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Learning not to remember: How predicting the future
impairs encoding of the present

Brynn E. Sherman, Nicholas B. Turk-Browne*

Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520,
USA

Abstract

Memory enables reminiscence about past experiences and guides processing of
future experiences. However, these two functions are inherently at odds: re-
membering specific past experiences requires storing idiosyncratic properties,
but by definition such properties may not be shared with similar situations in
the future and thus are not as useful for prediction. We discovered that, when
faced with this conflict, the brain prioritizes prediction over encoding. Behav-
ioral tasks showed that pictures allowing for prediction of what will appear next
based on learned regularities are poorly encoded into memory. Brain imaging
revealed that predictive representations in the hippocampus may be responsi-
ble for this worse episodic encoding and suggested that such interference may
result from competition between hippocampal pathways. This tradeoff between
statistical learning and episodic memory may be adaptive, focusing encoding on

experiences for which we do not yet have a predictive model.

Introduction

Human memory contains two fundamentally different kinds of information
— episodic and statistical. Episodic memory refers to the encoding of specific

details of individual experiences (e.g., what happened on your last birthday),

*Corresponding author; Lead Contact
Email address: nicholas.turk-browne@yale.edu (Nicholas B. Turk-Browne)

November 17, 2019


https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/851147; this version posted November 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

5 whereas statistical learning refers to extracting what is common across mul-
tiple experiences (e.g., what tends to happen at birthday parties). Episodic
memory allows for vivid recollection and nostalgia about past events, whereas
statistical learning leads to more generalized knowledge and predictions about

10 new situations. Episodic memory occurs rapidly and stores even related expe-
riences distinctly in order to minimize interference, whereas statistical learning
occurs more slowly and overlays memories in order to represent their common
elements or regularities. Given these behavioral and computational differences,
theories of memory have argued that these two kinds of information must be

15 processed serially and stored separately in the brain (McClelland et al., 1995;
Squire, 2004): episodic memories are formed first in the hippocampus and these
memories in turn provide the input for later statistical learning in the neocor-
tex as a result of consolidation (Frankland and Bontempi, 2005; Richards et al.,
2014; Tompary and Davachi, 2017).

2 Here we reveal a relationship between episodic memory and statistical learn-
ing in the reverse direction, whereby learned regularities determine which mem-
ories are formed in the first place. Specifically, we examine whether the ability to
predict what will appear next — a signature of statistical learning — reduces en-
coding of the current experience into episodic memory. This hypothesis depends

5 on two theoretical commitments: first, that the adaptive function of memory is
to guide future behavior by generating expectations based on prior experience
(Schacter et al., 2017); second, that memory resources are limited, because of
attentional bottlenecks that constrain encoding (Aly and Turk-Browne, 2017)
and/or because new encoding interferes with the storage or retrieval of existing

s memories (Shiffrin and Atkinson, 1969). Accordingly, in allocating memory re-
sources, we propose that it is less important to encode an ongoing experience
when it already generates strong expectations about future states of the world.
When the current experience affords no such expectations, however, encoding
it into memory provides the opportunity to extract new, unknown regularities

s that enable more accurate predictions in subsequent encounters. After demon-
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strating this role for statistical learning in episodic memory behaviorally, we
identify an underlying mechanism in the brain using fMRI, based on the recent
discovery that both processes depend on the hippocampus and thus compete to
determine its representations and output (Schapiro et al., 2017).

2 We exposed human participants to a stream of pictures and later tested
their memory (Figure 1A). The pictures consisted of outdoor scenes from 12
different categories (e.g., beach, mountain, farm). Some of the categories (type
A) were predictive of which category appeared next (type B), whereas other
categories (type X) were non-predictive. That is, every time participants saw a

s picture from an A category, they always saw a picture from a specific B category
next; however, when a picture from an X category appeared, it was followed by
a picture from one of several other categories (Figure 1B). Participants were
not informed about these predictive A — B category relationships and learned
them incidentally through exposure (Brady and Oliva, 2008). Although each

s category was shown several times, every individual picture in the stream was a
novel exemplar from the category and only shown once. For example, whenever
a picture from the beach category appeared, it was a new beach that they
had not seen before. After the stream, we tested memory for these individual
pictures amongst new exemplars from the same categories. The key question

55 was whether memory for the exemplars from the predictive categories would be
remembered worse than those of non-predictive categories. This was first tested

in two behavioral experiments.

Results

While viewing the stream, the 30 participants in Experiment 1 performed a

6 cover task in which they judged whether or not there was a manmade object
in the scene. Response times (RTs) on this task were used to assess whether
participants had learned the predictive relationships between A and B cate-
gories. If so, we expected that responses for B categories would become faster

over time in the experiment, as participants became able to anticipate which
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e category would appear. Providing evidence of learning, there was a significant
interaction between condition (A, B, X) and time (1st, 2nd, 3rd, 4th quartile of
the stream) (F(6, 174) = 2.27, p = 0.039). This interaction reflected a pattern
of growing facilitation for pictures from the B category, relative to both X and
A categories whose appearance in the stream could not be anticipated (Figure

0 SIA).

Given our hypothesis, we expected worse encoding of the exemplars from
the predictive A categories, leading to greater forgetting in a later memory test.
Indeed, there was a main effect of condition (F(2,58) = 4.75, p = 0.012), with
a lower hit rate for pictures from the A categories relative to both B (t(29)

5 = -2.79, p = 0.009) and X (t(29) = -2.33, p = 0.027) categories (Figure 1C).
There was no difference in hit rate between B and X categories (t(29) = 1.19,
p = 0.243), showing that the memory deficit is selective to whether a category
was predictive (A vs. X), not whether it was predictable (B vs. X).

Because the predictive A — B relationships had to be learned during the

s stream, we expected that the memory deficit for pictures from the A cate-
gory would emerge over time. Indeed, this effect was evident only in the third
and fourth quartiles of stream exposure (Figure S1B). Furthermore, the overall
memory deficit reflected a failure to encode specific A exemplars rather than
a generic impairment for A categories (De Brigard et al., 2017; Smith et al.,

&5 2013), as the false alarm rate for new exemplars from each category at test did
not differ by condition (F(2, 58) = 0.29, p = 0.751).

This experiment demonstrated that episodic encoding is worse for predictive
vs. non-predictive pictures using a surprise recognition memory test. We inter-
pret this result as evidence of competition between prediction and encoding in

o the hippocampus. However, recognition tests do not selectively probe aspects
of episodic memory that critically depend on the hippocampus. Participants
could have relied upon a generic sense of familiarity with the pictures, which
can be supported by cortical areas (Brown and Aggleton, 2001; Davachi et al.,
2003; Norman and O’Reilly, 2003).

% We thus designed Experiment 2 with a different, recall-based memory test.
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This test required retrieval of specific spatiotemporal details, which is known to
tax the hippocampus (Miller et al., 2013) and is a hallmark function of episodic
memory (e.g., remembering who arrived first at a birthday party). A new group
of 30 participants was exposed to the same kind of picture stream and performed
w0 the same cover task as in Experiment 1. However, during the memory test phase
they were unexpectedly asked to indicate at what exact time (on the clock) they
had seen each picture during the stream. As before, encoding of the time was
incidental as they were not informed in advance that they would be tested.
This kind of precise temporal source memory requires the retrieval of details
s about the context in which each picture was encoded, which depends on the
hippocampus (Davachi and DuBrow, 2015; Mitchell and Johnson, 2009).

We analyzed the accuracy of the time reports in terms of absolute deviation
from the correct time on the clock at encoding, such that higher values indicate
less precise memory (Figure 1D). Consistent with the results of Experiment 1,

uo  there was a main effect of condition (A, B, X) on temporal deviation (F(2,58)
= 3.17, p = 0.049). Pictures from the A categories had greater deviation (less
precision) than those from the X categories (t(29) = 2.26, p = 0.031); the same
pattern was present for A vs. B categories but did not reach significance (t(29)
= 1.45, p = 0.157), nor did B and X categories differ (t(29) = 1.23, p = 0.229).

115 What explains the reduced encoding of predictive pictures in Experiments
1 and 27 We propose that this results from the co-dependence of statistical
learning and episodic memory on the same brain region — the hippocampus
(Schapiro et al., 2017). Specifically, we hypothesized that the appearance of a
picture from an A category triggers the retrieval and predictive representation

120 of the corresponding B category in the hippocampus. This in turn prevents the
hippocampus from forming and encoding a new representation of the specific
details of that particular A picture that would be needed for later recall from
episodic memory.

To test this hypothesis, Experiment 3 employed high-resolution fMRI in 36

125 new participants who viewed the same kind of picture stream as in Experiments

1 and 2. We used a multivariate pattern classification approach from machine
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learning (Cohen et al., 2017), which quantified neural prediction of B categories

during the encoding of A pictures. Classification models were trained for each

category based on patterns of fMRI activity in a separate phase of the exper-

10 iment where participants were shown pictures from all categories in a random

order. These classifiers were then tested during viewing of the stream contain-

ing category pairs, providing a continuous readout of neural evidence for each

category. We performed this analysis based on fMRI activity patterns from the

hippocampus, our primary region of the interest (ROI), as well as from control

s ROIs in occipital and parahippocampal cortices (Figure 2, bottom). These con-

trol ROIs were chosen because we expected them to be sensitive to the category

of the current picture being viewed but not to predict the upcoming B category
given an A picture.

To validate our approach, we first trained and tested classifiers on the viewing

1o of pictures from the A (“Perception of A”) and B (“Perception of B”) categories

(Figure 2). Both types of perceptual categories could be decoded in occipital and

parahippocampal ROIs. Interestingly, only the perception of B categories (not

A) could be decoded in the hippocampus. We next tested our main hypothesis

that the hippocampus predicts B categories during viewing of the associated A

us categories. We trained classifiers on pictures from each B category and tested

on pictures from the corresponding A category (“Prediction of B”). Crucially,

the upcoming B category could be decoded during A in the hippocampus, but

this was not possible in occipital or parahippocampal ROIs. Combining these

results, there was a trade-off in the hippocampus between the perception of A

o (train on A, test on A) and prediction of B (train on B, test on A): during viewing

of A, participants with above-chance classification for the upcoming B category

(vs. other B categories) had lower classification accuracy for the current A

category (vs. other A categories) (t(34) = 2.23, p = 0.033). This shows that

prediction can interfere with the ability of the hippocampus to represent the

155 current picture. Control analyses ruled out potential confounds related to the

timing of the fMRI signal: training classifiers on A categories and testing on

corresponding B pictures (“Lingering of A”), did not yield reliable decoding in
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any ROI.
To further assess the specificity of these results to the hippocampus, we
1o ran an exploratory whole-brain searchlight analysis. We again validated our
approach by decoding the perception of B categories (train on B, test on B).
The resulting regions, which represented scene categories, were largely consistent
with our a priori ROIs (Figure S4B). Notably, the prediction of B (train on B,
test on A) produced no significant clusters across the brain after correcting for
s multiple comparisons (Figure S4A), consistent with this effect being specific to
the hippocampal ROI.

After having demonstrated prediction from statistical learning in the hip-
pocampus, we tested our critical hypothesis that this prediction would impair
simultaneous encoding into episodic memory. We quantified this brain-behavior

wo  relationship by correlating (1) each participant’s decoding accuracy for predic-
tion of B during A in the hippocampus with (2) their difference in hit rate for A
vs. X categories (the key behavioral effect in Experiments 1-2) in the memory
test (Figure 2, right). We limited this analysis to participants with decoding ac-
curacy above chance (0.5), as variance at or below chance cannot be interpreted

s (results were robust to this exclusion, see Supplementary Materials). Consistent
with our hypothesis, there was a negative correlation: more accurate prediction
of B categories in the hippocampus in response to A pictures was associated
with a greater deficit in memory for the A pictures (r(22) = -0.63, p <0.001).

How is this interaction between prediction and encoding implemented in the

10 circuitry of the hippocampus? A recent biologically-plausible neural network
model of the hippocampus (Schapiro et al., 2017) suggests that episodic memory
and statistical learning depend on different pathways, the trisynaptic pathway
(TSP) and monosynaptic pathway (MSP), respectively (Figure 3B). The TSP
consists of a connection between entorhinal cortex (EC) and the CA1 subfield

s via intermediate connections through the dentate gyrus (DG) and CA3 subfield.
DG and CA3 have sparse activity because of high lateral inhibition; this allows
for the distinct representation of similar experiences (i.e., pattern separation;

(Leutgeb et al., 2007)), which is needed to avoid interference between episodic
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memories. The MSP consists of a direct recurrent connection between EC and

10 CA1. CA1 has lower inhibition and thus higher overall activity and less sparsity;
this leads to overlap in the representation of similar experiences, which allows
their regularities to be reinforced.

Accordingly, both the TSP and MSP converge on CA1, which we propose is
the locus of conflict between episodic memory and statistical learning. We aimed

105 to test this theory with the fMRI data from Experiment 3 using a functional
connectivity approach known as psychophysiological interaction (PPI). We rea-
soned CA1 would interact more with TSP (reflected in correlated activity with
a combined CA2/3/DG ROI) during episodic memory and with MSP (reflected
in correlated activity with an EC ROI) during statistical learning (Figure 3C).

20 Specifically, we hypothesized that during periods of low episodic encoding and
high statistical learning, CA1 should be more functionally connected with with
EC than CA2/3/DG.

We quantified episodic encoding using a non-parametric measure of recogni-
tion memory fidelity (A’) across pictures from both A and B categories (together,

205 referred to as “Structured”) and for pictures from X categories (“Random”). We
combined A and B categories because these pictures provided the opportunity
for both the extraction of regularities and the encoding of individual episodes.
Higher A’ values indicate more episodic encoding and lower A’ values indicate
less episodic encoding (and perhaps thus more statistical learning). We sep-

z0  arately correlated EC <» CAl and CA2/3/DG <> CA1l connectivity from the
PPT analysis with A’ for Structured and Random pictures (Figure 3D).

For Structured pictures, EC +» CA1l connectivity was related to lower A’
or worse episodic memory performance (r(34) = -0.41, p = 0.014), whereas
CA2/3/DG + CA1 connectivity had no relationship to A’ (r(34) = 0.062, p =

25 0.72); these two correlations significantly differed (z(35) = -2.01; p = 0.044).
For Random pictures, CA1 connectivity with both pathways was unrelated to
A’ (EC: r(34) =-0.039, p = 0.82; CA2/3/DG: r(34) = 0.15, p = 0.37). The lack
of any positive relationship of CA2/3/DG + CA1 connectivity with A’ suggests

that statistical learning is necessary to reveal an impact of CA1l connectivity
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20 (with EC) on episodic memory. Namely, greater MSP engagement in response

to regularities reflects a bias away from episodic memory.

Discussion

To summarize the three experiments, our core findings were (1) that pre-
diction from statistical learning interferes with encoding into episodic memory
»s and (2) that this competition may be explained by the multiplexed function of
the hippocampus across convergent pathways. These findings are related to two
theoretical issues in the learning and memory literature.
First, the hippocampus is necessary for both memory encoding and retrieval,
and yet these functions are fundamentally at odds. Given a partial match
20 between the current experience and past experiences, encoding leverages pattern
separation to store a new trace of the current experience, whereas retrieval
invokes pattern completion to access old traces of those past experiences. To
resolve this incompatibility, it has been argued that the hippocampus toggles
between encoding and retrieval states (Hasselmo et al., 1996; Duncan et al.,
25 2012; Patil and Duncan, 2018). In the present study, if seeing a picture from an
A category triggers the retrieval of its associated B category, the hippocampus
may be pushed into a retrieval state that suppresses memory encoding.
Second, after learning predictive relationships in classical conditioning, “block-
ing” can occur when new cues are introduced. After one conditioned stimulus
20 (CS1) has been paired with an unconditioned stimulus (US), no associative
learning occurs when a second conditioned stimulus (CS2) is added (Kamin,
1969). This is interpreted as CS2 being redundant with CS1, that is, not pro-
viding additional predictive value given that the US can be fully explained by
CS1. In the present study, the A pictures contain two kinds of features: those
25 that are diagnostic of the category (e.g., sand and water for a beach) and those
that are idiosyncratic to each exemplar (e.g., particular people, umbrellas, boats,
etc.). If categorical features are sufficient to predict the upcoming B category,

idiosyncratic features may not be attended or represented (Mackintosh, 1975;
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Kruschke, 2001), impeding the formation of episodic memory. Our findings are

0 not fully consistent with this account, however. Blocking might predict that the

A pictures are represented more categorically and this enables prediction of the

B category; yet, we found a trade-off in the hippocampus between perceptual
evidence of the A category and predictive evidence of the B category.

Stepping back, why are the computationally opposing functions of episodic

»s  memory and statistical learning housed together in the hippocampus? We pro-

pose that this shared reliance allows them to regulate each other. By analogy,

using your right foot to operate both the brake and gas pedals in a car serves

as an anatomical constraint that forces you to either accelerate or decelerate,

but not both at the same time. A similarly adaptive constraint may be present

»0 in the hippocampus, reflecting mutual inhibition between episodic memory and

statistical learning. When predictive information is available in an environ-

ment, it may be redundant to encode new experiences. Moreover, encoding

such experiences would risk over-fitting or improperly updating known, predic-

tive regularities with idiosyncratic or noisy details. By focusing on upcoming

x5 events, the hippocampus can better serve as a comparator between expectations

and inputs (Kumaran and Maguire, 2006), prioritizing the encoding of novel and

unexpected events (Greve et al., 2017; Henson and Gagnepain, 2010).
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Figure 1: Behavioral Experiments. A) Task design: participants viewed a continuous stream
of scene pictures, during which they made a judgment of whether or not there was a manmade
object in the scene. B) Example scene category pairings for one participant: 3 of 12 categories
were assigned to condition A; each was reliably followed by one of 3 different categories
assigned to condition B (illustrated by arrows). The remaining 6 categories were assigned to
condition X and were not consistently preceded or followed by any particular category. C)
Left: surprise recognition memory test. Right: proportion of old exemplars recognized as a
function of condition (higher hit rate is better memory). D) Left: temporal source memory
test. Right: absolute difference between reported and actual time of encoding as a function of
condition (higher deviation is worse memory). Error bars reflect within-participant standard

error of the mean. *p <0.05, **p <0.01.
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Figure 2: Category Decoding in fMRI Experiment. Upper left: Classification accuracy in
occipital cortex (OCC), parahippocampal cortex (PHC), and hippocampus (HIPP) plotted
for each of the four combinations of training or testing on A or B categories. For every
A/B combination and ROI, each dot is one participant and the black line is the mean across
participants. Perception of A: OCC: t(35) = 4.34, p <0.001; PHC: t(35) = 3.82, p <0.001;
HIPP: t(35) = -0.17, p = 0.87. Prediction of B: OCC: t(35) = 0.94, p = 0.35; PHC: t(35)
= 0.17, p = 0.87; HIPP: t(35) = 2.73, p = 0.0098. Lingering of A: OCC: t(35) = -0.38, p
= 0.71; PHC: t(35) = 1.57, p = 0.13; HIPP: t(35) = 0.96, p = 0.34. Perception of B: OCC:
t(35) = 5.96, p <0.001; PHC: t(35) = 3.52, p = 0.0012; HIPP: t(35) = 2.26, p = 0.030.
Bottom: Regions of interest. HIPP and PHC were manually segmented in native participant
space (transformed into standard space for visualization); OCC was defined in standard space
and transformed into native participant space. Upper right: Correlation between “Prediction
of B” classification accuracy in HIPP and the difference in hit rate between A and X. Only

participants with classification higher than chance (>0.5) were included.
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Figure 3: Hippocampal Connectivity in fMRI Experiment. A) Manually segmented hippocam-
pal subfield and MTL cortical ROIs (anterior and posterior slices from representative partici-
pant shown): CAl, combined CA2/3/DG, subiculum, entorhinal cortex (EC), perirhinal cor-
tex (PRC), and parahippocampal cortex (PHC). B) Two pathways in the hippocampal circuit:
trisynaptic pathway (TSP, blue) and monosynaptic pathway (MSP, teal). C) Pathway-specific
predictions about CA1 functional connectivity during statistical learning (left) and episodic
memory (right). D) Relationship of CA1l functional connectivity in TSP (CA2/3/DG) and
MSP (EC) with episodic memory performance (A’) across participants, separated by whether
there were regularities to be extracted by statistical learning (Structured) or not (Random).

Error bars represent 95% confidence intervals. *p <0.05.

14


https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/851147; this version posted November 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Methods

Ezxperiment 1

20 Participants. Thirty individuals (19 female; age range: 18-31, mean age = 21.2)
were recruited from the Yale University community for either course credit or
$10 compensation. Informed consent was obtained in a manner approved by

the Yale University Human Subjects Committee.

Stimuli and Apparatus. Participants were seated approximately 50cm away

25 from a 69cm monitor (1920 x 1080 pixel resolution; 60 Hz refresh rate). Scene
stimuli consisted of 300 unique scene images drawn from 12 scene subcategories
(25 images/subcategory), collected from Google image searches. Each partici-
pant viewed 22 scenes from each subcategory, randomly selected from the set
of 25. Sixteen of these images (per each category; 192 total) were used in the

20 learning phase, two for the category pair test, and four as foils in the recognition
test. Scene stimuli were presented centrally and subtended 27.8 x 20.8 degrees
of visual angle. Stimuli were presented using MATLAB (The MathWorks, Nat-
ick, MA) with the Psychophysics Toolbox (Brainard and Vision, 1997; Pelli and
Vision, 1997).

205 Procedure. Participants first completed a learning phase. On each trial, they
viewed a photograph of a scene for 1000 ms, during which they had to respond
based on whether it contained a manmade object (See Main Text Figure 1A).
Participants were instructed to respond as quickly and accurately as possible
(response mappings of ‘j’/’k’ onto ‘yes’/’no’ were counterbalanced across partic-

w0 ipants), and we recorded response time (RT) and accuracy. The scene remained
on the screen for 1000 ms regardless of button press to equate encoding time,
and trials were separated by a 500-ms inter-stimulus interval during which a
fixation cross appeared.

Every scene was trial-unique, but was drawn from one of 12 outdoor scene
w5 categories (beaches, bridges, canyons, deserts, fields, forests, lakes, lighthouses,

marshes, mountains, parks, and waterfalls; see Main Text Figure 1B). Each
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scene category appeared 16 times over the course of the learning phase, for a
total of 192 trials. The photographs for half of the scene categories always con-
tained a manmade object, and thus all exemplars in a category required the

s same response, and the responses were balanced overall. Unbeknownst to par-
ticipants, and orthogonal to the required response, half of the scene categories
were assigned to pairs. Given the first scene in a pair (A category scenes),
the category of the second scene (B category scenes) was predictable with a
transition probability of 1.0. The other half of scene categories were neither

us  predictive nor predictable (X category scenes). Pictures from these categories
were inserted on their own randomly. The assignment of scene categories to
A/B/X conditions was itself randomized for each participant. The order of
the photograph sequence was randomized with the following constraints: cat-
egory pairs and pairs of category pairs could not repeat back-to-back (i.e., no

20 Al/B1/A1/B1 or A1/B1/A2/B2/A1/B1/A2/B2); repetitions of each category
were spread equally across quartiles of the learning phase to minimize differences
in study-test lag between categories; and the overall transition probability be-
tween “yes” and “no” responses was forced to be statistically indistinguishable
from 0.5.

325 After the learning phase, participants performed five minutes of a distracting
math phase to minimize recency effects. Each of 60 math problems consisted of
division and subtraction, and the answer to the problem was always 1, 2, 3, or
4. Participants responded using the 1, 2, 3, and 4 keys on the keyboard, with
a maximum response window of 5 s. The inter-stimulus interval was adjusted

30 based on the RT (5 s - RT), to ensure that this phase lasted exactly 5 min given
the 60 trials. Participants were instructed to respond as accurately as possible.

Participants then underwent two surprise memory tests (category pair test
and episodic memory test), the order of which was counterbalanced across par-
ticipants. The category pair test involved explicit judgments of the category

135 pairings from the learning phase. Participants were presented with two pairs
of photographs on every test trial and were asked to indicate which pair felt

more familiar based only what they had seen during the learning phase. The

16


https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/851147; this version posted November 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

pairs were shown sequentially: the first scene from one pair appeared for 1000
ms, followed by a 500-ms blank interval, followed by the second scene of the

s pair for 1000 ms; after a 1000 ms gap with a fixation cross, a second pair was
presented in the same manner. After both pairs, participants responded using
the ‘1’ key to indicate if the first pair felt more familiar or the ‘2’ key if the
second pair felt more familiar. Participants had a maximum of 6 s to respond.
Each scene in the category pair test was a completely novel exemplar of its

us category. Half of the test trials contained a true category pair (when it was a
trial testing a pair from the learning phase); whether it appeared first or second
was counterbalanced. The other half of the trials contained a “dummy coded”
pair of the X categories (there was no correct answer on these trials). This
was done to equate the frequency of categories, which was important for par-

0 ticipants who received the category pair test before the episodic memory test.
Each true/dummy-coded pair was tested twice against a scrambled pair of the
same categories (e.g., if beach — field, mountain — bridge, canyon — forest
were category pairs from the learning phase, the foils might be beach — bridge,
mountain — forest, canyon — field).

355 The episodic memory test was designed to assess episodic memory for the
trial-unique scenes from the learning phase. On each trial, one scene was pre-
sented and participants had to indicate whether it was “old” (i.e., presented
during the learning phase) or “new” (i.e., not previously seen in the experiment).
After making an old/new response (using ‘j’/‘k’ keys on the keyboard), partici-

w0  pants then rated their confidence in this response (“not confident” / “confident”,
using ‘d’/‘f” keys). Participants had 6 s to make each response. All 192 scene
photographs from the learning phase were shown, in addition to 48 foils (4 novel

exemplars from each category). The order of the scenes was randomized.

FExperiment 2

s Participants. Thirty individuals (19 female; age range: 18-23, mean age = 19.3)
were recruited from the Yale University community for either course credit or

$10 compensation. Informed consent was obtained in a manner approved by
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the Yale University Human Subjects Committee.
Stimuli and Apparatus. Same as Experiment 1.

s Procedure. The procedure was identical to that of Experiment 1, with the fol-
lowing exception: we replaced the confidence judgment of the episodic memory
test with a temporal source judgment. In other words, participants were pre-
sented with a scene and again asked to judge whether it was “old” or “new”
(using the ‘d” and ‘f” keys). However, instead of then being asked to judge how

a5 confident they were in their response, old responses were followed by the pre-
sentation of a timeline, bound by the start and end clock times of the learning
phase. Participants used the mouse to click along the timeline to indicate when
they remember seeing the scene. No temporal source judgments were collected

after new responses.

0 Experiment 3
Participants. Thirty-eight individuals (24 female; age range: 18-35, mean age =
23.1) were recruited from the Yale University community for $30 compensation.
Informed consent was obtained in a manner approved by the Yale University
Human Investigation Committee. One participant was excluded to due a neu-
s rological anomaly, and one participant was excluded for chance-level episodic

memory performance (A’ <0.5).

Stimuli and Apparatus. Stimuli were presented on a rear-projection screen us-
ing a projector (1920 x 1068 pixel resolution; 60 Hz refresh rate). Partici-
pants viewed the stimuli through a mirror mounted on the head coil. Scene
30 stimuli consisted of 480 unique images drawn from 12 subcategories (40 im-
ages/subcategory), collected from Google image searches (180 additional stimuli
were collected for this experiment; the other 300 are identical to those used in
Experiments 1 & 2). Each participant viewed 39 scenes from every subcategory,
randomly selected from the set of 40: 21 per category (252 total) for the learning
w5 phase, 14 (168) for the pre- and post- learning templating phases, and 4 (48) as

foils in the episodic memory test.
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Procedure. The procedure was identical to that of Experiment 1 with the fol-
lowing changes:

Instead of one continuous block of the learning phase (with 16 repetitions

wo  of each scene category), it was divided into three fMRI runs, each with seven
repetitions/category (such that were 21 repetitions/category in total across the
learning phase). As in Experiments 1 & 2, each image was presented for 1
s, but the ITI in this experiment varied between 2 s (39.3% of trials), 3.5 s
(39.3% of trials), and 5 s (21.4% of trials). For the manmade object cover

w5 task, participants responded using their right index and middle fingers on an
MR-~compatible button box.

Before and after the three learning runs, respectively, there were “pre” and
“post” templating phases (one fMRI run each). To participants, these phases
were identical to the learning phase (e.g., stimulus timing and task were iden-

a0 tical). However, there were no category-level regularities in these two runs.
Scenes from all categories were presented in a random order. To limit the im-
pact of this random presentation on subsequent learning, participants completed
a distracting math task between the “pre” templating run and the first learning
run. Each of these five functional runs (three learning runs and pre/post runs)
a5 lasted 6.4 minutes.

For the episodic memory test, as in Experiment 1, a scene was presented and
participants indicated (with their index and pinky fingers) whether it was “old”
(i.e., presented during the learning phase) or “new” (i.e., not previously seen
in the experiment). They then rated their confidence in this response (“very

w20 unsure”, “unsure”, “sure” “very sure”), using their index through pinky fingers,
respectively. Participants had 6 s to respond to each of these questions. They
completed this task while in the scanner, but no fMRI data were collected. No

category pair test was administered in this experiment.

MRI Acquisition. Data were acquired on a Siemens Prisma 3T scanner using
s a 64-channel head coil at the Magnetic Resonance Research Center at Yale

University. Functional images were acquired using an EPI sequence with the
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following parameters: TR = 1500 ms; TE = 32 ms; 90 axial slices; voxel size =
1.5 x 1.5 x 1.5 mm; flip angle = 64 degrees; multiband factor = 6. Additionally,
a pair of opposite phase-encode spin-echo volumes were collected for distortion
a0 correction (TR = 11,220 ms; TE = 66 ms). One T1-weighted MPRAGE (TR
= 1800 ms; TE = 2.26 ms; voxel size = 1 x 1 x 1 mm; 208 sagittal slices; flip
angle = 8 degrees) and two T2-weighted turbo spin echo (TR = 11,390 ms; TE
= 90 ms; 54 coronal slices; voxel size = 0.44 x 0.44 x 1.5 mm; distance factor =

20%; flip angle = 150 degrees) anatomical images were collected.

w5 fMRI Preprocessing. MRI data processing was carried out using FEAT (fMRI
Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library,
www.fmrib.ox.ac.uk/fsl) version 5.0.10. EPI and anatomical images were skull-
stripped using the Brain Extraction Tool (Smith, 2002). Susceptibility-induced
distortions measured via the opposing-phase spin echo volumes were corrected
wo  using FSL’s topup tool (Andersson et al., 2003). Each functional run was
high-pass filtered with a 128 s period cut-off, corrected for head motion using
MCFLIRT (Jenkinson et al., 2002), and motion outliers were computed. Slice-
timing correction was performed. No spatial smoothing was applied. Lastly,
the six motion parameters, as well as motion outliers, were regressed against
us  the BOLD timecourse using a general linear model (GLM). The residuals from
this preprocessing model (which contain BOLD responses to the task after con-
trolling for motion) were then used for subsequent analyses.
Functional images were registered to each participant’s T1 anatomical scan
using boundary-based registration, as well as to a 2 mm MNI standard brain,
w0 using 12 degrees of freedom. Lastly, the two T2 anatomical images collected
were registered to one another and averaged; the resulting averaged image was
registered to the T1 anatomical image using FLIRT (Jenkinson and Smith,
2001).

Regions of Interest. Our primary region of interest (ROI) was the hippocam-
w5 pus. Hippocampal subfields CA1, CA2/3/DG, and subiculum, as well as medial

temporal lobe (MTL) cortical regions entorhinal cortex (EC), perirhinal cortex
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(PRC), and parahippocampal cortex (PHC) were manually segmented on par-
ticipants’ averaged T2 anatomical scan, using published criteria on anatomical
landmarks (Insausti et al., 1998; Pruessner et al., 2002; Duvernoy, 2005; Aly and

w0 Turk-Browne, 2015). Corresponding ROIs from each hemisphere were concate-
nated to create one bilateral ROI per region, as we had no hemisphere-specific
hypotheses. Additionally, a bilateral whole hippocampus ROI was created by
concatenating the three bilateral subfield ROIs. Individual ROIs were trans-
formed into each participant’s functional space for subsequent analyses.

465 The occipital cortex ROI was defined using the MNI structural atlas, thresh-
olded at 25% probability. This standard space ROI was then transformed into

each participant’s functional space for subsequent analyses.

Category Decoding Analysis. A multivariate pattern classification approach was

used to assess evidence for a particular category during the learning phase.

a0 This approach involved training a classifier on fMRI activity patterns for each

category from the “pre” templating run (when there were no regularities present

and none had been learned) and testing for classifier evidence of these categories
during the three (independent) learning runs.

More specifically, for each functional run, the residuals from the preprocess-

w5 ing GLM (with known noise sources removed but still containing task responses)

were aligned to the final functional run and z-scored across time. The voxel x

time matrices were then masked to only include voxels within an ROI. The

timepoints corresponding to the presentation of each of two categories of in-

terest were extracted and shifted by 3 TRs (4.5 seconds) to account for the

w0 hemodynamic lag. The voxel activity patterns from these shifted time points

were then extracted and used as training or test data for the classifier. Time-

points that included a motion outlier were excluded from the training/test sets.

Linear SVMs were trained on data and labels from the pre-learning templat-

ing run, using the SVC function in Python’s scikit-learn module, with a penalty

s parameter of 1.00. Classifiers were then tested with data corresponding to the

timepoints of the trained categories in the three learning runs (concatenated)
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and made guesses as to the category label of each test example. Accuracy was
computed as the proportion of correct guesses.

We ran the following comparisons: Perception of A (training on pre-learning

w0 examples of A, testing for evidence of A during the presentation of A in the
learning phase), Perception of B (training on pre-learning examples of B, testing
for evidence of B during the presentation of B in the learning phase), Lingering
of A (training on pre-learning examples of A, testing for evidence of A during
the presentation of B in the learning phase), and Prediction of B (training on

w5 pre-learning examples of B, testing for evidence of B during the presentation of
A in the learning phase).

Each participant encountered three A and three B categories over the course
of the experiment. Thus, for each of the four comparisons above, we built three
different binary classifiers and then averaged their accuracy. In other words,

so a clagsifier was trained to distinguish between two scene categories from the
same condition (e.g., B) based on the pre-learning templating run, and tested
for evidence of those two categories during the subsequent presentation of two
categories (e.g., their corresponding As for Prediction of B) in the learning
phase. Accuracy (percent correct) was then computed for each of these three

sos  classifiers (Al vs. A2; A2 vs. A3; Al vs. A3) and averaged, resulting in one
mean accuracy value per comparison, per participant.

To provide an example, if we use the category pairs from earlier beach —
field, mountain — bridge, canyon — forest, then B classifiers would be trained
for field vs. bridge, bridge vs. forest, and field vs. forest. To calculate evidence

sio  for Prediction of B: the field vs. bridge classifier would be applied to the beach
and mountain trials — such that the classifier estimated evidence for field and
bridge during each beach or mountain trial — and accuracy was computed (such
that, for example, accuracy on a beach trial was 1 if the classifier outputted more
evidence for field than for mountain). This was repeated for the bridge vs. forest
sis  classifier (testing for evidence of these categories during mountains and canyons)
and the field vs. forest classifier (testing for evidence of these categories during

beaches and canyons). The accuracies of these three classifiers were averaged
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into a single accuracy for each participant. This was repeated for the three
other comparisons above and for each ROI. To assess reliability at the group
s0 level, performance was compared to a chance level of 0.50 across participants

using a one-sample t-test.

PPI Analysis. To examine how functional connectivity between hippocampal
subfields is affected by statistical learning, we conducted a psychophysiological
interaction (PPI) analysis. Because we aimed to assess the impact of learned
ss  regularities, we limited this analysis to the second and third runs of the learning
phase. Including the first learning run may have weakened the key contrast of
connectivity during periods with and without regularities, as participants had

no knowledge of the regularities at the beginning of that run.
To perform the PPI, we concatenated the aligned, normalized residual time-
s courses from the pre-processing GLM across the two included runs. We then av-
eraged the activity of voxels in each ROI to compute a mean timecourse for CA1,
CA2/3/DG, and EC. Additionally, we extracted the onsets of Structured (A &
B) and Random (X) pictures, and convolved each of these two condition regres-
sors with a double-gamma hemodynamic response function (fmrisim function
s35  in BrainTIAK, http://brainiak.org). We then ran a GLM in R (https://cran.r-
project.org/), in which we predicted the timecourse of CA1 as a linear combina-~
tion of regressors for the timecourses of CA2/3/DG and EC, task events in the
two learning conditions (Structured and Random), and the interaction between
ROIs and learning conditions. The interaction regressors were defined as the
so0  products of the ROI and condition timecourses (EC*Structured, EC*Random,
CA2/3/DG*Structured, CA2/3/DG*Random). Each regressor, as well as the
CA1 timecourse, was z-scored and entered simultaneously into the model. A
separate model was run for each participant, resulting in one coefficient per re-
gressor per participant. For an interaction regressor of interest, the coefficients
ses  were correlated with A’ memory performance for the corresponding condition

across participants.
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Searchlight Analysis. To explore the specificity of our Prediction of B results in
the brain, we performed the category decoding analysis within a 27-voxel cube
that was moved across all functional voxels (searchlight function in BrainTAK).
50 FBach aligned, normalized residual volume from the pre-processing GLM was reg-
istered to standard space. These volumes were masked for each searchlight and
the retained voxels were subjected to the same decoding pipeline described above
for the ROIs. The result was a searchlight map per participant, in which the
value at each voxel reflected the average classification accuracy for the cube cen-
s tered at that voxel. The reliability of these maps was assessed at the group level
using nonparametric randomization tests (randomise function in FSL) (Winkler
et al., 2014), corrected for multiple comparisons using threshold-free cluster en-
hancement (Smith and Nichols, 2009). As a control analysis, we ran the same

searchlight procedure for the Perception of B comparison.

sso  Data and Code Availability. fMRI data can be downloaded from OpenNeuro
and behavioral data can be downloaded from Dryad. Analysis code can be

accessed on Github.
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