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Abstract: Maintaining proteome health is important for cell survival. Nucleic acids possess the 
ability to prevent aggregation up to 300-fold more efficiently than traditional chaperone proteins. 
In this study, we explore the sequence specificity of the chaperone activity of nucleic acids. 
Evaluating over 500 nucleic acid sequences’ effects on aggregation, we demonstrate that the 
holdase chaperone effect of nucleic acids is highly sequence dependent. Quadruplexes are found 
to have especially potent effects on aggregation with many different proteins via 
quadruplex:protein oligomerization. These observations contextualize recent reports of 
quadruplexes playing important roles in aggregation-related diseases, such as Fragile X and 
Amyotrophic lateral sclerosis (ALS). 

Main Text:  
Chaperones are a diverse group of proteins and other molecules that regulate proteostasis (1) in 
the cell by preventing protein aggregation (holdases) and helping protein folding (foldases). 
Recently, molecules other than traditional protein chaperones have been shown to play important 
roles in these processes (2, 3). We recently showed that nucleic acids can possess potent holdase 
activity, with the best sequences having higher holdase activity than any previously characterized 
chaperone (4). Nucleic acids can also collaborate with Hsp70 to help protein folding, acting 
similarly to small heat shock proteins (4–7). Nucleic acids can also bring misfolded proteins to 
stress granules (8), and are a primary component of the nucleolus, which was recently shown to 
store misfolded proteins under stress conditions (9). However, the structural characteristics, 
sequence dependence, and mechanistic understanding of how nucleic acids act as chaperones 
remains unclear.  

A critical question in understanding the holdase activity of nucleic acids is whether this activity 
is sequence specific? Previously, we showed that polyA, polyT, polyG, and polyC prevented 
aggregation with varying kinetics, suggesting that sequence specificity was possible (4). Here, 
we test sequence specificity by examining over 500 nucleic acids of varying sequence for 
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holdase activity. The holdase activity is found to be highly sequence specific, with quadruplexes 
showing the greatest activity. Several quadruplexes displayed generality, with potent holdase 
activity for a variety of different proteins. Further examination of these quadruplex sequences 
demonstrated that the holdase activity largely arose through quadruplex:protein oligomerization. 
These results help explain several recent reports of quadruplex sequences playing important roles 
in oligomerization, aggregation, and phase separation in biology and pathology, and that these 
are common properties of quadruplex interactions with partially unfolded or disordered proteins. 

Sequence Specificity of Holdase Activity 

To determine the sequence specificity of the holdase activity of nucleic acids, we measured light 
scattering and turbidity via absorbance in a thermal aggregation assay (Fig. 1A) for 312 nucleic 
acid sequences (Fig. 1B). These nucleic acids were nearly all 20 bases in length, single stranded 
DNA (ssDNA) sequences of random composition. Bulk DNA was used as a positive control (4). 
Plotting the percent aggregation for each sequence demonstrates that the holdase activity of the 
ssDNA is very sequence dependent (Fig. 1B). Sequences nearly spanned the complete range in 
activity, from barely affecting aggregation, to nearly preventing all protein aggregation for over 
an hour. 

With this high level of sequence dependence, we next performed bioinformatics to determine if 
any sequence motifs encoded holdase activity. We first found that the holdase activity is 
positively correlated with the guanine content in the sequences (ρ=0.24, p-value=1.5x10-5). 
Comparing the top third in holdase activity to the bottom third, only one motif was found to be 
significantly enriched in sequences with higher holdase activity (53.85% vs 7.69%, FDR =0.001) 
(Fig. 1C). This motif contains five consecutive guanines followed by any base and then thymine. 
A similar G-rich motif (consensus pattern: BGGSTGAT) was also found by a regression based 
method (R2 = 0.61, p-value =1x10-5).This analysis suggested that the most potent holdase 
activity was encoded by a polyG motif.  

To verify this polyG motif, we tested another 192 sequences for holdase activity that had high 
guanine content. These sequences include 96 sequences with a 55% bias towards guanine bases, 
40 sequences with a 75% bias towards guanine bases, and 56 having different positional 
variations of the aforementioned polyG motif (Fig. 1C). Comparing the original random 
sequences to these guanine-rich sequences, the average aggregation was substantially reduced in 
the enriched guanine set, from 64.8% to 32.0%. Within the enriched guanine set, however, there 
was still a great deal of variation, with the data spanning aggregation from 72% to 4%. This wide 
variability suggested that the motif required more than just high guanine content. Within the 
subset of sequences with a 55% bias towards guanine, a significant polyG motif was again 
identified by comparing sequences having different holdase activity. Within the subset of 75% 
guanine-containing sequences, no statistically significant differences were found, as most 
sequences contained at least one polyG motif. We also tested holdase activity for 56 sequences 
having different positional variations of the aforementioned polyG motif, which did not find 
positional dependency within the sequence for the holdase activity. In the best sequences from 
this enriched assay, the nucleic acid completely prevented protein aggregation for the entire hour 
and a half experiment. These results confirmed that the holdase activity was associated with a 
polyG motif. 

G-Quadruplexes as Potent Holdases 
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PolyG is well known to form quadruplexes when provided with appropriate counter ions. 
Composed of polyG bases forming pi-stacked tetrads, guanine quadruplexes are a class of 
structured nucleic acids that have been of increasing interest due to their regulatory role in 
replication, transcription, and translation (10, 11). Quadruplexes have also recently been 
implicated in several protein aggregation genetic disorders, such as Fragile X syndrome and ALS 
(12–17). 

To test if the sequences containing polyG that had potent holdase activity were forming 
quadruplexes, we performed circular dichroism (CD) spectroscopy experiments on three 
sequences to determine their secondary structure. The CD spectra showed distinct peaks at 260 
and 210 nm, with a trough at 245 nm, indicative of parallel quadruplex formation (Fig. 2A) (18), 
and distinct from a control sequence (sequence 42) that had poor chaperone activity and no 
polyG motif. This supposition was further supported by examining the emission spectra of N-
methylmesoporphyrin IX (NMM), a well characterized parallel quadruplex binding fluorophore 
(19, 20). The NMM spectra indicated that all three sequences formed parallel quadruplexes at the 
concentration used in aggregation assays, unlike the ssDNA control (Fig. 2B). Melting 
experiments indicated that these quadruplex structures were stable, with 91% of the quadruplex 
structure remaining at 50° C, the temperature used in the holdase assays. These experiments 
confirmed that the holdase activity of these polyG-containing sequences were associated with 
quadruplex structure. Re-analyzing the heat denaturation aggregation assay data presented above, 
of the 160 sequences tested that had the sequence properties to form quadruplexes, 133 appeared 
in the top third of data, making up 79% of the sequences in that subset. 152 of the 160 
quadruplex sequences also decreased aggregation by at least 50%.  

We further characterized the holdase activity of the quadruplex-forming sequences using 
chemical denaturation aggregation assays in which the protein starts in a denatured state. Light 
scattering experiments confirmed the holdase activity in at least nine different quadruplex 
sequences (Fig. 2C, Fig. S1). This data also suggests that the quadruplexes are binding a 
misfolded or partially denatured form of the protein rather than the native state.  

The higher level of activity from quadruplex DNA raised the question of whether any structured 
DNA could have a similar effect. In other words, could the activity arise from any DNA with 
greater structure than ssDNA? To test this possibility, we tested the holdase activity of 24 
duplexed sequences to compare directly with their single-stranded counterparts. Overall, the 
differences were small, and in many cases statistically insignificant (Fig. 2D). These experiments 
suggest that the holdase activity displayed here could be specific to quadruplex structures, and 
not other structured DNAs. 

Generality of Holdase Activity 

To determine the generality of this quadruplex holdase activity, we performed aggregation 
assays with three other proteins, luciferase, lactate dehydrogenase (LDH), and malate 
dehydrogenase (MDH). To check whether this holdase activity was quadruplex-specific with 
multiple proteins, we tested 16 quadruplex sequences and 8 single-stranded sequences with each 
protein. These proteins have varying structural properties, ranging in pI from 6.1 to 8.5, and size 
from 62.9 kD to 140 kD. With all four proteins, the quadruplexes severely decreased protein 
aggregation, demonstrating strong holdase activity. For luciferase, LDH, and MDH, most of the 
quadruplex sequences tested were able to completely prevent protein aggregation. However, the 
single-stranded sequences demonstrated little to no activity for all of these proteins (Fig. 3). 
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These data strongly suggest that the holdase activity displayed by quadruplex sequences is 
general, while also unique to quadruplex-forming sequences. Of note, LDH is the only of these 
proteins with previously characterized DNA-binding activity towards both duplex and ssDNA 
(21–23), but its aggregation was only significantly reduced by binding to quadruplex sequences 
(Fig. 3).  

Holdase Activity Due to Oligomerization 

While analyzing the light scattering data from chemically denatured citrate synthase in the 
presence of quadruplexes, we noticed that although the total light scattering was greatly 
decreased by the presence of the quadruplexes, the quadruplexes caused a small initial jump in 
light scattering (Fig. 4A). These data are highly reminiscent of the pattern we observed recently 
in which nucleic acids could prevent protein aggregation by promoting protein:nucleic acid 
oligomerization (24). 

To determine whether the quadruplexes tested here were acting in a similar manner, we 
performed additional spin-down assays, CD, and transmission electron microscopy (TEM) 
experiments. Spin-down assays were performed by heating citrate synthase, luciferase, MDH, or 
LDH with quadruplexes to 60°C for 15 min, and then returning them to room temperature. The 
sample was centrifuged to then separate soluble and pellet fractions. SDS-PAGE gels 
demonstrated that the quadruplexes kept the proteins soluble even at extreme temperatures (Fig. 
4B), similar to previously characterized oligomerization cases (24). Of note, a control single 
stranded sequence of the same length (sequence 42) did not keep the proteins soluble under these 
conditions, even for the well-characterized DNA binding protein LDH (Fig. 4). Measuring CD 
spectra of luciferase protein as a function of temperature in the presence of quadruplexes showed 
that the protein maintained partial β-sheet structure as high as 80°C, and that this non-native 
structure was retained upon return to room temperature (Fig. S4), similar to previous 
oligomerization cases (24). Finally, negative stain TEM imaging showed that the quadruplexes 
caused the formation of protein oligomers (Fig. 4C). Notably, the morphology of the oligomers 
varied with different quadruplex structures, suggesting that the sequence or structural details of 
the quadruplex influence the structure of the subsequent oligomerization that occurs. 

Discussion 
In this study, a systematic investigation of the holdase activity of nucleic acids demonstrated that 
this activity is sequence specific, and that quadruplex sequences display potent holdase activity. 
This holdase activity was demonstrated to be general, preventing the aggregation of multiple 
proteins that differed considerably in pI, size, and function. Further testing showed that this 
activity arose largely via protein:nucleic acid oligomerization. To our knowledge, this activity 
was also found to be more efficient than any previously characterized protein chaperone (4). 

Quadruplex sequences have recently been implicated in aggregation and phase separation events 
in the cell that are associated with pathology. The quadruplex-forming GGGGCC repeat 
expansion in the c9orf72 gene is thought to be a frequent cause of both ALS and frontotemporal 
dementia (FTD) (12, 25). This quadruplex sequence is transcribed into sense and anti-sense RNA 
that have been shown to sequester numerous RNA binding proteins into toxic intranuclear foci, 
resulting in aggregation (26–30). GGGGCC quadruplexes forming foci with disordered proteins 
in the cell is highly consistent with the results presented here. FMRP protein has been shown to 
be one of the leading causes of the fragile X syndrome (17) as well as one of the leading causes 
of monogenetic forms of autism (31, 32). In addition to aggregating in disease (33, 34), FMRP is 
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a known quadruplex-binding protein (16, 17). Future studies on whether these roles are related 
would be of significant interest. The results presented here suggest that these disease-relevant 
cases are not unique, as this behavior is a general property of quadruplex interaction with 
partially unfolded or disordered proteins under stress conditions. 

Quadruplexes preventing protein aggregation by oligomerizing with their clients is reminiscent 
of the action by small heat shock proteins (sHsps). This class of chaperones forms large hetero-
oligomer complexes with different clients, keeping these clients soluble and in an accessible state 
for later refolding by ATP-dependent chaperones (5, 7). The quadruplexes studied here also 
formed stable and soluble oligomer complexes with partially folded proteins, suggesting that the 
quadruplexes could use a molecular mechanism similar to those of the sHsps. Of note, the 
morphology of the oligomers varied with quadruplex sequence, further suggesting that altering 
quadruplex sequence could be a way to control the oligomerization of proteins under stress 
conditions. 
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Figures: 

Fig. 1. (A) Representative example citrate synthase protein aggregation assay. Turbidity and 
light scattering were measured in a multimode plate reader at 360 nm for 1.5 hours of incubation 
at 50° C. Blue lines represent triplicate citrate synthase alone, red and orange lines represent 
triplicate citrate synthase incubated with a single ssDNA sequence, green is buffer alone. (B) 
Screen of ssDNA sequences for holdase chaperone activity. Each bar represents a different 20-nt 
sequence, sorted by activity. Aggregation % was measured as the normalized average of 
triplicate citrate synthase turbidity measurements after 1.5 hours of incubation at 50°C. Lower 
aggregation indicates greater holdase function. The initial screen used random, non-redundant 
sequences (top), which led to a followup enriched screen (bottom). Error bars are SE. (C) 
HOMER Logo of motif found by analyzing screen (statistics: p<1.0x10-13, FDR<0.001, % of 
Targets: 53.85, % of Background: 7.69). 
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Fig. 2. Characterization of quadruplex content and holdase activity. Sequences 359, 536, and 576 
all displayed holdase activity and contain a polyG motif. Sequence 42 was used as a negative 
control, as it performed poorly as a holdase chaperone and did not contain a polyG motif. (A) 
Structural characterization of holdase nucleic acids using circular dichroism. Peaks are observed 
at 260 nm and 210 nm, as well as a trough at 245 nm, indicating the presence of parallel G-
quadruplexes. Thermal stability of quadruplexes shown in Fig. S2. (B) NMM fluorescence 
measured at 610 nm. (C) Aggregation during chemically induced aggregation via right angle 
light scattering at 360 nm. Concentration dependence for Seq 359 shown in Fig. S3. (D) Holdase 
activity of ssDNA compared to its duplexed counterpart in an identical aggregation assay to that 
shown in Fig. 1. 
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Fig. 3. Generality of G-quadruplex holdase activity using four different proteins: Luciferase 
(Luc), Citrate Synthase (CS), L-Malate Dehydrogenase (MDH), and L-Lactate Dehydrogenase 
(LDH) Boxed in red are the 16 sequences with the propensity to form quadruplexes, while the 
remaining 8 sequences are non-structured ssDNA (left). This data is also shown as a heat map 
(right). 
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Fig. 4. Quadruplex-containing sequences promote oligomerization. Sequences 359, 536, and 576 
all displayed holdase activity and contain a polyG motif. Sequence 42 was used as a negative 
control, as it performed poorly as a holdase chaperone and did not contain a polyG motif. (A) 
Right angle light scattering of chemically induced aggregation of citrate synthase. Initial kinetics 
of aggregation shown with full time scale as the insert. (B) Spin down assay with four different 
proteins denatured at 60 °C in the presence of DNA (C) Transmission electron microscopy 
negative stain images of soluble fractions from chemically induced aggregation spin down 
assays. Citrate synthase oligomers were observed in each of the quadruplex cases, although the 
morphology of the quadruplex was dependent on the DNA sequence. Correlating chemical 
denaturation spin down assays are shown in Fig. S5. 
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Materials and Methods 
Sourcing DNA 
All DNA was ordered from Integrated DNA Technology using their standard desalting and 
purification procedures. For the heat aggregation plate reader assays, DNA was ordered 
lyophilized, and normalized to guaranteed molar weights by IDT. This DNA was then 
resuspended in the given buffer and pipetted directly into the plate wells after thorough pipette 
mixing. The duplex DNA was pre-annealed by IDT using their standard annealing protocol 
(https://www.idtdna.com/pages/education/decoded/article/annealing-oligonucleotides). For all 
other experiments, DNA was ordered lyophilized in tube form from IDT at the maximum yield 
achieved during synthesis. The DNA was then resuspended and thoroughly mixed with the given 
buffer to a known concentration.   
 
Thermal Aggregation 
For the initial thermal aggregation assays, 312 single stranded sequences of random sequence, 24 
of which varied in length from 15 to 20 bases long, while the rest were all 20 bases long, were 
incubated with 500 nM Citrate Synthase from porcine heart (Sigma-Aldrich C3260-5KU) in a 
1:2 protein:DNA strand concentration. Aggregation was measured absorbance at 360 nm in a 
Biotek Powerwave multi-mode plate reader, with shaking and measurements every 36 seconds. 
In every assay, the plates were transferred from ice to a preheated 50° C plate reader, and the 
temperature was held constant throughout the entire experiment. Each plate was run for 1.5 hours 
in 40 mM Hepes, 7.5 pH (KOH) buffer. The sequences were run in triplicate. Percent 
aggregation was calculated as a function of the maximum absorbance value recorded in the hour 
and a half divided by the maximum protein alone absorbance value. Error bars shown are 
standard error propagated from both the triplicate protein alone and triplicate experimental 
measurement. As a control, herring testes DNA (Sigma) was also run on each plate to ensure 
consistency of data. 
 
The enriched population of 192 G-rich sequences (length 20 bases) was performed by biasing 96 
of the sequences toward guanine bases at a rate of 55%. 40 sequences were biased towards 
guanine bases by 75%, and the remaining 56 sequences were created with the motif GGGGGNT 
systematically placed throughout the sequence, with the remaining 13 bases chosen at random. 
This process was accomplished by altering the random bias in our random sequence generating 
software, which can be found at https://github.com/adambegeman/IDT_DNA_Generator.  
 
We also tested aggregation using Quantilum Recombinant Luciferase (Promega), L-malate 
dehydrogenase (MDH) from pig heart (Sigma-Aldrich 10127914001), and L-Lactate 
Dehydrogenase (LDH) from rabbit muscle (Sigma-Aldrich 10127876001). We chose 24 
sequences from the citrate synthase assay whose anti-aggregation ability spanned the entire range 
of our data. Of these 24, 16 had a propensity to form quadruplexes. The assay with these other 
three proteins was carried out identically to the citrate synthase thermal denaturation assay, with 
LDH being run for 3 hours due to its higher stability at 50° C. These assays were run in 1:2 
protein:DNA strand ratios using 10 mM sodium phosphate, 7.5 pH buffer at protein 
concentrations of 500 nM Luciferase, 2 μM MDH, and 4 μM LDH.  
 
Motif analysis  
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Motif analysis was performed using the HOMER package (35) to compare the one third of 
sequences with the highest holdase activity to the one third of sequences with the lowest holdase 
activity. The parameters used were “-len 5,6,7,8,9,10 -norevopp -noconvert -nomask -mis 2 -
basic -nogo -noredun -noweight -fdr 1000”.  We also used MatrixREDUCE (36) to identify 
motifs correlated with holdase activity by regression method. Spearman correlation analysis was 
performed by R. 

Chemical Aggregation 
Procedure was adapted from Docter et al. and Gray et al. (2, 4). For the chemically induced 
aggregation, 12 μM Citrate Synthase was denatured in 6 M guanidine-HCl, 40 mM HEPES, for 
approximately 16 h at 23° C, then diluted to 75 nM into 40 mM HEPES, pH 7.5 (KOH), with 
constant stirring at 23° C in the presence of 150 nM 20-mer ssDNA. The resulting aggregation 
was then measured via right angle light scattering at 360 nm in a fluorimeter with constant 
mixing. Results were consistently repeated on three separate days, with representative curves 
shown. 
 
N-methylmesoporphyrin IX (NMM) Fluorescence 
NMM is a well characterized fluorophore that increases fluorescence when bound to parallel 
quadruplexes (19). The emission spectra of 10 μM NMM was measured using an excitation 
wave length of 399 nm, and an emission range of 550 to 750 nm in the presence of 1 μM DNA. 
Samples were run in triplicate at 25° C in a multimode plate reader. Reported values are taken at 
610 nm, the emission maxima, as a function of increase in fluorescence compared to a NMM 
alone triplicate control.  
 
Transmission Electron Microscopy (TEM) 
For the oligomer TEM samples, chemical denaturation spin down assays were run using citrate 
synthase. 46.4 μM Citrate synthase was denatured in 4.8 M guanidine-HCl, 40 mM HEPES 
buffer for 16 hours. The citrate synthase was then diluted to 1.5 μM in a 100 μL sample 
containing 3 μM of the target sequence that induced oligomerization. 15 minutes after injection, 
the sample was spun down at 16,100 x g for 20 min at 4° C. The soluble portion was pipetted off 
and transferred on ice for TEM analysis.  
 
A positively charged copper mesh grid coated in formvar and carbon (Electron Microscopy 
Sciences) using the PELCO easiGlow Discharge system was used for each soluble sample. The 
charged copper grids had 5 μL of sample applied for 20 seconds and then lightly blotted off 
using a Whatman filter paper. The grids were then rinsed using 2 drops of MilliQ water, with 
filter paper bloating for each wash. Finally, the grids were then stained using two drops of a 
0.75% uranyl formate solution. The first drop served as a quick wash, followed by 20 seconds of 
staining using the second drop. The grids were then blotted and allowed to dry. The TEM images 
were captured using a FEI Tecnai G2 Biotwin TEM at 80 kV with an AMT side-mount digital 
camera. In order to better visualize the intricacies of each oligomer, the images’ contrast and 
brightness was uniformly enhanced using Adobe Photoshop.   
 
Circular Dichroism  
The DNA CD spectra were obtained using a Jasco J-1100 circular dichroism at 23° C. The 
spectra were captured using 25 μM concentrations of DNA in 10 mM sodium phosphate, 7.5 pH 
buffer. The CD measurements were taken from 300 nm to 190 nm at 1 nm intervals using a 1 
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nm/sec scanning speed. The shown spectra are a product of three accumulations using the same 
conditions.  
 
Melting curves for the quadruplex sequences were obtained using the same methods as described 
above with spectra taken at 10° C intervals from 20° C to 80° C at a ramp rate of 5° C/ min.  
The luciferase protein denaturation CD spectra were captured in protein:DNA ratios of 1:2 using 
3.2 μM luciferase. The CD spectra were captured at 10° C intervals from 15° C to 85° C using a 
ramp rate of 3° C/ min. The reverse spectra was also captured, but the sequences failed to show 
any ability to recover native luciferase structure. Spectra were captured from 260 nm to 190 nm 
at 1 nm intervals using a 1 nm/sec scanning speed over two accumulations. The concentrations 
were chosen such that the DNA concentration was below the observable sensitivity range of the 
instrument.  
 
Spin Down Aggregation Assays 
100 μL of 3.2 μM protein and 6.4 μM ssDNA were thermally denatured together at 60°C for 15 
min in 10 mM sodium phosphate, pH 7.5 buffer. The resulting solution was then centrifuged at 
16,100 x g for 20 minutes at 4° C to separate the soluble and insoluble fractions. After 
centrifugation, the supernatant (approximately 97 μL) was removed and the pellet resuspended 
using 1 mM β-mercaptoethanol (Fisher Scientific) in 1x TG-SDS buffer (Bio Basic Inc) to the 
original sample volume of 100 μL. 10 μL of the soluble and pellet fractions were then run on a 
denaturing SDS-PAGE gel and visualized using Coomassie blue. Gels were reproduced on three 
separate days, with representative assays shown.  
 
For the chemical denaturation spin down assay, 46.4 μM citrate synthase was denatured in 4.8 M 
guanidine-HCl, 40 mM HEPES buffer for 16 hours. The citrate synthase was then diluted to 2.5 
μM in a 100 μL sample containing 5 μM of the target sequence that induced oligomerization. 
After 5 minutes, the samples soluble and pellet fractions were separated via the same methods as 
the thermal denaturation spin down assays. The gels were then run in triplicate identically to the 
thermal denaturation experiments, with representative gels shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/850263doi: bioRxiv preprint 

https://doi.org/10.1101/850263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 
 

 

 
Fig. S1. Representative examples of chemical aggregation tests of multiple quadruplex-
containing sequences with citrate synthase. Concentration ratio is 1:2 protein to DNA strand. 
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Fig. S2. Thermal stability of quadruplex-containing sequences as measured by CD spectroscopy. 
Each line represents a wavelength scan at the indicated temperature. 
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Fig. S3. Chemical aggregation test of the concentration dependence of holdase activity of 
sequence 359, the best-performing holdase sequence. Concentration ratios are citrate 
synthase:DNA strand. 
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Fig. S4. Circular dichroism of luciferase in the presence of quadruplex-forming sequence 359 
throughout thermal denaturation. Luciferase retains partial beta sheet structure even at extreme 
temperatures, which is retained after returning to lower temperature. 

 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/850263doi: bioRxiv preprint 

https://doi.org/10.1101/850263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

 
Fig. S5. Prevention of protein aggregation in chemical spin down assay using citrate synthase. 
Sequences 359, 536, and 576 all displayed holdase activity and contain a polyG motif. Sequence 
42 was used as a negative control, as it performed poorly as a holdase chaperone and did not 
contain a polyG motif. 
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