

1
2 **Extracellular DNA controls expression of *Pseudomonas aeruginosa* genes**
3 **involved in nutrient utilization, metal homeostasis, acid pH tolerance, and**
4 **virulence.**

5
6
7 **Shawn Lewenza**^{1,2*}, Lori Johnson¹, Laetitia Charron-Mazenod¹, Mia Hong¹ and Heidi
8 Mulcahy-O'Grady¹

9
10 ¹University of Calgary, Cummings School of Medicine, Snyder Institute of Chronic
11 Diseases, Dept of Microbiology, Immunology and Infectious Diseases
12 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1

13
14 ²Athabasca University, Faculty of Science and Technology, 1 University Drive,
15 Athabasca, Alberta

16
17 * Corresponding author slewenza@athabascau.ca

18 **ABSTRACT**

19 *Pseudomonas aeruginosa* grows in extracellular DNA-enriched biofilms and infection
20 sites. Extracellular DNA (eDNA) is generally considered a structural biofilm polymer
21 required for aggregation and biofilm maturation. In addition, eDNA can sequester divalent
22 metal cations, acidify the growth media, and serve as a nutrient source. Here we
23 determine the transcriptome of planktonic *P. aeruginosa* grown in the presence of eDNA
24 using RNA-seq. Transcriptome analysis identified 89 induced genes and 76 repressed
25 genes in the presence of eDNA (FDR<0.05), and transcriptional *lux* fusions were used to
26 confirm eDNA regulation. A large number of eDNA-induced genes appear to be involved
27 in utilizing DNA as a nutrient. Several eDNA-induced genes are also induced by acidic
28 pH 5.5, and growth in the presence of eDNA or acidic pH promoted an acid tolerance
29 response in *P. aeruginosa*. The *cyoABCDE* terminal oxidase is induced at pH 5.5 and
30 contributed to the acid tolerance phenotype. Quantitative metal analysis confirmed that
31 DNA binds to diverse metals, which helps explain why many genes involved in a general
32 uptake of metals were controlled by eDNA. Growth in the presence of eDNA also
33 promoted intracellular bacterial survival and influenced virulence and during the acute
34 infection model of fruit flies. The diverse functions of the eDNA-regulated genes
35 underscore the important role of this extracellular polymer in promoting antibiotic
36 resistance, virulence, acid tolerance, and nutrient utilization; phenotypes that contribute
37 to long-term survival.

38

39 **INTRODUCTION**

40 Bacteria encounter the presence of extracellular DNA (eDNA) when growing as
41 biofilms and during interactions with immune cells (1). During biofilm formation, eDNA in
42 the extracellular matrix arises through autolysis, secretion, outer membrane vesicle
43 (OMV) release or phage-mediated lysis (2). During infections, bacteria are likely exposed
44 to eDNA in many infection sites, where microbes encounter neutrophil extracellular traps
45 (NETs) (3). NETs are an ejected lattice of chromosomal DNA that is enmeshed with
46 numerous antimicrobial proteins from neutrophil granules that function to trap and kill
47 numerous microbial organisms (3). *P. aeruginosa* encounters NETs in the Cystic Fibrosis
48 (CF) sputum (4,5) and also during eye and skin infections (6,3).

49

50 We are beginning to appreciate the functions of extracellular DNA on bacterial
51 physiology through understanding its role in bacterial biofilms. Extracellular DNA is a
52 ubiquitous biofilm matrix polymer that has been shown to promote attachment and biofilm
53 formation in most bacterial species tested (7). Treatment of biofilms with
54 deoxyribonuclease is a successful means to dissolve pre-formed biofilms and to prevent
55 biofilm formation, and thus constitutes a novel biofilm treatment strategy (7). Biofilm
56 matrix DNA can also influence the surface charge and bacterial adhesion, as well as
57 influence the interactions with bacterial surface adhesins (2). Extracellular DNA
58 coordinates the migration of *P. aeruginosa* aggregates in interstitial biofilms formed on
59 semisolid media (8).

60

61 In previous studies, we explored the hypothesis that extracellular DNA influences

62 bacterial gene expression. We demonstrated that DNA is a polyanion and has a large
63 capacity to bind and sequester divalent cations (9). The addition of eDNA to bacterial
64 cultures sequesters Mg²⁺ and therefore activates the PhoPQ and PmrAB two component
65 systems, which both respond to limiting Mg²⁺ (1,9,10). At high concentrations, the cation
66 chelating activity of DNA can disrupt the inner and outer membrane integrity, leading to
67 rapid lysis and further DNA release (9).

68

69 The accumulation of extracellular DNA also acidifies planktonic and biofilm cultures,
70 likely through protons donated by the phosphate groups along the DNA backbone (11).
71 The accumulation of DNA in the biofilm matrix contributes to the pH gradients in biofilms,
72 and may therefore contribute to the acidic pH of the CF lung environment (11). Both cation
73 chelation and acidification are independent signals caused by extracellular DNA that
74 induce expression of the PhoPQ/PmrAB-regulated genes. In these examples, the
75 physicochemical properties of extracellular DNA shape the environmental conditions
76 encountered by bacteria in DNA rich niches.

77

78 Several groups have shown that DNA is an efficient nutrient source of carbon,
79 nitrogen and phosphate (12–14). Extracellular DNA and the DNA within neutrophil NETS
80 induces the expression of a 2 gene operon encoding a secreted phosphatase and
81 deoxyribonuclease in *P. aeruginosa* (14,15). These secreted enzymes target DNA and
82 protect *P. aeruginosa* from DNA killing during exposure to neutrophil extracellular traps
83 (15). These genes are also induced under phosphate limiting conditions, and also
84 contribute to DNA degradation and phosphate acquisition when using DNA as a nutrient

85 (14).

86

87 The focus of this study was to determine the global effect of extracellular DNA on
88 the transcriptome of *P. aeruginosa*. We used RNA-seq to identify genes regulated by
89 eDNA and provide evidence that eDNA promotes an acid tolerance response, influences
90 *P. aeruginosa* virulence and intracellular survival. The diversity of gene functions and
91 phenotypes affected by eDNA highlights the significant influence of this extracellular
92 anionic polymer on the biology of *Pseudomonas aeruginosa*.

93

94 **Materials and Methods.**

95 **Strains, plasmids and media conditions.** *P. aeruginosa* PAO1 was used as the wild-
96 type strain and all the mini-Tn5-luxCDABE reporter strains listed in Table 1 (16). *P.*
97 *aeruginosa* strains were routinely maintained at 37°C on Luria Broth (LB) agar plates and
98 cultured in defined basal medium 2 (BM2) medium using succinate (20 mM) as the carbon
99 source (10) and supplemented with extracellular fish sperm DNA (USB, 14405) and
100 various magnesium concentrations, as indicated.

101

102 **Library construction, SOLiD sequencing and RNA-Seq analysis.** For RNA isolation,
103 *P. aeruginosa* PAO1 was grown in defined BM2 (2mM Mg²⁺) medium (10) as the negative
104 control condition, and in BM2 (2mM Mg²⁺) medium supplemented with 0.75% (w/v; 7.5
105 mg/ml) extracellular DNA (USB, 14405). Total RNA was isolated from triplicate, mid-log
106 cultures (3x10⁹ cells) using the RiboPure™- Bacteria Kit (Ambion) and treated with DNase
107 (Ambion) until RNA was shown to be DNA-free using the Agilent Bioanalyzer. All

108 subsequent steps were performed by the sequencing service company EdgeBio
109 (Gaithersburg, MD). The Ribominus kit (Life Technologies) was used to remove rRNA
110 from total RNA, and the cDNA library was constructed using the RNA-SEQ SOLiD kit.
111 SOLiD 4 sequencing was performed on ~150bp DNA fragments. Paired end reads were
112 mapped to the PAO1 genome (17) using the RNA-SEQ Analysis Tool (CLCbio). In
113 addition to manually removing rRNA sequences from the total reads, a de-duplication
114 analysis using MarkDuplicates (Picard) was performed to remove duplicate sequences.
115 Mapped reads were imported into CLCbio to determine the gene counts for each gene in
116 each sample, which were used for differential gene expression analysis performed with
117 DESeq (18). Genes were considered differentially expressed with fold changes greater
118 than 2-fold and significance was determined by FDR values < 0.05.

119

120 ***lux* reporter gene expression assays.** To validate eDNA-induced gene expression
121 patterns, we selected a panel of transcriptional *luxCDABE* fusions from a library of mini-
122 Tn5-*lux* mutants and performed gene expression assays in BM2 (16). While the
123 transcriptome experiments were performed in standard BM2 + 0.75% (pH~6), here used
124 BM2 medium with and without supplementary 0.5% DNA (USB, 14405) and 0.1 mM Mg²⁺
125 at neutral pH 7. To neutralize the pH of BM2, we used 2X HEPES buffer (200 mM) to
126 resist the pH changes associated with DNA addition. Standard BM2 containing 1mM Mg²⁺
127 was also adjusted to pH 5.5 and 7. Gene expression (CPS) was normalized to cell growth
128 (optical density, OD₆₀₀).

129

130 **Acid tolerance assays.** *P. aeruginosa* PAO1 was grown overnight in LB, LB adjusted to

131 pH 5.5 or LB supplemented with 0.2% DNA, then sub-cultured in the same corresponding
132 conditions until mid-log. Cultures were then normalized to similar OD₆₀₀ values and cells
133 (5x10⁷ CFU) were resuspended in LB adjusted to pH 3.5 to subject the cells to acid shock.
134 At various time points after acid shock (5-120 minutes), cells were serially diluted and
135 plated to count the surviving population.

136

137 **Phagocytosis and intracellular survival experiments.** RAW 264.7 cells (mouse
138 leukemic monocyte macrophage cell line) were seeded at 5x10⁵ macrophages per well of
139 a 24-well plate 24h prior to infection in (DMEM) with L-glutamine (2 mm) (Invitrogen).
140 Overnight cultures of *P. aeruginosa* PAO1 or mutants were grown in relevant media were
141 washed to remove extracellular components. Bacteria were in PBS pH 7.4 and bacterial
142 densities adjusted so as to infect cells at a multiplicity of infection (MOI) of approximately
143 50:1. Phagocytosis was allowed to proceed for 1h, followed by a 4h incubation with 100
144 µg/ml of polymyxin B to kill extracellular bacteria (19). At 5h post-infection DMEM media
145 was removed and infected macrophages treated for 15 mins with 0.1% Triton-X-100
146 (Sigma). Intracellular survival of *P. aeruginosa* 5h post-infection was quantified by serial
147 dilution and plating of lysed macrophages on LB plates.

148

149 **Nicking *P. aeruginosa* infection of Drosophila.** *Drosophila* were maintained routinely
150 on medium containing corn meal, agar, sucrose, glucose, brewers' yeast, living yeast,
151 propionic acid, and phosphoric acid (20). Fly nicking assays were performed as previously
152 described (21) using 3-5 day old female flies. Fly survival was monitored and recorded
153 from 12 to 24 h post-inoculation. Kaplan-Meier survival curves were plotted, and statistical

154 analysis was performed using GraphPad Prism 5 software. Significant differences in
155 *Drosophila* survival were determined using the log-rank test.

156

157 **Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for metal analysis.** DNA
158 solutions (10 mg/ml) were sent to Exova (Edmonton, Alberta) for ICP-MS analysis to
159 quantitate a panel of metals bound to DNA. Three different DNA samples were
160 submitted including fish DNA (USB, 14405), Na⁺-DNA (USB, 14377) and K⁺-DNA (USB,
161 14376).

162

163 **Funding Information.** This research was supported by a Cystic Fibrosis Canada
164 operating grant and the Westaim-ASRA Chair in Biofilm Research, both held by SL. HM
165 was supported by a Cystic Fibrosis Canada postdoctoral fellowship.

166

167 **Results**

168

169 **RNA-seq analysis to identify the transcriptome of eDNA-regulated genes.** We
170 performed RNA-seq analysis of *P. aeruginosa* PAO1 in the absence and presence of
171 extracellular DNA (0.75%; 7.5 mg/ml) added to BM2 defined medium in order to identify
172 the global profile of genes regulated by eDNA. Triplicate cultures with and without eDNA
173 were grown to mid-logarithmic phase for total RNA isolation. DNA-free total RNA was
174 depleted for rRNA and used to prepare cDNA libraries for SOLiD 4 sequencing. After
175 mapping the initial sequence reads to the PAO1 genome, there were significant rRNA
176 sequences remaining despite rRNA depletion, which were manually removed from the

177 raw data. In addition, duplicate sequences from both conditions were identified and
178 removed before performing DESeq analysis to identify differentially regulated genes.

179
180 We previously identified two operons that are induced by the addition of extracellular
181 DNA: the *arn/pmr* operon (*PA3552-PA3559*) that is required for the addition of
182 aminoarabinose to the lipid A moiety of lipopolysaccharide (LPS), and the spermidine
183 synthesis genes *PA4773-PA4774* (1). We considered these two operons as internal
184 positive controls given their DNA-induced expression patterns using *lux* reporter fusions
185 (9–11) and quantitative RT-PCR (10). Although many of these genes were induced by at
186 least 2-fold, not all genes within these operons were significantly upregulated by DESeq
187 analysis (Table S1). Given the general observation that many gene clusters or operons
188 showed trends of induction by eDNA, we included all 255 genes that were induced by 2-
189 fold by the presence of extracellular DNA in Supplementary Table 1. In total, there were
190 148/255 genes that were induced by at least 2-fold ($p<0.05$), and 89/255 genes that were
191 considered significantly induced by eDNA (FDR<0.05). We limit our discussion to mainly
192 those genes that were significantly regulated by eDNA.

193
194 To summarize, there were several categories of genes induced by eDNA. The
195 majority of genes appear to be required for basic metabolism and energy generation. This
196 group includes numerous enzymes in basic metabolic enzymes and nutrient uptake
197 pathways, such as nucleotide/nucleoside transport and catabolic genes. This group is
198 likely required in the utilization of DNA as a nutrient source. There were also categories
199 of genes that could be involved in antibiotic resistance, metal transport/efflux, and

200 numerous transcriptional regulators (Table S1). In addition to genes that were induced,
201 there were also genes that were significantly repressed by the addition of extracellular
202 DNA. In total, there were 109 genes that were repressed by at least 2-fold ($p<0.05$), and
203 76/109 genes that were considered significantly repressed by eDNA ($FDR<0.05$). The
204 major categories of DNA-repressed genes are involved in metabolism, metal efflux, and
205 bacterial secretion systems (Table S2).

206

207 **DNA-induced metabolic genes are likely required to utilize DNA as a nutrient.** The
208 majority of eDNA-induced genes appear to be involved in various aspects of central
209 metabolism (Table S1). The most intuitive induced genes were those annotated with
210 functions in nucleotide/nucleoside metabolism or transport. For example, the xanthine
211 dehydrogenase cluster (*xdhABCD*) is a complex molybdenum-containing flavoprotein
212 that is involved in purine catabolism and may be involved in electron transport processes.
213 Within the same cluster, the guanine deaminase *PA1521* and the *PA1517-PA1513*
214 operon are also likely involved in purine catabolism (Table S1). The cytosine deaminase
215 *PA0142* may contribute to pyrimidine catabolism. Various porins (*opdC*, *opdH*, *oprD*) and
216 transporters (*PA2938*, *PA0030*, *PA0222*, *PA0273*, *PA3079*, *PA4355*, *PA4622*, *PA4654*,
217 *PA0220*, *PA5158*), are induced by eDNA, which may be involved in the uptake of DNA,
218 short oligonucleotides, nucleotides or polyamines (Table S1). There is a large group of
219 DNA-induced genes annotated for diverse biosynthetic and catabolic enzymes, and
220 energy generation processes (Table S1). For example, the *cyoABCDE* genes encode a
221 cytochrome o ubiquinol oxidase subunit II (22) and may play a role in electron transport
222 and energy generation in the presence of eDNA (Table S1).

223

224 It is also interesting that specific metabolic genes are also repressed by extracellular
225 DNA (Table S2). The Cbb3-type cytochrome oxidase (PA4133) gene is repressed and
226 supports the concept that environmental conditions influence the expression of the
227 aerobic, terminal oxidases of the electron transport process (22). The *PA3519-PA3515*,
228 cluster contains a probable adenylosuccinate lyase involved in purine biosynthesis
229 (PA3517, PA3516). While nucleotide catabolism genes are induced, the biosynthetic
230 genes can be repressed, when in the presence of DNA as a nutrient source.

231

232 **Antibiotic resistance genes are induced by extracellular DNA.** We have previously
233 shown that spermidine synthesis genes *PA4773-PA4775* and the aminoarabinose
234 modification of lipid A genes *PA3552-PA3559* (*arn/pmr*) are two operons required for
235 DNA-induced antimicrobial peptide resistance (1). The modifications protect the outer
236 membrane from cationic antimicrobial peptide damage in DNA-enriched biofilms or
237 planktonic cultures (9,10), and limit aminoglycoside permeability under acidic conditions
238 (11). They also protect the outer membrane from direct DNA damage and killing by
239 neutrophil extracellular traps (3). These genes are highly expressed in the presence of
240 eDNA and are required for shielding the outer membrane and protecting from diverse
241 membrane and antibiotic threats.

242

243 The transcriptome of eDNA-induced genes included other potential antibiotic
244 resistance genes such as a β -lactamase (*PA2315*), an aminoglycoside
245 phosphotransferase (*PA1829*), and the OpmG outer membrane protein that contributes

246 to aminoglycoside resistance (23), which is adjacent to the *emrAB* multidrug efflux pump
247 (*PA5157-PA5159*) (Table S1). Interestingly, eDNA represses the expression of *nalD*
248 (Table S2), which is a transcriptional repressor of the MexAB-OprM RND efflux pump
249 (24). This regulatory effect may ultimately lead to activation of the MexAB-OprM pump in
250 the presence of eDNA. These systems may act as novel resistance determinants that are
251 uniquely expressed in DNA rich biofilms or infection sites.

252

253 **DNA influences the expression of diverse metal efflux and transport pathways.** An
254 interesting subset of the transcriptome included genes that are involved in both the efflux
255 and transport of metal cations. Among the DNA-induced genes, there are numerous
256 transport systems for sodium (Na^+), iron (Fe^{2+}) and zinc (Zn^{2+}) (Table 2), mostly involved
257 in the uptake of these cations. The TerC protein is an integral membrane protein that
258 effluxes tellurium and therefore contributes to tellurium resistance (Table 2). Interestingly,
259 among the DNA-repressed genes, there are numerous RND efflux and transport systems
260 for cobalt (Co^{2+}), zinc (Zn^{2+}) and cadmium (Cd^{2+}). The repression of metal efflux pumps
261 and induction of cation transport pathways could collectively lead to increased rates of
262 metal cation uptake (Table 2).

263

264 We have shown previously that DNA can efficiently bind to exogenous divalent metal
265 cations such Mg^{2+} , Ca^{2+} , Mn^{2+} and Zn^{2+} (9). To confirm that DNA sequesters diverse
266 metals, we analyzed various commercial DNA preparations for total bound metals using
267 inductively coupled plasma mass spectrometry (ICP-MS). All DNA samples bound to a
268 wide range of metals. As internal controls, we confirmed that that Na^+ -DNA bound the

269 highest amount of Na^+ , and the K^+ -DNA bound the highest amount of K^+ (Table 3). These
270 samples were likely named Na^+ -DNA or K^+ -DNA as a consequence of DNA precipitation
271 with these respective salts during the purification process. The highly bound cations and
272 metals to DNA included Na^+ , K^+ , Ca^{2+} , Mg^{2+} , Zn^{2+} , Cr^{3+} , Sr^{2+} , Cd^{2+} , Co^{2+} , Fe^{2+} , Pb^{2+} , Al^{3+}
273 and Mn^{2+} (Table 3).

274

275 The CzcRS two-component system activates expression of the CzcCBA efflux
276 system in the presence Co^{2+} , Cd^{2+} and Zn^{2+} (25,26). DNA binds and sequester Co^{2+} ,
277 Cd^{2+} and Zn^{2+} (Table 3), thereby limiting exposure to these metals, which may explain
278 why the the CzcRS regulatory system and the CzcCBA efflux system are repressed by
279 extracellular DNA (Table S2). These metals are required for growth in trace amounts and
280 are toxic in higher concentrations, and therefore require homeostatic uptake processes
281 to balance the need and toxicity of these metals. In conclusion, we propose that the
282 anionic phosphate backbone of DNA permits the binding and sequestering of diverse
283 metal cations, which leads to a complex response to achieve a balance in metal uptake.

284

285 **Extracellular DNA repressed the H2-T6SS and the T3SS.** The type III secretion system
286 (T3SS) is required to deliver exotoxins directly into host cells through a needle-like
287 structure, which interfere with host cell responses and contribute to bacterial virulence
288 (27). The type VI secretion system (T6SS) encodes a contractile syringe structure
289 required for interbacterial killing and allows for competition among mixed bacterial
290 communities (28). Extracellular DNA repressed the expression of many genes within the
291 T3SS and the H2-T6SS clusters (Table S2). While DNA specifically represses the H2-

292 T6SS (Table S2), previous studies have demonstrated that cation chelation by eDNA can
293 rapidly activate the H1-T6SS through post-translational control, which leads to
294 nonselective attack and killing of neighbouring bacterial species (29). The H1-T6SS
295 contributes primarily to bacterial killing, but the H2-T6SS contributes to killing of
296 eukaryotic and bacterial cells (28).

297

298 The type III secretion system is controlled by limiting Ca^{2+} , and we have shown
299 that various, exogenous Ca^{2+} chelators, such as NTA, alginate and DNA, can induce the
300 expression of the T3SS (30). Here we report that using higher DNA concentrations from
301 a different source than previously tested (30) represses the T3SS. Therefore, it is likely
302 that DNA can have various effects on the T3SS based on the relative concentrations and
303 chelation potential. While limiting Ca^{2+} functions as the inducing signal, limiting both Mg^{2+}
304 and Ca^{2+} cations represses the T3SS (30). These results are ultimately consistent with
305 the role of cations concentrations in controlling the T3SS and T6SS.

306

307 **Extracellular DNA influences gene expression through cation chelation,
308 acidification or as a nutrient.** In order to validate the novel eDNA-regulated genes
309 identified by RNA-seq analysis, we searched our mini-Tn5-*lux* transposon mutant library
310 (16) for transcriptional *lux* reporters to genes in Supplementary Table 1 (Table 1). There
311 are multiple ways in which eDNA can influence gene expression. DNA is a cation chelator
312 and therefore creates a Mg^{2+} limiting condition and induces genes that are known to be
313 controlled by magnesium limitation and the PhoPQ/PmrAB two component systems
314 (9,10). The accumulation of eDNA acidifies biofilm cultures and acidic pH triggers

315 expression of the PhoPQ PmrAB-controlled genes (11). To separate the effects of cation
316 chelation and pH, we measured the expression of candidate DNA-induced genes under :
317 1) eDNA and neutral pH 7 and 2) acidic pH 5.5 or pH 7 with excess 1 mM Mg²⁺, in order
318 to provide insight as to how DNA influences the global gene expression phenotypes of *P.*
319 *aeruginosa*.

320

321 The first objective was to validate the gene expression responses to eDNA observed
322 in the transcriptome. Transcriptional fusions to known DNA-induced genes *PA4775::lux*
323 and *PA3559::lux* were used as positive controls to show induction by eDNA at neutral pH
324 (Fig 1). The baseline expression of these reporters is high in baseline conditions without
325 DNA, since 100 μM Mg²⁺ is already an inducing condition, and eDNA induces expression
326 further by 2-fold (Fig 1). However, many genes have very low expression levels in the
327 absence of DNA and are induced very strongly. For example, several metabolic genes
328 showed a strong induction response to eDNA, including *cyoB*, *oprD*, *xdhB*, *PA1519*,
329 *PA4620*, *PA4621*, *tyrS* and *PA5234* (Fig 1). In comparison, some genes had low levels
330 of baseline expression and showed modest induction by eDNA (PA1127, PA0222) (Fig
331 1)

332

333 Since it is known that acidification by eDNA is a separate signal to induce expression
334 of the *arn/pmr* and *PA4773-PA4774* operons, we wanted to determine if any of the novel
335 eDNA-induced genes were responding to acidic pH. We therefore measured the
336 expression of these reporters in neutral pH 7 and under mild acid pH 5.5. Figure 2
337 demonstrates that some eDNA genes are strongly induced by pH 5.5, including the *oprD*

338 outer membrane porin and the Cyo cytochrome oxidase, and others are modestly induced
339 by acid pH (PA2628). Both *oprD* and *cyoB* are not regulated by limiting Mg²⁺ (data not
340 shown), and therefore respond to DNA as a possible nutrient source or to pH changes
341 associated with the addition of eDNA. Induction of these genes by acidic pH suggests a
342 possible role in adjusting to the stress of acidic pH. To summarize, we validated the DNA-
343 induced gene expression phenotypes from the transcriptome using transcriptional *lux*
344 fusions and illustrated the possible mechanisms for DNA influencing gene expression
345 through cation chelation, acidification or as a nutrient source.

346

347 **Extracellular DNA promotes an acid pH tolerance response.** *Salmonella typhimurium*
348 is known to have an acid tolerance response (ATR) that may contribute to survival during
349 passage through the stomach and gastrointestinal tract or within macrophages (31).
350 Since *P. aeruginosa* induces specific genes during mild acid exposure, we sought to
351 determine if *P. aeruginosa* has an acid tolerance response, and if growth in the presence
352 of eDNA promoted survival upon challenge with a lethal pH 3.5 acid shock. PAO1 cultures
353 were grown overnight in LB, LB supplemented with 0.2% DNA, or LB adjusted to pH 5.5.
354 Overnight cultures were sub-cultured and grown to mid-log phase in the same
355 corresponding conditions, before being subjected to an acid shock (pH 3.5). Colony
356 counts were performed before and after the acid shock to determine the relative survival
357 of the three populations. After 20 to 60 minutes exposure to acid pH, the cultures grown
358 in mild acid pH 5.5 were shown to promote an acid tolerance response. Interestingly,
359 growth in presence of 0.2 % extracellular DNA led to the greatest survival and tolerance
360 to exposure to pH 3.5 shock treatment. After 90 minutes of exposure to acid pH 3.5, LB

361 grown cultures decreased to zero viability. However, PAO1 that was pre-grown in
362 extracellular DNA was the only condition that promoted survival for up to 120 minutes (Fig
363 3). We recently demonstrated that DNA accumulation results in acidic microdomains in
364 biofilms and pH values decreased to ~5.5 in biofilms formed by an eDNA hyperproducing
365 strain (11). Given the ubiquitous accumulation of eDNA in biofilms, we propose that the
366 acid tolerance response is required to survive the pH gradients that establish within
367 biofilms.

368

369 To further understand the possible mechanisms of acid tolerance, we hypothesized
370 that specific acid pH-induced genes may contribute to acid tolerance. Two common pH
371 homeostasis mechanisms under acidic conditions are the transport or efflux of protons
372 out of the cytoplasm, and the consumption of protons through metabolic reactions (32).
373 Proton transport mechanisms include H^+ exchange proteins, Na^+/H^+ antiporters, and the
374 electron transport process (32). Proton consumption occurs through the expression of
375 hydrogenases and decarboxylases that consume protons during their reactions (32).

376

377 *Pseudomonas aeruginosa* encodes five aerobic, terminal oxidases that are
378 differentially regulated dependent on the growth conditions, and operate as low or high
379 oxygen affinity systems during the membrane-bound electron transport process (22). The
380 *cyoABCDE* quinol oxidase is a low affinity system and would be expected to operate when
381 oxygen is abundant during exponential growth, although the *cyo* genes are weakly
382 expressed under normal growth conditions in Luria Broth (22). Strong induction of the

383 *cyoABCDE* genes under acidic pH suggests that this oxidase is efficient for proton
384 transport under acidic conditions (Fig 3). To confirm the role of the *cyo* quinol oxidase in
385 surviving an acid pH shock, we compared the acid tolerance response of the wild type
386 strain to a transposon mutant in the *cyoB::lux* gene. The *cyoB::lux* mutant did not survive
387 an acid shock treatment beyond 45 minutes when pre-grown in mild acid pH 5.0, and did
388 not survive beyond 90 min when-grown or in the presence of 0.2% eDNA, respectively
389 (Fig 3). These data suggest that the *cyoABCDE* genes are required to balance
390 cytoplasmic pH during an acid shock, and therefore contribute to the acid tolerance
391 response.

392

393 **Growth in eDNA influences intracellular survival.** We wanted to determine the
394 influence of extracellular DNA on virulence phenotypes of *P. aeruginosa*. We
395 hypothesized that DNA-induced antimicrobial peptide resistance (1), in combination with
396 DNA-induced acid tolerance (Fig 3), would promote intracellular survival during
397 phagocytosis. *P. aeruginosa* PAO1 was cultured overnight in BM2 supplemented with or
398 without 0.75% DNA and bacterial densities were adjusted to infect fully confluent
399 macrophage cell monolayers at a MOI of 50:1. A significant increase was observed in the
400 number of CFUs recovered following 5 hrs of intracellular survival for PAO1 precultured
401 in the presence of extracellular 0.75% DNA, and also when pre-cultured in limiting Mg²⁺
402 (20 μM). (Fig 4A). PAO1 grown in the presence of extracellular DNA and excess 10mM
403 Mg²⁺ were not significantly different to PAO1 precultured in BM2 with excess 2mM Mg²⁺
404 (Fig 4A). The addition of excess Mg²⁺ reduced the survival phenotype to wild type levels,
405 presumably because exogenous magnesium neutralized the cation chelating effects of

406 DNA (9).

407

408 **Grown in eDNA influences virulence during fruit fly infections.** The *Drosophila*
409 nicking infection model (21) was used to assess the influence of eDNA on the virulence
410 of *P. aeruginosa*. This infection model was preferred over the fly feeding model for this
411 experiment, since fly killing is rapid in the nicking model (hours), and therefore the
412 potential influence of the pre-growth conditions may have an immediate effect on the
413 infection. In contrast, the slow killing kinetics of feeding infections would be less
414 influenced by the phenotype of the ingested bacteria. *P. aeruginosa* PAO1 was grown in
415 different conditions and injected into the abdomen of fruit flies, which results in fly death
416 with 15 hrs. PAO1 grown in limiting Mg²⁺ or in 0.75% DNA were significantly less virulent
417 (54-67% survival at 24h post-infection) than PAO1 pre-cultured in BM2 high Mg²⁺ or BM2
418 excess Mg²⁺ + 0.75% DNA (30-34% survival at 24h post-infection) (Fig 4B). The reduced
419 virulence of PAO1 grown in the presence of eDNA may be related to the repression of
420 the type III and type VI (H2) secretion systems (Table S2). These data indicate that *P.*
421 *aeruginosa* pre-grown under conditions of cation limitation have altered virulence
422 properties compared to strains grown in cation rich environments.

423

424 **Discussion.**

425

426 While extracellular DNA was initially discovered to have a structural role in
427 maintaining the biofilm structure of young *P. aeruginosa* biofilms (33), we now understand
428 that eDNA has many additional, non-structural functions. DNA imposes various stresses

429 on cells by chelating and limiting the availability of metal cations, disrupting membrane
430 integrity, acidifying the environment and acting as a nutrient (9,11). To gain further insight
431 into how eDNA influences *P. aeruginosa*, we performed a transcriptome analysis.
432 Correspondingly, many genes are induced in response to these stresses that contribute
433 to defence and ultimately to long-term survival of *P. aeruginosa*.

434

435 In addition to the PhoPQ/PmrAB-controlled outer membrane modifications that
436 protect against antimicrobial peptides, aminoglycosides, DNA and NET killing (16,9–11),
437 eDNA induces the expression of additional antibiotic resistance genes. Extracellular DNA
438 chelates metals and controls the expression of diverse metal uptake and efflux systems,
439 in an attempt to acquire the limiting metals. The largest category of eDNA-induced genes
440 are likely required to use DNA as nutrient source of phosphate, nitrogen or carbon. We
441 demonstrate that similar to *S. typhimurium* (31), *P. aeruginosa* also has an acid tolerance
442 response when grown with eDNA, which promotes survival to acid shock. The ability of
443 *P. aeruginosa* to survive in acidic conditions is important in DNA-rich biofilms or infections
444 sites, but also when ingested in the stomach, or when phagocytosed into acidified
445 vacuoles.

446

447 Previous studies reported that magnesium limitation and PhoP repressed the
448 expression of the *retS* orphan sensor that functions as a repressor of biofilm formation
449 (34). Therefore, under magnesium limiting conditions, or in the presence of eDNA, *P.*
450 *aeruginosa* produces increased amounts of the Pel/Psl exopolysaccharide, leading to
451 robust aggregates and biofilms (34). Interestingly, we show here eDNA can repress the

452 T3SS and the H2-T6SS, secretion systems required for virulence and protection from
453 eukaryotic immune cells. Collectively, these eDNA-induced phenotypes are consistent
454 with the proposed shift that controls acute and chronic infection phenotypes, and involves
455 planktonic or biofilms modes of growth, respectively (35). Growth with eDNA reduced *P.*
456 *aeruginosa* virulence during the acute, pin pricking infection model in *Drosophila*, which
457 may be related to repression of the T3SS and T6SS.

458

459 Extracellular DNA promotes aggregation, antibiotic resistance and immune cell
460 evasion phenotypes, which are the hallmark features of biofilms. This study expands our
461 understanding of the significant influence of extracellular DNA on the physiology and gene
462 expression patterns of *P. aeruginosa*. Although our experiments were performed in
463 planktonic cultures containing eDNA, we propose that these results are relevant to
464 biofilms and all conditions or infections where there is an accumulation of eDNA.

465

466

467 **References**

468 1. Lewenza S. Extracellular DNA-induced antimicrobial peptide resistance
469 mechanisms in *Pseudomonas aeruginosa*. *Front Microbiol.* 2013;4:21. DOI:
470 10.3389/fmicb.2013.00021; 10.3389/fmicb.2013.00021

471 2. Okshevsky M, Meyer RL. The role of extracellular DNA in the establishment,
472 maintenance and perpetuation of bacterial biofilms. *Crit Rev Microbiol.*
473 2013;1040-841X:1-11. DOI: 10.3109/1040841X.2013.841639

474 3. Halverson TW, Wilton M, Poon KK, Petri B, Lewenza S. DNA is an antimicrobial
475 component of neutrophil extracellular traps. *PLoS Pathog.* 2015;11(1):e1004593. DOI:
476 10.1371/journal.ppat.1004593

477 4. Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, et al. CXCR2 mediates
478 NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis
479 airway inflammation. *Nat Med.* 2010;16(9):1018-23. DOI: 10.1038/nm.2209

480 5. Manzenreiter R, Kienberger F, Marcos V, Schilcher K, Krautgartner WD,
481 Obermayer A, et al. Ultrastructural characterization of cystic fibrosis sputum using atomic
482 force and scanning electron microscopy. *J Cyst Fibros Off J Eur Cyst Fibros Soc.*
483 2012;11(2):84-92. DOI: 10.1016/j.jcf.2011.09.008

484 6. Shan Q, Dwyer M, Rahman S, Gadjeva M. Distinct susceptibilities of corneal *P.*
485 *aeruginosa* clinical isolates to neutrophil extracellular trap-mediated immunity. *Infect*
486 *Immun.* 2014; DOI: 10.1128/IAI.02169-14

487 7. Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. Life after death: the critical
488 role of extracellular DNA in microbial biofilms. *Lett Appl Microbiol.* 2013;57(6):467-75.
489 DOI: 10.1111/lam.12134

490 8. Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, et al. Self-
491 organization of bacterial biofilms is facilitated by extracellular DNA. *Proc Natl Acad Sci.*
492 2013;110(28):11541-6. DOI: 10.1073/pnas.1218898110

493 9. Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations
494 and induces antibiotic resistance in *Pseudomonas aeruginosa* biofilms. *PLoS Pathog.*
495 2008;4(11):e1000213. DOI: 10.1371/journal.ppat.1000213

496 10. Johnson L, Mulcahy H, Kanevets U, Shi Y, Lewenza S. Surface-localized
497 spermidine protects the *Pseudomonas aeruginosa* outer membrane from antibiotic
498 treatment and oxidative stress. *J Bacteriol.* 2012;194(4):813-26. DOI: 10.1128/JB.05230-
499 11

500 11. Wilton M, Charron-Mazenod L, Moore R, Lewenza S. Extracellular DNA acidifies
501 biofilms and induces aminoglycoside resistance in *Pseudomonas aeruginosa*. *Antimicrob*
502 *Agents Chemother.* 2015;60(1):544-53. DOI: 10.1128/AAC.01650-15

503 12. Palchevskiy V, Finkel SE. *Escherichia coli* competence gene homologs are
504 essential for competitive fitness and the use of DNA as a nutrient. *J Bacteriol.*
505 2006;188(11):3902-10. DOI: 10.1128/JB.01974-05

506 13. Pinchuk GE, Ammons C, Culley DE, Li SM, McLean JS, Romine MF, et al.
507 Utilization of DNA as a sole source of phosphorus, carbon, and energy by *Shewanella*
508 spp: ecological and physiological implications for dissimilatory metal reduction. *Appl*
509 *Environ Microbiol.* 2008;74(4):1198-208. DOI: 10.1128/AEM.02026-07

510 14. Mulcahy H, Charron-Mazenod L, Lewenza S. *Pseudomonas aeruginosa* produces
511 an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient
512 source. *Environ Microbiol.* 2010; DOI: 10.1111/j.1462-2920.2010.02208.x

513 15. Wilton M, Halverson TWR, Charron-Mazenod L, Parkins MD, Lewenza S.
514 Secreted phosphatase and deoxyribonuclease are required by *Pseudomonas aeruginosa*
515 to defend against neutrophil extracellular traps. *Infect Immun.* 2018;86(9). DOI:
516 10.1128/IAI.00403-18

517 16. Lewenza S, Falsafi RK, Winsor G, Gooderham WJ, McPhee JB, Brinkman FS, et
518 al. Construction of a mini-Tn5-luxCDABE mutant library in *Pseudomonas aeruginosa*
519 PAO1: a tool for identifying differentially regulated genes. *Genome Res.*
520 2005;15(4):583-9. DOI: 10.1101/gr.3513905

521 17. Winsor GL, Rossum TV, Lo R, Khaira B, Whiteside MD, Hancock RE, et al.
522 *Pseudomonas* Genome Database: facilitating user-friendly, comprehensive comparisons
523 of microbial genomes. *Nucleic Acids Res.* 2009;37(Database issue):D483-8. DOI:
524 10.1093/nar/gkn861

525 18. Anders S, Huber W. Differential expression analysis for sequence count data.
526 *Genome Biol.* 2010;11(10):R106. DOI: 10.1186/gb-2010-11-10-r106

527 19. Lee CK, Roberts AL, Finn TM, Knapp S, Mekalanos JJ. A new assay for invasion
528 of HeLa 229 cells by *Bordetella pertussis*: effects of inhibitors, phenotypic modulation,
529 and genetic alterations. *Infect Immun.* 1990;58(8):2516-22.

530 20. Mead CG. A Deoxyribonucleic Acid-Associated Ribonucleic Acid from *Drosophila*
531 *Melanogaster*. *J Biol Chem.* 1964;239:550-4.

532 21. Mulcahy H, Sibley CD, Surette MG, Lewenza S. *Drosophila melanogaster* as an
533 animal model for the study of *Pseudomonas aeruginosa* biofilm infections in vivo. *PLoS*
534 *Pathog.* 2011;7(10):e1002299. DOI: 10.1371/journal.ppat.1002299

535 22. Arai H, Kawakami T, Osamura T, Hirai T, Sakai Y, Ishii M. Enzymatic

536 characterization and in vivo function of five terminal oxidases in *Pseudomonas*
537 *aeruginosa*. *J Bacteriol*. 2014;196(24):4206-15. DOI: 10.1128/JB.02176-14

538 23. Jo JTH, Brinkman FSL, Hancock REW. Aminoglycoside efflux in *Pseudomonas*
539 *aeruginosa*: involvement of novel outer membrane proteins. *Antimicrob Agents*
540 *Chemother*. 2003;47(3):1101-11. DOI: 10.1128/aac.47.3.1101-1111.2003

541 24. Morita Y, Cao L, Gould VC, Avison MB, Poole K. *nalD* encodes a second repressor
542 of the *mexAB-oprM* multidrug efflux operon of *Pseudomonas aeruginosa*. *J Bacteriol*.
543 2006;188(24):8649-54. DOI: 10.1128/JB.01342-06

544 25. Perron K, Caille O, Rossier C, Van Delden C, Dumas J-L, Köhler T. *CzcR-CzcS*,
545 a two-component system involved in heavy metal and carbapenem resistance in
546 *Pseudomonas aeruginosa*. *J Biol Chem*. 2004;279(10):8761-8. DOI:
547 10.1074/jbc.M312080200

548 26. Caille O, Rossier C, Perron K. A copper-activated two-component system interacts
549 with zinc and imipenem resistance in *Pseudomonas aeruginosa*. *J Bacteriol*.
550 2007;189(13):4561-8. DOI: 10.1128/JB.00095-07

551 27. Hauser AR. The type III secretion system of *Pseudomonas aeruginosa*: infection
552 by injection. *Nat Rev*. 2009;7(9):654-65. DOI: 10.1038/nrmicro2199

553 28. Sana TG, Berni B, Bleves S. The T6SSs of *Pseudomonas aeruginosa* Strain PAO1
554 and their effectors: beyond bacterial-cell targeting. *Front Cell Infect Microbiol*. 2016;6:61.
555 DOI: 10.3389/fcimb.2016.00061

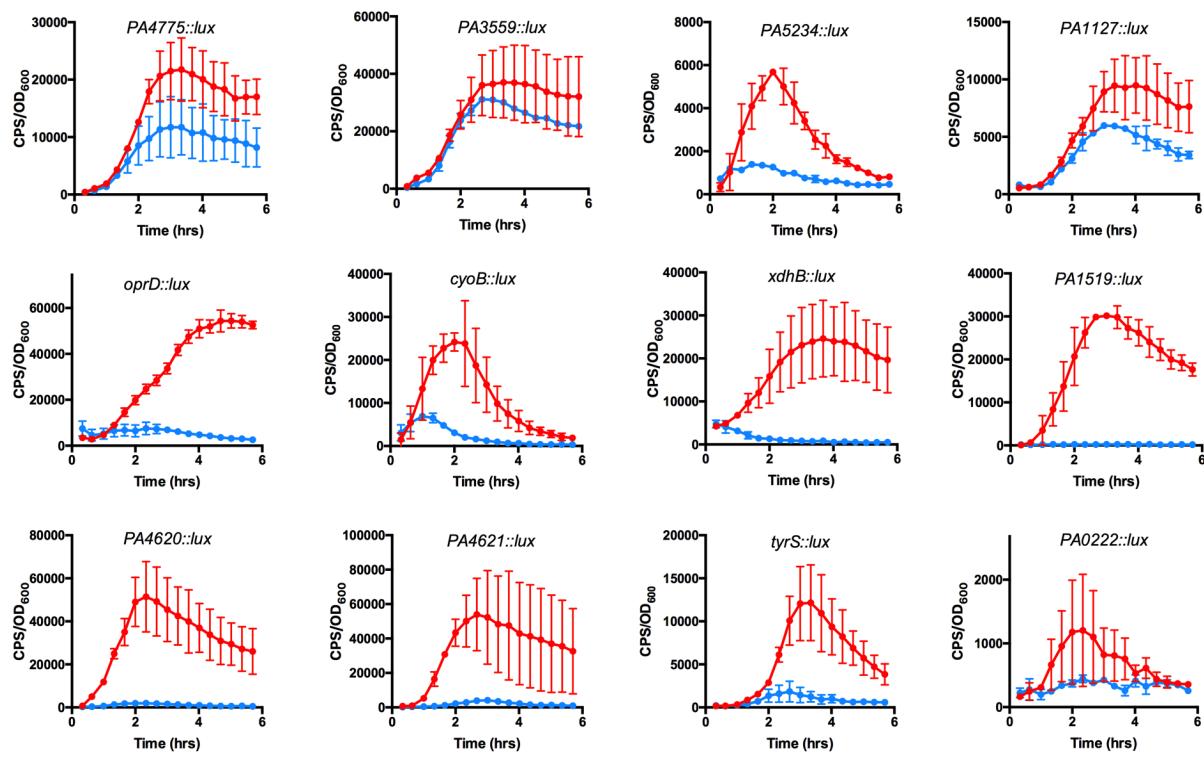
556 29. Wilton M, Wong MJQ, Tang L, Liang X, Moore R, Parkins MD, et al. Chelation of
557 membrane-bound cations by extracellular DNA activates the type VI secretion system in
558 *Pseudomonas aeruginosa*. *Infect Immun*. 2016;84(8):2355-61. DOI: 10.1128/IAI.00233-

559 16

560 30. Horsman SR, Moore RA, Lewenza S. Calcium chelation by alginate activates the
561 type III secretion system in mucoid *Pseudomonas aeruginosa* biofilms. *PLoS One.*
562 2012;7(10):e46826. DOI: 10.1371/journal.pone.0046826; 10.1371/journal.pone.0046826

563 31. Foster JW, Hall HK. Adaptive acidification tolerance response of *Salmonella*
564 *typhimurium*. *J Bacteriol.* 1990;172(2):771-8. DOI: 10.1128/jb.172.2.771-778.1990

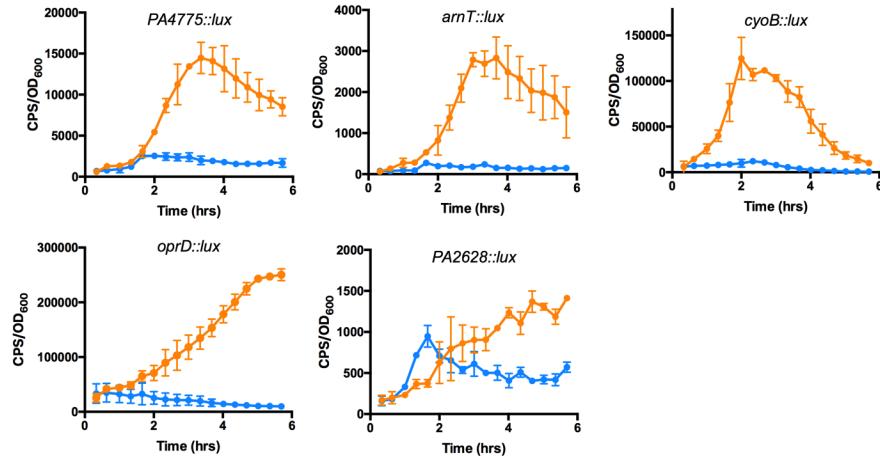
565 32. Kanjee U, Houry WA. Mechanisms of Acid Resistance in *Escherichia coli*. *Annu*
566 *Rev Microbiol.* 2013;67(1):65-81. DOI: 10.1146/annurev-micro-092412-155708


567 33. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA
568 required for bacterial biofilm formation. *Science.* 2002;295(5559):1487. DOI:
569 10.1126/science.295.5559.1487

570 34. Mulcahy H, Lewenza S. Magnesium limitation is an environmental trigger of the
571 *Pseudomonas aeruginosa* biofilm lifestyle. *PLoS One.* 2011;6(8):e23307. DOI:
572 10.1371/journal.pone.0023307

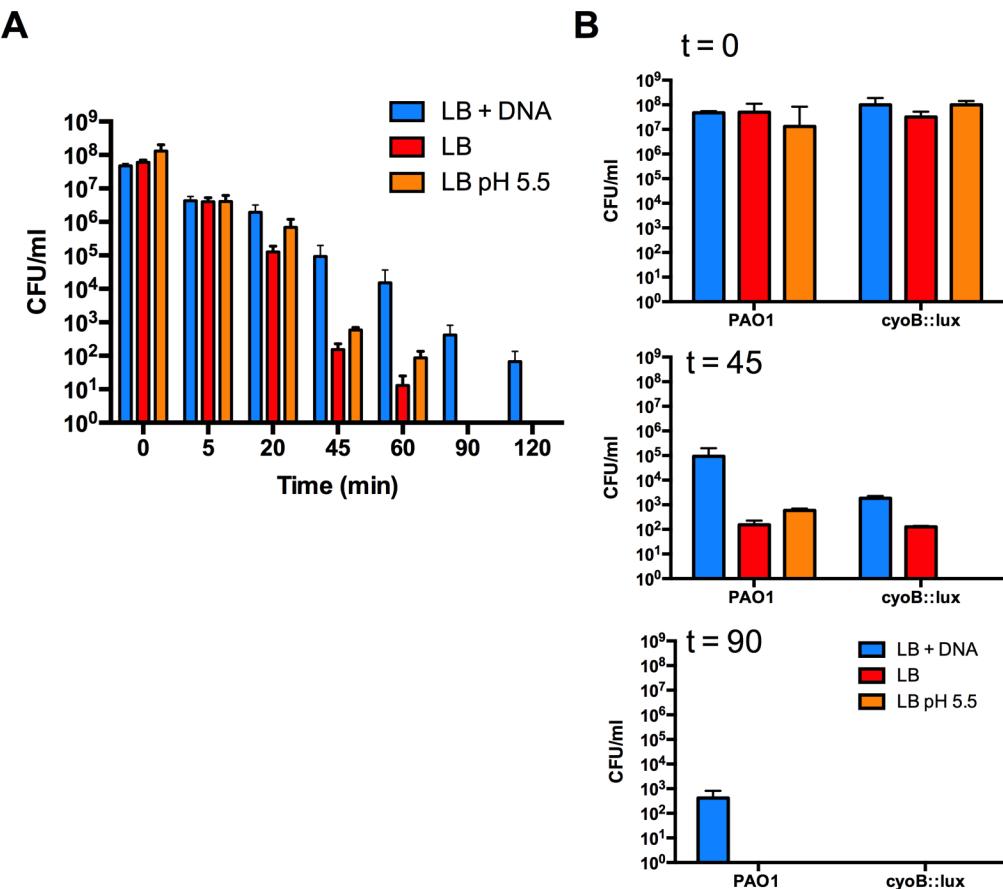
573 35. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. A signaling
574 network reciprocally regulates genes associated with acute infection and chronic
575 persistence in *Pseudomonas aeruginosa*. *Dev Cell.* 2004;7(5):745-54. DOI:
576 10.1016/j.devcel.2004.08.020

577


578

579

580

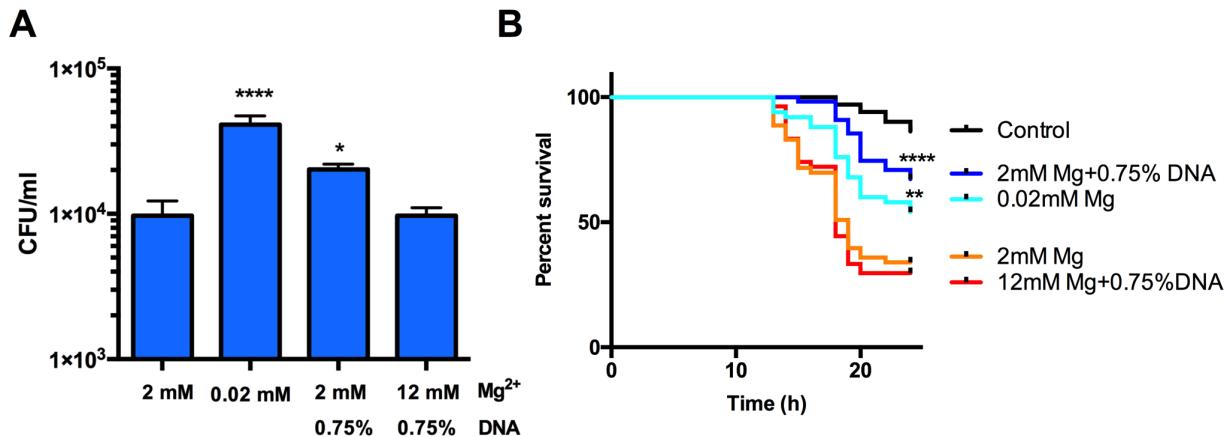

581 **Fig 1. Extracellular DNA-induced gene expression patterns.** Transcriptional *lux*
582 fusion reporter strains were grown in BM2 medium containing 100 μ M Mg²⁺ (pH 7)
583 without (blue) or with the addition of 0.5% DNA (red) and gene expression was
584 measured every 20 min throughout 6 hrs. Values shown are the averages +/- SEM from
585 duplicate values, and each experiment was repeated 3-6 times. Each panel is labelled
586 with the DNA-induced gene of interest.

587

588

589 **Fig 2. pH-induced gene expression patterns.** Transcriptional *lux* fusion reporter strains
590 were grown in BM2 medium containing 1mM Mg²⁺ at pH 5.5 (orange) or pH 7 (blue) and
591 gene expression was measured every 20 min throughout 6 hrs. Values shown are the
592 averages +/- SEM from duplicate values, and each experiment was repeated 3-6 times.
593 Each panel is labelled with the DNA-induced gene of interest.

594


595 **Fig 3. Extracellular DNA promotes an acid tolerance response in *P. aeruginosa*. (A)**

596 Wild type PAO1 was grown overnight in LB, LB containing 0.2% DNA or LB adjusted to
597 pH 5.5, and then exposed to an acid shock of pH 3.5. The cultures were plated to
598 enumerate bacterial survival at 15 min intervals after the acid shock. Values shown
599 represent the average and standard error of triplicate CFU/ml values, and each
600 experiment was performed three times. (B) Wild type PAO1 and the *cyoB::lux* mutant
601 were grown overnight in LB, LB containing 0.2% DNA or LB adjusted to pH 5.5, and then
602 exposed to an acid shock of pH 3.5. Bacterial numbers were determined before the acid
603 shock (t=0) and then at 45 and 90 min after being exposed to the pH 3.5 acid shock.

604 Values shown represent the average and standard error of triplicate CFU/ml values, and

605 each experiment was performed three times.

606

607

608 **Fig 4. Extracellular DNA promotes intracellular survival during phagocytic killing**

609 **and affects virulence of *P. aeruginosa* in a fly nicking model of infection. (A)**

610 Bacteria were recovered following 5h incubation with macrophages. Bacteria were

611 precultured in BM2 2mM, 0.02mM Mg²⁺, BM2 2 mM Mg²⁺ + 0.75% DNA or 12 mM Mg²⁺

612 + 0.75% DNA (excess Mg) and macrophages were infected at an MOI of 50:1. Data is

613 represented as the mean+/-SEM from three independent experiments. Bacteria grown

614 in 0.02 mM Mg²⁺ and in 2 mM Mg²⁺ + 0.75% DNA showed significantly greater survival

615 than cultures grown in 2mM Mg²⁺ (****p<0.0001; *p<0.05) as determined

616 by one-way ANOVA with Bonferroni post-tests. (B) Kaplan-Meier survival curves of

617 *Drosophila* post nicking infection with PAO1 grown in BM2 2mM, 0.02 mM Mg²⁺, 2mM

618 Mg²⁺ + 0.75% DNA or 12mM Mg²⁺ + 0.75% DNA (excess Mg²⁺). Experiments were

619 performed at least 3 times each with a minimum of 50 flies and representative curves

620 are shown. Significant differences were determined with the log rank test between

621 infections with bacteria grown in 0.02 mM and 2mM Mg²⁺ (**p<0.01), between 2mM

622 Mg²⁺ and 2mM Mg²⁺ + 0.75% DNA (**** p<0.0001), as well as between 2 mM Mg²⁺ +

623 0.75% DNA and 12mM Mg²⁺ + 0.75% DNA (**** p<0.0001).

624

625

Table 1. Transcriptional *luxCDABE* reporter strains used in this study.

Mutant ID	Tn location	Gene/PA#	Description
21_G1	gene	<i>PA4619::lux</i>	Probable c-type cytochrome
38_H12	gene	<i>PA4620::lux</i>	Iron sulfur binding protein, electron transfer
15_D2	gene	<i>PA4621::lux</i>	Probable aldehyde oxidase/xanthine dehydrogenase
68_C5	gene	<i>cyoB::lux</i>	Cytochrome o ubiquinol oxidase subunit I
16_B12	gene	<i>PA1519::lux</i>	Probable nucleobase transporter
32_H2	gene	<i>oprD::lux</i>	Outer membrane porin for basic amino acid, peptides and imipenem
69_A11	intergenic	<i>PA5234::lux</i>	Probable oxidoreductase
51_D3	gene	<i>PA2628::lux</i>	Hypothetical protein
46_A8	intergenic	<i>PA3386-rhIG::lux</i>	Hypothetical protein-NADPH-dependent β -ketoacyl reductase
14_C1	gene	<i>PA5390::lux</i>	Probable peptidic bond hydrolase
32_F1	gene	<i>tyrS::lux</i>	Tyrosyl-tRNA synthetase
18_E6	gene	<i>xdhB::lux</i>	Xanthine dehydrogenase, purine metabolism
46_E10	gene	<i>PA1127::lux</i>	Probable oxidoreductase
14_E3	gene	<i>PA0222::lux</i>	Hypothetical protein
54_D3	gene	<i>PA3559::lux</i>	Aminoarabinose modification of LPS, PA3559
68_H10	gene	<i>arnT::lux</i>	Inner membrane L-Ara4N transferase, PA3556
50_F5	gene	<i>PA4775::lux</i>	Hypothetical protein downstream of SpeDE2

626

627

628 **Table 2.** Extracellular DNA-repressed and induced metal transport, efflux and regulatory
629 systems.

p value	FDR value	Fold change	Gene ID	Description of Repressed Gene
1.1329E-24	4.8741E-22	49.17	PA3520	Probable copper chaperone
1.25495E-78	3.5164E-75	33.85	PA3920	Metal transporting P-type ATPase
9.32E-43	1.7411E-39	31.28	PA2521	RND metal cation efflux membrane protein CzcB
1.02606E-12	1.85E-10	30.91	PA3522	RND efflux transporter
5.61431E-40	7.8628E-37	30.57	PA3523	RND efflux membrane fusion protein
1.11E-26	5.1921E-24	29.71	PA2522	Outer membrane protein CzcC
2.32503E-31	1.8597E-28	22.50	PA2523	Two-component response regulator CzcR
1.14965E-39	1.2878E-36	20.29	PA2520	RND divalent metal cation efflux transporter CzcA
7.54787E-12	1.2014E-09	12.13	PA2524	Two-component sensor CzcS
7.20894E-13	1.3864E-10	10.05	PA3690	Metal-transporting P-type ATPase
0.000312263	0.01198629	8.50	PA3521	Probable outer membrane protein
7.63089E-05	0.00347113	5.25	PA2807	Hypothetical protein
0.000625388	0.02161567	4.42	PA0397	Co ²⁺ , Zn ²⁺ , Cd ²⁺ efflux system protein
0.001934937	0.05975273	3.06	PA1297	Metal cation transporter

p value	FDR value	Fold change	Gene ID	Description of Induced Gene
1.22308E-09	1.4466E-07	4.56	PA2026	Probable Na ⁺ -dependent transporter
1.55153E-05	0.00082963	2.64	PA3790	Copper transport outer membrane porin OprC
1.79203E-05	0.00094895	2.54	PA2549	TerC membrane protein
0.002904417	0.08727124	2.52	PA3749	Major facilitator superfamily (MFS) transporter
0.000444716	0.0163311	2.19	PA5248	High-affinity Fe ²⁺ , Pb ²⁺ permease

630

631 **Table 3.** Metals bound to commercially available sources of purified DNA.

Metal ^a	DNA	Na ⁺ DNA	K ⁺ DNA	Detection Limit
		mg/L		mg/L
Sodium	158	583	5.4	0.4
Sulfur	15	2.1	2.8	0.3
Potassium	3	2.4	817	0.4
Calcium	2	2.1	2	0.2
Magnesium	1.7	0.93	3.72	0.2
Zinc	0.1	0.15	0.236	0.001
Manganese	<0.02	<0.01	<0.01	0.005
Vanadium	0.035	0.069	0.0053	0.0001
Boron	0.03	0.005	<0.004	0.002
Nickel	0.0078	0.0096	0.001	0.0005
Chromium	0.0059	0.0229	0.0044	0.0005
Copper	0.005	0.01	0.009	0.001
Strontium	0.005	0.01	0.005	0.001
Lead	0.0006	0.0004	0.001	0.0001
Cadmium	0.00011	0.00002	0.00002	0.00001
Iron	<0.3	0.58	0.1	0.05
Molybdenum	<0.005	0.008	<0.002	0.001
Barium	<0.005	0.003	0.003	0.001
Selenium	<0.001	0.0007	0.0007	0.0002
Cobalt	<0.0005	0.0002	<0.0002	0.0001

632

633 ^aThe following metals were detected at very low levels, near or below the limit of
634 detection: silver, thallium, lithium, tin, zirconium, antimony, arsenic, bismuth, titanium
635 and uranium.