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Abstract

Mutual information is widely used to characterize dependence between biological signals, such as co-
expression between genes or co-evolution between amino acids. However, measurement error of the bi-
ological signals is rarely considered in estimating mutual information. Measurement error is widespread
and non-negligible in some cases. As a result, the distribution of the signals is blurred, and the mutual
information may be biased when estimated using the blurred measurements. We derive a corrected es-
timator for mutual information that accounts for the distribution of measurement error. Our corrected
estimator is based on the correction of the probability mass function (PMF) or probability density func-
tion (PDF, based on kernel density estimation). We prove that the corrected estimator is asymptotically
unbiased in the (semi-) discrete case when the distribution of measurement error is known. We show that
it reduces the estimation bias in the continuous case under certain assumptions. On simulated data, our
corrected estimator leads to a more accurate estimation for mutual information when the sample size is
not the limiting factor for estimating PMF or PDF accurately. We compare the uncorrected and corrected
estimator on the gene expression data of TCGA breast cancer samples and show a difference in both the
value and the ranking of estimated mutual information between the two estimators.
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1 Introduction

Mutual information is an important measure to evaluate the degree of dependence between biological sig-
nals. It compares the joint probability of two signals with their marginal probability and is able to capture
both linear and non-linear dependencies. However, when the biological signals are measured with error, the
error blurs the probability distribution of the signals and leads to inaccurate mutual information estimates.
Current studies on mutual information, both from a theoretical perspective and from an application perspec-
tive, mostly assume the observed signals are accurate. Ignoring the potential measurement error leads to
biases in the estimated mutual information between the signals.

Applications of mutual information in computational biology include analyzing the co-evolution rela-
tionship between amino acids or nucleotides [1], inferring co-occurrence patterns of protein domains [2],
constructing gene regulatory networks [3], studying neural connectivity circuits [4], and so on. An accurate
estimation of mutual information is critical to these studies.

Measurement error for some biological signals is non-negligible, especially when high resolution of the
measurement is needed. For example, inferring transcript-level abundances tends to be more error-prone
than inferring gene-level abundances [5]. However, transcript-level abundances are able to reveal more de-
tailed changes between samples such as differential isoform usage [6]. Recent single-cell measurements [7–
12] suffer from more measurement error, of which the causes include doublets [13] and dropouts [14]. The
increasing degree of measurement error poses a challenge of accurately estimating the mutual information
of the true biological signals. In general, the high noise-to-signal ratio is challenging for revealing patterns
in many fields of analyses.

Measurement error has been modeled and used in analyses in some areas, but it is not known how to
incorporate these errors into the mutual information estimation. For example, a correction term for measure-
ment error has been developed for Pearson correlation by Spearman [15]. In expression quantification, the
measurement error has been modeled and integrated into the analysis of detecting differentially expressed
genes/transcripts. Some quantification methods [16, 17] use bootstrapping or Gibbs sampling strategies to
estimate a series of possible abundances to represent the scale of the measurement error. As shown by
Pimentel et al. [18] and Zhu et al. [19], incorporating a model of measurement error into the differential
expression detection methods improves the accuracy. This inspires the incorporation of the measurement
error in other analyses.

Many theoretical studies about mutual information focus on correcting biases due to small sample sizes
or deriving better estimation for probability density function (PDF). However, error-free measurements are
usually implicitly assumed in these studies. Basharin [20] focused on discrete distributions and derived
a correction term for the estimation bias due to small sample sizes in estimating probability mass func-
tion (PMF), which is further used in mutual information calculation. Moon et al. [21] proposed a mutual
information estimator when the random variables follow continuous distributions. Their estimator uses ker-
nel density estimation (KDE) with the bandwidth suggested in Silverman [22] to estimate PDF. Kraskov
et al. [23] later proposed a k-nearest neighbor (KNN) approach for estimating PDF in mutual information
calculation. Khan et al. [24] compared KNN-based mutual information estimator and the KDE-based one
and characterized the cases where one is better than the other. Their comparison includes the case where
signals are measured with error, but adaptation or correction for the error is not proposed. Holmes and
Nemenman [25] based their work on the KNN mutual information estimator and presented a strategy to use
bootstrapping of samples to estimate the error bars of estimated mutual information. Zeng et al. [26] devel-
oped a mutual information estimator based on copula density estimation [27] with the Jackknife approach.
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In this work, we derive a corrected mutual information estimator that reduces the inaccuracy caused by
measurement error. Our corrected estimator is based on a correction for the estimated PMF in the (semi-)
discrete case or for the KDE in the continuous case using the distribution of measurement error. We prove
that in the (semi-) discrete case our corrected estimator is asymptotically unbiased when the measurement
error distribution is known. We discuss the assumptions under which the corrected estimator in the contin-
uous case leads to a reduced bias in mutual information estimation. Using simulated data, we show that
our corrected estimator is more accurate than the baseline estimator that plugs in the average bootstraps
of observations in the (semi-) discrete or KDE-based mutual information estimators. The result shows
that the derivation is correct and our corrected estimator effectively reduces the bias of mutual informa-
tion estimation. Using the corrected and uncorrected estimator to calculate the pairwise mutual information
between gene expression estimates on 1168 breast cancer samples in The Cancer Genome Atlas (TCGA,
https://cancergenome.nih.gov), we observe a high Spearman correlation between the results of both estima-
tors in general. However, the specific values of estimated mutual information vary as much as 40%, and the
sets of genes with high estimated mutual information differ. Therefore, when the values of mutual informa-
tion are of interest or the ranking of the subset of genes with the highest mutual information is needed, the
effect of measurement error cannot be ignored.

2 Methods

2.1 Problem setup and baseline solution

Mutual information I(X,Y ) between random variables X and Y is defined by the Kullback–Leibler diver-
gence between the joint distribution and the multiplication of its two marginal distributions:

I(X,Y ) =

∫
P (x, y) log

P (x, y)

P (x)P (y)
dx dy (1)

where P (x, y) is the joint probability density or probability mass function, P (x) and P (y) are the marginal
probability density or mass functions of random variables X and Y . P (x, y) is usually not known and
is estimated from samples. Mutual information captures the probability dependence between two random
variables, specifically, whether the value of one random variable changes the belief of what value the other
random variable takes.

In the presence of measurement error, we assume the true values and observed values of two biological
signals (ξx and ξy) are generated as follows. The joint distribution Pµxµy describes the likelihood of true
values of signals ξx and ξy across all samples. Let (µxs, µys) be the true intensities of the two signals in
sample s. (µxs, µys) is drawn from the distribution Pµxµy . The measurement error follows the distribution
Pεxεy and assumed to affect the true signals through addition. Measurement errors of signal ξx and of ξy may
affect each other, and thus we do not assume the independence between εx and εy. Suppose the true signal
(µxs, µys) of sample s is measured multiple times and let (εxsj , εysj) be the error of the jth measurement,
the jth observation is

(Xsj , Ysj) = (µxs + εxsj , µys + εysj)

Given the observation (Xsj , Ysj) of S samples each measured B times, we would like to estimate the
dependence between the true signals I(µx, µy).

Treating the observed signal values (Xsj , Ysj) as the true values (µxs, µys) leads to an inaccurate esti-
mation of mutual information I(µx, µy). Because the probability density or mass function of the observation
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is different from that of the true signal values. Let Pxy be the probability density or mass function of the
observation. It has the following relationship with the distribution of the true signal values:

pxy(Xsj = x, Ysj = y) =

∫
pµxµy(µxs = a, µys = b)pεxεy(εxsj = x− a, εysj = y − b) da db. (2)

Similarly, the marginal distributions of Xsj and Ysj are different from that of µxs and µys. Since Pxy, Px,
and Py differ from Pµxµy , Pµx , and Pµy , the mutual information calculated using the distribution of the
observation also differs from I(µx, µy).

Our goal is to derive an accurate estimation of the mutual information between µx and µy using the
observations Xsj and Ysj . We measure the accuracy by whether the bias of estimation is close to zero,
where the bias is the difference between the expectation of the estimated and the true mutual information.

We further assume that the measurement error has zero expectation and that follows the same distribution
across all samples. Based on these assumptions, we derive a corrected mutual information estimator for both
the semi-discrete case and the continuous case separately. Finally, we relax the assumption that the error
distribution is the same and extend our corrected estimators.

2.2 Semi-discrete case: correcting the probability mass function using a transition matrix

In the semi-discrete case, we assume that both the true signals (µx, µy) and the observed signals (X,Y )
are real-valued. Observed signals (X,Y ) are a perturbation of (µx, µy) by adding measurement errors. The
real-valued space is partitioned into several categories. Let gx : R → {Cx1, · · · , Cxrx} be the category
mapping function that maps the real-valued signal of ξx to its corresponding categories, and gy : R →
{Cy1, · · · , Cyry} be the category mapping function for signal ξy. The two category mapping functions can
be combined by g : R × R → {C1, . . . , Cn}, which is defined as g(a, b) = (gx(a), gy(b)) for any signal
intensity a of ξx and intensity b of ξy, and the pairs of categories of (Cxj , Cyk) are reparameterized using
Ci. g informs the categories of both ξx and ξy simultaneously, and the probability mass function (PMF)
of g(X,Y ) (or g(µx, µy)) informs both the PMF of gx(X) (or gx(µx)) and the PMF of gy(Y ) (or gy(µy)).
The mutual information between the categories, gx(µx) and gy(µy), is of interest. For example, µx and
µy are the probability of a logistic regression that has two categories, high and low (Figure 1). X and Y
are estimated probabilities, which may fall into a different category from the true signals. We assume that
g is known, which is a reasonable assumption when the partition of the real-valued space is biologically
meaningful. Our goal is to derive an estimator for the mutual information between gx(µx) and gy(µy) using
the observation gx(X) and gy(Y ).

Figure 1: Example of real-valued (µx, µy) and the partition of the space into four categories. Observation
(X,Y ) is different from (µx, µy) due to measurement error. Here g(µx, µy) = C2 and g(X,Y ) = C4.

Given sample s and bootstrap measure b, the probability of the observation g(Xsb, Ysb) has the following
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relationship with g(µxs, µys):

P(g(Xsb, Ysb) = Ci) =
∑
j

P(g(Xsb, Ysb) = Ci | g(µxs, µys) = Cj)P(g(µxs, µys) = Cj). (3)

Define the following matrix F ∈ Rn×n, and PMF P ∈ Rn and Q ∈ Rn:

Fji = P(g(Xsb, Ysb) = Ci | g(µxs, µys) = Cj)

P = (P(g(µxs, µys) = C1), . . . , P(g(µxs, µys) = Cn))T

Q = (P(g(Xsb, Ysb) = C1), . . . , P(g(Xsb, Ysb) = Cn))T .

(4)

Using the above matrix and vector notations, equation (3) is equivalent to QT = P TF , where matrix F can
be viewed as a transition matrix. We use this equality to derive the following corrected estimator.

Theorem 1. Given transition matrix F as defined in equation (4), measurements of signals {Xsb} and {Ysb}
for 1 ≤ s ≤ S and 1 ≤ b ≤ B, let Q̂ = 1

S

∑S
s=1 (1(g(Xs1, Ys1) = C1), . . . ,1(g(Xs1, Ys1) = Cn))T ,

where 1 is the indicator function. If Q̂TF−1 ≥ 0 element-wise, and the mutual information is estimated
using joint PMF of Q̂TF−1 and the corresponding marginal PMFs, then the estimated mutual information
is an unbiased estimator for the target mutual information of P T asymptotically as S →∞.

Sketch of proof. We use the property that mutual information is a linear combination of three entropy terms

I(X,Y ) = H(X,Y )−H(X)−H(Y ),

where the entropy of a (joint) discrete random variable with PMF Q = (q1, . . . , qn)T is defined as

H = −
∑
i

qi log(qi).

If the entropy estimator Ĥ = −
∑

i(Q̂
TF−1)i log(Q̂TF−1)i is an unbiased estimator for H =

−
∑

i pi log(pi), then the mutual information calculated using Q̂TF−1 is an unbiased estimator for the
mutual information calculated using P , where (Q̂TF−1)i is the ith element of vector Q̂TF−1.

Basharin [20] proved that entropy calculated using Q̂ is an unbiased estimator for the entropy calculated
using Q as the number of samples goes to infinity. We use their proof as a template and derive that the
entropy of Q̂TF−1 is an unbiased estimator of QTF−1 = P as the number of samples goes to infinity. See
Lemma S2 in Appendix Section S1.1 for the details of proof that entropy of Q̂TF−1 is an unbiased estimator
of the entropy of QTF−1.

With a little abuse of notation, the unbiasedness also holds for the following estimator.

Corollary 1.1. Given measurements of signals {Xsb} and {Ysb} for 1 ≤ s ≤ S and 1 ≤ b ≤ B, let
X̄s• = 1

B

∑B
b=1Xsb and Ȳs• = 1

B

∑B
b=1 Ysb. Let transition matrix F ∈ Rn×n have the following entries

Fji = P(g(X̄s•, Ȳs•) = Ci | g(µxs, µys) = Cj).

Let the estimated PMF be Q̂ = 1
S

∑S
s=1

(
1(g(X̄s•, Ȳs•) = C1), . . . ,1(g(X̄s•, Ȳs•) = Cn)

)T , where 1 is the
indicator function. If Q̂TF−1 ≥ 0 element-wise, and the mutual information is estimated using joint PMF of
Q̂TF−1 and the corresponding marginal PMFs, then estimated mutual information is an unbiased estimator
for the target mutual information of P T asymptotically as S →∞.
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The above theorem and corollary hold for both the semi-discrete case and the discrete case. However,
matrix F is generally not known beforehand, and an estimation of F is required. We provide an estimation
for F based on the real-valued assumption in the semi-discrete case.

We assume the distribution of (µx, µy) within each category is a uniform distribution and approximate
the measurement error by a Gaussian distribution. A Gaussian distribution is appropriate to approximate the
measurement error because the Central Limit Theorem states that (X̄s•, Ȳs•) converges in distribution to a
Gaussian distribution as B →∞. Let N(0, Σ̂ε) be the limiting distribution for (X̄s• − µxs, Ȳs• − µys). Let
Ui = [lxi, uxi] × [lyi, uyi] be the real-valued range corresponding to g(µx, µy) = Ci and Uj = [lxj , uxj ] ×
[lyj , uyj ] be the ranges corresponding to g(µx, µy) = Cj . The approximated transition probability is:

F̂ji =
1

(uxj − lxj)(uyj − lyj)

∫
(xi,yi)∈Ui

∫
(xj ,yj)∈Uj

1

2π

√
|Σ̂ε|

exp

{
−
(
xi − xj
yi − yj

)T
Σ̂−1ε

(
xi − xj
yi − yj

)}
dxj dyj dxi dyi.

In the discrete case, correcting the distribution of (µx, µy) using transition matrix F has the same form
as image denoising or deblurring [28]. Nevertheless, the goal of image deblurring is to correct the individual
observation, but our estimator is based on correcting the distribution. The estimated PMF is proportional to
the counts in the discrete case. The counts can be viewed as an observation from an multinomial distribution.
From this perspective, correcting the counts is equivalent to correcting an multinomial observation, which
explains the similarity between image deblurring and PMF correction.

2.3 Continuous case: correcting estimated PDF using kernel density estimation (KDE)

In this section, we aim to reduce the bias in the KDE-based mutual information estimation in the continuous
case. We first introduce the formula of the KDE-based mutual information estimator and derive its estima-
tion bias. We then derive a correction for the estimated density and prove the unbiasedness of the corrected
density estimation. We finally discuss the scenarios when the corrected density reduces the error in mutual
information estimation.

Moon et al. [21] develops a mutual information estimator that uses the kernel density estimation to
estimate the PDF. Given true signal values (µxs, µys) and using a diagonal bandwidth matrix, the kernel
density estimation given by Silverman [22] is

pµxµy(µx, µy) =
1

Shxhy

S∑
s=1

1

2π
exp

{
−1

2

(
µx − µxs
µy − µys

)T ( 1
h2x

0

0 1
h2y

)(
µx − µxs
µy − µys

)}
, (5)

where hx and hy are the bandwidth for the two axes separately. The estimation of mutual information is the
sample average of the differences among the log of probability densities:

Î(µx, µy) =
1

S

S∑
s=1

(
log pµxµy(µxs, µys)− log pµx(µxs)− log pµy(µys)

)
. (6)

With given true values (µxs, µys), these estimators are unbiased as S → ∞ except for the boundaries or
tails of the distribution [29].
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In presence of measurement error, (µxs, µys) is not observed. The observation (Xsj , Ysj) is a summation
of the true signal and error, where the error distribution is estimable from the bootstraps. We assume the
distribution of measurement error is the same for all samples. The density of the observation pxy is different
from the density of the true signals pµxµy as shown by equation (2). Our goal is to derive a corrected
estimator for mutual information of I(µx, µy) with a reduced bias.

The bias of each log term in mutual information estimator in equation (6) has the following upper bound.

Lemma 1. Given the true probability density p and fixed point (x, y), for any estimator of the density at
the point p̂(x, y), if the true and estimated density are lower bounded by δ > 0, that is, p(x, y) ≥ δ and
p̂(x, y) ≥ δ, then the bias of log(p̂) at the point is upper bounded by:

|E(log p̂(x, y))− log p(x, y)| ≤ 1

p(x, y)
|E(p̂(x, y))− p(x, y)|+ Var(p̂(x, y)) + (E(p̂(x, y))− p(x, y))2

δ2
.

(7)

Sketch of proof. The three main steps of deriving the inequality are: applying Taylor expansion on the log
function with mean value form of the remainder, then taking the expectation on both sides, and finally
replacing the quadratic term with bias-variance decomposition. See Appendix Section S1.2 for the details.

According to this lemma, if the density estimator p̂ has both small bias and small variance at a non-
zero density position (x, y), the log terms in equation (6) will have small bias. The points evaluated in
equation (6) are true signal values (µxs, µys), and thus the true densities and the estimated densities by KDE
using the observed signals (Xsj , Ysj) at these points are non-zero. We focus on reducing the bias of density
estimation, E(p̂(x, y)) − p(x, y), and derive the following (asymptotically) unbiased estimators for each
summation term in the KDE density formula (5).

Theorem 2. Let X̄s• = 1
B

∑B
j=1Xsj and Ȳs• = 1

B

∑B
i=1 Ysj . Let W be an diagonal bandwidth matrix

used in KDE, W = diag( 1
h2x
, 1
h2y

). Assuming the measurement error of
(
X̄s• − X̄t•, Ȳs• − Ȳt•

)T follows

a Gaussian distribution N((µxs − µxt, µys − µyt)
T , 2

BΣε), let P and {ζ1, ζ2} be the eigenvectors and

eigenvalues of 1
BΣ

1
2
ε WΣ

1
2
ε . Let λi = ζi

1−2ζi , Λ =

(
λ1 0
0 λ2

)
, andA = B

2 Σ
− 1

2
ε P TΛPΣ

− 1
2

ε . When ζi satisfies

ζi <
1
2 for all i, the following estimator,(

2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)}
, (8)

is an unbiased estimator for the KDE term in equation (5):

exp

{
−1

2

(
µxs − µxt
µys − µyt

)T
W

(
µxs − µxt
µys − µyt

)}
.

The proof of the theorem is in Appendix Section S1.3.

Given sample s, the covariance of error Σε is usually not known or the error may not be a Gaussian
distribution. Nevertheless, a Gaussian limiting distribution is a good approximate to model the error as
shown in Central Limit Theorem: (

X̄s•

Ȳs•

)
d−→ N(

(
µxs
µys

)
,

1

B
Σ̂ε),
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where d means convergence in distribution and the estimated Σ̂ε is calculated by

Σ̂ε =
1

SB − 1

S∑
s=1

B∑
i=1

(
Xsj − X̄s•

Ysj − Ȳs•

)(
Xsj − X̄s•

Ysj − Ȳs•

)T
. (9)

We prove that using the estimated error distribution in equation (9) leads to an asymptotically unbiased
estimator for the corresponding KDE term.

Theorem 3. Let P and {ζ1, ζ2} be the eigenvectors and eigenvalues of 1
B Σ̂

1
2
ε W Σ̂

1
2
ε . Let λi = ζi

1−2ζi ,

Λ =

(
λ1 0
0 λ2

)
, and Â = B

2 Σ̂
− 1

2
ε P TΛP Σ̂

− 1
2

ε . When ζi satisfies ζi < 1
2 for all i, the following estimator is

an asymptotically unbiased estimator for the KDE term in equation (5):(
2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
Â

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)}
. (10)

See Appendix Section S1.4 for the proof.

Corollary 3.1. Let σ̂2εx be the variance of measurement error on signal ξx, which is the top left ele-
ment in covariance matrix Σ̂ε. When σ̂2

εx
B ≤ h2x

2 , the following estimator is an unbiased estimator for

exp
{
−1

2
(µxs−µxt)2

h2x

}
:

hx√
h2x − 2

B σ̂
2
εx

exp

{
−1

2

(X̄s• − Ȳs•)2

h2x −
2σ̂2
εx
B

}
. (11)

A corrected mutual information estimator can be derived by plugging in the corrected density estima-
tor (10) and (11) into equation (6). We claim that when λi is small, the expectation of p̂ dominates the
second order moment around 0, which further dominates Var(p̂(x, y)).

Claim 1. There exists a small positive number δ such that when 0 ≤ λi ≤ δ,

E

((
2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)})
≥

E

(( 2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)})2
 .

See Appendix Section S1.5 for the proof. In the case where the expectation of an estimator dominates over
the variance, reducing the bias tends to be more effective than reducing the variance and keeping a large bias.
Using the corrected density estimator, the bias of density term in equation (7) is zero, E(p̂(x, y))−p(x, y) =
0. With a zero bias and a small variance, the error in mutual information estimation is also small.

The condition of ζi < 1
2 in Theorem 2 and small λi in Claim 1 may not hold with a predefined bandwidth.

We take a heuristic strategy of shrinking the error covariance by a scalar and using the shrunk covariance
to construct the estimator. Using this strategy, the corrected density estimator is no longer asymptotically
unbiased. Nevertheless, the corrected estimator with the shrinking covariance strategy still performs better
than the baseline that directly uses (X̄s•, Ȳs•) in the KDE (5) and mutual information estimation (6), as we
show in Results Section.

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2019. ; https://doi.org/10.1101/852384doi: bioRxiv preprint 

https://doi.org/10.1101/852384
http://creativecommons.org/licenses/by/4.0/


2.4 Relaxing the assumption of the same error distribution across samples

Biological datasets usually do not have the same distribution of measurement errors across all samples or
datasets. Even within datasets, the error distribution varies because of the domain of the measurements
or the constraints of the computational methods. For example, gene expression is constrained to be non-
negative. Thus the standard deviation of lowly expressed genes is lower compared to that of highly expressed
genes. Therefore, we adapt our corrected estimators for the case where different samples have different
measurement errors.

In the semi-discrete case, the error distribution assumption can be relaxed so that each joint category has
its unique error distribution. Under the relaxed error distribution assumption, the entry in transition matrix
Fji can be calculated using the error distribution for category Cj . The corrected PMF Q̂TF−1 is still an
asymptotically unbiased estimator.

In the continuous case using KDE, the error distribution assumption can be relaxed so that each sam-

ple has a unique error distribution. Each KDE term exp

{
−1

2

(
µxs − µxt
µys − µyt

)T
W

(
µxs − µxt
µys − µyt

)}
can be

corrected using the sum of error covariance in sample s and t. However, the estimated error covariance
may be less accurate because there are only B bootstraps to estimate the sample-specific error distribution,
compared to estimating the covariance for all samples from SB bootstraps.

3 Results

3.1 Corrected PMF leads to more accurate mutual information estimation in simulated
semi-discrete signals

We simulate the semi-discrete signals by the following procedure. Each of ξx and ξy have 5 categories with
real-valued measurements corresponding to [i − 1, i) for 1 ≤ i ≤ 5. A ground truth PMF is simulated
from the 5 × 5 categories with a Dirichlet prior. The true signals within each category follows a uniform
distribution in the space of [i − 1, i) × [j − 1, j). Each joint category has its unique measurement error
distribution, which is a mixture of two Gaussian distributions. Using these probability distributions, we
simulate observations using various numbers of samples (100, 500, 1000, 10 000 and 100 000) and various
numbers of bootstrap measurements (10, 20, 50 and 100). We compare our corrected estimator with the
baseline estimator that treats X̄s• and Ȳs• as true signals for estimating PMF and mutual information.

With a fixed bootstrap size and a large sample size, our correction in more accurate in estimating PMF
as well as mutual information (Figure 2A, C). Specifically, when the sample size is larger than or equal
to 500, the corrected estimator shows its improvement compared to the baseline in both PMF and mutual
information estimation. As the sample size grows, the improvement becomes more noticeable. With a small
sample size, the sample size is the bottleneck of accurately estimating the PMF, and therefore the corrected
estimator does not show an improvement.

Fixing the bootstrap size, the estimation error for mutual information increases as the number of samples
increases for both corrected and baseline estimator (Figure 2C). The baseline PMF estimation converges to a
different distribution from Pµxµy and thus is more biased, which explains its increasing error. The estimation
error of the corrected estimator increases more slowly than the baseline. However, it does not converge to
the true mutual information either, which is possibly because the error is non-Gaussian and suffers from
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Figure 2: (A–B) `1 distance between the true PMF and estimated PMF when using baseline (average of
bootstraps) estimator and the corrected estimator. (A) The number of bootstraps is fixed to be 20 and the
number of samples are indicated by x axis. (B) The number of samples is fixed to be 1000 and the number
of bootstraps are indicated by x axis. (C–D) Absolute difference between true mutual information and
estimated mutual information when using baseline PMF and corrected PMF. (C) The number of bootstraps
is fixed to be 20 and the number of samples is indicated by x axis. (D) The number of samples is fixed to be
1000 and the number of bootstraps is indicated by x axis.

estimation error with a fixed bootstrap size.

With a fixed sample size, increasing the number of bootstraps reduces the estimation error for both
baseline and corrected estimator (Figure 2B, D). This can be explained by that both the baseline and the
corrected estimator are asymptotically unbiased as the number of bootstraps goes to infinity. However,
before the number of bootstraps is sufficiently large, the corrected estimator achieves a smaller estimation
error.

3.2 Corrected KDE leads to more accurate mutual information estimation for simulated
Gaussian mixtures

The true signal (µx, µy) is simulated from a mixture of bi-variated Gaussian distributions. In each of the
mixture, the measurement error is a mixture of two Gaussian distributions that have smaller covariances than
the Gaussian covariance matrix of (µx, µy). We simulate various numbers of mixtures (2, 5, 10 and 20),
various numbers of samples (500, 1000, 5000 and 10 000), and various numbers of bootstraps (20, 50 and
100). Since there is no closed-form expression of mutual information for a mixture of Gaussian distributions,
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Figure 3: Absolute difference between the true mutual information and estimated mutual information using
the baseline estimator and the corrected estimator. (A) The mixture size is 10, the bootstrap size is 20,
and the sample size is indicated by x axis. (B) The mixture size is 10, the sample size is 5000, and the
bootstrap size is indicated by x axis. (C) The sample size is 5000, bootstrap size is 20, and the mixture size
is indicated by x axis. (D) Simulation of weakly dependent random variables. The true signals follows a
bi-variate Gaussian distribution. The sample size is 5000 and the bootstrap size is 20. X axis is the true
mutual information.

we apply the KDE-based mutual information estimation (6) on the simulated true signals (µxs, µys) and use
it as the true mutual information. When calculating the corrected estimation in equation (10), we split the
samples into clusters by applying K-means clustering on the sample-specific error covariance and estimate
an error covariance using all samples in each cluster. The number of K-means clusters is set to the same
as the number of Gaussian mixtures. The error covariance matrix is shrunk so that ζi < 0.25 to satisfy the
conditions in Theorem 3 and Claim 1. We compare to a baseline estimator that uses the average of bootstraps
in the KDE-based mutual information estimator in (5) and (6). The bandwidths are set to be hx = (4σ̂x

5

3S )
1
5

and hy = (
4σ̂y

5

3S )
1
5 as suggested by Silverman [22] for both estimators.

With a fixed number of bootstraps, we observe the same pattern as in the semi-discrete case: the cor-
rected mutual information estimator achieves smaller biases than the baseline (Figure 3A). When the sample
size becomes larger, the improvement of the corrected estimator becomes more apparent because the esti-
mated density converges to its expectation.

With a fixed number of samples, increasing the number of bootstraps reduces the mutual information
estimation error for both estimators (Figure 3B). The improvement of the corrected estimator is visible even
with 100 bootstraps, especially in terms of the smaller variance of estimator error.
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We observe that the correction is effective for various numbers of mixtures (Figure 3C), but the effec-
tiveness is more significant under a larger number of mixtures. Using Mann-Whitney one-sided U test to
compare the accuracy between the baseline and corrected mutual information, the p-value is 0.002 for two
mixtures, 1.41×10−7 for five mixtures, and 4.46−16 for ten mixtures under 5000 samples and 20 bootstraps.
Nevertheless, a wider range of mixture sizes needs to be tested in order to study the effect of the number of
mixtures on mutual information estimation in more detail.

The corrected estimator is able to reveal strong dependencies when they are shadowed by the measure-
ment error. However, when the dependence is weak or even the two signals are independent, the correction
may lift the estimated mutual information and falsely show a small dependence (Figure 3D). Therefore, the
corrected mutual information estimator should be only applied when the dependence is large after correction.

3.3 Genes with largest mutual information with known cancer genes are slightly changed
by corrected estimator

We applied the corrected mutual information estimator on 1168 breast cancer samples from TCGA to in-
vestigate what genes have high mutual information with known cancer genes. TCGA RNA-seq samples are
quantified by Salmon [17] with 100 bootstraps for evaluating the measurement error. With 10 arbitrarily
chosen cancer genes from COSMIC [30] (cancer.sanger.ac.uk), we estimate the mutual information using
both the original KDE-based estimator (uncorrected) with the default single-point Salmon quantification
and our corrected mutual information.
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Figure 4: (A) The ratio of change from the uncorrected mutual information estimate to the corrected estimate
for the top 500 genes with the largest uncorrected estimates. X axis is the 10 known cancer genes and the box
is plotted for the 500 genes with the largest uncorrected mutual information. (B) The symmetric difference
between the set of top several genes with largest uncorrected mutual information and the set of top genes
with the largest corrected mutual information. X axis is the size of each set and the box is plotted for 10
known cancer genes.

In general, the uncorrected and corrected estimator agree with each other. For each of the selected
cancer gene, we compute the corrected and uncorrected mutual information between this gene and all other
genes. The Spearman correlation between uncorrected and corrected mutual information is greater than
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0.98. However, a detailed analysis of the top genes with high mutual information reveals the difference
between the two estimators.

Among the 500 genes with highest uncorrected mutual information values for each selected cancer gene,
the corrected estimations between the selected genes and those 500 genes vary as much as 10%–40% from
the uncorrected ones (Figure 4A, the range of the largest y axis values across selected genes shown on
x axis). The sets of genes with the highest estimated mutual information between the two estimators are
different when fixing the set size (Figure 4B). Therefore, when the specific values of mutual information are
used or when the subset of genes with the highest mutual information is of interest, the measurement error
has an effect on the result and the corrected mutual information estimator should be considered.

We show two example genes where the corrected estimator decreases its ranking of mutual information.
The rank of estimated mutual information between gene CASP9 and known cancer gene SDHB decreases
from 91 to 67 (the estimate changes from 0.198 to 0.211). SDHB affects mitochondrial function and CASP9
helps cell apoptosis [31]. Mitochondria plays a role in cell apoptosis [32], providing support that the expres-
sions of the two genes possibly are dependent. The rank of the estimate between genes GRAP2 and LCK
decreases from 86 to 71 (the estimate changed from 0.483 to 0.509). Both GRAP2 and LCK are involved in
T-cell-receptor signaling pathway [33].

In this analysis, there is no ground truth about the true mutual information or the ranking of the pairwise
mutual information. In addition, the number of biological samples may not be large enough to reveal the
true dependence between genes. A larger number of samples and a better validation are needed for a more
comprehensive evaluation of the performances of the corrected and uncorrected estimator.

4 Discussion

We derive a corrected mutual information estimator to account for the measurement error for both semi-
discrete and continuous measurements. Our corrected estimator is based on estimating the probability mass
function (PMF) or probability density function (PDF) in an asymptotically unbiased way. We prove that in
the semi-discrete case the corrected mutual information estimator derived from the unbiased PMF estimation
is asymptotically unbiased. We give conditions under which our corrected estimator in the continuous case
reduces the bias of mutual information estimation. On simulated data, the corrected estimators for both semi-
discrete and continuous cases are more accurate compared to the baseline of using the bootstrap average in
mutual information estimation.

We compare our corrected estimator to the uncorrected estimator on detecting the genes with high de-
pendence with known cancer-related genes using TCGA breast cancer gene expression data. The estimated
mutual information is generally consistent between the corrected and uncorrected estimator. However, the
values of the estimated mutual information may change up to 40% for the top 500 dependent genes. The
sets of a fixed number of top dependent genes differ by a few number of genes between the two estimators.
The observation suggests that the measurement error has an effect on the mutual information estimation
and should be accounted for when carrying out analyses based on the value or ranking of estimated mutual
information.

Our corrected estimator for continuous random variables reduces the bias of mutual information estima-
tion only under certain assumptions. Whether there is an unbiased estimator and the form of the estimator
remains to be determined. In addition, a correction for the KNN-based mutual information estimator to
correct for measurement error is also a useful future direction.
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Our corrected estimators assume that the measurement error has zero mean and does not have systematic
biases. However, this assumption is unrealistic for certain data types. Modeling and correcting the system-
atic biases is also critical for accurately estimating the mutual information, and this is an important direction
for future work.

We focus on reducing the bias of mutual information estimation. However, low variance or other prop-
erties may also be desired. Designing new corrections with the consideration of measurement error and
studying their statistical properties will be interesting theoretical future directions.
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S1 Proofs

S1.1 The corrected estimator in semi-discrete case is unbiased in estimating entropy

Let H(Q̂TF−1) be the entropy calculated using PMF Q̂TF−1 and similarly H(QTF−1) be the entropy
calculated using QTF−1. Let G = F−1 and gij be the entry of G on the ith row jth column.

Lemma S2. Let Q be the underlying PMF of g(Xs1, Ys1). Given S samples of (Xs1, Ys1). Let Q̂ be the
estimator of Q given by

Q̂ =
1

S

S∑
s=1

(1(g(Xs1, Ys1) = C1), . . . ,1(g(Xs1, Ys1) = Cn)) .

Given matrix G ∈ Rn×n, the entropy calculated using Q̂TG is an unbiased estimator of the entropy calcu-
lated using QTG as S →∞

H(Q̂TG)
S→∞−−−−→ H(QTG)

Proof. We use the proof from Basharin [20] as a template. Basharin [20] derived the Taylor expansion of
the entropy:

H(Q̂) = H(Q)−
n∑
i=1

(q̂i − qi)(1 + ln qi)−
1

2

n∑
i=1

(q̂i − qi)2

qi

+
1

6

n∑
i=1

(q̂i − qi)3

q2i
− 1

12

n∑
i=1

(q̂i − qi)4

(qi + θ(q̂i − qi))3
.

They derive the following asymptotic values of the expectation of each term in the above equation:

E(q̂i) = qi

E(q̂i − qi)2 =
qi(1− qi)

S

E(q̂i − qi)(q̂j − qj) =
qiqj
S

E(q̂i − qi)(q̂j − qj)(q̂u − qu) = O(
1

S2
)

E(q̂i − qi)(q̂j − qj)(q̂u − qu)(q̂v − qv) = O(
1

S2
)

E(
(q̂i − qi)4

(qi + θ(q̂i − qi))3
) ≤ E(

(q̂i − qi)4

q3i (1− θ)3
) = O(

1

S2
).

Using their derivation, the Taylor expansion of H(Q̂TG) is

H(Q̂TG) = H(QTG)−
n∑
i=1

((Q̂TG)i − (QTG)i)(1 + ln(QTG)i)−
1

2

n∑
i=1

((Q̂TG)i − (QTG)i)
2

(QTG)i

+
1

6

n∑
i=1

((Q̂TG)i − (QTG)i)
3

(QTG)2i
− 1

12

n∑
i=1

((Q̂TG)i − (QTG)i)
4

((QTG)i + θ((Q̂TG)i − (QTG)i))3
.

(12)
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The term (Q̂TG)i and (QTG)i can be explicitly expressed as (Q̂TG)i =
∑n

j=1 q̂jgji and (QTG)i =∑n
j=1 qjgji. Using the explicit expression, the expectation of the terms in the Taylor expression is

E((Q̂TG)i) = E(
n∑
j=1

q̂jgji) =
n∑
j=1

E(q̂j)gji =
n∑
j=1

qjgji = (QTG)i

E((Q̂TG)i − (QTG)i)
2 = E(

n∑
j=1

(q̂j − qj)gji)2 =

∑
j,u

E(q̂j − qj)(q̂u − qu)gjigui =
∑
j,u

O(
1

S
)gjigui = O(n2)O(

1

S
)

E((Q̂TG)i − (QTG)i)((Q̂
TG)j − (QTG)j) = E(

n∑
u=1

(q̂u − qu)gui)(
n∑
u=1

(q̂u − qu)guj) = O(n2)O(
1

S
)

E(Q̂TG)i − (QTG)i)(Q̂
TG)j − (QTG)j)(Q̂

TG)u − (QTG)u) = O(n3)O(
1

S2
)

E(Q̂TG)i − (QTG)i)(Q̂
TG)j − (QTG)j)(Q̂

TG)u − (QTG)u)(Q̂TG)v − (QTG)v) = O(n4)O(
1

S2
)

E(
(Q̂TG)i − (QTG)i)

4

((QTG)i + θ(Q̂TG)i − (QTG)i))3
) ≤ E(

(Q̂TG)i − (QTG)i)
4

((QTG)i(1− θ))3
) = O(n4)O(

1

S2
)

(13)

Plugging the equations and inequalities in (13) in the expectation of equation (12), the expectation of
the entropy estimator is

E(H(Q̂TG)) = H(QTG) +O(n4)O(
1

S2
).

Since the number of categories n is fixed and the number of samples S goes to infinity,

E(H(Q̂TG))
S→∞−−−−→ H(QTG).

Hence, we proved that the entropy H(Q̂TG) is an unbiased estimator for entropy H(QTG) as the
number of samples S goes to infinity.

S1.2 Estimation bias of log term using estimated density p̂

Lemma 1. Given the true probability density p and fixed point (x, y), for any estimator of the density at
the point p̂(x, y), if the true and estimated density are lower bounded by δ > 0, that is, p(x, y) ≥ δ and
p̂(x, y) ≥ δ, then the bias of log(p̂) at the point is upper bounded by:

|E(log p̂(x, y))− log p(x, y)| ≤ 1

p(x, y)
|E(p̂(x, y))− p(x, y)|+ Var(p̂(x, y)) + (E(p̂(x, y))− p(x, y))2

δ2

Proof. The Taylor expansion on the log function with the mean value form states that there exists θ ∈ (0, 1)
such that

log p̂(x, y) = log p(x, y) +
1

p(x, y)
(p̂(x, y)− p(x, y))− 1

(θp̂(x, y) + (1− θ)p(x, y))2
(p̂(x, y)− p(x, y))2.

S2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2019. ; https://doi.org/10.1101/852384doi: bioRxiv preprint 

https://doi.org/10.1101/852384
http://creativecommons.org/licenses/by/4.0/


Using the lower bound δ of p(x, y) and p̂(x, y), the second-order term can be bounded by

−(p̂(x, y)− p(x, y))2

δ2
≤ (p̂(x, y)− p(x, y))2

(θp̂(x, y) + (1− θ)p(x, y))2
≤ (p̂(x, y)− p(x, y))2

δ2
,

and thus the following inequalities hold:

−(p̂(x, y)− p(x, y))2

δ2
≤ log p̂(x, y)− log p(x, y)− 1

p(x, y)
(p̂(x, y)− p(x, y)) ≤ (p̂(x, y)− p(x, y))2

δ2
.

Taking the expectation on both sides, the equation can be arranged in the following way:

−E[(p̂(x, y)− p(x, y))2]

δ2
≤ E(log p̂(x, y)))− log p(x, y)− 1

p(x, y)
(E(p̂(x, y))− p(x, y))

≤ E[(p̂(x, y)− p(x, y))2]

δ2
.

The two inequalities can be combined using the absolute value form:

|E(log p̂(x, y)))− log p(x, y)− 1

p(x, y)
(E(p̂(x, y))− p(x, y))| ≤ E[(p̂(x, y)− p(x, y))2]

δ2
.

Applying the triangle inequality of the absolute value on the left hand side, we have:

|E(log p̂(x, y)))− log p(x, y)| − | 1

p(x, y)
(E(p̂(x, y))− p(x, y))| ≤ E[(p̂(x, y)− p(x, y))2]

δ2
.

Replacing the term E(p̂(x, y)−p(x, y))2 with the bias-variance decomposition formula, therefore, we derive
the upper bound of the estimation bias of the log term:

|E(log p̂(x, y)))− log p(x, y)| ≤ 1

p(x, y)
|E(p̂(x, y))− p(x, y)|+ Var(p̂(x, y)) + (E(p̂(x, y))− p(x, y))2

δ2

S1.3 The corrected density estimator in the continuous case is unbiased in estimating the
exponential term in KDE

We use the following lemma to prove the unbiasedness of density estimator.

Lemma S3. Given n-dimensional Gaussian random variable X ∼ N(µ,Σ) and matrix A ∈ Rn×n, the
moment generating function for Q = XTAX is

E(exp(tQ)) =

 n∏
j=1

1√
1− 2tλj

 exp

µTΣ−
1
2P T


tλ1

1−2tλ1
. . .

tλn
1−2tλn

PΣ−
1
2µ

 (14)

where P and λi are the eigenvectors and eigenvalues of Σ
1
2AΣ

1
2 , that is, Σ

1
2AΣ

1
2 = P TΛP , and t is

constrained by 1− 2tλi > 0 for all i.
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Proof. The proof was originally given by user “kjetil b halvorsen” on StackExchange (https:
//stats.stackexchange.com/questions/262604/what-is-the-moment-generating-function-of-the-generalized-
multivariate-chi-squ/318908#318908). We reproduce it here for completeness to make our argument self
contained.

P and λi are the eigenvectors and eigenvalues of Σ
1
2AΣ

1
2 , they can be equivalently expressed by the

equation of Σ
1
2AΣ

1
2 = P TΛP , where P is orthonormal and Λ = diag(λ1, λ2, . . . , λn).

Let U = P (Σ−
1
2X −Σ−

1
2µ) and b = PΣ−

1
2µ. U + b is an affine function of Gaussian random variable

X , thus the distribution of U + b is a also Gaussian distribution. The expectation is

E(U + b) = E(P (Σ−
1
2X − Σ−

1
2µ) + PΣ−

1
2µ) = PΣ−

1
2EX = PΣ−

1
2µ.

The covariance matrix is

Cov(U + b) = Cov(P (Σ−
1
2X − Σ−

1
2µ) + PΣ−

1
2µ) = Cov(PΣ−

1
2X) = PΣ−

1
2 Σ(Σ−

1
2 )TP T = I.

Therefore, U + b follows a Gaussian distribution where each entry is independent of the others:

U + b ∼ N(PΣ−
1
2µ, I).

Connecting U + b back to Q, one can verify that Q = XTAX = (U + b)TΛ(U + b) =
∑

i λi(U + b)2i ,
which is the weighted sum of n independent non-central chi-squared random variables. Therefore,

E(exp(tQ)) = E(
∏
i

exp(tλi(U + b)2i )) =
∏
i

E(exp(tλi(U + b)2i )).

The product can be moved out of the expectation due to the independence between the chi-squared random
variables (U + b)i. Each of the summation term is the moment generating function of the non-central chi-
squared random variable evaluated at point tλi. Let νi = (E(U + b))i = (PΣ−

1
2µ)i. When tλi < 1

2 , the
moment generating function evaluated at tλi is

E(exp(tλi(U + b)2i )) =
1√

1− 2tλi
exp(

2tλiν
2
i

1− 2tλi
).

When the inequality tλi < 1
2 holds for all i, all the moment generating functions is finite at the corresponding

point, and all terms in the production is well-defined. Plugging the expression of each term in the production,

E(exp(tλi(U + b)2i )) =

(∏
i

1√
1− 2tλi

)
exp

{∑
i

2tλiν
2
i

1− 2tλi

}

=

(∏
i

1√
1− 2tλi

)
exp

νT


2tλ1
1−2tλ1

. . .
2tλn

1−2tλn

 ν


=

(∏
i

1√
1− 2tλi

)
exp

µTΣ−
1
2P T


2tλ1

1−2tλ1
. . .

2tλn
1−2tλn

PΣ−
1
2µ


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Theorem 2. Let X̄s• = 1
B

∑B
j=1Xsj and Ȳs• = 1

B

∑B
i=1 Ysj . Let W be an diagonal bandwidth matrix

used in KDE. Assuming the measurement error of
(
X̄s• − X̄t•, Ȳs• − Ȳt•

)T follows a Gaussian distribution

N((µxs−µxt, µys−µyt)T , 2
BΣε), let P and {ζ1, ζ2} be the eigenvectors and eigenvalues of 1

BΣ
1
2
ε WΣ

1
2
ε . Let

λi = ζi
1−2ζi , Λ =

(
λ1 0
0 λ2

)
, and A = B

2 Σ
− 1

2
ε P TΛPΣ

− 1
2

ε . When ζi satisfies ζi < 1
2 for all i, the following

estimator, (
2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)}
,

is an unbiased estimator for the KDE term in equation (5)

exp

{
−1

2

(
µxs − µxt
µys − µyt

)T
W

(
µxs − µxt
µys − µyt

)}
.

Proof. Plugging in t = −1 and X =

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)
in Lemma S3. After calculating the eigenvalues and

eigenvectors of ( 2
BΣε)

1
2A( 2

BΣε)
1
2 , we have the eigenvalues are {λ1, λ2} and the eigenvectors are P . When

expressing ζi using λi, the constraint ζi < 1
2 under t = −1 indicates that 1− 2tλi > 0, that is, the condition

of the above lemma holds. Thus, the expectation of the estimator is:

E(

 2∏
j=1

√
1 + 2λi

 exp{−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)
})

=

 2∏
j=1

√
1 + 2λi

 2∏
j=1

1√
1 + 2λj


exp

{(
µxs − µxt
µys − µyt

)T
(

2

B
Σε)
− 1

2P T

(
−λ1

1+2λ1
−λ2

1+2λ2

)
P (

2

B
Σε)
− 1

2

(
µxs − µxt
µys − µyt

)}

= exp

{
B

2

(
µxs − µxt
µys − µyt

)T
Σ
− 1

2
ε P T

(
−ζ1

−ζ2

)
PΣ
− 1

2
ε

(
µxs − µxt
µys − µyt

)}

= exp

{
B

2

(
µxs − µxt
µys − µyt

)T
Σ
− 1

2
ε (− 1

B
Σ

1
2
ε WΣ

1
2
ε )Σ

− 1
2

ε

(
µxs − µxt
µys − µyt

)}

= exp

{
−1

2

(
µxs − µxt
µys − µyt

)T
W

(
µxs − µxt
µys − µyt

)}

S1.4 Corrected density estimator is asymptotically unbiased when using estimated error
covariance

Lemma S4. Given a series of n-dimensional Gaussian random variables Xn
d−→ N(µ,Σ) where each of

Xn has a finite moment generating function for t ∈ (a, b). Given matrix A ∈ Rn×n, the moment generating
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function for Qn = XT
nAXn is

E(exp(tQn)) −→

 n∏
j=1

1√
1− 2tλj

 exp

µTΣ−
1
2P T


tλ1

1−2tλ1
. . .

tλn
1−2tλn

PΣ−
1
2µ

 (15)

pointwise for each t values within the region (∩i(0, 1
2λi

)) ∩ (a, b), where P and λi are the eigenvectors and

eigenvalues of Σ
1
2AΣ

1
2 .

Proof. By the same construction of Un = P (Σ−
1
2Xn − Σ−

1
2µ) and b = PΣ−

1
2µ, the limiting distribution

is also a Gaussian distribution by an affine transformation of the random variable:

Un + b
d−→ N(PΣ−

1
2µ, I).

The limiting distribution for (Un + b)2i is a chi-squared distribution because of the following. Let
ν = PΣ−

1
2µ. The cumulative distribution function of (Un + b)2i is:

F (t) = P((Un + b)2i ≤ t) = P(−
√
t ≤ (Un + b)i ≤

√
t)→ Φ(t− νi)− Φ(−t− νi),

where the right hand side is the same as the cumulative distribution function of a non-central chi-squared
distribution with degrees of freedom equal to 1.

Chareka [35] has proved that when the moment generating function of each (Un + b)i is finite at t ∈
(a, b), the convergence of distribution implies the convergence of moment generating function. Using the
moment generating function calculated in Lemma S3, E(exp(tQn)) converges to the moment generating
function of the summation of chi-squared random variables in the limiting distribution.

Theorem 3. Let P and {ζ1, ζ2} be the eigenvectors and eigenvalues of 1
B Σ̂

1
2
ε W Σ̂

1
2
ε . Let λi = ζi

1−2ζi ,

Λ =

(
λ1 0
0 λ2

)
, and Â = B

2 Σ̂
− 1

2
ε P TΛP Σ̂

− 1
2

ε . When ζi satisfies ζi < 1
2 for all i, the following estimator is

an asymptotically unbiased estimator for the KDE term in equation (5):(
2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
Â

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)}
.

Proof. The proof is almost the same as the proof for Theorem 2 except that Lemma S4 is used for calculating

the moment generating function of the limiting distribution. Set t = −1 and X =

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)
. The

expectation of the estimator approaches to

E(

 2∏
j=1

√
1 + 2λi

 exp{−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
Â

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)
})→

exp

{(
µxs − µxt
µys − µyt

)T
(

2

B
Σε)
− 1

2P T

(
−λ1

1+2λ1
−λ2

1+2λ2

)
P (

2

B
Σε)
− 1

2

(
µxs − µxt
µys − µyt

)}
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Substituting the value of λi and the equality relationship between P , Σε, and ζi, the above expectation
converges to the KDE term of the true signal values:

E(

 2∏
j=1

√
1 + 2λi

 exp{−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
Â

(
X̄s• − X̄t•

Ȳs1 − Ȳt•

)
})→ exp

{
−1

2

(
µxs − µxt
µys − µyt

)T
W

(
µxs − µxt
µys − µyt

)}

S1.5 The expectation of corrected density estimator is larger than its second order moment
when λi is small

Claim 1. There exists a small positive number δ such that when 0 ≤ λi ≤ δ,

E

((
2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)})
≥

E

(( 2∏
i=1

√
1 + 2λi

)
exp

{
−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)})2
 .

Proof. The expectation, as the first step of proof of Theorem 2, is

E(

 2∏
j=1

√
1 + 2λi

 exp{−
(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)
}) =

exp

{(
µxs − µxt
µys − µyt

)T
(

2

B
Σε)
− 1

2P T

(
−λ1

1+2λ1
−λn

1+2λn

)
P (

2

B
Σε)
− 1

2

(
µxs − µxt
µys − µyt

)}
The second order moment around 0 has the expression of 2∏

j=1

(1 + 2λi)

E(exp{−2

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)
}).

This can be calculated by the same steps as in the proof of Theorem 2 except setting t = −2: 2∏
j=1

(1 + 2λi)

E(exp{−2

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)T
A

(
X̄s• − X̄t•

Ȳs• − Ȳt•

)
})

=

 2∏
j=1

(1 + 2λi)

 2∏
j=1

1√
1 + 4λj


exp

{(
µxs − µxt
µys − µyt

)T
(

2

B
Σε)
− 1

2P T

(
−2λ1
1+4λ1

−2λ2
1+4λ2

)
P (

2

B
Σε)
− 1

2

(
µxs − µxt
µys − µyt

)}

Let
(
t1
t2

)
= (P ( 2

BΣε)
− 1

2

(
µxs − µxt
µys − µyt

)
)1. The ratio between the expectation and the second order

moment is ∏
j

√
1 + 4λj

1 + 4λj + 4λ2j
exp{t2j (

−λj
1 + 2λj

− −2λj
1 + 4λj

)}.
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We need to prove that within a small positive region (0, δ], each product term in the above equation is greater
than 1. Or equivalently, we need to prove the rearranged form:

−λj
1 + 2λj

− −2λj
1 + 4λj

≥ 1

2t2j
log

1 + 4λj + 4λ2j
1 + 4λj

Let function f(x) = −x
1+2x −

−2x
1+4x − C log 1+4x+4x2

1+4x , where C = 1
2t2j

. The function is 0 when x takes

value of 0, that is, f(0) = 0. When x > 0, the derivative is

df

dx
=

1− 8Dx

(1 + 2x)2(1 + 4x)2
,

where D = 1 + C(1 + 4x)(1 + 2x). Thus, there exists a positive region (0, δ] such that when x ∈ (0, δ],
df
dx ≥ 0. And in this region,

f(x) ≥ f(0) = 0.

This is equivalent to:
−x

1 + 2x
− −2x

1 + 4x
≥ C log

1 + 4x+ 4x2

1 + 4x

Therefore, when λ1, λ2 ∈ (0, δ], the ratio between the expectation and the second order moment is larger
than 1, and the second order moment is upper bounded by the expectation.
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