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Abstract

Locomotion control in mammals has been hypothesized to be governed by a central
pattern generator (CPG) located in the circuitry of the spinal cord. The most common
model of the CPG is the half center model, where two pools of neurons generate
alternating, oscillatory activity. In this model, the pools reciprocally inhibit each other
ensuring alternating activity. There is experimental support for reciprocal inhibition.
However another crucial part of the half center model is a self inhibitory mechanism
which prevents the neurons of each individual pool from infinite firing. Self-inhibition is
hence necessary to obtain alternating activity. But critical parts of the experimental
bases for the proposed mechanisms for self-inhibition were obtained in vitro, in
preparations of juvenile animals. The commonly used adaptation of spike firing does not
appear to be present in adult animals in vivo. We therefore modeled several possible self
inhibitory mechanisms for locomotor control. Based on currently published data,
previously proposed hypotheses of the self inhibitory mechanism, necessary to support
the CPG hypothesis, seems to be put into question by functional evaluation tests or by
in vivo data. This opens for alternative explanations of how locomotion activity
patterns in the adult mammal could be generated.

Author summary

Locomotion control in animals is hypothesized to be controlled through an intrinsic
central pattern generator in the spinal cord. This was proposed over a hundred years
ago and has subsequently been formed into a consistent theory, through
experimentation and computer modeling. However, critical data that support the
neuronal circuitry mechanisms underpinning this theory has been obtained in
experiments that greatly differ from intact animals. We propose, after trying to fill in
this critical part, that new ideas are required to explain locomotion of intact animals.

Introduction 1

Decerebrated animals are capable of locomotion, which can be initiated by propelling a 2

treadmill on which the animal stands [1, 2]. Even a spinal cord isolated from its muscles 3
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Fig 1. The half center model. Each half center is formed by a pool of neurons and
symbolized by a node. Both centers are reciprocally coupled by inhibitory synapses and
receive a constant stimulation Exin.

and sensory afferents is capable of generating activity resembling the activity observed 4

in an intact spinal cord during locomotion [3, 4]. This is called fictive locomotion, which 5

can be initiated by electrical stimulation of the brainstem. To explain observations such 6

as these, the concept of the central pattern generator (CPG) was proposed [1]. The 7

CPG was envisioned to be a neuronal circuit or neuronal element located in the spinal 8

cord that can generate oscillatory output without oscillatory input. 9

A possible neural circuit that may underlie the CPG was also proposed [1], called 10

the half center model, which is illustrated in Figure 1. Two pools of neurons, which 11

correspond to the half centers, would reciprocally inhibit each other. Both half centers 12

would be driven by a constant excitatory drive. The reciprocal inhibition would ensure 13

that high activity in one center leads to low activity in the other center, leading to 14

alternating oscillation in activity between the two half centers. The alternation would 15

ensure left right alternation and alternation between antagonists. This model would 16

explain locomotion in decerebrated animals [1], fictive locomotion [5] and locomotion 17

patterns in intact animals [6]. Neurophysiological evidence for a circuit fitting the half 18

center model was found [7] and subsequently substantiated by further findings [8–10]. 19

The half center is a key component of computational and other models of the 20

CPG [5,6, 11–14]. Asymmetric half center models have been proposed to explain 21

alternation between flexor and extensor [15]. We focus on the symmetric case. 22

Experimental studies show that reciprocal inhibition is necessary to ensure left right 23

alternation [16], hence reciprocal inhibition must be present in the CPG. 24

However, it was already noted that two groups of neurons inhibiting each other are 25

not sufficient to generate oscillation [1, 7]. We will formally demonstrate why this is the 26

case using a mean field model. Without a mechanism that stops neurons from indefinite 27

activity, one half center will stay active without allowing the other half center to 28

become active. Hence, in the half center model, self inhibition with a variable amount of 29

delay is an additional requirement for the generation of alternating oscillations to be 30

able to explain locomotion at variable frequencies. This notion of self inhibition is 31

consistent with previous work and proposed CPG mechanisms [1, 7, 17,18]. The scope of 32

the present paper is to provide an overview of possible self inhibitory mechanisms and 33

discuss their suitability for locomotor control. 34

There are several possible self inhibitory mechanisms. Persistent inward currents are 35

widely considered as such a mechanism in models of spinal CPGs [6,14,18–22]. These 36

would manifest themselves either as spike frequency adaptation or bursting 37

behavior [17]. There is experimental support for this mechanism, however often coming 38

from spinal cord preparations of juvenile or newborn spinal cord. In contrast spinal 39

neurons in adult mammals in vivo show no spike frequency adaptation on a timescale or 40

of a magnitude relevant to locomotion [23]. Instead, their firing rate has a simple linear 41

relationship to the amount of excitatory input. The linear model of the spike generation 42

mechanism generated by these data, accurately captures the spike firing responses 43

recorded under fictive locomotion as reported by other authors [23–25] in adult in vivo 44

dorsal and ventral spinocerebellar tract neurons, which are part of the spinal 45
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interneuron population [26,27]. This observation supports the notion that in the adult 46

spinal cord neuronal firing patterns are dominated by synaptic inputs rather than 47

intrinsic conductances, and hence that a linear firing rate model accurately predicts the 48

neuronal spike responses. Also in in vitro studies of adult spinal cord tissue [28], 49

motoneurons have constant input-output relationships over many seconds, and even 50

though small spike firing adaptation can be observed it is orders of magnitudes smaller 51

than that which can be observed in the juvenile slice. Hence a persistent inward current 52

of a magnitude that would be sufficient to gradually reduce neural firing rates to the 53

extent that would cause a decrease in inhibition in the opposing half center does not 54

appear to be in effect in adult mammals in vivo. A likely reason is that neurons in vivo 55

have a much higher background synaptic conductance, which effectively shunt out 56

prominent activation of inherent conductances that may still be inherent in the 57

membrane of the neuron at adult age. This phenomenon has been demonstrated for the 58

deep cerebellar nuclear neurons [29], which have prominent intrinsic conductances in 59

juvenile brain slices, but there intrinsic conductances are normally not activated in vivo. 60

Hence from existing observations in adult mammals in vivo, it would seem that the 61

spinal cord circuitry would have to rely on other self inhibitory mechanisms than spike 62

frequency adaptation or intrinsically generated bursting, and our study assumes this 63

scenario to apply. 64

If cellular level properties cannot explain self-inhibition, other possible self-inhibitory 65

mechanisms can be found in the temporal properties of the synapses and the network 66

structures formed by such synaptic connections. One possible candidate is synaptic 67

short term depression (STD) to repetitive synaptic activation. For the STD to be able 68

to create alternating oscillatory output, it needs to be at the center of two circuitry 69

components connected by reciprocal inhibition, just like in the classical half center 70

model. This mechanism has been proposed as the self-inhibitory mechanism to explain 71

alternating oscillation in the spinal cord of the lamprey [30]. A natural extension of this 72

mutual inhibition network is to provide each half center with a network structure to 73

gradually accumulate activity over time, so that the half center becomes inhibited after 74

a certain amount of time depending on the level of excitation that is provided to the 75

network. As either of these two circuitry structures would have to form the foundation 76

for any circuitry model implementing the half center hypothesis, we here decided to 77

simulate these two network scenarios to explore what frequencies of alternating 78

oscillations they would be able to support, and under what conditions with respect to 79

the synaptic time constants. 80

Whereas our simulations show that both of these mechanisms could be made to work 81

to produce alternating oscillations, these cover only part of the frequency range 82

observed for locomotion and moreover require parameter settings for synaptic decay 83

time constants and recovery time constants from STD, which can be observed in some 84

in vitro preparations of juvenile spinal cord but that appear unlikely to be present in 85

vivo. These observations put the probability of that the half center model could work in 86

the adult mammalian spinal cord in vivo into question 87

Results 88

This section starts out by proving that a self-inhibitory mechanism is required for 89

pattern generation in the half center model. We will do so by using a mean field model. 90

Then we simulate two different self-inhibitory mechanisms in the mammalian spinal 91

cord. We examine the two envisioned mechanisms by simulations with neuron models 92

whose parameter values are based on measured data from spinal interneurons [31–35], to 93

find out if they are suitable for generating locomotion with the half center model. For a 94

self-inhibitory mechanism to be useful in pattern generation for locomotion it must be 95
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capable to generate patterns with frequencies in the range of locomotion. This range is 96

often considered to be 1 Hz to 10 Hz [36]. Neurons are modeled using the leaky integrate 97

and fire model, where each neuron is modeled as a capacitor in parallel to a resistor 98

(single compartment), together with a mechanism that resets the membrane voltage 99

each time it crosses a spiking threshold. This allows the precise modeling of the 100

timescale on which the neural mechanisms act. Leaky integrate fire neuron models have 101

previously been used to model the timescales of neural mechanisms [37]. 102

Self inhibition is required for pattern generation. 103

The half center model without self-inhibition can be formulated as a mean field model,
similar to previous approaches [37]. Here we will use the mean field model to show that
oscillation cannot occur without self-inhibition. In the mean field model the dynamics
of the instantaneous firing rate of each of the two half centers is modeled. In a
simulation of the network in Figure 1 let vi : R→ R, i ∈ {1, 2} be the instantaneous
firing rates of the half centers at each point in time. The half centers are coupled to
each other with inhibitory weights w1, w2 ∈ R−. Each half center receives an excitatory
drive Exin,i ∈ R+, i ∈ {1, 2}. High activity in one half center suppresses the activity in
the opposing half center. Hence the dynamics of the firing rates can be modeled with
the following differential equation

d

dt
v(t) =

(
0 w1

w2 0

)
v(t) + Exin,

with initial value v(0) = v0 ∈ R2 and where t ∈ R+ is time. Homogenizing the equation
gives

d

dt


v1(t)
v2(t)

Exin,1(t)
Exin,2(t)

 =


0 w1 1 0
w2 0 0 1
0 0 0 0
0 0 0 0




v1(t)
v2(t)

Exin,1(t)
Exin,2(t)

 ,

with initial values v(0) = v0 and Exin,i(0) = Exin,i. The eigenvalues of the system
matrix are λ1,2 = ±√w1w2 and λ3,4 = 0. The system does not oscillate because the
eigenvalues contain no imaginary part. In fact, giving each half center i self-inhibition
proportional to its activity with weight w′i ∈ R−, i ∈ {1, 2} is not sufficient to generate
oscillation. To show this, the situation can be modeled by modifying the previous model

d

dt


v1(t)
v2(t)

Exin,1(t)
Exin,2(t)

 =


w′1 w1 1 0
w2 w′2 0 1
0 0 0 0
0 0 0 0




v1(t)
v2(t)

Exin,1(t)
Exin,2(t)

 .

The eigenvalues of the system matrix are λ1,2 =
w′

1+w′
1±
√

(−w′
1−w′

2)
2−4(w′

1w
′
2−w1w2)

2 and 104

λ3,4 = 0. The eigenvalues contain no complex part, hence the system is not oscillatory. 105

Short term depression 106

To examine if short term depression (STD) of synaptic transmission could be a suitable 107

self-inhibitory mechanism in the half center model, we explored the oscillatory patterns 108

that can be generated by STD. In synapses that are repetitively activated STD can 109

occur, presumably due to overload of the molecular machinery for the presynaptic 110

release of synaptic vesicles or changes in the postsynaptic responsiveness [38,39] and has 111

been observed essentially everywhere in the central nervous system [31,38,40, 41]. Since 112

different studies have reported widely different results on the properties of STD across 113
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different brain areas, we studied the effects of STD on the half center model across a 114

wide range of time constants of recovery from STD, as well as time constants of the 115

synaptic decay. These parameters (Table 1) were based on experimental data from 116

spinal interneurons [31, 32]. The simulated network was the half center model shown in 117

Figure 1. 118

For the simulations we used a synapse model which simply scales down the synaptic 119

weight in accordance with the time constant of recovery from STD τrec and length of 120

the interval to the previous spike [42–44]. It is necessary to fit the model parameter τrec 121

to measured data, which we will describe below. 122

In the vertebrate spinal cord, short term depression has been studied [31]. In this 123

study, presynaptic stimulation is given at a certain frequency. In the postsynaptic 124

neuron, the amplitudes of the postsynaptic potentials are measured. The depression is 125

measured as the fraction of the minimum postsynaptic potential relative to the first 126

postsynaptic potential. We fit the time constant of recovery from STD τrec by 127

recreating the experimental observation from this particular study [31] in a simulation. 128

In this study, the neurons were stimulated at 10 Hz. The postsynaptic potentials 129

induced by each stimulation pulse decay nearly to resting potential. The average 130

depression at 10 Hz stimulation is µ = 71%, with a standard error of S.E. = 4%. We 131

use µ− 2 ∗ S.E. = 63% and µ+ 2 ∗ S.E. = 79% as cutoff values for realistic depressions. 132

In a simulation separate from the simulation of the half center model we simulated two 133

neurons, the first inhibiting the second. The first neuron is stimulated by injection of 134

constant current to make it spike at a frequency of approximately 10 Hz (Figure 2A). By 135

setting the inhibitory synaptic decay time constant to 2 ms, the postsynaptic potentials 136

induced by each presynaptic spike decay nearly to resting potential (Figure 2B). We 137

then simulated with a broad range of values for τrec. In our simulations at τrec = 300 ms 138

a depression of approximately 63% is observed and at τrec = 600 ms a depression of 79% 139

(Figure 2C). We use these depressions as cutoffs for possible values of τrec. 140

We next explored the frequency of the alternating oscillations obtained in the half 141

center model within this range. The simulation consisted of injected excitation Exin 142

into both H1 and H2,where each of the two half centers were simulated to contain 143

(N=100) neurons, as shown in Figure 1. One of the half centers by competition took the 144

lead in the first oscillation cycle and inhibited the output of the other. Due to STD in 145

the inhibitory synaptic influence, however, the leading half center soon lost its upper 146

hand whereby the other half center became more excited and instead started to 147

suppress the output of the first half center (Figure 2D). This is shown in greater detail 148

in Figure 2E, where decreasing inhibition due to STD on one single neuron is visible. 149

The generated frequencies critically depend on the synaptic decay time constant τ synin 150

and the time constant of recovery from STD τrec, see Figure 2F. The longer the 151

synaptic decay time constant the longer the possible period lengths. As shown in 152

Figure 2F (green data points), only very long time constants were successful in 153

achieving slow frequencies of oscillation. This is an important observation since time 154

constants in vivo are much smaller than in vitro, see discussion. For shorter synaptic 155

decay time constants (blue data points in Figure 2F), expected to be more relevant in 156

the adult spinal cord in vivo, oscillation frequencies below 5 Hz are observed only close 157

to threshold activation. This observation is important because close to threshold 158

activation, the spike generation of spinal interneurons in vivo becomes highly 159

unreliable [23] and it is hence questionable whether this mechanism would at all work in 160

vivo. Another caveat with this network construct is that at high stimulation intensities, 161

the synapses become more depressed which decreases the effectiveness of the inhibition 162

of the opposing half center. At this point the oscillations become irregular, which can 163

be seen as dramatic drops in the period length. For example a drop from approximately 164

0.7 s to approximately 0.1 s for the green data points across all recovery time constants 165
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Figure 2F. Such drops merely indicate that the oscillation frequency became irregular. 166

Hence, in settings of the synaptic decay time constant for which oscillation frequencies 167

down to 1 Hz can be obtained, there is instead a large gap of frequencies over which no 168

reliable control can be achieved. Hence, in summary, there are a number of 169

short-comings in this network model which makes it unlikely as the mechanism that can 170

deliver locomotion frequencies across the entire range observed in vivo. 171

Self inhibition via inhibitory interneurons 172

A self-inhibitory mechanism that allows alternating oscillations between two groups of 173

neurons could also be formed by a neural circuit, which does not rely on synaptic STD. 174

Instead it uses some form of network accumulator to govern the delay of the 175

self-inhibition so that a range of oscillation frequencies can be produced. In its simplest 176

form, each half center has an excitatory connection to an external inhibitory neuron 177

pool (Figure 3A). Note that each half center similar to the simulated network above, is 178

here modeled as a group of neurons, whereas each half center is symbolized with a single 179

neuron in Fig 3A. The half centers H1 and H2 provide inhibitory synapses to each other 180

and excitatory synapses to their respective external pool of inhibitory interneurons 181

which subserve the function of the accumulator of excitation. Hence, H1 and H2 are in 182

this case simulated as containing both excitatory and inhibitory neurons. In this case, 183

when one half center is active, the excitation level builds up in the external pool of 184

inhibitory neurons until it becomes sufficiently active to inhibit the active half center. 185

When this happens, the activity shifts to the previously inactive center due to 186

disinhibition between H1 and H2 (Figure 3A). Note that in this case the exact value of 187

the synaptic decay time constant of inhibition is not critical, as the only determinant of 188

the oscillatory behavior is the decay time constant of the excitatory synapses and their 189

weight. For this mechanism to generate alternating oscillation at frequencies that would 190

be suitable for locomotion, it is necessary that the excitation in the external inhibitory 191

pool accumulates slowly. This requires a small increase of depolarization in the external 192

pool with each spike that is elicited from the half center, which in principle is obtained 193

by temporal summation of consecutive synaptic responses. This mechanism also requires 194

a slow decay of this depolarization, which is also present in the form of the decay time 195

constant of the synaptic response of the neuron. The time constants of synaptic decay 196

for excitatory synapses at spinal interneurons are upper bounded by 100 ms [33–35]. 197

This also limits the range of oscillations that can be generated with this mechanism, as 198

illustrated in Figure 3B. Simulating this mechanism of self-inhibition over a large range 199

of parameters, we observed oscillations in the range relevant for locomotion from 1 Hz to 200

10 Hz. The firing frequency of the model neurons when stimulated constantly has a 201

strict lower bound. It would be conceivable that a neuron model with an even lower 202

possible firing frequency could generate slower oscillations. However the same effect can 203

be achieved by lowering the synaptic weights from the half center to its external pool of 204

inhibitory neurons. Thus using a neuron model with a lower possible firing frequency 205

would simply correspond to a relabeling of the stimulation intensity and synaptic weight 206

axis in Figure 3B. Hence this self-inhibitory mechanism could make a CPG suitable for 207

locomotion work. However similar to the results from the simulation with short term 208

depression, the observable frequencies critically depend on the time constants. Here at 209

excitatory synaptic decay time constants below 50 ms we did not observe any 210

oscillations. This is an important observation, since it is unlikely that the synaptic 211

decay time constants of spinal interneurons in the adult mammalian spinal cord in vivo 212

are higher than 50 ms, see discussion. For slow oscillation even higher synaptic decay 213

time constants are necessary. This puts also this mechanism in question if it could make 214

a locomotor CPG work in the adult mammalian spinal cord. 215
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Fig 2. Short term depression (STD) as a self-inhibitory mechanism in the half center
model. First the procedure of fitting the time constant of recovery from STD τrec is
illustrated. For this purpose simulations separate from the half center model are
conducted. One neuron is connected with an inhibitory depressing synapse to another
neuron. (A) shows an exemplary voltage trace from the presynaptic neurons, which is
stimulated to spike at approximately 10 Hz. Spikes are indicated in red. (B) shows a
voltage trace from the postsynaptic neuron, Each spike shown in (A) generates a
postsynaptic potential in the voltage trace shown in (B) of decreasing amplitude due to
STD. (C) The amount of STD as a function of the time constant of recovery from STD.
For each specific time constant a certain level of depression is observed in the
simulation. Depressions between 63% and 79% are observed in experiments (white box
area). The corresponding time constants covered an interval from 300 ms and 600 ms.
(D) Simulating the half center model as shown in Figure 1, where the synapses
connecting the half centers are subject to STD. Each half center (H1 and H2) contains
one hundred neurons. The spike train of each neuron is plotted in one horizontal line.
In this particular example the half centers show alternating oscillation. (E) Voltage
trace from an exemplary single neuron from one half center whose spike trace is shown
in (D). Here between the phases of spiking activity the depressing inhibition from the
opposing half center is visible. (F) The observed period lengths of the oscillations in the
explored parameter range are shown. Each point in the plot represents one set of
parameters where oscillation occurred at a certain period length 1

f and stimulation
intensity Exin and time constant of recovery from STD τrec. The coloring indicates the
inhibitory synaptic decay time constant τ synin .
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Fig 3. The half center model with self-inhibition via auxiliary inhibitory neural circuits
is simulated. (A) Two half centers H1 and H2 are connected reciprocally with
inhibitory synapses, as in Figure 1. In addition, each half center excites an external pool
of inhibitory neurons. This pool in turn inhibits the half center that excites it. (B)
Each point in the plot represents one specific combination of parameter settings (Exin
and the weight of the excitatory synaptic connection from the half center to the
external interneurons wex) and the frequency of oscillation f obtained. The coloring of
the points indicates the excitatory synaptic decay time constant τ synex .

Discussion 216

We have shown that self-inhibition is necessary for pattern generation in the half center 217

hypothesis of central pattern generation for locomotion. As described in the 218

introduction, persistent inward currents, which are a commonly used mechanism to 219

provide the necessary delayed self-inhibition in present day computational models of the 220

CPG, do not appear to be present in the neurons of the adult spinal cord in vivo. We 221

have outlined in the introduction the underlying neuronal mechanisms and support for 222

this observation based on direct recordings in vivo. Therefore, we tested the viability of 223

two fundamental network mechanisms of delayed self-inhibition, mutual inhibition with 224

synaptic short term depression and mutual inhibition with an accessory accumulator 225

network, as potentially suitable candidate mechanisms to generate the alternating 226

oscillations across the range of frequencies required for the half center model to account 227

for the range of observed locomotion frequencies. The results show that whereas both 228

mechanisms in principle can generate alternating oscillations across a range of 229

frequencies, it is questionable if either one of them could sustain the full range of 230

locomotion frequencies at any given parameter setting. Moreover, as described below, 231

the synaptic decay time constants, at which the widest range of output frequencies were 232

obtained, were so high compared to known synaptic decay time constants of other 233

synapses in vivo that it is questionable whether these time constants could be present in 234

the adult mammalian spinal cord in vivo. 235

For self-inhibition via inhibitory interneurons, the oscillation frequencies which can 236

be achieved critically depend on the time constants of synaptic decay. Very high time 237

constants are required to achieve the entire frequency range or even oscillation at all. In 238

vivo synaptic decay time constants are known to be much smaller than in vitro. In fact, 239

across a large number of brain structures and neuron sizes, synaptic decay time 240

constants in adult animals in vivo are typically below 10 ms and at any rate appear to 241

always be below 20 ms [29,45–49]. This is substantially lower than the time constants 242

that we needed to make the studied network structures to be able to generate 243

alternating oscillatory output across the 1 Hz to 10 Hz frequency range (Figures 2 and 244
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3). 245

The data of the study used for simulating the time course of the STD [31] was 246

obtained in vitro. It is likely that the time constants of recovery from STD in vivo are 247

much faster, possibly by a factor ten or more, as has been shown for cerebellar granule 248

cells in vivo, compared to the same cells in vitro [45]. Hence, even though the STD in 249

the present simulations actually could be used to obtain oscillations with as long 250

periods as about 1.5 s, it is likely that this would not have been possible with time 251

courses of STD that apply to the adult spinal cord in vivo, had such recordings been 252

available. Furthermore in vitro studies show that when blocking inhibitory synapses the 253

CPG loses its right left alternation but not its intrinsic oscillatory activity [16]. Both 254

self-inhibitory mechanisms we proposed require inhibitory synapses. This could 255

complicate efforts to identify these mechanisms in vivo. 256

It is possible that there exists a self-inhibitory mechanism with a variable delay that 257

we did not consider. However in order to prove that there exists a CPG, a 258

self-inhibitory mechanism that could be operative in the spinal cord in an adult animal 259

in vivo remains to be demonstrated. This mechanism must be able to generate the 260

entire range of locomotion, where we found that low frequencies were especially difficult 261

to support with the explored mechanisms. Hence it is worth to discuss new explanations 262

of how locomotion is generated that do not require a central pattern generator. In the 263

same context it is worth to discuss how presumed observations of CPGs could be 264

explained and how these relate to the control of locomotion. 265

We identify four categories of experiments in which evidence compatible with CPGs 266

is observed. These are fictive locomotion in in vitro preparations, locomotion of 267

decerebrated or spinalized animals, ablation of neurons presumed to be involved in the 268

CPG and fictive locomotion in in vivo preparations. 269

For in vitro preparations, persistent inward currents have been shown to exist. 270

Hence those can explain fictive locomotion in vitro. However as described in the 271

introduction, in the in vivo state currently available data indicates that this type of 272

mechanism cannot support fictive locomotion. 273

Decerebrated animals have been found to the able to walk on propelled 274

treadmills [1, 2]. Also spinally injured animals have been found to regain their ability to 275

walk [50,51]. But in neither case do these findings require a CPG to be explained. 276

Instead, an equally viable explanation for locomotion in decerebrated or spinally 277

transected animals is that the biomechanics of the bodies of quadrupeds and 278

bipeds [52–55] are naturally inclined to locomote. These studies show that it is possible 279

to construct pure mechanical systems, called passive dynamic walkers, with striking 280

similarities to the mechanics of animals, which are able to locomote by only the 281

application of an external force, while generating locomotion patterns very similar to 282

that of animals. In the case of animals regaining their ability to walk after spinal cord 283

injury, an additional explanation could be that the spinal network structure after 284

developmental learning is entrained to, at least under some states of excitability, to 285

create such neural output patterns that would be reminiscent of a CPG. In such case, a 286

variety of non specific excitatory input to the spinal cord would be expected to create 287

the types of neural activation patterns that we automatically identify as being 288

compatible with CPGs. Long term synaptic plasticity in the spinal cord has been 289

demonstrated [56–58]. The spinal cord is also able to adapt to produce locomotion 290

despite significant experimental changes in muscle insertion sites [59]. Models of the 291

spinal cord with the application of biological plausible learning [60] have been 292

demonstrated. Whereas our study seems to exclude that such output patterns could be 293

generated based on local connectivity patterns in the adult spinal cord, it is well known 294

from the field of artificial recurrent neural networks that large networks, which could for 295

example correspond to the entire spinal cord circuitry, are capable of learning and 296
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encoding almost any sequence of output patterns [61]. Modelling studies show that a 297

pure reflex based model is sufficient to control locomotion [62]. 298

Genetic ablation and inactivation experiments [32,63–67] implicate certain neurons 299

to be part of the CPG. These experiments make the case, that if the animal loses some 300

of its locomotor functionality when one neuron type is ablated, it must be part of the 301

CPG. However, imagine the case that the entire spinal cord circuitry is gradually 302

entrained to locomotor rhythms and in response adapts its overall circuitry structure 303

during development. By ablating neurons from birth, one would hamper the ability of 304

the spinal cord to learn and acquire such a network structure. In the case of acute 305

inactivation, as with optogenetic methods, observed effects may instead be due to that 306

the inactivation introduces imbalances of excitability that in a heavily interconnected 307

network may cause widespread malfunction. This is not the same as pinpointing the 308

inactivated neurons as being solely responsible for producing crucial aspects of the 309

output pattern. Similar to when animals regain their ability to walk after spinal cord 310

injury, the spinal cord could have been entrained to locomote before the injury. The 311

entrained network is then simply reactivated after the injury. Implicating certain 312

neurons in the CPG by ablation and inactivation experiments requires the assumption 313

that a CPG exists. Experiments with spinal injury experiments fall under this same 314

umbrella. Hence genetic ablation, inactivation and spinal cord injury experiments are 315

not a proof of the existence of a CPG. 316

The most compelling proof for a CPG are experiments that demonstrate fictive 317

locomotion in vivo in adult animals. In one particular preparation [68] an adult animal 318

produces fictive locomotion after decerebration and after spinalization, while the spinal 319

cord is still attached to the body, but is disconnected from modulating its sensor 320

feedback due to pharmacological muscle paralysis or transaction of efferent motor 321

nerves. There 5-HT, L-DOPA and a monoamine oxidase inhibitor are required to elicit 322

fictive locomotion. The nature of these experimental conditions make it impossible to 323

exclude that the 5-HT and dopamine concentrations reach unphysiological high levels 324

under which the efficacy of ion channels brings the neurons into an unnatural state in 325

which they are suddenly likely to be capable of pacemaking-like activity. The 326

neuromodulator 5-HT promotes persistent inward currents [69], so that even in an in 327

vivo experiment the neurons could be made to behave like in an in vitro setting, where 328

intrinsic conductances become more dominant than the total synaptic input activity to 329

the neuron. In another set of preparations [24,70] the animal was also paralyzed and 330

fictive locomotion was evoked by stimulation of the mesencephalic locomotor region. In 331

this case it cannot be excluded that the oscillatory behavior in the spinal neurons is due 332

to the descending activation from the brainstem. For example the serotonergic neurons 333

of the brainstem contain pacemaker neurons [71,72] which have connections to the 334

spinal cord and whose pacemaking activity could be responsible for the necessary 335

self-inhibition underlying the alternating oscillations that were measured. 336

Hence a CPG is not the only possible explanation for real locomotion in intact 337

animals and the presumed CPG observations in non intact preparation, many times in 338

newborn or juvenile animals may not generalize to the intact adult mammal. The 339

possibilities include that the biomechanics of the bodies of quadrupeds and 340

bipeds [52–55] have a natural inclination to generate locomotion automatically and that 341

the structure of the spinal cord circuitry gradually becomes entrained to patterns of 342

neural activity that are associated with those locomotion patterns. 343

Methods 344

First the general models and tools are described, then we describe the simulations we 345

performed in detail. The goal of the simulations are to investigate if the time scale of 346
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Parameter Description Value or Range Step Size

Neuron Model Leaky integrate and fire neuron iaf psc alpha

EL Resting membrane potential −70.0 mV
Cm Membrane capacitance 45.0 pF
τm Membrane time constant 55.0 ms
Vth Spike threshold −55.0 mV
tref Refractory period 2.0 ms
Vreset Reset potential −70.0 mV
Exin Stimulation [11.9 pA, 18.5 pA] 0.14 pA

Short term depression
Synapse Model Depressing synapse tsodyks2 synapse

τrec Time constant of recovery from STD [300 ms, 600 ms] 10 ms
τ insyn Inhibitory synaptic time constant [5 ms, 45 ms] 10 ms

Inhibitory interneurons
Synapse model Static synapse model static synapse

τ exsyn Excitatory synaptic decay time
constant

[1 ms, 101 ms] 10 ms

wex Excitatory Weight [0.1, 9.1] 0.1
τ insyn Inhibitory synaptic decay time constant 30 ms
wInh Inhibitory Weight −10

Table 1. This table lists all parameters of the neuron and synapse models as used in
the specific simulations. The neuron parameters are common in all simulation. In case
one parameter was varied in different simulations a range and step size are given. If
parameter was constant in all simulations only its value is given.

the self-inhibitory mechanisms, short term depression, and self-inhibition via inhibitory 347

interneurons are suitable to generate oscillations for locomotion. 348

Simulation tools 349

For simulation we used NEST [73]. We did use the git revision from Feb 13 2018 350

available at https://github.com/nest/nest-simulator. For processing network 351

models we used graph-tool [74]. Curve fitting for oscillation detection was done using 352

least squares from SciPy [75]. 353

Neural models and parameters 354

For all simulations we used NESTs implementation of leaky integrate and fire neurons 355

with alpha function shaped synaptic currents. All model parameters are listed in 356

Table 1. Spike threshold, reset potential, refractory period and minimum membrane 357

potential were left at the default values of NEST. For the membrane capacitance and 358

the membrane time constant used values measured in spinal interneurons [32]. Further 359

parameters for the neuron model are the excitatory and inhibitory synaptic decay time 360

constants τ synin and τ synex . These are set to different values in the simulations based on 361

experimental data. 362

Synapse models and parameters 363

We used three different synapse models, which are available in NEST. As model of 364

synapses subject to short term depression we used the model tsodyks2 synapse, which 365
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simply scales the weight of the synapse [42–44]. The static synapse model 366

static synapse was used for simulations with self-inhibition via inhibitory 367

interneurons. The synaptic delay was set to 1 s in all models [76,77]. 368

Network structure 369

For all simulations, we used a common neuronal network that can be separated into four 370

pools of neurons. Each pool consists of one hundred neurons. Two pools represent the 371

half centers of the CPG. The two other pools represent the additional inhibitory pools 372

for the self-inhibition via inhibitory interneurons mechanism, which were only present in 373

the simulations that use inhibitory interneurons as the self-inhibitory mechanism. Two 374

neuron pools were connected at random by inserting a connection with probability 0.1 375

for each pair of neurons. The pools representing the half centers were connected as 376

displayed in Figure 1, where each node in the figure corresponds to one pool. For 377

simulations with the self-inhibition via inhibitory interneurons, each half center was 378

connected to the additional inhibitory pool with excitatory connections. The inhibitory 379

pool in turn then was connected with inhibitory connections back to the half center. 380

Simulation procedure 381

In order to determine if short term depression and self-inhibition via inhibitory 382

interneurons are suitable self-inhibitory mechanism in the half center model we scanned 383

over a wide range of parameters. The parameters, their values and step sizes for the 384

scan are listed in Table 1. For each set of parameters the half centers were simulated for 385

10s and it was determined if oscillation emerge, as described below. In Figure 2F and 386

Figure 3B each point in the plot represents a set of parameters that generated 387

oscillation. Sets of parameters that did not generate oscillation are not plotted. 388

Oscillation detection and frequency estimation 389

In order to automatically determine if alternating oscillation between the half centers
exists in one particular simulation, we used the following procedure. First we computed
the firing rate of each single neuron, which is the low pass filtered version of the spike
train [37]. Let t1, . . . tm be the sequence of spike times of the neuron n and τ the time
constant of the low pass filter. The firing rate νn(t) is defined as

τ
dνn(t)

dt
= −νn(t) +

∑
1≤i≤m

δ(t− ti) ,

where δ is the Dirac delta function. We set τ = 100 ms, which is a compromise between
detecting high frequency oscillations and smoothing the neurons spikes. Let νi,1(t) be
the firing rate of neuron i in the first half center and νi,2(t) the firing rate of neuron i in
the second half center. The firing rate vCPG of the CPG is defined as

vCPG(t) =
1

n

∑
1≤i≤l

νi,1(t)− 1

n

∑
1≤i≤l

νi,2(t) ,

i.e. the difference of average firing rates of the half centers. Firing rates are computed
with Euler Integration with a time step of 0.1 ms. Let ν̄CPG(t) be the solution of the
integration. We fit a sine function to the firing, parameterized by an amplitude B, a
frequency f an offset in time ∆t and an offset in firing rate ∆ν by solving the
minimization problem

min ‖ν̄CPG(t)−B sin(2πft+ ∆t)−∆ν‖22 .
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If B ≥ 2∆ν, i.e. when the sine function oscillates strongly around zero, the simulation, 390

respectively the parameter set is classified as oscillatory. In this case the frequency of 391

the pattern is estimated as f . 392

Solving the optimization problem requires a suitable set of initial values for the 393

parameters. The offset parameter ∆ν is set to the average of ν̄CPG(t) and the offset ∆t 394

is set to zero. The amplitude A is estimated as the maximum of ν̄CPG(t) over all t. To 395

initialize the frequency f the autocorrelation of ν̄CPG(t) is computed. Let t′ be the 396

position of the second largest local maximum of the autocorrelation. The frequency is 397

set to f = 1
t′ . 398

This method classified some parameter sets as oscillatory, which are instances when 399

there is zero firing rate, or there is some oscillation which dies down after a few cycles or 400

oscillation with totally irregular intervals. Oscillations with greatly irregular intervals is 401

unsuitable for locomotion. All of these missclassifications are characterized by the 402

method estimating a very low frequency, which greatly deviates from the frequencies 403

estimated of instances with very close parameters. We reclassified those instances 404

manually to not oscillatory. 405
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