped with
871 epifluorescence capabilities and a Nikon D5100 digital camera.

872 In addition, intestinal effects of selected inhibitors were evaluated on day 2 following treatment of L3 by

873 1) differential interference contrast (DIC) microscopy; 2) pre-treatment for two hours with the cell permeable
874 nuclear stain Hoescht 33258 (bisbenzimide 10, μ g/mL) prior to co-culture with inhibitors to assess effects on
875 intestinal cell nuclei; or 3) hematoxylin and eosin stained histological sections (Histology laboratory of the
876 Washington Animal Disease Diagnostic Laboratory, Pullman WA) of formaldehyde (3.7% solution) fixed L3
877 following inhibitor treatments. Visualization by DIC or of bisbenzimide stained worms was done on unfixed
878 samples rinsed free of stains using phosphate buffered saline until background was negligible (usually 3 x 200
879 μ L rinses). Results from each of the methods listed were obtained from independent experiments that, with
880 exception of histopathology staining, were conducted at least three times.

881 Observation from DIC and bisbenzimide assessments were made using a Nikon Optiphot compound

882 microscope equipped with DIC filters, epifluorescence capabilities and a Nikon D5100 digital camera. To
883 optimize resolution, images were captured in movie mode, and then selected screen shots were copied and
884 used to produce final digital images. Images of histological sections were recorded using an Olympus CX41
885 compound microscope with digital recording capabilities supported by DP manager and controller software.

886 Standard blue, green and red fluorescence filters were used to capture fluorescence images.

887

888 **Statistics**

889 For the *A. suum* and *C. elegans* assays, IC_{50} s were estimated using R dose-response analysis[88]. For this
890 analysis, the “mselect” function was used to select the best-fit dose-response model (using AIC criterion), with
891 the lower and upper limits of efficacy constrained by specifying the corresponding parameters of the model (to
892 0 and 1, respectively). In all the cases, the best-fit model was Weibull function (W1.4 or W2.4). Significance of
893 the fit was estimated using “neill.tes” by estimating P-value of lack-of-fit. **S3 Fig.** illustrates one of the cases
894 with significant lack of fit. IC_{50} s out of the range of screened concentrations only had the corresponding upper
895 or lower bound reported. Significant pathway enrichment was tested using Gene Set Enrichment Analysis
896 (GSEA [71]) based on KEGG [72] pathways (annotated per gene using KEGGScan [68]), and FDR correction
897 to the P values was applied to correct for multiple testing. T-tests were performed using a two-tailed test with
898 unequal variance, and one-way analysis of variance (ANOVA) testing was performed with a Tukey HSD post-
899 hoc test.

900

901

902 SUPPORTING INFORMATION

903 **S1 Fig.** Chemical structures of the 13 inhibitors studied.

904

905 **S2 Fig.** Overview of *A. suum* L3 molting assay methods and results.

906

907 **S3 Fig.** Motility response curve examples. **(A)** An example to illustrate a lack of fit of dose-response curve.

908 Ruxolitinib Day 2 data (black) showed significant lack of fit for *A. suum* L3 larvae, primarily due to anomalously
909 high motility of the 500 μ M dosage samples. Data for Days 4 and 5 (red and green, respectively) showed good
910 fit. **(B)** L3 Motility curves for Leflunomide (**1**). There is rapid inhibition of motility for 250 and 500 μ M dosage,
911 but concentrations below 125 μ M show delayed inhibition, resembling effects of Sunitinib (**6**) and Tofacitinib
912 (**10**) on L3.

913

914 **S4 Fig.**: *B. pahangi* molting phenotypes. **(A)** DMSO control L4 larvae, showing a successful molt. **(B)** Larvae
915 with a bump/protrusion, observed in several of the larvae treated with 16 μ M Sunitinib. **(C)** Example of an L3
916 that has failed to molt. This phenotype occurred in both treated and DMSO controls that fail to molt.

917

918 **S5 Fig.** Motility inhibition for 24 and 48 hours-old *C. elegans* larvae. Treatment responses for **(A)** all 13 inhibitors
919 (1mM, except for Staurosporine at 100 μ M), and motility was assessed after 48 hours of treatment. **(B)** 500 μ M
920 Leflunomide treatment and motility was assessed after 30 minutes of treatment. P values represent results
921 from a two-tailed T-test (unequal variance).

922

923 **S1 Table.** The top 25 scored inhibitors. Tested inhibitors are indicated with an asterisk.

924 **S2 Table.** The top 50 genes ranked based on prioritization score

925 **S3 Table.** Top enriched metabolism and non-metabolism KEGG Pathways

926 **S4 Table.** All clntFam genes belonging to the Exocytosis KEGG pathway (“synaptic vesicle cycle”, ko04721)

927 **S5 Table.** Selected characteristics of the thirteen experimentally tested inhibitors.

929 **References**

- 930 1. Murray CJL, Lopez AD, editors. *The Global Burden of Disease*: World Health Organization; 1996.
- 931 2. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great
932 neglected tropical diseases. *J Clin Invest*. 2008;118(4):1311-21. Epub 2008/04/03. doi: 10.1172/JCI34261.
933 PubMed PMID: 18382743; PubMed Central PMCID: PMC2276811.
- 934 3. Borkow G, Leng Q, Weisman Z, Stein M, Galai N, Kalinkovich A, et al. Chronic immune activation
935 associated with intestinal helminth infections results in impaired signal transduction and anergy. *J Clin Invest*.
936 2000;106(8):1053-60. Epub 2000/10/18. doi: 10.1172/JCI10182. PubMed PMID: 11032865; PubMed Central
937 PMCID: PMC314342.
- 938 4. Actor JK, Shirai M, Kullberg MC, Buller RM, Sher A, Berzofsky JA. Helminth infection results in
939 decreased virus-specific CD8+ cytotoxic T-cell and Th1 cytokine responses as well as delayed virus clearance.
940 *Proc Natl Acad Sci U S A*. 1993;90(3):948-52. Epub 1993/02/01. PubMed PMID: 8094248; PubMed Central
941 PMCID: PMC45787.
- 942 5. Bentwich Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers AD. Can eradication of helminthic
943 infections change the face of AIDS and tuberculosis? *Immunol Today*. 1999;20(11):485-7. Epub 1999/10/26.
944 doi: S0167569999014991 [pii]. PubMed PMID: 10529774.
- 945 6. Jia T-W, Melville S, Utzinger J, King CH, Zhou X-N. Soil-Transmitted Helminth Reinfection after Drug
946 Treatment: A Systematic Review and Meta-Analysis. *PLoS Negl Trop Dis*. 2012;6(5):e1621. doi:
947 10.1371/journal.pntd.0001621. PubMed PMID: PMC3348161.
- 948 7. McGhee JD. The *C. elegans* intestine. In: Community TCeR, editor. *WormBook: WormBook*.
- 949 8. Yin Y, Martin J, Abubucker S, Scott AL, McCarter JP, Wilson RK, et al. Intestinal Transcriptomes of
950 Nematodes: Comparison of the Parasites *Ascaris suum* and *Haemonchus contortus* with the Free-living
951 *Caenorhabditis elegans*. *PLoS Negl Trop Dis*. 2008;2(8):e269. doi: 10.1371/journal.pntd.0000269.
- 952 9. Jasmer DP, Perryman LE, McGuire TC. *Haemonchus contortus* GA1 antigens: related, phospholipase
953 C-sensitive, apical gut membrane proteins encoded as a polyprotein and released from the nematode during
954 infection. *Proc Natl Acad Sci U S A*. 1996;93(16):8642-7. Epub 1996/08/06. doi: 10.1073/pnas.93.16.8642.
955 PubMed PMID: 8710924; PubMed Central PMCID: PMCPMC38726.

956 10. Jasmer DP, Lahmers KK, Brown WC. *Haemonchus contortus* intestine: a prominent source of mucosal
957 antigens. *Parasite Immunol.* 2007;29(3):139-51. Epub 2007/02/03. doi: 10.1111/j.1365-3024.2006.00928.x.
958 PubMed PMID: 17266741.

959 11. Buck AH, Coakley G, Simbiri F, McSorley HJ, Quintana JF, Le Bihan T, et al. Exosomes secreted by
960 nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. *Nature
961 communications.* 2014;5:5488. Epub 2014/11/26. doi: 10.1038/ncomms6488. PubMed PMID: 25421927;
962 PubMed Central PMCID: PMCPMC4263141.

963 12. Jasmer DP, Perryman LE, Conder GA, Crow S, McGuire T. Protective immunity to *Haemonchus
964 contortus* induced by immunoaffinity isolated antigens that share a phylogenetically conserved carbohydrate
965 gut surface epitope. *J Immunol.* 1993;151(10):5450-60. Epub 1993/11/15. PubMed PMID: 7693812.

966 13. Smith TS, Munn EA, Graham M, Tavernor AS, Greenwood CA. Purification and evaluation of the
967 integral membrane protein H11 as a protective antigen against *Haemonchus contortus*. *Int J Parasitol.*
968 1993;23(2):271-80. Epub 1993/04/01. PubMed PMID: 8496010.

969 14. Jasmer DP, Yao C, Rehman A, Johnson S. Multiple lethal effects induced by a benzimidazole
970 anthelmintic in the anterior intestine of the nematode *Haemonchus contortus*. *Mol Biochem Parasitol.*
971 2000;105(1):81-90. Epub 1999/12/29. PubMed PMID: 10613701.

972 15. Borgers M, De Nollin S, De Brabander M, Thienpont D. Influence of the anthelmintic mebendazole on
973 microtubules and intracellular organelle movement in nematode intestinal cells. *Am J Vet Res.*
974 1975;36(08):1153-66. Epub 1975/08/01. PubMed PMID: 1171646.

975 16. Wei J-Z, Hale K, Carta L, Platzer E, Wong C, Fang S-C, et al. *Bacillus thuringiensis* crystal proteins that
976 target nematodes. *Proceedings of the National Academy of Sciences.* 2003;100(5):2760-5. doi:
977 10.1073/pnas.0538072100.

978 17. Hu Y, Aroian RV. Bacterial pore-forming proteins as anthelmintics. *Invert Neurosci.* 2012;12(1):37-41.
979 Epub 2012/05/09. doi: 10.1007/s10158-012-0135-8. PubMed PMID: 22562659; PubMed Central PMCID:
980 PMC3889471.

981 18. Wang Z, Gao X, Martin J, Yin Y, Abubucker S, Rash AC, et al. Gene expression analysis distinguishes
982 tissue-specific and gender-related functions among adult *Ascaris suum* tissues. *Mol Genet Genomics.*
983 2013;10:10.

984 19. Rosa BA, Jasmer DP, Mitreva M. Genome-wide tissue-specific gene expression, co-expression and
985 regulation of co-expressed genes in adult nematode *Ascaris suum*. PLoS Negl Trop Dis. 2014;8(2):e2678. doi:
986 10.1371/journal.pntd.0002678.

987 20. Gao X, Tyagi R, Magrini V, Ly A, Jasmer DP, Mitreva M. Compartmentalization of functions and
988 predicted miRNA regulation among contiguous regions of the nematode intestine. RNA Biol. 2017;14(10):1335-
989 52. doi: 10.1080/15476286.2016.1166333.

990 21. Rosa BA, Townsend R, Jasmer DP, Mitreva M. Functional and phylogenetic characterization of proteins
991 detected in various nematode intestinal compartments. Mol Cell Proteomics. 2015;14(4):812-27.

992 22. Jasmer DP, Rosa BA, Mitreva M. Peptidases compartmentalized to the *Ascaris suum* intestinal lumen
993 and apical intestinal membrane. PLoS Negl Trop Dis. 2015;9(1):e3375. doi: 10.1371/journal.pntd.0003375.
994 PubMed PMID: 25569475; PubMed Central PMCID: PMCPMC4287503.

995 23. Wang Q, Rosa BA, Jasmer DP, Mitreva M. Pan-Nematoda Transcriptomic Elucidation of Essential
996 Intestinal Functions and Therapeutic Targets With Broad Potential. EBioMedicine. 2015;2(9):1079-89. doi:
997 10.1016/j.ebiom.2015.07.030.

998 24. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge
999 and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(Database issue):7.

1000 25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the
1001 unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9. Epub 2000/05/10. doi:
1002 10.1038/75556. PubMed PMID: 10802651; PubMed Central PMCID: PMC3037419.

1003 26. Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al. WormBase 2016: expanding to enable
1004 helminth genomic research. Nucleic Acids Res. 2016;44(D1):D774-80. doi: 10.1093/nar/gkv1217. PubMed
1005 PMID: 26578572; PubMed Central PMCID: PMCPMC4702863.

1006 27. Simonis N, Rual JF, Carvunis AR, Tasan M, Lemmens I, Hirozane-Kishikawa T, et al. Empirically
1007 controlled mapping of the *Caenorhabditis elegans* protein-protein interactome network. Nat Methods.
1008 2009;6(1):47-54. PubMed PMID: 19123269; PubMed Central PMCID: PMCPMC3057923.

1009 28. Gao X, Tyagi R, Magrini V, Ly A, Jasmer DP, Mitreva M. Compartmentalization of functions and
1010 predicted miRNA regulation among contiguous regions of the Nematode Intestine. RNA Biol. 2016;0. doi:
1011 10.1080/15476286.2016.1166333. PubMed PMID: 27002534.

1012 29. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene
1013 and protein annotation. *Nucleic Acids Res.* 2016;44(Database issue):D457-D62. doi: 10.1093/nar/gkv1070.
1014 PubMed PMID: PMC4702792.

1015 30. Sönnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, et al. Full-genome RNAi profiling
1016 of early embryogenesis in *Caenorhabditis elegans*. *Nature*. 2005;434(7032):462-9. doi: 10.1038/nature03353.
1017 PubMed PMID: 15791247.

1018 31. Fernandez AG, Gunsalus KC, Huang J, Chuang LS, Ying N, Liang HL, et al. New genes with roles in
1019 the *C. elegans* embryo revealed using RNAi of ovary-enriched ORFeome clones. *Genome Res.*
1020 2005;15(2):250-9. doi: 10.1101/gr.3194805. PubMed PMID: 15687288; PubMed Central PMCID:
1021 PMCPMC546526.

1022 32. Piano F, Schetter AJ, Mangone M, Stein L, Kemphues KJ. RNAi analysis of genes expressed in the
1023 ovary of *Caenorhabditis elegans*. *Curr Biol.* 2000;10(24):1619-22. PubMed PMID: 11137018.

1024 33. Piano F, Schetter AJ, Morton DG, Gunsalus KC, Reinke V, Kim SK, et al. Gene clustering based on
1025 RNAi phenotypes of ovary-enriched genes in *C. elegans*. *Curr Biol.* 2002;12(22):1959-64. PubMed PMID:
1026 12445391.

1027 34. Dhamodharan R, Hoti SL, Sankari T. Characterization of cofactor-independent phosphoglycerate
1028 mutase isoform-1 (Wb-iPGM) gene: A drug and diagnostic target from human lymphatic filarial parasite,
1029 *Wuchereria bancrofti*. *Infect, Genet Evol.* 2012;12(5):957-65. doi:
1030 <https://doi.org/10.1016/j.meegid.2012.02.005>.

1031 35. Zhang Y, Foster JM, Kumar S, Fougere M, Carlow CKS. Cofactor-independent Phosphoglycerate
1032 Mutase Has an Essential Role in *Caenorhabditis elegans* and Is Conserved in Parasitic Nematodes. *J Biol
1033 Chem.* 2004;279(35):37185-90. doi: 10.1074/jbc.M405877200.

1034 36. Yu H, Dranchak P, Li Z, MacArthur R, Munson MS, Mehzabeen N, et al. Macrocyclic peptides delineate
1035 locked-open inhibition mechanism for microorganism phosphoglycerate mutases. *2017;8:14932.* doi:
1036 10.1038/ncomms14932
1037 <https://www.nature.com/articles/ncomms14932#supplementary-information>.

1038 37. Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. *Parasitology*. 2000;121
1039 Suppl:S113-32. Epub 2001/06/02. PubMed PMID: 11386684.

1040 38. Taylor CM, Martin J, Rao RU, Powell K, Abubucker S, Mitreva M. Using existing drugs as leads for
1041 broad spectrum anthelmintics targeting protein kinases. *PLoS Pathog.* 2013;9(2):e1003149. Epub 2013/03/06.
1042 doi: 10.1371/journal.ppat.1003149. PubMed PMID: 23459584; PubMed Central PMCID: PMCPMC3573124.

1043 39. Papaetis GS, Syrigos KN. Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of
1044 molecular cancer therapies. *Biodrugs.* 2009;23(6):377-89. Epub 2009/11/10. doi: 10.2165/11318860-
1045 00000000-00000. PubMed PMID: 19894779.

1046 40. Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez JB, Dowty ME, et al. The mechanism of
1047 action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. *Clin Exp Rheumatol.*
1048 2016;34(2):318-28. Epub 2016/03/12. PubMed PMID: 26966791.

1049 41. Breedveld FC, Dayer JM. Leflunomide: mode of action in the treatment of rheumatoid arthritis. *Ann*
1050 *Rheum Dis.* 2000;59(11):841-9. Epub 2000/10/29. doi: 10.1136/ard.59.11.841. PubMed PMID: 11053058;
1051 PubMed Central PMCID: PMCPMC1753034.

1052 42. Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by
1053 camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-
1054 PK complexes. *EMBO J.* 1999;18(5):1397-406. Epub 1999/03/04. doi: 10.1093/emboj/18.5.1397. PubMed
1055 PMID: 10064605; PubMed Central PMCID: PMCPMC1171229.

1056 43. International Helminth Genomes C. Comparative genomics of the major parasitic worms. *Nat Genet.*
1057 2019;51(1):163-74. Epub 2018/11/07. doi: 10.1038/s41588-018-0262-1. PubMed PMID: 30397333; PubMed
1058 Central PMCID: PMCPMC6349046.

1059 44. Rew RS, Urban JF, Jr., Douvres FW. Screen for anthelmintics, using larvae of *Ascaris suum*. *Am J Vet*
1060 *Res.* 1986;47(4):869-73. Epub 1986/04/01. PubMed PMID: 3963590.

1061 45. Tyagi R, Elfawal MA, Wildman SA, Helander J, Bulman CA, Sakanari J, et al. Identification of small
1062 molecule enzyme inhibitors as broad-spectrum anthelmintics. *Sci Rep.* 2019;9(1):9085. Epub 2019/06/27. doi:
1063 10.1038/s41598-019-45548-7. PubMed PMID: 31235822; PubMed Central PMCID: PMCPMC6591293.

1064 46. Rhoads ML, Fetterer RH, Urban JF, Jr. Effect of protease class-specific inhibitors on in vitro
1065 development of the third- to fourth-stage larvae of *Ascaris suum*. *J Parasitol.* 1998;84(4):686-90. Epub
1066 1998/08/26. PubMed PMID: 9714194.

1067 47. Frand AR, Russel S, Ruvkun G. Functional genomic analysis of *C. elegans* molting. PLoS Biol.
1068 2005;3(10):e312. Epub 2005/08/27. doi: 10.1371/journal.pbio.0030312. PubMed PMID: 16122351; PubMed
1069 Central PMCID: PMCPMC1233573.

1070 48. Lazetic V, Fay DS. Molting in *C. elegans*. Worm. 2017;6(1):e1330246. Epub 2017/07/14. doi:
1071 10.1080/21624054.2017.1330246. PubMed PMID: 28702275; PubMed Central PMCID: PMCPMC5501215.

1072 49. Michel JF. Arrested development of nematodes and some related phenomena. Adv Parasitol.
1073 1974;12:279-366. Epub 1974/01/01. PubMed PMID: 4281280.

1074 50. Bowman DD, Atkins CE. Heartworm biology, treatment, and control. Vet Clin North Am Small Anim
1075 Pract. 2009;39(6):1127-58, vii. Epub 2009/11/26. doi: 10.1016/j.cvsm.2009.06.003. PubMed PMID: 19932367.

1076 51. Schwendeman AR, Shaham S. A High-Throughput Small Molecule Screen for *C. elegans* Linker Cell
1077 Death Inhibitors. PLoS One. 2016;11(10):e0164595. Epub 2016/10/08. doi: 10.1371/journal.pone.0164595.
1078 PubMed PMID: 27716809; PubMed Central PMCID: PMCPMC5055323.

1079 52. Martin K, Bentaberry F, Dumoulin C, Longy-Boursier M, Lifermann F, Haramburu F, et al. Neuropathy
1080 associated with leflunomide: a case series. Ann Rheum Dis. 2005;64(4):649-50. Epub 2005/03/17. doi:
1081 10.1136/ard.2004.027193. PubMed PMID: 15769926; PubMed Central PMCID: PMCPMC1755455.

1082 53. Los FC, Kao CY, Smitham J, McDonald KL, Ha C, Peixoto CA, et al. RAB-5- and RAB-11-dependent
1083 vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming
1084 toxin. Cell Host Microbe. 2011;9(2):147-57. Epub 2011/02/16. doi: 10.1016/j.chom.2011.01.005. PubMed
1085 PMID: 21320697; PubMed Central PMCID: PMCPMC3057397.

1086 54. Szumowski SC, Botts MR, Popovich JJ, Smelkinson MG, Troemel ER. The small GTPase RAB-11
1087 directs polarized exocytosis of the intracellular pathogen *N. parisii* for fecal-oral transmission from *C. elegans*.
1088 Proc Natl Acad Sci U S A. 2014;111(22):8215-20. Epub 2014/05/21. doi: 10.1073/pnas.1400696111. PubMed
1089 PMID: 24843160; PubMed Central PMCID: PMCPMC4050618.

1090 55. Kwok MK, Lin SL, Schooling CM. Re-thinking Alzheimer's disease therapeutic targets using gene-based
1091 tests. EBioMedicine. 2018;37:461-70. Epub 2018/10/14. doi: 10.1016/j.ebiom.2018.10.001. PubMed PMID:
1092 30314892; PubMed Central PMCID: PMCPMC6446018.

1093 56. Baban B, Liu JY, Mozaffari MS. Aryl hydrocarbon receptor agonist, leflunomide, protects the ischemic-
1094 reperfused kidney: role of Tregs and stem cells. *Am J Physiol Regul Integr Comp Physiol.* 2012;303(11):R1136-
1095 46. Epub 2012/10/27. doi: 10.1152/ajpregu.00315.2012. PubMed PMID: 23100028.

1096 57. Migita K, Miyashita T, Ishibashi H, Maeda Y, Nakamura M, Yatsuhashi H, et al. Suppressive effect of
1097 leflunomide metabolite (A77 1726) on metalloproteinase production in IL-1beta stimulated rheumatoid synovial
1098 fibroblasts. *Clin Exp Immunol.* 2004;137(3):612-6. Epub 2004/08/24. doi: 10.1111/j.1365-2249.2004.02555.x.
1099 PubMed PMID: 15320915; PubMed Central PMCID: PMCPMC1809130.

1100 58. Zhang F, Peng D, Cheng C, Zhou W, Ju S, Wan D, et al. *Bacillus thuringiensis* Crystal Protein Cry6Aa
1101 Triggers *Caenorhabditis elegans* Necrosis Pathway Mediated by Aspartic Protease (ASP-1). *PLoS Pathog.*
1102 2016;12(1):e1005389. Epub 2016/01/23. doi: 10.1371/journal.ppat.1005389. PubMed PMID: 26795495;
1103 PubMed Central PMCID: PMCPMC4721865.

1104 59. Yamamoto D, Uchida R, Takahashi Y, Masuma R, Tomoda H. Screening for microbial metabolites
1105 affecting phenotype of *Caenorhabditis elegans*. *Biol Pharm Bull.* 2011;34(10):1619-23. Epub 2011/10/04.
1106 PubMed PMID: 21963505.

1107 60. Hu Y, Ellis BL, Yiu YY, Miller MM, Urban JF, Shi LZ, et al. An extensive comparison of the effect of
1108 anthelmintic classes on diverse nematodes. *PLoS One.* 2013;8(7):e70702. Epub 2013/07/23. doi:
1109 10.1371/journal.pone.0070702. PubMed PMID: 23869246; PubMed Central PMCID: PMCPMC3712009.

1110 61. Russell GJ, Lacey E. Inhibition of [³H]mebendazole binding to tubulin by structurally diverse microtubule
1111 inhibitors which interact at the colchicine binding site. *Biochem Mol Biol Int.* 1995;35(6):1153-9. Epub
1112 1995/05/01. PubMed PMID: 7492951.

1113 62. Wang Y, Benz FW, Wu Y, Wang Q, Chen Y, Chen X, et al. Structural Insights into the Pharmacophore
1114 of Vinca Domain Inhibitors of Microtubules. *Mol Pharmacol.* 2016;89(2):233-42. Epub 2015/12/15. doi:
1115 10.1124/mol.115.100149. PubMed PMID: 26660762.

1116 63. Naaz F, Haider MR, Shafi S, Yar MS. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and
1117 colchicine binding domains. *Eur J Med Chem.* 2019;171:310-31. Epub 2019/04/07. doi:
1118 10.1016/j.ejmech.2019.03.025. PubMed PMID: 30953881.

1119 64. Ali KA, Abdel Hafez NA, Elsayed MA, El-Shahawi MM, El-Hallouty SM, Amr AEE. Synthesis, Anticancer
1120 Screening and Molecular Docking Studies of New Heterocycles with Trimethoxyphenyl Scaffold as

1121 Combretastatin Analogues. *Mini Rev Med Chem.* 2018;18(8):717-27. Epub 2017/04/27. doi:
1122 10.2174/1389557517666170425104241. PubMed PMID: 28443521.

1123 65. Zask A, Birnberg G, Cheung K, Kaplan J, Niu C, Norton E, et al. Synthesis and biological activity of
1124 analogues of the antimicrotubule agent N,beta,beta-trimethyl-L-phenylalanyl-N(1)-[(1S,2E)-3-carboxy-1-
1125 isopropylbut-2-enyl]- N(1),3-dimethyl-L-valinamide (HTI-286). *J Med Chem.* 2004;47(19):4774-86. Epub
1126 2004/09/03. doi: 10.1021/jm040056u. PubMed PMID: 15341492.

1127 66. Latt SA, Stetten G, Juergens LA, Willard HF, Scher CD. Recent developments in the detection of
1128 deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. *J Histochem Cytochem.* 1975;23(7):493-505.
1129 Epub 1975/07/01. doi: 10.1177/23.7.1095650. PubMed PMID: 1095650.

1130 67. Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, et al. *Ascaris suum* draft genome. *Nature.*
1131 2011;479(7374):529-33. doi:
1132 <http://www.nature.com/nature/journal/v479/n7374/abs/nature10553.html#supplementary-information>.

1133 68. Wylie T, Martin J, Abubucker S, Yin Y, Messina D, Wang Z, et al. NemaPath: online exploration of
1134 KEGG-based metabolic pathways for nematodes. *BMC Genomics.* 2008;9(525):1471-2164.

1135 69. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity
1136 database: an update. *Nucleic Acids Res.* 2014;42(Database issue):7.

1137 70. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of
1138 drugs. *Nat Chem.* 2012;4(2):90-8. Epub 2012/01/25. doi: 10.1038/nchem.1243. PubMed PMID: 22270643;
1139 PubMed Central PMCID: PMCPMC3524573.

1140 71. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment
1141 analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci
1142 U S A.* 2005;102(43):15545-50. Epub 2005/10/04. doi: 10.1073/pnas.0506580102. PubMed PMID: 16199517;
1143 PubMed Central PMCID: PMCPMC1239896.

1144 72. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes,
1145 pathways, diseases and drugs. *Nucleic Acids Res.* 2017;45(D1):D353-D61. doi: 10.1093/nar/gkw1092.
1146 PubMed PMID: 27899662; PubMed Central PMCID: PMCPMC5210567.

1147 73. Schmoranzer J, Simon SM. Role of Microtubules in Fusion of Post-Golgi Vesicles to the Plasma
1148 Membrane. *Mol Biol Cell.* 2003;14(4):1558-69. doi: 10.1091/mbc.E02-08-0500. PubMed PMID: PMC153122.

1149 74. Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, Millar M, et al. Extracellular Vesicles from
1150 a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective Vaccine for Protective
1151 Immunity. *Cell Rep.* 2017;19(8):1545-57. Epub 2017/05/26. doi: 10.1016/j.celrep.2017.05.001. PubMed PMID:
1152 28538175; PubMed Central PMCID: PMCPMC5457486.

1153 75. Lubega GW, Prichard RK. Interaction of benzimidazole anthelmintics with *Haemonchus contortus*
1154 tubulin: binding affinity and anthelmintic efficacy. *Exp Parasitol.* 1991;73(2):203-13. Epub 1991/08/01. PubMed
1155 PMID: 1889474.

1156 76. Wang S, Liu Y, Adamson CL, Valdez G, Guo W, Hsu SC. The mammalian exocyst, a complex required
1157 for exocytosis, inhibits tubulin polymerization. *J Biol Chem.* 2004;279(34):35958-66. Epub 2004/06/19. doi:
1158 10.1074/jbc.M313778200. PubMed PMID: 15205466.

1159 77. Driscoll M, Dean E, Reilly E, Bergholz E, Chalfie M. Genetic and molecular analysis of a *Caenorhabditis*
1160 *elegans* beta-tubulin that conveys benzimidazole sensitivity. *J Cell Biol.* 1989;109(6 Pt 1):2993-3003. Epub
1161 1989/12/01. PubMed PMID: 2592410; PubMed Central PMCID: PMCPmc2115974.

1162 78. Zubovych I, Doundoulakis T, Harran PG, Roth MG. A missense mutation in *Caenorhabditis elegans*
1163 prohibitin 2 confers an atypical multidrug resistance. *Proc Natl Acad Sci U S A.* 2006;103(42):15523-8. Epub
1164 2006/10/13. doi: 10.1073/pnas.0607338103. PubMed PMID: 17032754; PubMed Central PMCID:
1165 PMCPMC1622856.

1166 79. Kumar S, Mehndiratta S, Nepali K, Gupta MK, Koul S, Sharma PR, et al. Novel indole-bearing
1167 combretastatin analogues as tubulin polymerization inhibitors. *Org Med Chem Lett.* 2013;3(1):3. Epub
1168 2013/03/05. doi: 10.1186/2191-2858-3-3. PubMed PMID: 23452433; PubMed Central PMCID:
1169 PMCPMC3599526.

1170 80. Agola JO, Hong L, Surviladze Z, Ursu O, Waller A, Strouse JJ, et al. A competitive nucleotide binding
1171 inhibitor: in vitro characterization of Rab7 GTPase inhibition. *ACS Chem Biol.* 2012;7(6):1095-108. Epub
1172 2012/04/11. doi: 10.1021/cb3001099. PubMed PMID: 22486388; PubMed Central PMCID: PMCPMC3440014.

1173 81. Stempelj M, Ferjan I. Signaling pathway in nerve growth factor induced histamine release from rat mast
1174 cells. *Inflamm Res.* 2005;54(8):344-9. Epub 2005/09/15. doi: 10.1007/s00011-005-1364-7. PubMed PMID:
1175 16158335.

1176 82. Chen WY, Ni Y, Pan YM, Shi QX, Yuan YY, Chen AJ, et al. GABA, progesterone and zona pellucida
1177 activation of PLA2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa.
1178 FEBS Lett. 2005;579(21):4692-700. Epub 2005/08/16. doi: 10.1016/j.febslet.2005.06.090. PubMed PMID:
1179 16098515.

1180 83. Oksanen A, Eriksen L, Roepstorff A, Ilsoe B, Nansen P, Lind P. Embryonation and infectivity of *Ascaris*
1181 *suum* eggs. A comparison of eggs collected from worm uteri with eggs isolated from pig faeces. Acta Vet
1182 Scand. 1990;31(4):393-8. Epub 1990/01/01. PubMed PMID: 2099616.

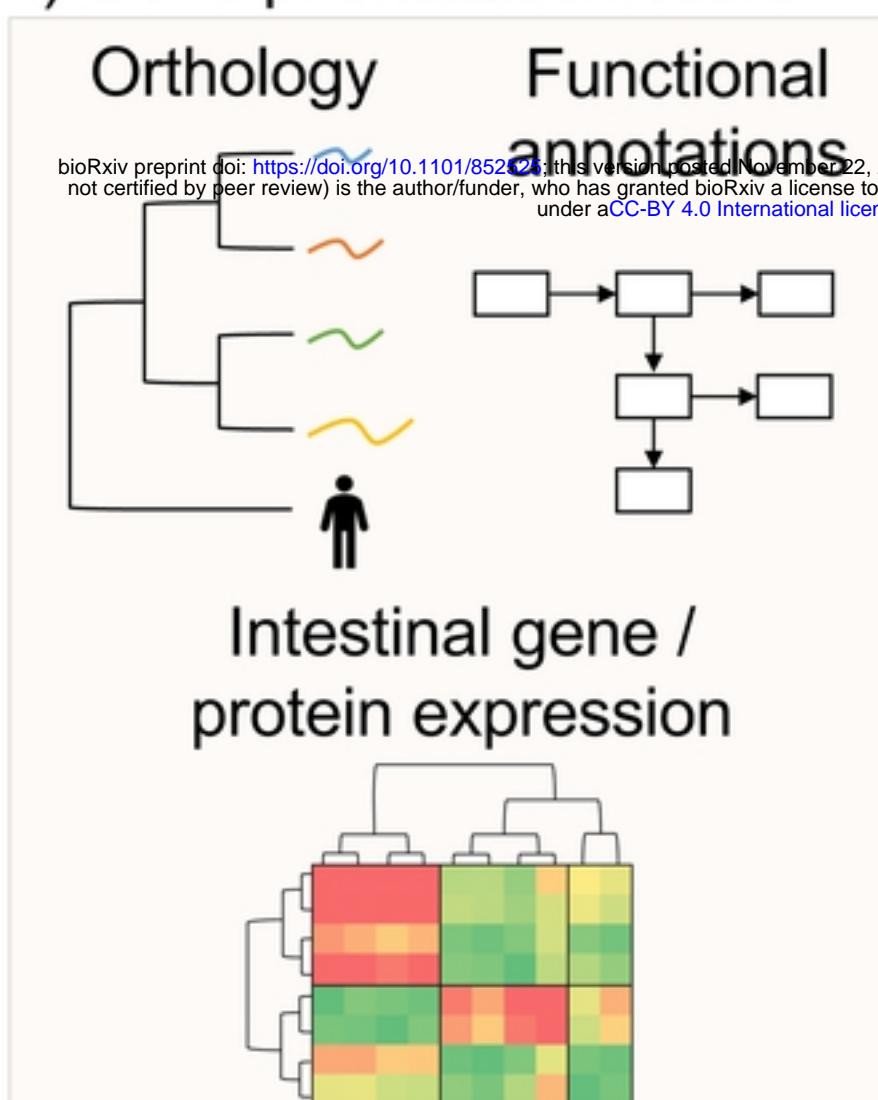
1183 84. Urban JF, Jr., Douvres FW. In vitro development of *Ascaris suum* from third- to fourth-stage larvae and
1184 detection of metabolic antigens in multi-well culture systems. J Parasitol. 1981;67(6):800-6. Epub 1981/12/01.
1185 PubMed PMID: 7328453.

1186 85. Marcellino C, Gut J, Lim KC, Singh R, McKerrow J, Sakanari J. WormAssay: A Novel Computer
1187 Application for Whole-Plate Motion-based Screening of Macroscopic Parasites. PLoS Negl Trop Dis.
1188 2012;6(1):e1494. doi: 10.1371/journal.pntd.0001494.

1189 86. Rajan TV, Paciorkowski N, Kalajzic I, McGuiness C. Ascorbic acid is a requirement for the
1190 morphogenesis of the human filarial parasite *Brugia malayi*. J Parasitol. 2003;89(4):868-70. Epub 2003/10/10.
1191 doi: 10.1645/GE-3137RN. PubMed PMID: 14533709.

1192 87. Stiernagle T. Maintenance of *C. elegans*. WormBook. 2006:1-11. Epub 2007/12/01. doi:
1193 10.1895/wormbook.1.101.1. PubMed PMID: 18050451; PubMed Central PMCID: PMCPMC4781397.

1194 88. Ritz C, Baty F, Streibig JC, Gerhard D. Dose-Response Analysis Using R. PLoS One.
1195 2015;10(12):e0146021. Epub 2015/12/31. doi: 10.1371/journal.pone.0146021. PubMed PMID: 26717316;
1196 PubMed Central PMCID: PMCPMC4696819.


1197

A	Category	Criteria	Scoring
Orthology	Intestinal expression in 3 target species	Required	
	Conserved across parasitic nematodes	1	
	Nematode-specific	1	
Intestinal proteomic evidence	Detected in <i>A. suum</i> intestine	1	
	Number of spectra detected	Max. 1	
Intestine expression level	<i>A. suum</i>	Max. 1	
	<i>H. contortus</i> closest ortholog	Max. 1	
	<i>T. suis</i> closest ortholog	Max. 1	
	<i>C. elegans</i> ortholog severe phenotype	1	
Functional Annotations	Multiple KEGG pathways	Max. 1	
	Number of other genes sharing KO	Max. 1	
	PPIs predicted in Worm Interactome	Max. 1	

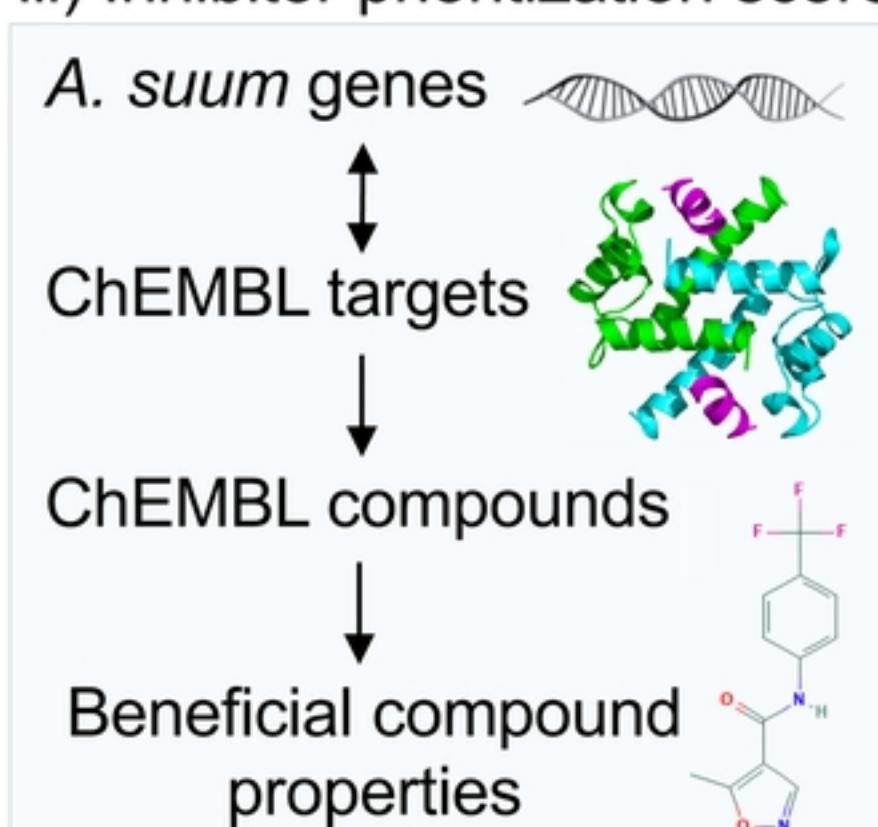
Maximum theoretical score

11

B i) Gene prioritization score

ii) Pathway enrichment

Metabolism


Oxidative phosphorylation

- Carbon metabolism
- Biosynthesis of amino acids
- Citrate cycle (TCA cycle)
- Glyoxylate/dicarboxylate metabolism

Non-metabolism

- Exocytosis**
- Phagosome
- Proteasome
- Ribosome
- Focal adhesion

iii) Inhibitor prioritization score

iv) Final inhibitor selection

Gene prioritization score x
Inhibitor prioritization score

Exocytosis

Final 13 prioritized inhibitors
(Table 1)

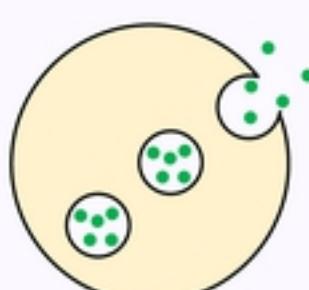
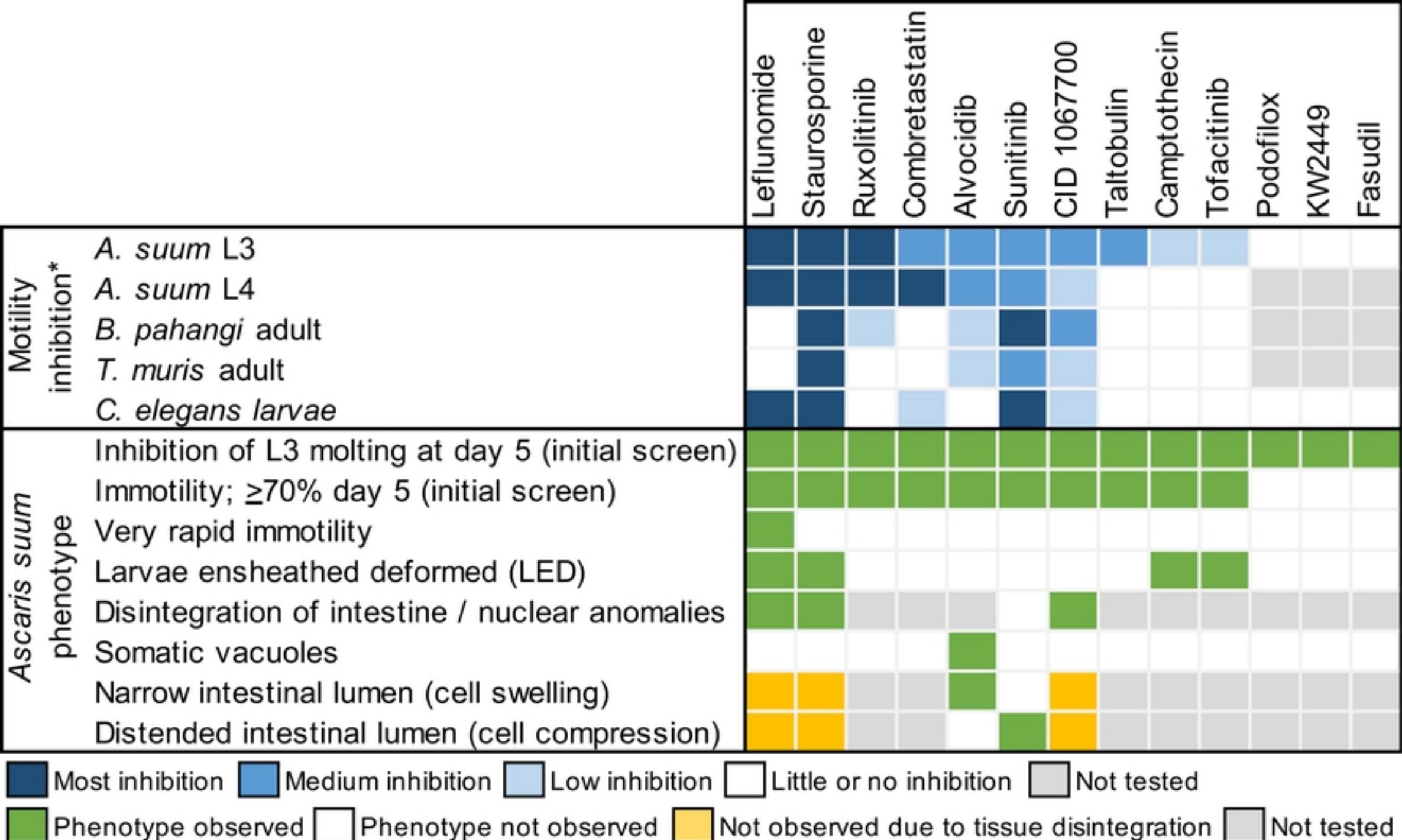
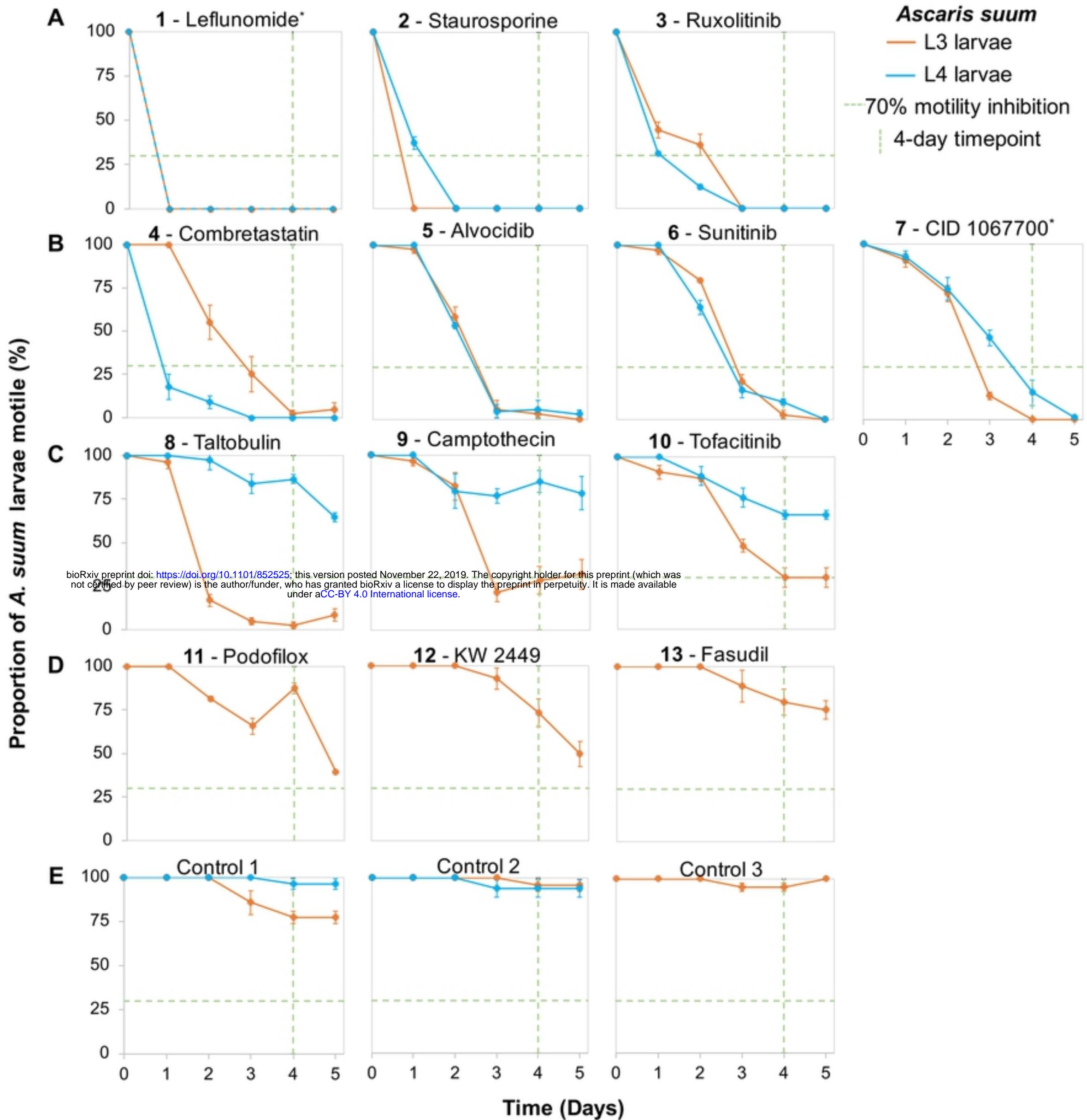
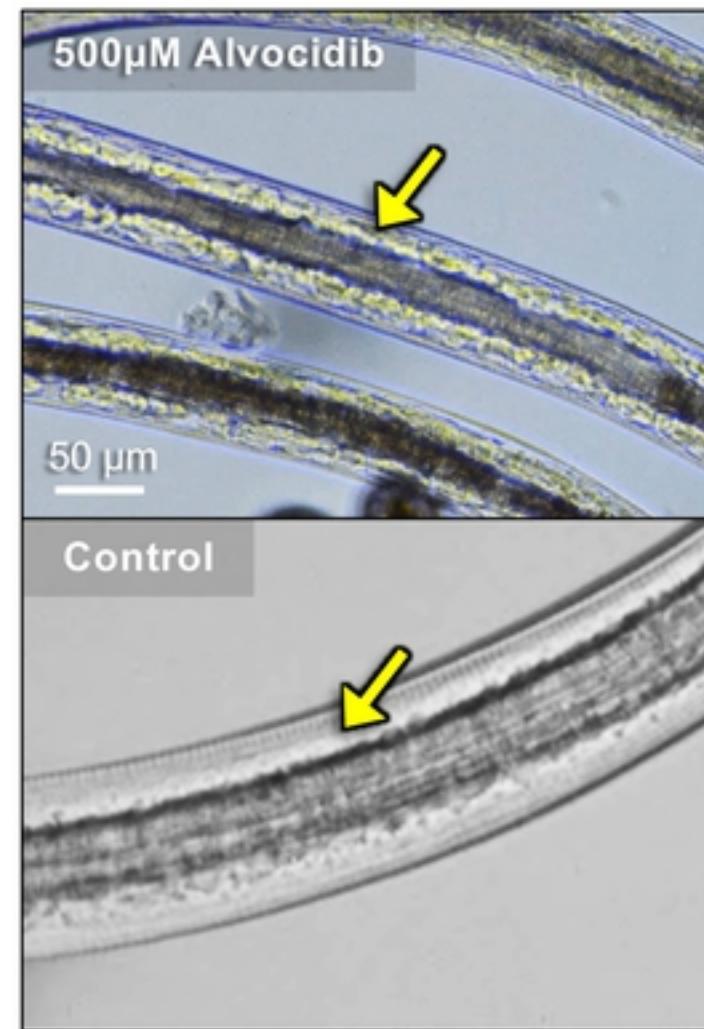
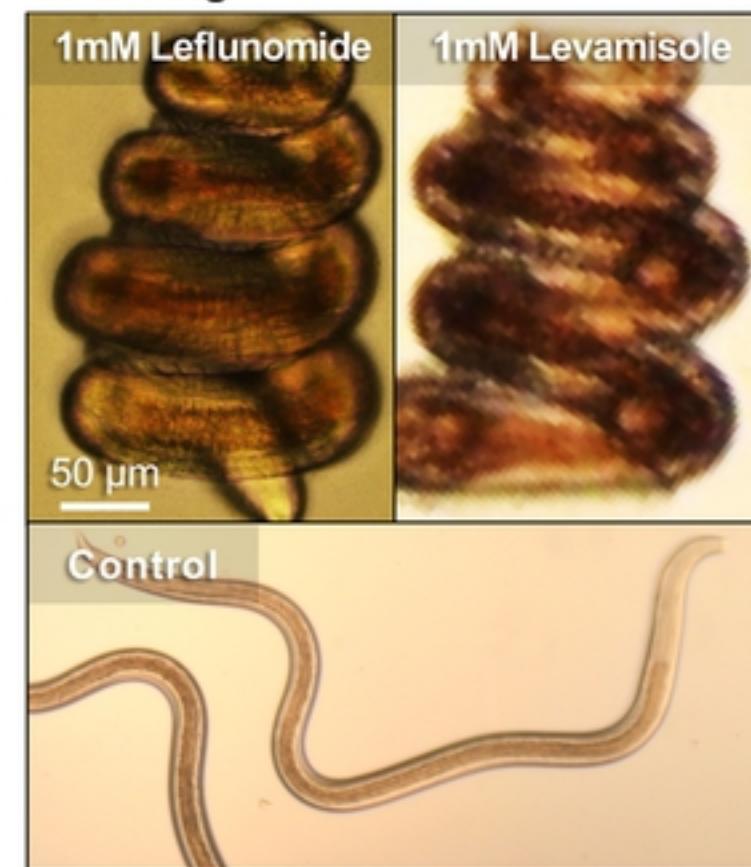
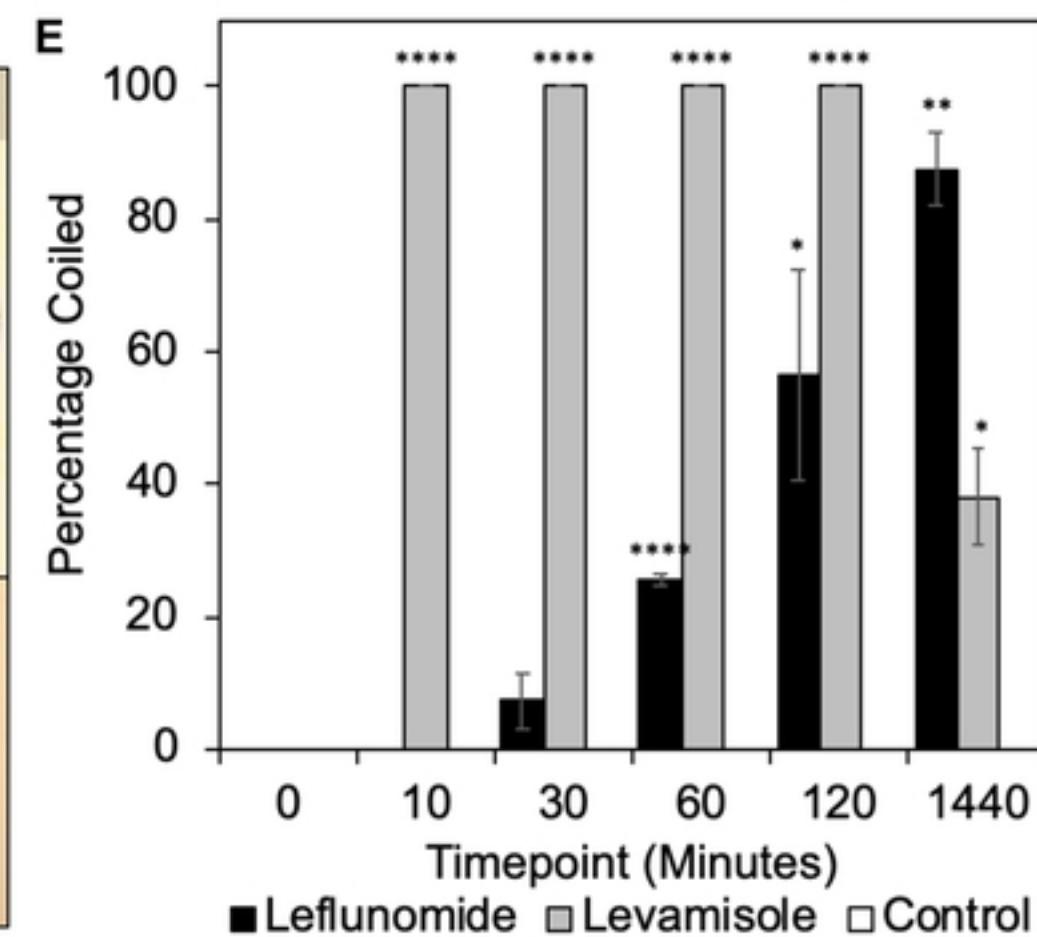
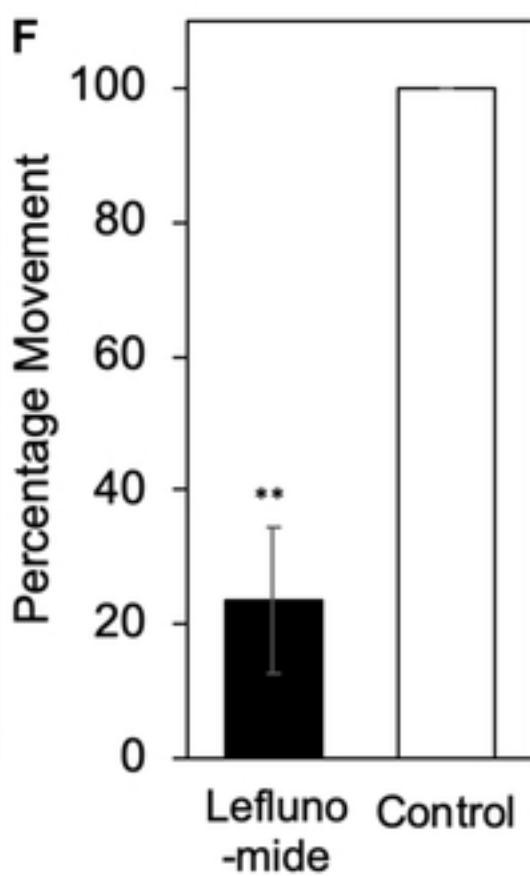
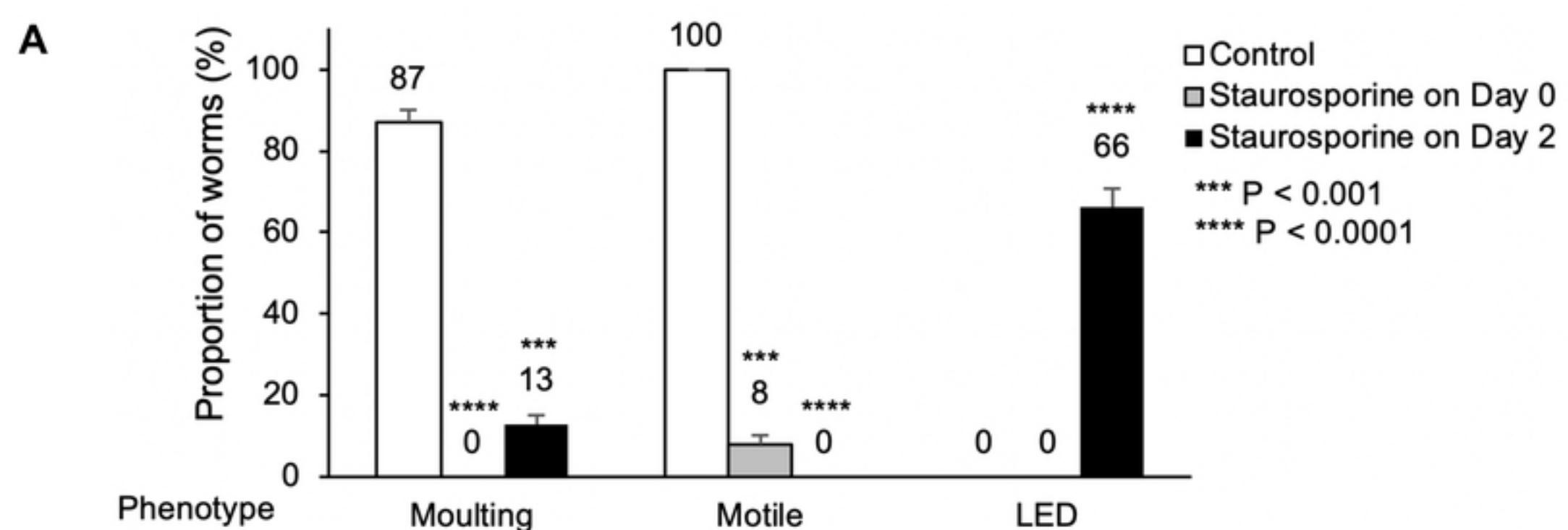


Figure 1


Figure 2

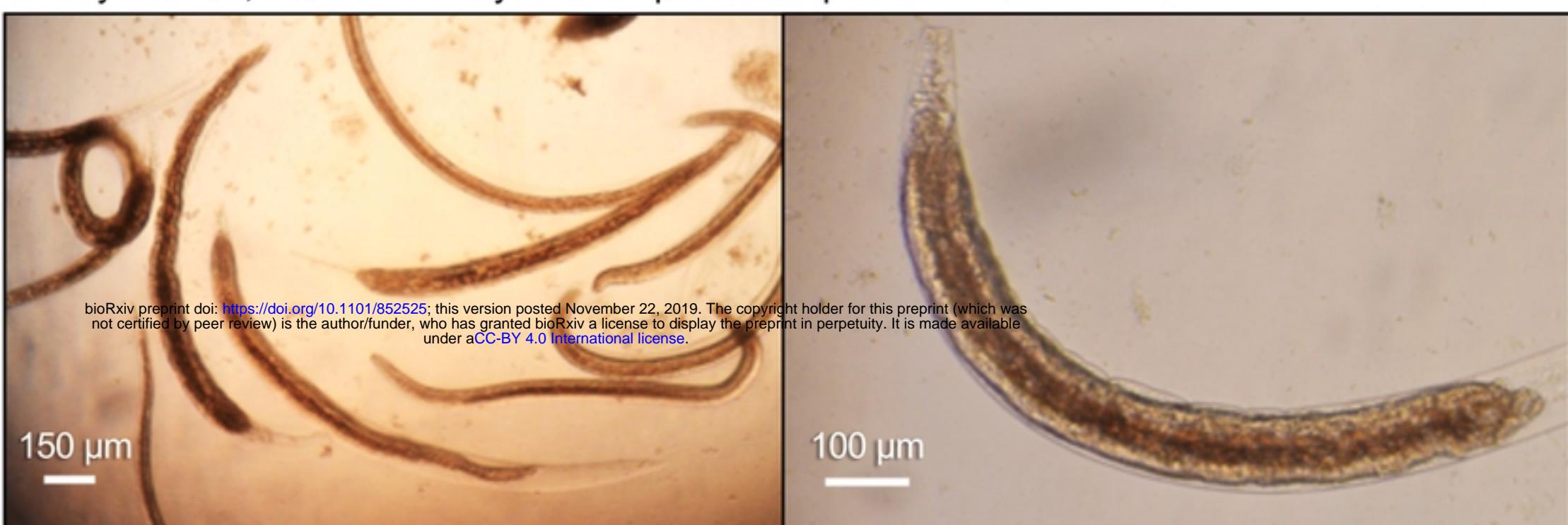
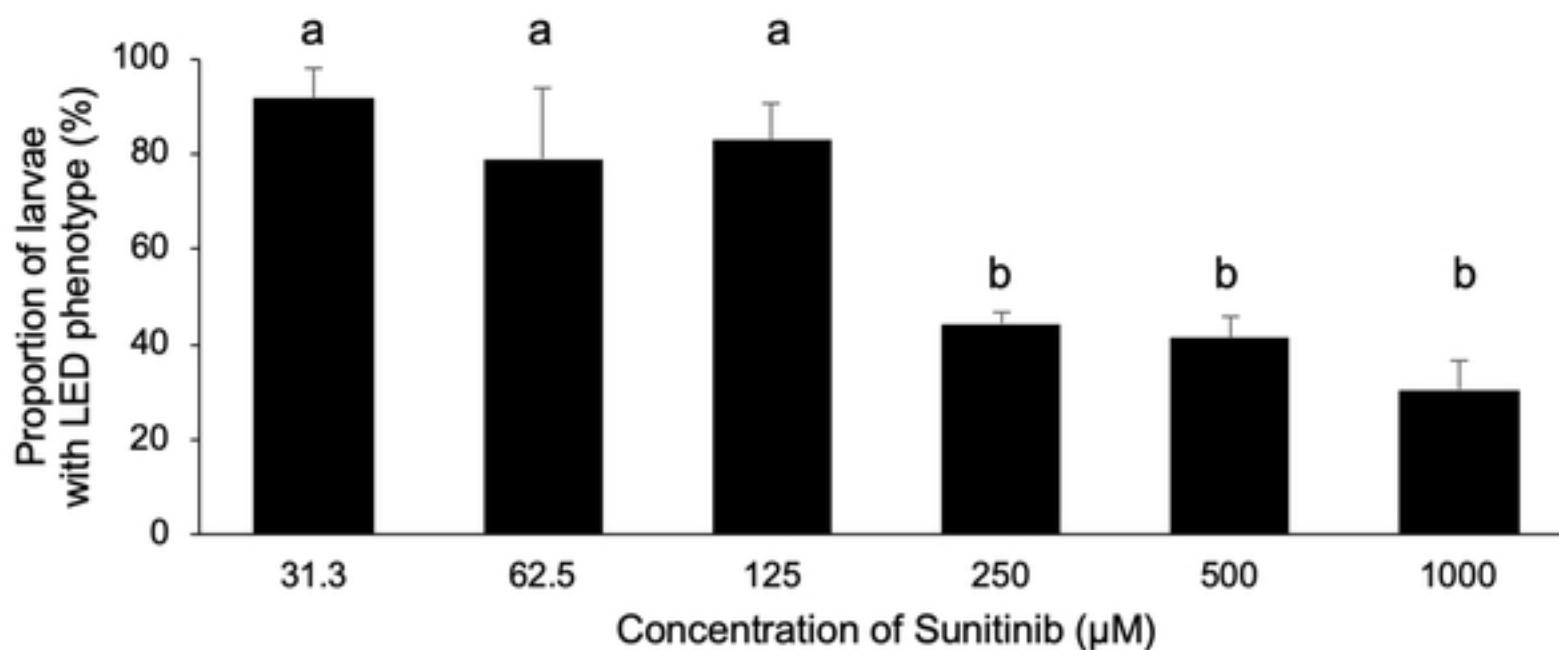

Inhibitor number	Inhibitor Name	L3 IC50 (μ M)			L4 IC50 (μ M)		
		Day 2	Day 4	Day 5	Day 2	Day 4	Day 5
1	Leflunomide*	176.1	91.0	88.4	248.9	238.6	239.8
2	Staurosporine	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1
3	Ruxolitinib	94.32**	49.0	35.0	31.4	34.7	36.3
4	Combretastatin	156.6	< 3.1	< 3.1	156.6	44.6	61.2
5	Alvocidib	128.6	22.0	47.2	430.51**	110.8	168.2
6	Sunitinib	>500	< 3.1	< 3.1	>500	284.0	175.0
7	CID1067700	>500	218.4	170.7	>500	329.2	241.3
8	Taltobulin	>500	< 3.1	< 3.1	-	>500	222.4
9	Camptothecin	>500	>500	>500**	-	>500	-
10	Tofacitinib	>500	167.8	202.3	-	>500	>500

Figure 3

A. Non-motile**B. Larval ensheathed deformed (LED)****C. Vacuole encroachment****D. Coiling****E****F****Figure 4**

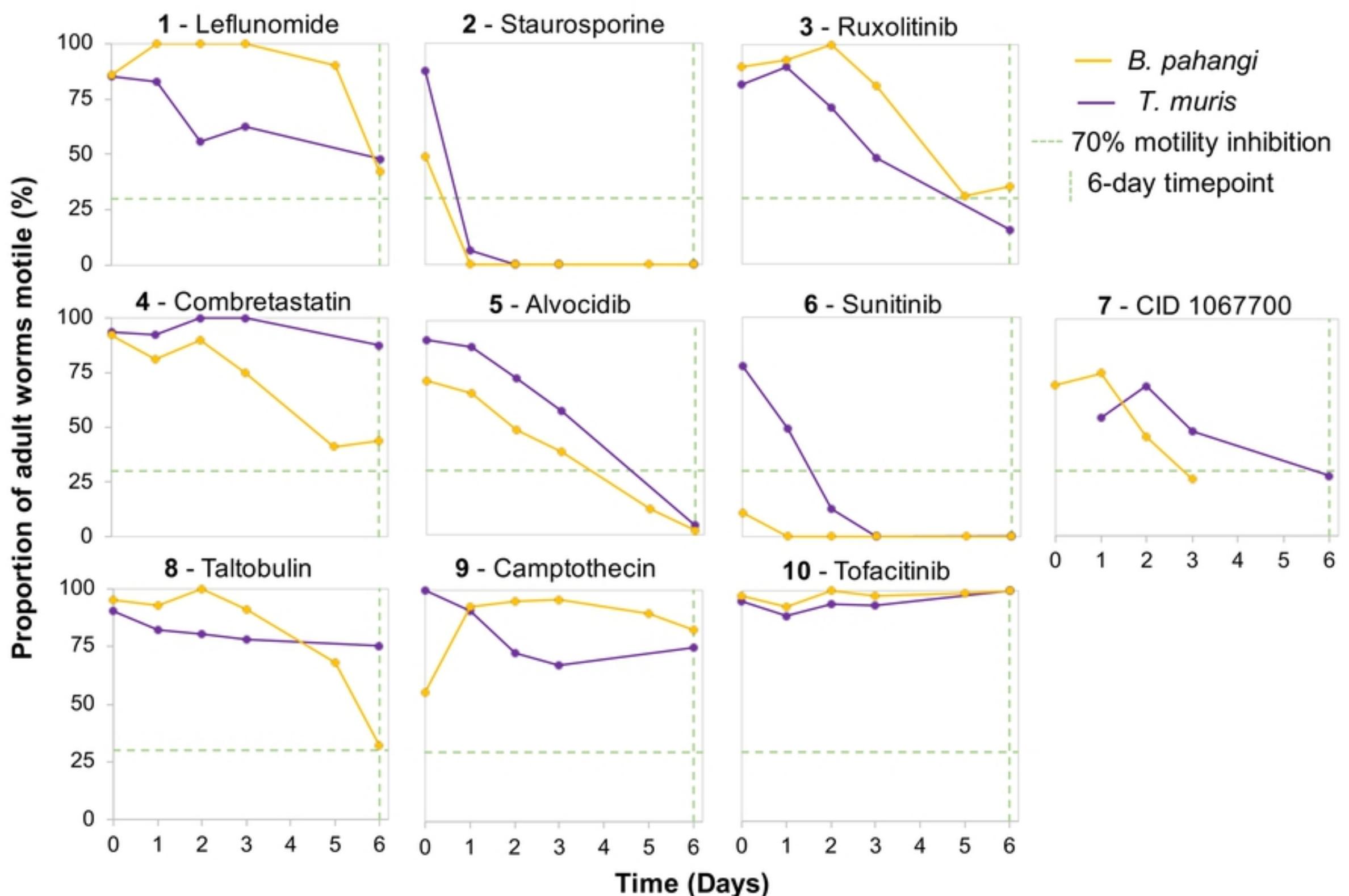
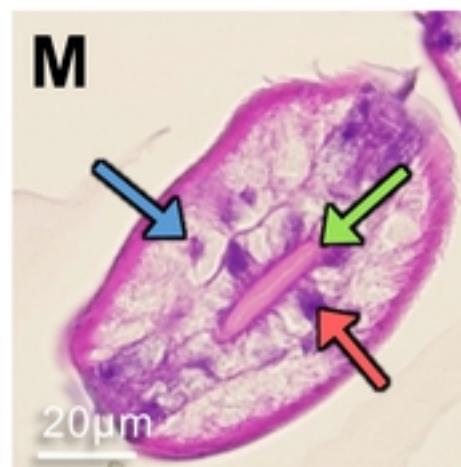
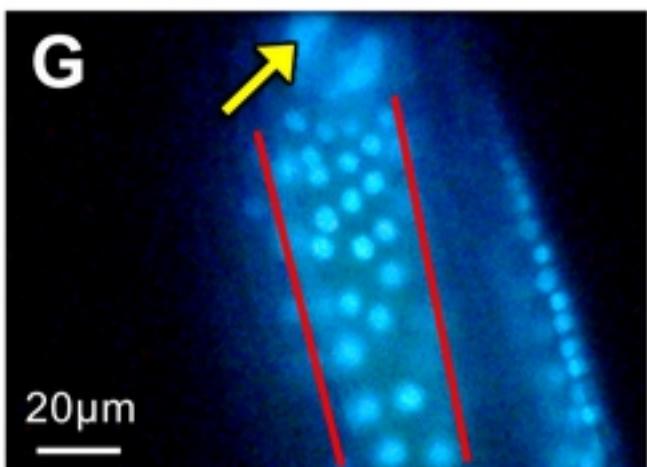
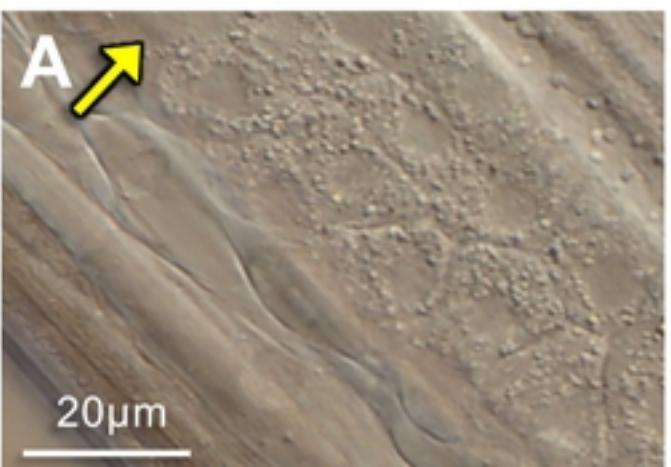
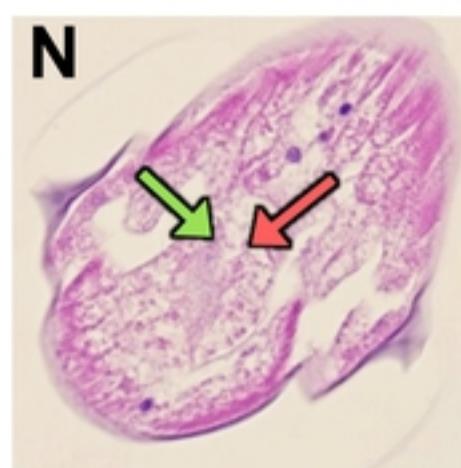
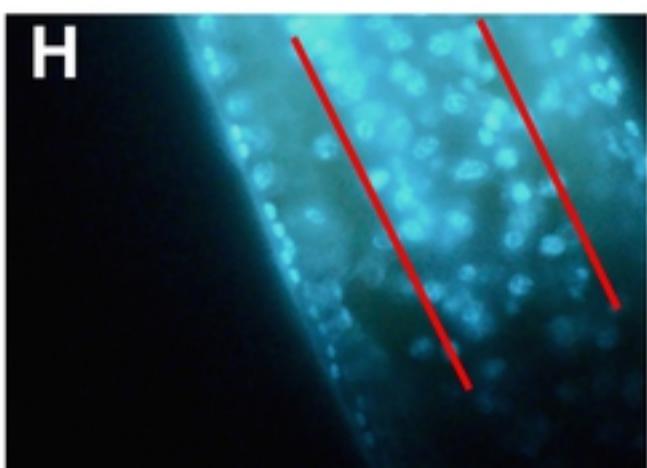
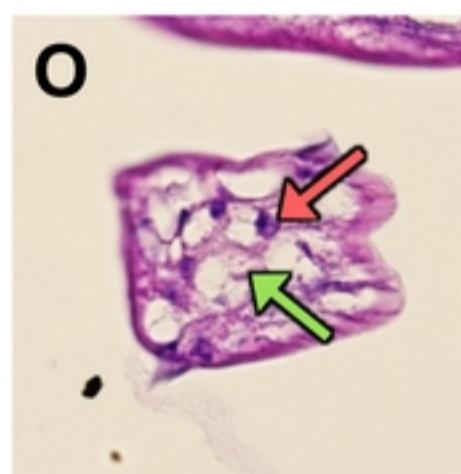
B. Day 2 larvae, treated for 5 days with 25 μ M staurosporine


C. Day 0 larvae, treated for 5 days with 25 μ M staurosporine

D. Day 0 larvae, no treatment after 5 days

E. Day 2 larvae, treated for 5 days with various concentrations of sunitinib

Figure 5

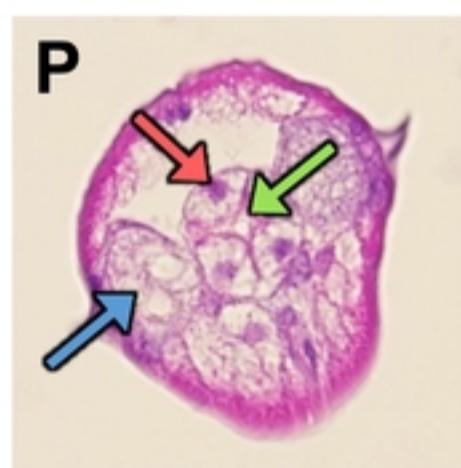
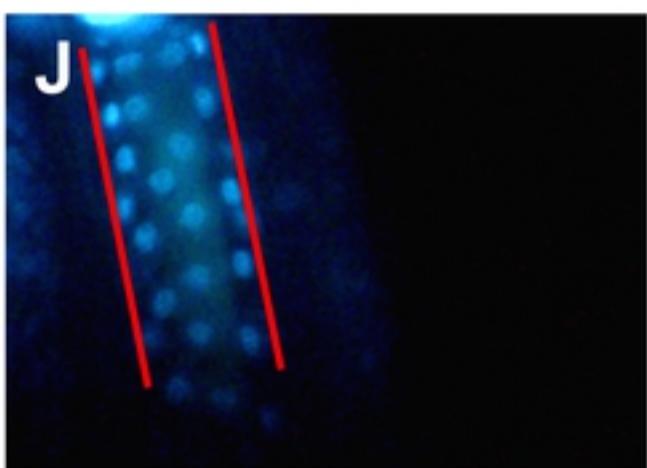
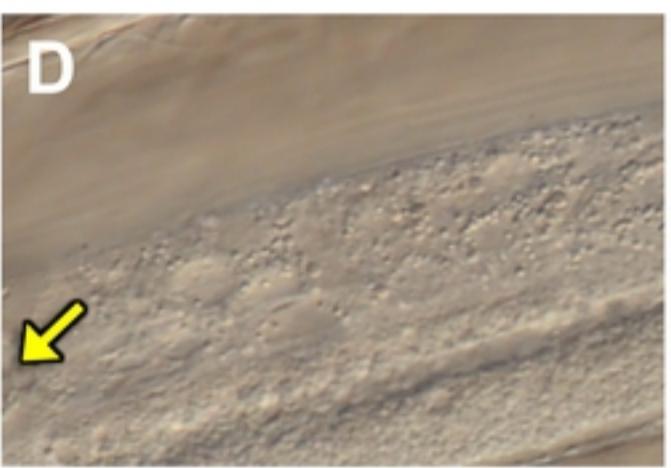
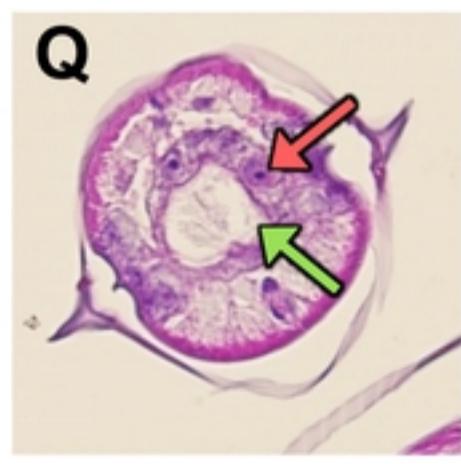
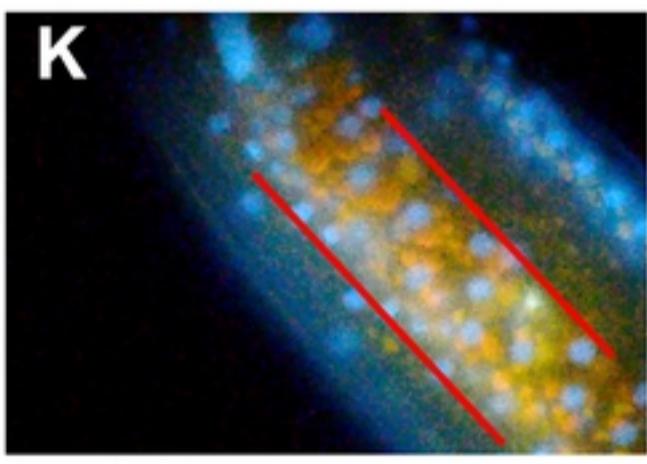
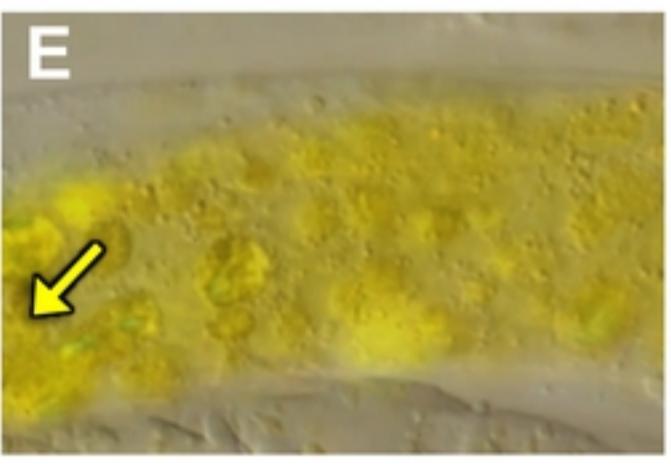
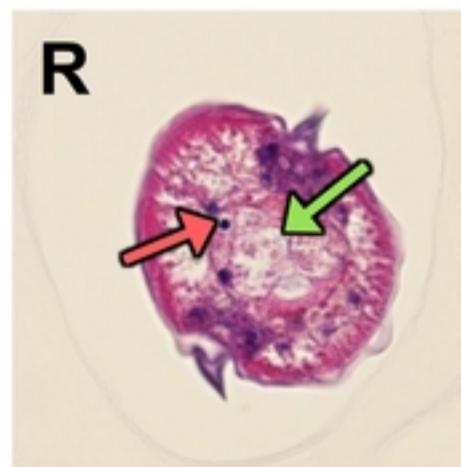
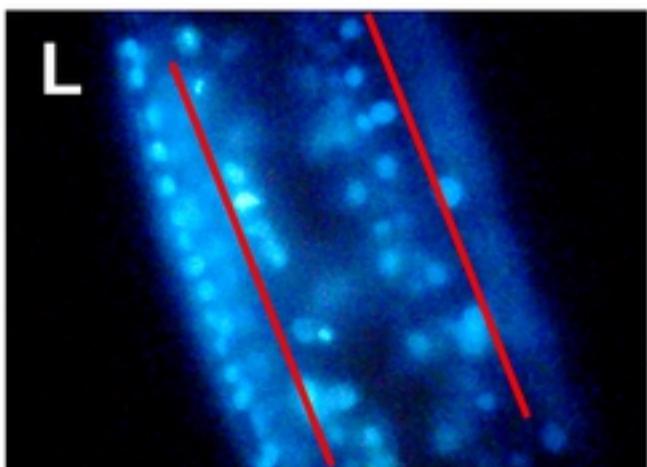









Figure 6

Treatment**DIC****Bisbenzimide****Histology****Control****1 - Leflunomide****2 - Staurosporine****5 - Alvocidib****6 - Sunitinib****7 - CID 1067700****Figure 7**

bioRxiv preprint doi: <https://doi.org/10.1101/852525>; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.