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Abstract

Memory enables reminiscence about past experiences and guides processing of

future experiences. However, these two functions are inherently at odds: re-

membering specific past experiences requires storing idiosyncratic properties,

but by definition such properties may not be shared with similar situations in

the future and thus are not as useful for prediction. We discovered that, when

faced with this conflict, the brain prioritizes prediction over encoding. Behav-

ioral tasks showed that pictures allowing for prediction of what will appear next

based on learned regularities are poorly encoded into memory. Brain imaging

revealed that predictive representations in the hippocampus may be responsi-

ble for this worse episodic encoding and suggested that such interference may

result from competition between hippocampal pathways. This tradeoff between

statistical learning and episodic memory may be adaptive, focusing encoding on

experiences for which we do not yet have a predictive model.

Introduction

Human memory contains two fundamentally different kinds of information

— episodic and statistical. Episodic memory refers to the encoding of specific

details of individual experiences (e.g., what happened on your last birthday),
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whereas statistical learning refers to extracting what is common across mul-5

tiple experiences (e.g., what tends to happen at birthday parties). Episodic

memory allows for vivid recollection and nostalgia about past events, whereas

statistical learning leads to more generalized knowledge and predictions about

new situations. Episodic memory occurs rapidly and stores even related expe-10

riences distinctly in order to minimize interference, whereas statistical learning

occurs more slowly and overlays memories in order to represent their common

elements or regularities. Given these behavioral and computational differences,

theories of memory have argued that these two kinds of information must be

processed serially and stored separately in the brain (McClelland et al., 1995;15

Squire, 2004): episodic memories are formed first in the hippocampus and these

memories in turn provide the input for later statistical learning in the neocor-

tex as a result of consolidation (Frankland and Bontempi, 2005; Richards et al.,

2014; Tompary and Davachi, 2017).

Here we reveal a relationship between episodic memory and statistical learn-20

ing in the reverse direction, whereby learned regularities determine which mem-

ories are formed in the first place. Specifically, we examine whether the ability to

predict what will appear next — a signature of statistical learning — reduces en-

coding of the current experience into episodic memory. This hypothesis depends

on two theoretical commitments: first, that the adaptive function of memory is25

to guide future behavior by generating expectations based on prior experience

(Schacter et al., 2017); second, that memory resources are limited, because of

attentional bottlenecks that constrain encoding (Aly and Turk-Browne, 2017)

and/or because new encoding interferes with the storage or retrieval of existing

memories (Shiffrin and Atkinson, 1969). Accordingly, in allocating memory re-30

sources, we propose that it is less important to encode an ongoing experience

when it already generates strong expectations about future states of the world.

When the current experience affords no such expectations, however, encoding

it into memory provides the opportunity to extract new, unknown regularities

that enable more accurate predictions in subsequent encounters. After demon-35
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strating this role for statistical learning in episodic memory behaviorally, we

identify an underlying mechanism in the brain using fMRI, based on the recent

discovery that both processes depend on the hippocampus and thus compete to

determine its representations and output (Schapiro et al., 2017).

We exposed human participants to a stream of pictures and later tested40

their memory (Figure 1A). The pictures consisted of outdoor scenes from 12

different categories (e.g., beach, mountain, farm). Some of the categories (type

A) were predictive of which category appeared next (type B), whereas other

categories (type X) were non-predictive. That is, every time participants saw a

picture from an A category, they always saw a picture from a specific B category45

next; however, when a picture from an X category appeared, it was followed by

a picture from one of several other categories (Figure 1B). Participants were

not informed about these predictive A → B category relationships and learned

them incidentally through exposure (Brady and Oliva, 2008). Although each

category was shown several times, every individual picture in the stream was a50

novel exemplar from the category and only shown once. For example, whenever

a picture from the beach category appeared, it was a new beach that they

had not seen before. After the stream, we tested memory for these individual

pictures amongst new exemplars from the same categories. The key question

was whether memory for the exemplars from the predictive categories would be55

remembered worse than those of non-predictive categories. This was first tested

in two behavioral experiments.

Results

While viewing the stream, the 30 participants in Experiment 1 performed a

cover task in which they judged whether or not there was a manmade object60

in the scene. Response times (RTs) on this task were used to assess whether

participants had learned the predictive relationships between A and B cate-

gories. If so, we expected that responses for B categories would become faster

over time in the experiment, as participants became able to anticipate which
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category would appear. Providing evidence of learning, there was a significant65

interaction between condition (A, B, X) and time (1st, 2nd, 3rd, 4th quartile of

the stream) (F(6, 174) = 2.27, p = 0.039). This interaction reflected a pattern

of growing facilitation for pictures from the B category, relative to both X and

A categories whose appearance in the stream could not be anticipated (Figure

S1A).70

Given our hypothesis, we expected worse encoding of the exemplars from

the predictive A categories, leading to greater forgetting in a later memory test.

Indeed, there was a main effect of condition (F(2,58) = 4.75, p = 0.012), with

a lower hit rate for pictures from the A categories relative to both B (t(29)

= -2.79, p = 0.009) and X (t(29) = -2.33, p = 0.027) categories (Figure 1C).75

There was no difference in hit rate between B and X categories (t(29) = 1.19,

p = 0.243), showing that the memory deficit is selective to whether a category

was predictive (A vs. X), not whether it was predictable (B vs. X).

Because the predictive A → B relationships had to be learned during the

stream, we expected that the memory deficit for pictures from the A cate-80

gory would emerge over time. Indeed, this effect was evident only in the third

and fourth quartiles of stream exposure (Figure S1B). Furthermore, the overall

memory deficit reflected a failure to encode specific A exemplars rather than

a generic impairment for A categories (De Brigard et al., 2017; Smith et al.,

2013), as the false alarm rate for new exemplars from each category at test did85

not differ by condition (F(2, 58) = 0.29, p = 0.751).

This experiment demonstrated that episodic encoding is worse for predictive

vs. non-predictive pictures using a surprise recognition memory test. We inter-

pret this result as evidence of competition between prediction and encoding in

the hippocampus. However, recognition tests do not selectively probe aspects90

of episodic memory that critically depend on the hippocampus. Participants

could have relied upon a generic sense of familiarity with the pictures, which

can be supported by cortical areas (Brown and Aggleton, 2001; Davachi et al.,

2003; Norman and O’Reilly, 2003).

We thus designed Experiment 2 with a different, recall-based memory test.95
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This test required retrieval of specific spatiotemporal details, which is known to

tax the hippocampus (Miller et al., 2013) and is a hallmark function of episodic

memory (e.g., remembering who arrived first at a birthday party). A new group

of 30 participants was exposed to the same kind of picture stream and performed

the same cover task as in Experiment 1. However, during the memory test phase100

they were unexpectedly asked to indicate at what exact time (on the clock) they

had seen each picture during the stream. As before, encoding of the time was

incidental as they were not informed in advance that they would be tested.

This kind of precise temporal source memory requires the retrieval of details

about the context in which each picture was encoded, which depends on the105

hippocampus (Davachi and DuBrow, 2015; Mitchell and Johnson, 2009).

We analyzed the accuracy of the time reports in terms of absolute deviation

from the correct time on the clock at encoding, such that higher values indicate

less precise memory (Figure 1D). Consistent with the results of Experiment 1,

there was a main effect of condition (A, B, X) on temporal deviation (F(2,58)110

= 3.17, p = 0.049). Pictures from the A categories had greater deviation (less

precision) than those from the X categories (t(29) = 2.26, p = 0.031); the same

pattern was present for A vs. B categories but did not reach significance (t(29)

= 1.45, p = 0.157), nor did B and X categories differ (t(29) = 1.23, p = 0.229).

What explains the reduced encoding of predictive pictures in Experiments115

1 and 2? We propose that this results from the co-dependence of statistical

learning and episodic memory on the same brain region — the hippocampus

(Schapiro et al., 2017). Specifically, we hypothesized that the appearance of a

picture from an A category triggers the retrieval and predictive representation

of the corresponding B category in the hippocampus. This in turn prevents the120

hippocampus from forming and encoding a new representation of the specific

details of that particular A picture that would be needed for later recall from

episodic memory.

To test this hypothesis, Experiment 3 employed high-resolution fMRI in 36

new participants who viewed the same kind of picture stream as in Experiments125

1 and 2. We used a multivariate pattern classification approach from machine
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learning (Cohen et al., 2017), which quantified neural prediction of B categories

during the encoding of A pictures. Classification models were trained for each

category based on patterns of fMRI activity in a separate phase of the exper-

iment where participants were shown pictures from all categories in a random130

order. These classifiers were then tested during viewing of the stream contain-

ing category pairs, providing a continuous readout of neural evidence for each

category. We performed this analysis based on fMRI activity patterns from the

hippocampus, our primary region of the interest (ROI), as well as from control

ROIs in occipital and parahippocampal cortices (Figure 2, bottom). These con-135

trol ROIs were chosen because we expected them to be sensitive to the category

of the current picture being viewed but not to predict the upcoming B category

given an A picture.

To validate our approach, we first trained and tested classifiers on the viewing

of pictures from the A (“Perception of A”) and B (“Perception of B”) categories140

(Figure 2). Both types of perceptual categories could be decoded in occipital and

parahippocampal ROIs. Interestingly, only the perception of B categories (not

A) could be decoded in the hippocampus. We next tested our main hypothesis

that the hippocampus predicts B categories during viewing of the associated A

categories. We trained classifiers on pictures from each B category and tested145

on pictures from the corresponding A category (“Prediction of B”). Crucially,

the upcoming B category could be decoded during A in the hippocampus, but

this was not possible in occipital or parahippocampal ROIs. Combining these

results, there was a trade-off in the hippocampus between the perception of A

(train on A, test on A) and prediction of B (train on B, test on A): during viewing150

of A, participants with above-chance classification for the upcoming B category

(vs. other B categories) had lower classification accuracy for the current A

category (vs. other A categories) (t(34) = 2.23, p = 0.033). This shows that

prediction can interfere with the ability of the hippocampus to represent the

current picture. Control analyses ruled out potential confounds related to the155

timing of the fMRI signal: training classifiers on A categories and testing on

corresponding B pictures (“Lingering of A”), did not yield reliable decoding in

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/851147doi: bioRxiv preprint 

https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/


any ROI.

To further assess the specificity of these results to the hippocampus, we

ran an exploratory whole-brain searchlight analysis. We again validated our160

approach by decoding the perception of B categories (train on B, test on B).

The resulting regions, which represented scene categories, were largely consistent

with our a priori ROIs (Figure S4B). Notably, the prediction of B (train on B,

test on A) produced no significant clusters across the brain after correcting for

multiple comparisons (Figure S4A), consistent with this effect being specific to165

the hippocampal ROI.

After having demonstrated prediction from statistical learning in the hip-

pocampus, we tested our critical hypothesis that this prediction would impair

simultaneous encoding into episodic memory. We quantified this brain-behavior

relationship by correlating (1) each participant’s decoding accuracy for predic-170

tion of B during A in the hippocampus with (2) their difference in hit rate for A

vs. X categories (the key behavioral effect in Experiments 1-2) in the memory

test (Figure 2, right). We limited this analysis to participants with decoding ac-

curacy above chance (0.5), as variance at or below chance cannot be interpreted

(results were robust to this exclusion, see Supplementary Materials). Consistent175

with our hypothesis, there was a negative correlation: more accurate prediction

of B categories in the hippocampus in response to A pictures was associated

with a greater deficit in memory for the A pictures (r(22) = -0.63, p <0.001).

How is this interaction between prediction and encoding implemented in the

circuitry of the hippocampus? A recent biologically-plausible neural network180

model of the hippocampus (Schapiro et al., 2017) suggests that episodic memory

and statistical learning depend on different pathways, the trisynaptic pathway

(TSP) and monosynaptic pathway (MSP), respectively (Figure 3B). The TSP

consists of a connection between entorhinal cortex (EC) and the CA1 subfield

via intermediate connections through the dentate gyrus (DG) and CA3 subfield.185

DG and CA3 have sparse activity because of high lateral inhibition; this allows

for the distinct representation of similar experiences (i.e., pattern separation;

(Leutgeb et al., 2007)), which is needed to avoid interference between episodic
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memories. The MSP consists of a direct recurrent connection between EC and

CA1. CA1 has lower inhibition and thus higher overall activity and less sparsity;190

this leads to overlap in the representation of similar experiences, which allows

their regularities to be reinforced.

Accordingly, both the TSP and MSP converge on CA1, which we propose is

the locus of conflict between episodic memory and statistical learning. We aimed

to test this theory with the fMRI data from Experiment 3 using a functional195

connectivity approach known as psychophysiological interaction (PPI). We rea-

soned CA1 would interact more with TSP (reflected in correlated activity with

a combined CA2/3/DG ROI) during episodic memory and with MSP (reflected

in correlated activity with an EC ROI) during statistical learning (Figure 3C).

Specifically, we hypothesized that during periods of low episodic encoding and200

high statistical learning, CA1 should be more functionally connected with with

EC than CA2/3/DG.

We quantified episodic encoding using a non-parametric measure of recogni-

tion memory fidelity (A′) across pictures from both A and B categories (together,

referred to as “Structured”) and for pictures from X categories (“Random”). We205

combined A and B categories because these pictures provided the opportunity

for both the extraction of regularities and the encoding of individual episodes.

Higher A′ values indicate more episodic encoding and lower A′ values indicate

less episodic encoding (and perhaps thus more statistical learning). We sep-

arately correlated EC ↔ CA1 and CA2/3/DG ↔ CA1 connectivity from the210

PPI analysis with A′ for Structured and Random pictures (Figure 3D).

For Structured pictures, EC ↔ CA1 connectivity was related to lower A′

or worse episodic memory performance (r(34) = -0.41, p = 0.014), whereas

CA2/3/DG ↔ CA1 connectivity had no relationship to A′ (r(34) = 0.062, p =

0.72); these two correlations significantly differed (z(35) = -2.01; p = 0.044).215

For Random pictures, CA1 connectivity with both pathways was unrelated to

A′ (EC: r(34) = -0.039, p = 0.82; CA2/3/DG: r(34) = 0.15, p = 0.37). The lack

of any positive relationship of CA2/3/DG ↔ CA1 connectivity with A′ suggests

that statistical learning is necessary to reveal an impact of CA1 connectivity
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(with EC) on episodic memory. Namely, greater MSP engagement in response220

to regularities reflects a bias away from episodic memory.

Discussion

To summarize the three experiments, our core findings were (1) that pre-

diction from statistical learning interferes with encoding into episodic memory

and (2) that this competition may be explained by the multiplexed function of225

the hippocampus across convergent pathways. These findings are related to two

theoretical issues in the learning and memory literature.

First, the hippocampus is necessary for both memory encoding and retrieval,

and yet these functions are fundamentally at odds. Given a partial match

between the current experience and past experiences, encoding leverages pattern230

separation to store a new trace of the current experience, whereas retrieval

invokes pattern completion to access old traces of those past experiences. To

resolve this incompatibility, it has been argued that the hippocampus toggles

between encoding and retrieval states (Hasselmo et al., 1996; Duncan et al.,

2012; Patil and Duncan, 2018). In the present study, if seeing a picture from an235

A category triggers the retrieval of its associated B category, the hippocampus

may be pushed into a retrieval state that suppresses memory encoding.

Second, after learning predictive relationships in classical conditioning, “block-

ing” can occur when new cues are introduced. After one conditioned stimulus

(CS1) has been paired with an unconditioned stimulus (US), no associative240

learning occurs when a second conditioned stimulus (CS2) is added (Kamin,

1969). This is interpreted as CS2 being redundant with CS1, that is, not pro-

viding additional predictive value given that the US can be fully explained by

CS1. In the present study, the A pictures contain two kinds of features: those

that are diagnostic of the category (e.g., sand and water for a beach) and those245

that are idiosyncratic to each exemplar (e.g., particular people, umbrellas, boats,

etc.). If categorical features are sufficient to predict the upcoming B category,

idiosyncratic features may not be attended or represented (Mackintosh, 1975;
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Kruschke, 2001), impeding the formation of episodic memory. Our findings are

not fully consistent with this account, however. Blocking might predict that the250

A pictures are represented more categorically and this enables prediction of the

B category; yet, we found a trade-off in the hippocampus between perceptual

evidence of the A category and predictive evidence of the B category.

Stepping back, why are the computationally opposing functions of episodic

memory and statistical learning housed together in the hippocampus? We pro-255

pose that this shared reliance allows them to regulate each other. By analogy,

using your right foot to operate both the brake and gas pedals in a car serves

as an anatomical constraint that forces you to either accelerate or decelerate,

but not both at the same time. A similarly adaptive constraint may be present

in the hippocampus, reflecting mutual inhibition between episodic memory and260

statistical learning. When predictive information is available in an environ-

ment, it may be redundant to encode new experiences. Moreover, encoding

such experiences would risk over-fitting or improperly updating known, predic-

tive regularities with idiosyncratic or noisy details. By focusing on upcoming

events, the hippocampus can better serve as a comparator between expectations265

and inputs (Kumaran and Maguire, 2006), prioritizing the encoding of novel and

unexpected events (Greve et al., 2017; Henson and Gagnepain, 2010).
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Figure 1: Behavioral Experiments. A) Task design: participants viewed a continuous stream

of scene pictures, during which they made a judgment of whether or not there was a manmade

object in the scene. B) Example scene category pairings for one participant: 3 of 12 categories

were assigned to condition A; each was reliably followed by one of 3 different categories

assigned to condition B (illustrated by arrows). The remaining 6 categories were assigned to

condition X and were not consistently preceded or followed by any particular category. C)

Left: surprise recognition memory test. Right: proportion of old exemplars recognized as a

function of condition (higher hit rate is better memory). D) Left: temporal source memory

test. Right: absolute difference between reported and actual time of encoding as a function of

condition (higher deviation is worse memory). Error bars reflect within-participant standard

error of the mean. *p <0.05, **p <0.01.
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Figure 2: Category Decoding in fMRI Experiment. Upper left: Classification accuracy in

occipital cortex (OCC), parahippocampal cortex (PHC), and hippocampus (HIPP) plotted

for each of the four combinations of training or testing on A or B categories. For every

A/B combination and ROI, each dot is one participant and the black line is the mean across

participants. Perception of A: OCC: t(35) = 4.34, p <0.001; PHC: t(35) = 3.82, p <0.001;

HIPP: t(35) = -0.17, p = 0.87. Prediction of B: OCC: t(35) = 0.94, p = 0.35; PHC: t(35)

= 0.17, p = 0.87; HIPP: t(35) = 2.73, p = 0.0098. Lingering of A: OCC: t(35) = -0.38, p

= 0.71; PHC: t(35) = 1.57, p = 0.13; HIPP: t(35) = 0.96, p = 0.34. Perception of B: OCC:

t(35) = 5.96, p <0.001; PHC: t(35) = 3.52, p = 0.0012; HIPP: t(35) = 2.26, p = 0.030.

Bottom: Regions of interest. HIPP and PHC were manually segmented in native participant

space (transformed into standard space for visualization); OCC was defined in standard space

and transformed into native participant space. Upper right: Correlation between “Prediction

of B” classification accuracy in HIPP and the difference in hit rate between A and X. Only

participants with classification higher than chance (>0.5) were included.
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Figure 3: Hippocampal Connectivity in fMRI Experiment. A) Manually segmented hippocam-

pal subfield and MTL cortical ROIs (anterior and posterior slices from representative partici-

pant shown): CA1, combined CA2/3/DG, subiculum, entorhinal cortex (EC), perirhinal cor-

tex (PRC), and parahippocampal cortex (PHC). B) Two pathways in the hippocampal circuit:

trisynaptic pathway (TSP, blue) and monosynaptic pathway (MSP, teal). C) Pathway-specific

predictions about CA1 functional connectivity during statistical learning (left) and episodic

memory (right). D) Relationship of CA1 functional connectivity in TSP (CA2/3/DG) and

MSP (EC) with episodic memory performance (A′) across participants, separated by whether

there were regularities to be extracted by statistical learning (Structured) or not (Random).

Error bars represent 95% confidence intervals. *p <0.05.
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Methods

Experiment 1

Participants. Thirty individuals (19 female; age range: 18-31, mean age = 21.2)280

were recruited from the Yale University community for either course credit or

$10 compensation. Informed consent was obtained in a manner approved by

the Yale University Human Subjects Committee.

Stimuli and Apparatus. Participants were seated approximately 50cm away

from a 69cm monitor (1920 x 1080 pixel resolution; 60 Hz refresh rate). Scene285

stimuli consisted of 300 unique scene images drawn from 12 scene subcategories

(25 images/subcategory), collected from Google image searches. Each partici-

pant viewed 22 scenes from each subcategory, randomly selected from the set

of 25. Sixteen of these images (per each category; 192 total) were used in the

learning phase, two for the category pair test, and four as foils in the recognition290

test. Scene stimuli were presented centrally and subtended 27.8 x 20.8 degrees

of visual angle. Stimuli were presented using MATLAB (The MathWorks, Nat-

ick, MA) with the Psychophysics Toolbox (Brainard and Vision, 1997; Pelli and

Vision, 1997).

Procedure. Participants first completed a learning phase. On each trial, they295

viewed a photograph of a scene for 1000 ms, during which they had to respond

based on whether it contained a manmade object (See Main Text Figure 1A).

Participants were instructed to respond as quickly and accurately as possible

(response mappings of ‘j’/’k’ onto ‘yes’/’no’ were counterbalanced across partic-

ipants), and we recorded response time (RT) and accuracy. The scene remained300

on the screen for 1000 ms regardless of button press to equate encoding time,

and trials were separated by a 500-ms inter-stimulus interval during which a

fixation cross appeared.

Every scene was trial-unique, but was drawn from one of 12 outdoor scene

categories (beaches, bridges, canyons, deserts, fields, forests, lakes, lighthouses,305

marshes, mountains, parks, and waterfalls; see Main Text Figure 1B). Each
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scene category appeared 16 times over the course of the learning phase, for a

total of 192 trials. The photographs for half of the scene categories always con-

tained a manmade object, and thus all exemplars in a category required the

same response, and the responses were balanced overall. Unbeknownst to par-310

ticipants, and orthogonal to the required response, half of the scene categories

were assigned to pairs. Given the first scene in a pair (A category scenes),

the category of the second scene (B category scenes) was predictable with a

transition probability of 1.0. The other half of scene categories were neither

predictive nor predictable (X category scenes). Pictures from these categories315

were inserted on their own randomly. The assignment of scene categories to

A/B/X conditions was itself randomized for each participant. The order of

the photograph sequence was randomized with the following constraints: cat-

egory pairs and pairs of category pairs could not repeat back-to-back (i.e., no

A1/B1/A1/B1 or A1/B1/A2/B2/A1/B1/A2/B2); repetitions of each category320

were spread equally across quartiles of the learning phase to minimize differences

in study-test lag between categories; and the overall transition probability be-

tween “yes” and “no” responses was forced to be statistically indistinguishable

from 0.5.

After the learning phase, participants performed five minutes of a distracting325

math phase to minimize recency effects. Each of 60 math problems consisted of

division and subtraction, and the answer to the problem was always 1, 2, 3, or

4. Participants responded using the 1, 2, 3, and 4 keys on the keyboard, with

a maximum response window of 5 s. The inter-stimulus interval was adjusted

based on the RT (5 s - RT), to ensure that this phase lasted exactly 5 min given330

the 60 trials. Participants were instructed to respond as accurately as possible.

Participants then underwent two surprise memory tests (category pair test

and episodic memory test), the order of which was counterbalanced across par-

ticipants. The category pair test involved explicit judgments of the category

pairings from the learning phase. Participants were presented with two pairs335

of photographs on every test trial and were asked to indicate which pair felt

more familiar based only what they had seen during the learning phase. The
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pairs were shown sequentially: the first scene from one pair appeared for 1000

ms, followed by a 500-ms blank interval, followed by the second scene of the

pair for 1000 ms; after a 1000 ms gap with a fixation cross, a second pair was340

presented in the same manner. After both pairs, participants responded using

the ‘1’ key to indicate if the first pair felt more familiar or the ‘2’ key if the

second pair felt more familiar. Participants had a maximum of 6 s to respond.

Each scene in the category pair test was a completely novel exemplar of its

category. Half of the test trials contained a true category pair (when it was a345

trial testing a pair from the learning phase); whether it appeared first or second

was counterbalanced. The other half of the trials contained a “dummy coded”

pair of the X categories (there was no correct answer on these trials). This

was done to equate the frequency of categories, which was important for par-

ticipants who received the category pair test before the episodic memory test.350

Each true/dummy-coded pair was tested twice against a scrambled pair of the

same categories (e.g., if beach → field, mountain → bridge, canyon → forest

were category pairs from the learning phase, the foils might be beach → bridge,

mountain → forest, canyon → field).

The episodic memory test was designed to assess episodic memory for the355

trial-unique scenes from the learning phase. On each trial, one scene was pre-

sented and participants had to indicate whether it was “old” (i.e., presented

during the learning phase) or “new” (i.e., not previously seen in the experiment).

After making an old/new response (using ‘j’/‘k’ keys on the keyboard), partici-

pants then rated their confidence in this response (“not confident”/“confident”,360

using ‘d’/‘f’ keys). Participants had 6 s to make each response. All 192 scene

photographs from the learning phase were shown, in addition to 48 foils (4 novel

exemplars from each category). The order of the scenes was randomized.

Experiment 2

Participants. Thirty individuals (19 female; age range: 18-23, mean age = 19.3)365

were recruited from the Yale University community for either course credit or

$10 compensation. Informed consent was obtained in a manner approved by
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the Yale University Human Subjects Committee.

Stimuli and Apparatus. Same as Experiment 1.

Procedure. The procedure was identical to that of Experiment 1, with the fol-370

lowing exception: we replaced the confidence judgment of the episodic memory

test with a temporal source judgment. In other words, participants were pre-

sented with a scene and again asked to judge whether it was “old” or “new”

(using the ‘d’ and ‘f’ keys). However, instead of then being asked to judge how

confident they were in their response, old responses were followed by the pre-375

sentation of a timeline, bound by the start and end clock times of the learning

phase. Participants used the mouse to click along the timeline to indicate when

they remember seeing the scene. No temporal source judgments were collected

after new responses.

Experiment 3380

Participants. Thirty-eight individuals (24 female; age range: 18-35, mean age =

23.1) were recruited from the Yale University community for $30 compensation.

Informed consent was obtained in a manner approved by the Yale University

Human Investigation Committee. One participant was excluded to due a neu-

rological anomaly, and one participant was excluded for chance-level episodic385

memory performance (A′ <0.5).

Stimuli and Apparatus. Stimuli were presented on a rear-projection screen us-

ing a projector (1920 x 1068 pixel resolution; 60 Hz refresh rate). Partici-

pants viewed the stimuli through a mirror mounted on the head coil. Scene

stimuli consisted of 480 unique images drawn from 12 subcategories (40 im-390

ages/subcategory), collected from Google image searches (180 additional stimuli

were collected for this experiment; the other 300 are identical to those used in

Experiments 1 & 2). Each participant viewed 39 scenes from every subcategory,

randomly selected from the set of 40: 21 per category (252 total) for the learning

phase, 14 (168) for the pre- and post- learning templating phases, and 4 (48) as395

foils in the episodic memory test.
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Procedure. The procedure was identical to that of Experiment 1 with the fol-

lowing changes:

Instead of one continuous block of the learning phase (with 16 repetitions

of each scene category), it was divided into three fMRI runs, each with seven400

repetitions/category (such that were 21 repetitions/category in total across the

learning phase). As in Experiments 1 & 2, each image was presented for 1

s, but the ITI in this experiment varied between 2 s (39.3% of trials), 3.5 s

(39.3% of trials), and 5 s (21.4% of trials). For the manmade object cover

task, participants responded using their right index and middle fingers on an405

MR-compatible button box.

Before and after the three learning runs, respectively, there were “pre” and

“post” templating phases (one fMRI run each). To participants, these phases

were identical to the learning phase (e.g., stimulus timing and task were iden-

tical). However, there were no category-level regularities in these two runs.410

Scenes from all categories were presented in a random order. To limit the im-

pact of this random presentation on subsequent learning, participants completed

a distracting math task between the “pre” templating run and the first learning

run. Each of these five functional runs (three learning runs and pre/post runs)

lasted 6.4 minutes.415

For the episodic memory test, as in Experiment 1, a scene was presented and

participants indicated (with their index and pinky fingers) whether it was “old”

(i.e., presented during the learning phase) or “new” (i.e., not previously seen

in the experiment). They then rated their confidence in this response (“very

unsure”,“unsure”,“sure”,“very sure”), using their index through pinky fingers,420

respectively. Participants had 6 s to respond to each of these questions. They

completed this task while in the scanner, but no fMRI data were collected. No

category pair test was administered in this experiment.

MRI Acquisition. Data were acquired on a Siemens Prisma 3T scanner using

a 64-channel head coil at the Magnetic Resonance Research Center at Yale425

University. Functional images were acquired using an EPI sequence with the
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following parameters: TR = 1500 ms; TE = 32 ms; 90 axial slices; voxel size =

1.5 x 1.5 x 1.5 mm; flip angle = 64 degrees; multiband factor = 6. Additionally,

a pair of opposite phase-encode spin-echo volumes were collected for distortion

correction (TR = 11,220 ms; TE = 66 ms). One T1-weighted MPRAGE (TR430

= 1800 ms; TE = 2.26 ms; voxel size = 1 x 1 x 1 mm; 208 sagittal slices; flip

angle = 8 degrees) and two T2-weighted turbo spin echo (TR = 11,390 ms; TE

= 90 ms; 54 coronal slices; voxel size = 0.44 x 0.44 x 1.5 mm; distance factor =

20%; flip angle = 150 degrees) anatomical images were collected.

fMRI Preprocessing. fMRI data processing was carried out using FEAT (fMRI435

Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library,

www.fmrib.ox.ac.uk/fsl) version 5.0.10. EPI and anatomical images were skull-

stripped using the Brain Extraction Tool (Smith, 2002). Susceptibility-induced

distortions measured via the opposing-phase spin echo volumes were corrected

using FSL’s topup tool (Andersson et al., 2003). Each functional run was440

high-pass filtered with a 128 s period cut-off, corrected for head motion using

MCFLIRT (Jenkinson et al., 2002), and motion outliers were computed. Slice-

timing correction was performed. No spatial smoothing was applied. Lastly,

the six motion parameters, as well as motion outliers, were regressed against

the BOLD timecourse using a general linear model (GLM). The residuals from445

this preprocessing model (which contain BOLD responses to the task after con-

trolling for motion) were then used for subsequent analyses.

Functional images were registered to each participant’s T1 anatomical scan

using boundary-based registration, as well as to a 2 mm MNI standard brain,

using 12 degrees of freedom. Lastly, the two T2 anatomical images collected450

were registered to one another and averaged; the resulting averaged image was

registered to the T1 anatomical image using FLIRT (Jenkinson and Smith,

2001).

Regions of Interest. Our primary region of interest (ROI) was the hippocam-

pus. Hippocampal subfields CA1, CA2/3/DG, and subiculum, as well as medial455

temporal lobe (MTL) cortical regions entorhinal cortex (EC), perirhinal cortex

20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/851147doi: bioRxiv preprint 

https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/


(PRC), and parahippocampal cortex (PHC) were manually segmented on par-

ticipants’ averaged T2 anatomical scan, using published criteria on anatomical

landmarks (Insausti et al., 1998; Pruessner et al., 2002; Duvernoy, 2005; Aly and

Turk-Browne, 2015). Corresponding ROIs from each hemisphere were concate-460

nated to create one bilateral ROI per region, as we had no hemisphere-specific

hypotheses. Additionally, a bilateral whole hippocampus ROI was created by

concatenating the three bilateral subfield ROIs. Individual ROIs were trans-

formed into each participant’s functional space for subsequent analyses.

The occipital cortex ROI was defined using the MNI structural atlas, thresh-465

olded at 25% probability. This standard space ROI was then transformed into

each participant’s functional space for subsequent analyses.

Category Decoding Analysis. A multivariate pattern classification approach was

used to assess evidence for a particular category during the learning phase.

This approach involved training a classifier on fMRI activity patterns for each470

category from the “pre” templating run (when there were no regularities present

and none had been learned) and testing for classifier evidence of these categories

during the three (independent) learning runs.

More specifically, for each functional run, the residuals from the preprocess-

ing GLM (with known noise sources removed but still containing task responses)475

were aligned to the final functional run and z-scored across time. The voxel x

time matrices were then masked to only include voxels within an ROI. The

timepoints corresponding to the presentation of each of two categories of in-

terest were extracted and shifted by 3 TRs (4.5 seconds) to account for the

hemodynamic lag. The voxel activity patterns from these shifted time points480

were then extracted and used as training or test data for the classifier. Time-

points that included a motion outlier were excluded from the training/test sets.

Linear SVMs were trained on data and labels from the pre-learning templat-

ing run, using the SVC function in Python’s scikit-learn module, with a penalty

parameter of 1.00. Classifiers were then tested with data corresponding to the485

timepoints of the trained categories in the three learning runs (concatenated)
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and made guesses as to the category label of each test example. Accuracy was

computed as the proportion of correct guesses.

We ran the following comparisons: Perception of A (training on pre-learning

examples of A, testing for evidence of A during the presentation of A in the490

learning phase), Perception of B (training on pre-learning examples of B, testing

for evidence of B during the presentation of B in the learning phase), Lingering

of A (training on pre-learning examples of A, testing for evidence of A during

the presentation of B in the learning phase), and Prediction of B (training on

pre-learning examples of B, testing for evidence of B during the presentation of495

A in the learning phase).

Each participant encountered three A and three B categories over the course

of the experiment. Thus, for each of the four comparisons above, we built three

different binary classifiers and then averaged their accuracy. In other words,

a classifier was trained to distinguish between two scene categories from the500

same condition (e.g., B) based on the pre-learning templating run, and tested

for evidence of those two categories during the subsequent presentation of two

categories (e.g., their corresponding As for Prediction of B) in the learning

phase. Accuracy (percent correct) was then computed for each of these three

classifiers (A1 vs. A2; A2 vs. A3; A1 vs. A3) and averaged, resulting in one505

mean accuracy value per comparison, per participant.

To provide an example, if we use the category pairs from earlier beach →

field, mountain → bridge, canyon → forest, then B classifiers would be trained

for field vs. bridge, bridge vs. forest, and field vs. forest. To calculate evidence

for Prediction of B: the field vs. bridge classifier would be applied to the beach510

and mountain trials — such that the classifier estimated evidence for field and

bridge during each beach or mountain trial — and accuracy was computed (such

that, for example, accuracy on a beach trial was 1 if the classifier outputted more

evidence for field than for mountain). This was repeated for the bridge vs. forest

classifier (testing for evidence of these categories during mountains and canyons)515

and the field vs. forest classifier (testing for evidence of these categories during

beaches and canyons). The accuracies of these three classifiers were averaged
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into a single accuracy for each participant. This was repeated for the three

other comparisons above and for each ROI. To assess reliability at the group

level, performance was compared to a chance level of 0.50 across participants520

using a one-sample t-test.

PPI Analysis. To examine how functional connectivity between hippocampal

subfields is affected by statistical learning, we conducted a psychophysiological

interaction (PPI) analysis. Because we aimed to assess the impact of learned

regularities, we limited this analysis to the second and third runs of the learning525

phase. Including the first learning run may have weakened the key contrast of

connectivity during periods with and without regularities, as participants had

no knowledge of the regularities at the beginning of that run.

To perform the PPI, we concatenated the aligned, normalized residual time-

courses from the pre-processing GLM across the two included runs. We then av-530

eraged the activity of voxels in each ROI to compute a mean timecourse for CA1,

CA2/3/DG, and EC. Additionally, we extracted the onsets of Structured (A &

B) and Random (X) pictures, and convolved each of these two condition regres-

sors with a double-gamma hemodynamic response function (fmrisim function

in BrainIAK, http://brainiak.org). We then ran a GLM in R (https://cran.r-535

project.org/), in which we predicted the timecourse of CA1 as a linear combina-

tion of regressors for the timecourses of CA2/3/DG and EC, task events in the

two learning conditions (Structured and Random), and the interaction between

ROIs and learning conditions. The interaction regressors were defined as the

products of the ROI and condition timecourses (EC*Structured, EC*Random,540

CA2/3/DG*Structured, CA2/3/DG*Random). Each regressor, as well as the

CA1 timecourse, was z-scored and entered simultaneously into the model. A

separate model was run for each participant, resulting in one coefficient per re-

gressor per participant. For an interaction regressor of interest, the coefficients

were correlated with A′ memory performance for the corresponding condition545

across participants.
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Searchlight Analysis. To explore the specificity of our Prediction of B results in

the brain, we performed the category decoding analysis within a 27-voxel cube

that was moved across all functional voxels (searchlight function in BrainIAK).

Each aligned, normalized residual volume from the pre-processing GLM was reg-550

istered to standard space. These volumes were masked for each searchlight and

the retained voxels were subjected to the same decoding pipeline described above

for the ROIs. The result was a searchlight map per participant, in which the

value at each voxel reflected the average classification accuracy for the cube cen-

tered at that voxel. The reliability of these maps was assessed at the group level555

using nonparametric randomization tests (randomise function in FSL) (Winkler

et al., 2014), corrected for multiple comparisons using threshold-free cluster en-

hancement (Smith and Nichols, 2009). As a control analysis, we ran the same

searchlight procedure for the Perception of B comparison.

Data and Code Availability. fMRI data can be downloaded from OpenNeuro560

and behavioral data can be downloaded from Dryad. Analysis code can be

accessed on Github.
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