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ABSTRACT 
 
Quorum sensing (QS) is a mechanism of cell-to-cell communication via diffusible signal 
molecules that controls multiple secreted factors including virulence factors in bacterial 
pathogens [1,2]. While the standard view is that QS functions as a density-sensing 
mechanism, the functional and evolutionary context of QS continues to be disputed [3–
11]. A critical step in assessing the various adaptive hypotheses is establishing the 
functional capacities and limits of QS. Current functional studies largely focus on a 
dichotomy of QS on/off (or, quorate / sub-quorate) states, despite the increasing amount 
of heterogeneity on a cellular scale [4,12–16], overlooking the potential for intermediate, 
graded responses. In this paper we explore the functional capacity of QS to resolve finely 
graded environmental densities and introduce the use of reaction norms as a way to 
holistically characterize QS response. Here we show that Pseudomonas aeruginosa can 
deliver a graded response to variation in environmental population density on both the 
population and individual scales. We further resolve the linear population response to be 
the product of two component cellular reaction norms: the likelihood of being responsive 
and the intensity of response. Overall, this work reveals that there is no critical cell mass 
or ‘quorum’, at which QS is activated on either the individual cell or population scale.   

 
INTRODUCTION 
 
Many species of bacteria are capable of a form of cell-cell communication via diffusible 
signal molecules, generally referred to as quorum sensing (QS). The study of QS has 
largely focused on the intracellular scale, leading to a detailed understanding of the 
regulatory mechanisms shaping the production of and response to signal molecules in 
model organisms such as Vibrio cholerae, Bacillus cereus and Pseudomonas aeruginosa 
[1]. We now understand that QS is mediated by multiple diffusible signals that together 
control a diverse array of responses, including swarming, luminescence, competence and 
the production of diverse secreted factors [17].  
 
While the molecular mechanisms of QS have been described for model organisms in 
remarkable detail, the functional and evolutionary context of QS continues to be disputed. 
In other words, while we understand how QS works, we still have limited understanding 
of why bacteria use this system to control behavior. What are the functions of QS? How 
do these QS functions help bacteria to survive and grow?  The standard answer is that 
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bacteria use QS to sense when they are at sufficient density (‘quorate’) to efficiently turn 
on cooperative behaviors such as secretion of toxins and enzymes in order to collectively 
modify their environment [5]. Other researchers have argued that QS is an asocial sensing 
apparatus, where individual cells produce and monitor signal levels in order to infer their 
physical environment (am I in an open or enclosed space?) [18]. More recently, 
integration of molecular and evolutionary approaches has increased the menu of potential 
functions to include sensing multiple aspects of both the social and physical environment 
[3–6] and coordinating complex social strategies that limit the profitability of non-
cooperating ‘cheat’ strains [7–11]. 
 
A critical step in assessing the various adaptive hypotheses is establishing the functional 
capacities and limits of QS.  Previous studies have demonstrated ‘density sensing’ 
functions –populations can use QS to sense when they exceed a density threshold 
[5,19,20]. In addition, Darch et al. demonstrated that responding with increased QS 
controlled cooperative activity at high density can provide a fitness benefit [5]. Other 
studies have demonstrated ‘diffusion sensing’ functions [18] –QS systems can 
functionally respond to variation in physical containment, so that even a single cell can 
become ‘quorate’ (turn on a QS controlled reporter gene) if isolated in a sufficiently 
small contained space [4]. More recently, some studies have demonstrated ‘genotype 
sensing’ functions – QS can respond to variation in the genotypic composition of a 
population, restricting QS-controlled responses to populations that are enriched with 
wildtypes [7,8,21,22]. 
 
The functional studies outlined above largely focus on a dichotomy of QS on/off (or, 
quorate / sub-quorate) states, overlooking the potential for intermediate, graded responses 
(Fig 1A). The threshold quorate/non-quorate concept is ingrained in the QS literature 
following the use of the legal ‘quorum’ analogy [20], and is also supported by 
mathematical models of QS signal dynamics that highlight how sufficiently strong 
positive feedback control of signal production can produce a sharp threshold response to 
changes in environmental parameters such as density or diffusion [23,24]. However, 
these same mathematical models indicate that graded-responses are also possible, 
dependent on the model parameterization. More generally, Fig 1A highlights that the 
phenotypic response of QS bacteria to differing environmental conditions can be viewed 
as a ‘reaction norm’ [25–28] that can in principle take differing shapes.  Reaction norms 
describe phenotypic responses of a single genotype (y-axis, Fig 1A) to varying 
environmental inputs (x-axis, Fig 1A). With this reaction norm framework, it is important 
to emphasize that in our study the x-axis is not time, but instead discrete environmental 
conditions. Whether responses are graded or thresholded during the growth towards high 
density in a single colony is a separate issue. Describing the reaction-norms of QS cells 
and populations to environmental changes is an important step towards understanding the 
capacities of QS systems to differentially respond to novel environments.  
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Figure 1. Schematic of potential population and single cell responses to variation in stationary phase 
density. A) Population response (y-axis) across discrete stationary culture density environments (x-axis), 
given a threshold (left) or graded response (right). In (B) and (C) we outline alternative cell-scale responses 
(intensity of green cells) that are consistent with discrete population-scale behaviors (yellow arrows).  (B) 
threshold (ON/OFF) cellular responses can produce a threshold or graded responses on population scale. 
(C) graded individual responses can produce threshold or graded responses on a population scale.   
 
Whether the population-scale reaction norm to environmental variation is threshold-like 
or graded (Fig 1A), a separate question is how collective population level responses are 
constructed out of individual cellular contributions (Fig 1B,C). Studies of QS on a single-
cell scale have revealed substantial heterogeneity in response to QS signals [4,12–16], 
highlighting that cell-cell communication does not necessarily result in tight 
synchronization of individual cell activity (Fig 1B,C). In some systems, heterogeneity can 
be quenched by the addition of extra signal [13,15], implying a lack of receptor 
saturation. However, this is not a universal result [12], indicating that other molecular 
processes can drive cellular variation in response. Regardless of the molecular details, we 
currently lack a functional understanding of how individual cellular responses vary with 
changes in the environment.  
 
In the current study we address the canonical ‘density sensing’ function of QS, using the 
environmental generalist and opportunistic pathogen Pseudomonas aeruginosa, and an 
unprecedented scale of reaction norm resolution (17 different stationary phase densities). 
Our first challenge is to map the population-scale resolving power of QS to quantitatively 
discriminate graded differences in population density (Fig 1A). Does P. aeruginosa 
respond in a purely threshold manner, collapsing quantitative differences in population 
density into a simple low / high qualitative output, or can QS allow P. aeruginosa to 
deliver a graded response to distinct environmental densities? Our second challenge is to 
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understand how collective responses are partitioned across individual cells. Are changes 
in collective responses governed primarily by changes in the proportion of cells in an on 
state (Fig 1B) or changes in the individual cell intensity of response (Fig 1C), or both?  
 
 
RESULTS 
 
Collective level of response to density is linear and graded. Our first challenge is to 
map out the population scale reaction norm of the collective QS-controlled response to 
variation in stationary phase population densities. To provide a detailed picture of the QS 
response reaction norm to varying density, we grew a QS reporter strain (PAO1 lasB-
GFP) under 17 conditions of carbon limitation and measured average fluorescence output 
per cell at early stationary phase per condition (Fig 2). The range of cell densities 
generated from this method is from 1x108 cells/ml to 2x109 cells/ml. 
 

 
Figure 2. Population response to increasing cell density is linear and graded. Stationary culture density 
was controlled by manipulating the concentration of casamino acids as the limiting resource (Fig S1). Cells 
were grown to stationary phase and assayed for QS response via fluorescence microscopy imaging. 
Response is determined by a translational fusion of the quorum sensing controlled lasB promoter and a 
green fluorescent protein. Individual cell pixel intensity is a measure of quorum sensing response and 
average pixel intensity is calculated across all cells in the population as a proxy for total population 
expression. Data is congruent with microplate results (Fig S2). Quorum sensing signal knockout 
(ΔlasIΔrhlI) shows background response (GFP) with no signal in the environment. Average population 
investment in QS increases as culture density increases with no observable density threshold (AIC linear 
model fit: 1.56, AIC step-function fit: 71.03). Range of stationary phase cell densities is from 1x108 
cells/ml to 2x109 cells/ml. 
 
Figure 2 shows that QS response is linear with increasing culture density, providing 
intermediate levels of per-capita response to intermediate densities. To confirm the lack 
of threshold behavior we assessed alternate statistical models including threshold 
functions, and found that a linear fit model supports the data significantly more than a 
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step-function fit (AIC linear: 1.56, AIC step-function: 71.03), supporting a graded 
population response as outlined in Figure 1. 
 
Individual response to density is bimodal. Figure 2 establishes that on a collective 
scale, the response to environmental variation (in stationary density) is smoothly graded. 
Next, we ask how this collective response is built from individual cell contributions. Is 
the graded increase due to more cells turning on at higher densities (Fig 1B), cells turning 
on to a greater extent (Fig 1C) or both? To address this question, we take the same data 
presented in Figure 2 and now present the distribution of individual cellular responses 
rather than simply the mean response (Fig 3).  
 

  
Figure 3. Individual response is bimodal. Ridgeline plot of cellular response data showing the 
distribution of cellular expression across the population. Populations exhibit a non-uniform response to 
increasing density. The lowest population density matches the QS null mutant (quorum sensing signal 
knockout, ΔlasIΔrhlI, in blue on the far right). Populations with higher cell densities split into two 
subpopulations, unresponsive and responsive.  A total of 55 populations were sampled across 17 stationary 
phase environments. Representative samples were chosen for this plot by selecting populations with ~0.1 
OD600 increments. Between 5,000 and 15,000 individual cells were measured per population.  
 
As expected from prior studies [4,12–16], plotting all individual responses within a 
population shows cell-to-cell variation in QS response within a single population despite 
isogenic and homogenous culture conditions (Fig 3). At higher densities we see evidence 
of a bimodal distribution, with the population segregating into an unresponsive, sub-
quorate, OFF state and a responsive, quorate, ON state. Looking across populations 
grown to differing stationary phase densities, we see qualitative evidence of a graded 
shift in the ON state towards higher cellular intensities at higher densities.  To further 
analyze the single-cell scale data in Fig 3 we fitted a mixed normal statistical model to 
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the data (Fig 4A), which allows us to define the number of cells in the OFF or ON states 
(Fig 4B), and also the average intensity of the ON state (Fig 4C).  
 

 
Figure 4. Proportion of cells responding and level of response varies with density. In light of the 
binomial responses (Fig 3), we course-grain the data into discrete states, and further quantify the magnitude 
of the ON state. A) Method summary. By fitting two gaussian distributions (grey and green curves) via the 
mixtools package in R, mixing proportions (proportion of total individuals that fall under each distribution) 
and mean of each distribution can be quantified. Cells in the left, grey distribution are defined as OFF, 
shorthand for a sub-quorate, unresponsive state which is indistinguishable from the QS null mutant (Fig 3). 
Cells in the right, green distribution are defined as ON, shorthand for a quorate, responsive state. The 
histogram shows the distribution of cellular expression levels in a single density treatment (0.42 OD600). 
B) Proportion of cells ON in the population as determined from the mixing proportions of a Gaussian fit 
mixed model. Proportion of cells ON increases with culture density but does not reach 100%. C) Level of 
response as determined from the means of the fit distributions. The mean intensity of the ON state 
distribution increases as culture density increases, while the mean of the OFF state remains constant. 
 
Figure 4B illustrates persistent cellular heterogeneity across the range of assayed 
environments, with the proportion of responding (ON) cells increasing rapidly from 0.03 
towards a plateau of 0.95 responsive cells at higher densities. In addition to the variation 
in proportion responding, the responsive ON proportion linearly increases their per-cell 
investment (Fig 4C). In other words, low density environments are characterized by low 
frequencies of ‘ON’ cells that invest at a low level, whereas high density environments 
are characterized by near universal ‘ON’ states with high levels of per-cell investment. 
Our analysis in Figure 4B,C depends on a course-graining of the underlying data (Fig 3) 
into a simple 2-parameter summary (proportion ON, intensity ON), via mixed normal 
model fits (Fig 4A). To assess the validity of the statistical summaries in Figure 4, we 
contrast the predicted mean intensity per population (the product of proportion ON times 
intensity ON, 4B * 4C) with the observed mean intensity per population (Fig 1). The 
agreement between observed and expected values (Fig 5; mean absolute percentage error 
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= 9.7%) indicates that the data is adequately described by a simple decomposition into 
proportion ON and intensity ON.  
 

 
Figure 5. Proportion of cells responding and mean level of response explain population level 
response. Plotting the observed average pixel intensity data (Fig 2) against the predicted response 
(intensity ON x proportion cells ON, Fig 4B,C) indicates that the two predictor parameters capture the 
observed population response (mean absolute percent error = 9.7%). 
 
 
DISCUSSION 
 
Our results show that populations of P. aeruginosa can respond in a graded manner to 
variation in stationary phase density (Fig 2), and that this population-scale graded 
response is due to both a graded increase in the number of responsive ‘ON’ cells and the 
intensity of the ‘ON’ state (Figs 3-5). The ability to achieve a graded population-scale 
response implies in principle that P. aeruginosa can tune collective responses (such as the 
secreted elastase protein produced by our lasB reporter gene) to graded environmental 
changes, rather than simply course-graining into a simple ‘high / low’ dichotomy. A 
similar population scale graded response to continuous environmental variation was 
reported by Allen et al., looking at variation in the genotypic concentration of mixed 
populations grown to the same total density [7]. As the proportion of wildtype (PAO1 
versus ΔlasB ‘cheats’) increased, the wildtype per-capita investment in cooperative LasB 
secretions also increased, providing a simple behavioral mechanism to protect 
cooperative investments from exploitation by cheats [7,22].  Darch et al. also reported a 
graded response in lasB expression across 5 density environments, all of which fall into 
the lower 3rd of the total density environments described here [5].  
 
The existence of graded population scale responses across two continuously varying 
environmental inputs (density, genotypic composition) raises the question of why use a 
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graded response? Is there an evolutionary rationale for a graded response, or is a graded 
increase simply the ‘best approximation’ of a threshold response, given a simple system 
working under genetic constraints. Existing evolutionary theory suggest that graded 
investment reaction norms can be adaptive, under a range of distinct scenarios [29,30]. In 
the specific context of quorum-sensing bacteria, evolutionary theory suggests that 
population-scale responses to increasing density should depend critically on the shape of 
the cost and benefit functions of increasing cooperative investments. Specifically, a 
graded response is predicted to be the optimal strategy if the benefit function is 
decelerating and costs are linear [31]. 
 
To further consider the functional context of the graded reaction norms, we turn to the 
single cell scale data, which reveals how the graded population response is built from the 
contributions of individual cells. In agreement with previous work [4,12–16], we find 
cell-scale heterogeneity, but provide finer resolution and observe heterogeneity in both 
ON/OFF state and the intensity of the ON state. Our results further illustrate that both the 
proportion ON and the intensity of the ON state increase smoothly with increases in 
stationary density (Fig 3-5). Together these results illustrate that the graded population-
scale response is built from the combination of two graded cellular responses (OFF/ON 
state, and intensity of ON) to changes in density. To assess the relative contribution of 
these two components, we re-analyzed the data fixing one component and allowing the 
other to vary (Fig S3). This analysis demonstrates that combining variation in both ‘on-
ness’ (proportion ON) and intensity of the ON state leads to a steeper reaction-norm than 
either component alone. In principle, the use of the two components to build the 
population-scale reaction norm can make a more tunable system; changes in the reaction 
norm can follow from changes to either the intensity responsiveness, the on-state 
responsiveness or both.  
 
Our single cell data illustrates that even at high densities (OD600 = 0.74, CFU = 
2.02x109) a fraction of cells continue to be non-responsive (Fig 4B, max observed 
proportion non-responsive of 0.06), but still viable (Table S1, max observed non-viable 
of 0.0176). Persistent heterogeneity of QS response on single cell scale has been reported 
across multiple studies and model organisms, implicating multiple mechanisms including 
receptor copy number limitation [12]. Some cells may lack sufficient LasR to respond to 
a quorum, regardless of the signal concentration. LasR homologs such as LuxR can 
support a large range of copy numbers [12,32], so LasR insufficiency could be an 
inevitable result of stochasticity in gene expression. We recognize that our experimental 
manipulation of stationary density via controlling carbon limitation potentially had other 
impacts on cellular physiology and therefore QS response. However, we found that 
controlling density via carbon limitation had little impact on growth rate between 
environments (Fig S1). We only observed a significant growth rate difference between 
the lowest carbon and the other treatments (p < 0.0001), and no impact on the proportion 
of viable cells (Table S1). Apart from growth rate, we recognize the confound that cells 
will have undergone different numbers of generations. Indeed, Teng. et al have shown 
that partitioning of LuxR, a LasR homolog, is slightly asymmetric and can generate 
heterogeneity in responsiveness to signal [32].  
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In summary, introducing population and individual-scale reaction norms to the study of 
quorum-sensing provides a platform to characterize and compare the functional 
characteristics of QS systems, and also to place QS within the broader analysis of 
phenotypic plasticity [27,28,30]. Our results provide a finely resolved mapping of the QS 
reaction norm to environmental density in PAO1, on both the collective and single-cell 
scale. On the population scale we see a graded linear response across a broad range of 
cellular densities (1x108 cells/ml to 2x109 cells/ml), and we further resolve this linear 
response to be the product of two component cellular reaction norms: the likelihood of 
being responsive and the intensity of response. In an infection context, our results 
indicate that there is no hard threshold separating sub-quorate ‘stealth’ mode and a 
quorate ‘attack’ mode [33]. One implication is that attempts to control virulence and 
biofilm expression in medicine and industry via QS inhibition could have greater impacts 
across a spectrum of population densities. In this applied context, it is important to assess 
the generality of our results and ask, how do QS reaction-norms vary across strains and 
species of QS bacteria? How do they vary across environments? More broadly, our work 
undermines the threshold concept of a ‘quorum’, instead placing QS bacteria in the 
graded world of reaction norms.  
 
 
MATERIALS AND METHODS 
 
Bacterial Strains and Growth Conditions. The bacterial strains used in this study were 
P. aeruginosa PAO1 containing the lasB-GFP quorum sensing reporter [34] and P. 
aeruginosa PAO1 ΔlasI/ΔrhlI lasB-GFP, which is deficient in the production of QS 
signal molecules. Overnight cultures were grown in Luria-Bertani (LB) broth, 
supplemented with 100ug/ml gentamicin to maintain the pMHLB plasmid, with shaking 
at 37 °C. Experiments were conducted in lightly buffered (50uM MOPS) minimal 
defined media composed of an autoclaved basal salts solution (Na2HPO4, 6.8 gL−1; 
KH2PO4, 3.0 gL−1; NaCl, 0.5 gL−1) and filter-sterilized 1M supplement stock solutions of 
NH4Cl, CaCl2, and MgSO47H2 with casamino acids (CAA) as the carbon source.  
 
Controlling Stationary Culture Density. We manipulated density by controlling the 
limiting resource in the media, carbon, allowing us to tune the carrying capacity of each 
treatment (Fig S1). To cover a variety of densities, we generated a CAA range between 
0.05% and 0.25% via dilutions of a 0.5% CAA minimal media stock for a total of 17 
different stationary phase densities. This produced a range of densities environments 
from 1.18x108 cells/ml to 2.02x109 cells/ml. Overnight cultures were grown in LB 
gentamicin 100ug/ml and centrifuged at 8,500 x g for 2 minutes. The cells were then 
washed twice and resuspended in carbonless minimal media and then adjusted to 0.05 
OD600. Aliquots of the various CAA treatments were inoculated with the appropriate 
strains at a concentration of 10ul/ml. Then, 200 uL of each sample was added to a 96-
well microplate and blank minimal media was used as a negative control. Plates were 
incubated with continuous shaking at 37 °C in a Hidex Sense plate reader and growth 
curves were generated by absorbance readings taken at 30-min intervals for a period of 
18hrs.  
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Measuring QS Response. To measure population response, we performed growth-curve 
experiments as previously described using PAO1 lasB-GFP, additionally taking 
fluorescence readings at 30-min intervals. Readings at end exponential phase were 
extracted and plotted as population level response. Controls were done with the QS signal 
deficient mutant PAO1 ΔlasI/ΔrhlI lasB-GFP. 
 
To measure individual response, we performed growth-curve experiments as previously 
described, but removed samples for microscopy as they reached end exponential phase. A 
small aliquot (5ul) was immediately added to a 1.5% agarose pad to immobilize cells and 
imaged in the dark on a Nikon Eclipse TI inverted microscope at 20x magnification. Both 
bright field and green fluorescence (20% Lumencor light engine power, 200ms exposure, 
and 64x gain- sufficient for imaging of low fluorescent cells without saturating pixel 
intensity) channels were captured. Between 5,000 and 15,000 individual cells were 
captured for each sample. Aliquots were diluted with carbonless minimal media when 
required to ensure an even distribution of cells. Images were imported into ImageJ, cells 
were identified on bright field images, and an ROI (region of interest) was generated for 
each individual cell. These ROIs were then overlaid onto the corresponding fluorescent 
image, and pixel intensity was then measured as a proxy for level of QS response. Data 
shown has normalized pixel intensity from 0-255 to a 0-1 scale. This data was then 
analyzed in R via the mixtools package [35], which fits gaussian distributions to 
experimental data. While fitting gaussian distributions allows a non-zero probability of 
negative values, this is not a prevalent issue due to the minimal negative counts imposed 
on the data. As our data is bimodal, this results in two curves generated per sample, an 
OFF and an ON distribution. The package also allows for quantification of mixing 
proportions (λ) and mean (μ) for each distribution. Population level response can also be 
summarized as the sum of each individual’s pixel intensity divided by total number of 
observed individuals. The trend of both the population microplate data and averaged 
microscope data agreed, so the latter is provided in this paper. 
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SUPPLEMENTARY  
 

 
Figure S1. Efficacy of controlling stationary phase density by varying carbon availability. A) Growth 
curves for samples across different carbon limitations, error bars denote 4 replicates each. Growth data 
(carrying capacity, k, and growth rate, r) was determined by fitting a logistic growth equation to the raw 
data. B) Carrying capacity of the culture increases with increasing carbon concentration. C) Carbon 
concentration had minimal impact on growth rate of the bacteria. There was a statistically significant 
difference between group means as determined by one-way ANOVA (p = <0.001), but post hoc 
comparisons using the Tukey-Kramer HSD test indicated that the only significant differences were between 
0.05% carbon and 0.07% (p = 0.002) and 0.05% and the rest (p < 0.0001). Even though a significant 
difference was reported, it is important to note the difficulty of fitting a logistic growth model to the 0.05% 
carbon condition due to the similarity in starting density and carry capacity. This is reflected by the 
increased spread in 0.05% growth rates.  
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Figure S2. Microplate data. Cultures were grown as mentioned in the method section and fluorescence and 
OD600 were measured on a Hidex Sense plate reader. Microplate results agree with microscopy results that 
that population response to increasing cell density is linear and graded. 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/850297doi: bioRxiv preprint 

https://doi.org/10.1101/850297
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S3. The data were re-analyzed by fixing one component to the mean population value and allowing 
the other to vary. Linear regressions were performed for each plot to assess the relative contribution of the 
two observed components (proportion ON and intensity ON).  A) Two component reaction norm with both 
components allowed to vary, y = 0.857x – 0.0627, R2 = 0.9129. B) Single component reaction norm with 
fixed intensity ON, y = 0.294x + 0.172, R2 = 0.5518. C) Single component reaction norm with fixed 
proportion ON, y = 0.638x + 0.0161, R2 = 0.8526. 
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Stationary 
Culture 
Density 

Proportion 
Non-Viable 
Cells 

0.138 0.00742 
0.169 0.0145 
0.176 0.0105 
0.238 0.0103 
0.253 0.00379 
0.312 0.00239 
0.331 0.00166 
0.339 0.00383 
0.383 0.00418 
0.392 0.0176 
0.403 0.0174 
0.403 0.00812 
0.412 0.000637 
0.415 0.00305 
0.427 0.00343 
0.47 0.00181 

0.614 0.00149 
 
Table S1. Cultures were grown as mentioned in the method section and then stained for 5 minutes with 
propidium iodide (PI) at a 1:100 concentration to determine cell viability. PI is a common red-fluorescent 
intercalating agent that only binds to DNA of membrane-compromised bacteria. The average reported non-
viable proportion is 0.00659 (+/- 0.00561) and proportions are un-correlated with density (linear regression, 
F statistic: 2.153 on 1 and 15 DF, p-value: 0.1629). 
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