

1 **Title: A Zika Virus Primary Isolate Induces Neuroinflammation, Compromises the Blood-
2 Brain Barrier, and Upregulates CXCL12 in Adult Macaques**

3

4 Short title: Zika Virus Induced Neuropathology

5

6 Antonito T. Panganiban^{1*}, Robert V. Blair², Julian B. Hattler³, Diana G. Bohannon³, Myrna C.
7 Bonaldo⁴, Blake Schouest¹, Nicholas J. Maness¹, Woong-Ki Kim³

8

9 Affiliations

10 ¹Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road,
11 Covington, LA, USA, 70433

12 ²Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA,
13 USA, 70433

14 ³Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School,
15 Norfolk, VA, USA, 23507

16 ⁴Laboratório de Biologia Molecular de Flavivírus, Myrna Bonaldo <myrna.bonaldo@gmail.com>,
17 Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.

18

19

20 *Correspondence should be addressed to ATP (apangani@tulane.edu).

21 **Abstract**

22 Zika virus (ZIKV) is a neurotropic virus that can cause neuropathy in adults and fetal
23 neurologic malformation following infection of pregnant women. We used a nonhuman primate
24 model, the Indian-origin Rhesus macaque (IRM), to gain insight into virus-associated hallmarks
25 of ZIKV-induced adult neuropathy. We find that the virus causes prevalent acute and chronic
26 neuroinflammation and chronic disruption of the blood-brain barrier (BBB) in adult animals.
27 Infection results in significant, targeted, and sustained upregulation of the chemokine, CXCL12,
28 in the central nervous system (CNS). CXCL12 plays a key role both in regulating lymphocyte
29 trafficking through the BBB to the CNS, and in mediating repair of damaged neural tissue including
30 remyelination. Understanding how CXCL12 expression is controlled will likely be of central
31 importance in the definition of ZIKV-associated neuropathy in adults.

32 **Author summary**

33 Zika virus (ZIKV) is a virus that can cause neurological problems in adults and damage to
34 the fetal brain. Nonhuman primates (NHPs) are usually superior animal models for recapitulating
35 human neurological disease because their brain, nervous system structure and immune response
36 to virus infection are very similar to that of humans. We have studied the effect of ZIKV infection
37 on the adult NHP brain and made several significant observations. Infection resulted in a high
38 incidence of mild to moderate brain inflammation that persisted for a surprisingly long period of
39 time. We also found that the virus disrupted the blood brain barrier, which is important for
40 controlling transport of material from blood to the brain. It appears that the central nervous system
41 expresses a specific substance in response to virus infection called a chemokine. This specific
42 chemokine may be involved in virus-induced inflammation and/or in repair of virus-induced brain
43 damage. Our data are significant since they help in understanding the mechanism of brain
44 damage caused by ZIKV in adults.

45

46 **Introduction**

47 Zika virus (ZIKV), is a neurotropic flavivirus associated with Guillain-Barre' syndrome
48 (GBS) in adults and is also well-known for causing fetal neurologic malformation following
49 infection of pregnant women (1, 2). In addition to causing GBS, which features damage to the
50 protective myelin sheath surrounding axons, ZIKV can cause neuropathy in adults in the form of
51 meningioencephalitis and myelitis (3, 4). The pathogenesis of ZIKV and the host-pathogen
52 interactions important for the development of these lesions still need to be elucidated.

53 The blood-brain barrier (BBB), the boundary between circulatory and CNS tissues, is
54 composed of brain microvascular endothelial cells (BMECs) and supporting associated pericytes
55 and astrocytes. Intercellular tight junction (TJ) and adherens junction (AJ) integrity is important
56 for maintenance of the intracellular network of MECs that comprises the vascular endothelium.
57 Disruption of the BBB occurs during the pathogenesis of a wide range of infectious, autoimmune,
58 and neurodegenerative diseases. Neurotropic flaviviruses, including Japanese Encephalitis virus
59 (JEV) and West Nile virus (WNV), disturb the BBB in adults through disruption of the BMEC
60 network (5, 6).

61 The chemokine CXCL12 is a key regulator of both myelin formation during embryogenesis
62 and remyelination following neural damage in the CNS and peripheral nervous system (PNS) in
63 adults (7, 8). CXCL12 facilitates the migration and maturation of oligodendrocyte precursor cells
64 (OPCs) during CNS remyelination (7, 8). In the PNS, CXCL12 may similarly function in Schwann
65 cell migration (9), as CXCL12 is expressed by perisynaptic Schwann cells during recovery of
66 neuromuscular junctions following damage (10). In addition to serving as a key regulator of neural
67 repair, CXCL12 plays an important function in regulating lymphocyte migration through the BBB.
68 During homeostasis CXCL12 is expressed by BMECs resulting in spatial restriction of
69 lymphocytes to the microvascular perivascular space, and changes in chemokine expression and
70 distribution can lead to neuroinflammation(11, 12). The role of CXCL12 in neural repair,

71 lymphocyte migration into the CNS parenchyma, and in multifarious functions during development
72 and immunity, are mediated through interaction of this chemokine with its primary receptor,
73 CXCR4 (13). Stimulation of CXCR4 by CXCL12 results in activation of an interwoven set of
74 downstream effector pathways (14, 15).

75 Nonhuman primates (NHPs) are good animal models for recapitulating human
76 neurological disease since they are genetically and physiologically similar to humans and exhibit
77 CNS and PNS elaboration and brain morphology closely resembling that of humans. We have
78 delineated the effect of ZIKV on the neural tissue of eighteen adult Indian Rhesus macaques
79 (IRMs). Our data indicate that the virus causes acute and chronic inflammation of neural tissue in
80 adult animals with accompanying damage to the BBB. Moreover, we find that expression of
81 CXCL12 in the CNS is upregulated both during acute ZIKV infection and, surprisingly, for an
82 extended time after infection. We propose that this chemokine is likely to be important in both
83 long-term neuropathology and neural repair following ZIKV-induced damage of the PNS and CNS.
84 Thus, this NHP model is valuable for experimentally deciphering important hallmarks of novel
85 ZIKV-induced neuropathology in adults and in elucidating molecular mechanisms underlying
86 virus-induced GBS spectrum disorders in humans.

87

88 **Results**

89 **ZIKV infection causes acute and chronic perivascular neuroinflammation.** We inoculated
90 eighteen adult IRMs subcutaneously with 10^4 plaque forming units (pfu)/animal of a minimally
91 passaged Brazilian ZIKV isolate (Rio-U1)(16). An outline of the experimental design is shown in
92 Fig. 1. Fifteen of the animals used in the study were females infected during pregnancy and three
93 were adult males. The females were from a previous project focusing on the effect of ZIKV on the
94 fetus (17). Following infection at different times during gestation, these animals all displayed acute
95 viremia (Fig. S1), with some animals exhibiting transmission of virus to amniotic fluid. Infants were
96 delivered by C-section, or pregnancy was experimentally terminated, or pregnancy ended through

97 ZIKV-mediated demise. As outlined in Fig. 1, necropsy and collection of neural tissue was
98 obtained from the dams at various times before or after parturition or fetal termination. Four of the
99 dams (EL21, ID92, JR20, and JI20) were infected and necropsied 16 or 17 days after infection
100 (acute), and the remainder were maintained for significantly longer periods of time after infection
101 (3.5 to 10 months). The three adult males (HP17, HP87, and JP58) were infected and necropsied
102 after 30 days.

103 Interestingly, H & E staining of CNS and PNS samples collected at necropsy revealed
104 consistent scant to moderate perivascular inflammation in the meninges along with sporadic
105 additional pathological features in the CNS parenchyma including glial nodules and lymphocytic
106 infiltration (Fig. 2). Inflammation was observed in neural tissue both acutely and chronically after
107 infection. Table 1 provides a summary of observations from neural tissue in individual animals.

108 **ZIKV infection disrupts the adult blood-brain barrier.** Since ZIKV caused perivascular
109 inflammation with accompanying lymphocytic infiltration, this suggested that inflammation is likely
110 to arise through BBB dysregulation. Fibrinogen is a protein normally restricted to serum. Thus,
111 extravasation of fibrinogen into the perivascular space of CNS vessels is indicative of disruption
112 of the BBB. To detect and quantify ZIKV-associated extravasated fibrinogen we performed multi-
113 label immunofluorescence staining using anti-fibrinogen Ab. To visualize microvascular
114 endothelial cells we used anti-GLUT-1 Ab. GLUT-1 is a plasma membrane protein found in
115 abundance on vessel endothelial cells at the BBB (18) (Fig. 3a). Using dual overlay histograms
116 of twenty five vessels per animal we quantified the percent of vessels with fibrinogen
117 extravasation in ZIKV-infected and control groups in both cortical brain tissue and spinal cord
118 (Fig. 3b). There was a significant increase in extravasated fibrinogen with infection in both brain
119 and spinal cord (Fig 3c,d). This indicates that the integrity of the microvascular endothelium and
120 the BBB was compromised following ZIKV infection.

121 **ZIKV infection acutely and chronically upregulates CXCL12 in the CNS.** We then carried out
122 a series of experiments focusing on components of the cerebral spinal fluid (CSF) from the
123 infected animals to gain insight into the cause of ZIKV-induced neural inflammation in adult
124 animals. In our prior study (17), efforts to detect ZIKV RNA in the CSF of infected IRMs were
125 unsuccessful. However, data from other studies indicate that infection of IRMs can result in acute
126 transmission of virus to the CNS in many animals in parallel with acute viremia (19-21). We used
127 RT-PCR to attempt detection of virus in the CSF of the males used in the study (HP17, HP87,
128 and JP58). In addition, some CSF samples were available from unrelated studies with ZIKV-
129 infected male and female IRMs, and we also attempted to detect CSF-associated ZIKV in these
130 samples. This analysis indicated that virus was present in the CNS/PNS in a majority of the
131 animals during acute infection and was generally, but not always cleared, within two weeks (Fig.
132 S2).

133 Neurological disease, including infectious neuropathy and autoimmune polyneuropathy,
134 can result in transient or sustained elevated total protein concentration in the CSF (22). For four
135 animals evaluated during acute infection (HP87, EL21, JI20, and JR20) with available pre-
136 infection controls there was a significant increase in CSF protein following acute ZIKV infection
137 as evidenced by comparison of matched preinfection controls with samples collected two weeks
138 after infection (Fig. 4a). Pre-infection control samples were not available for the CSF samples
139 taken from animals evaluated an extended period after infection. Two of the of the animals (HJ72
140 and HE27) exhibited CSF protein levels markedly higher than the samples from uninfected
141 animals consistent with the possibility that infection can result in a longer-term increase in CSF
142 protein in individual IRMs. However, the CSF samples from seven animals obtained from long
143 times after infection had protein concentrations that did not differ significantly from the preinfection
144 controls.

145 To investigate the mechanism of ZIKV-induced neural damage and repair we carried out
146 Luminex-based quantification of cytokine levels in the CSF in four female IRMs (EL21, JI20, JR20,

147 and ID92) and three male IRMs (HP17, HP87, and JP58) using a macaque-specific panel
148 designed to detect cytokines found during infection and inflammation (a list of the cytokine panel
149 is provided in Table S1). Surprisingly, of the 37 cytokines screened and quantified in this initial
150 analysis only two, CXCL12 and IL1RN, were significantly affected by virus infection (Fig. S3).
151 CXCL12 is a chemokine important in multiple processes including neural repair and maintenance
152 of BBB integrity. The IL1RN gene product is an indirect negative regulator of CXCL12; binding of
153 virus-induced type I interferon (IFN) to its receptor, IL1R, triggers CXCL12 expression, and the
154 IL1RN gene product binds the IL1R inhibiting IFN binding thereby blocking IFN signal
155 transduction. We extended the analysis to all animals using CSF samples from both short and
156 long time intervals following ZIKV infection by using a custom panel capable of quantifying
157 CXCL12 and IL1RN. In accord with our initial experiment, CXCL12 and IL1RN were both
158 significantly upregulated in the CSF during acute infection (Fig. 4b and c). Moreover, CXCL12
159 concentrations remained strikingly high in the CSF long after infection. In contrast, IL1RN
160 markedly waned following acute infection and returned to levels similar to those observed prior to
161 ZIKV infection.

162 To determine the location of CXCL12 expression in neural tissue following ZIKV infection
163 we carried out immunohistochemistry using an anti-CXCL12 antibody. As expected, the majority
164 of CXCL12 was detected in association with microvascular endothelia, stained with GLUT-1.
165 Expression by vascular endothelial cells is consistent with the role of CXCL12 in maintaining BBB
166 integrity and restriction of lymphocytes into the CNS parenchyma during homeostasis. Parallel
167 evaluation of control and ZIKV-infected animals by semi-quantitative immunohistochemistry
168 using an anti-CXCL12 antibody was undertaken to investigate whether the increase in CXCL12
169 seen in the CSF was mirrored in neural tissue. Surprisingly, we did not see a significant difference
170 in cortical tissue between control and ZIKV-infected animals. However, expanding the analysis to
171 spinal cord, there was a significant increase in CXCL12 staining in ZIKV infected tissue consistent
172 with the increase in CXCL12 seen in the CSF (Fig. 4d). These results show that CXCL12 is

173 dysregulated during Zika virus infection, and that the spinal cord is a potentially important site of
174 action of viral infection in adults.

175 Positive regulators of the expression of CXCL12, as well as a spectrum of additional
176 antimicrobial and proinflammatory cytokines, include tumor necrosis factor (TNF)(23), the
177 proinflammatory cytokine, IL1B (24), and a soluble form of the peptide, CD40LG (25). Thus, TNF,
178 IL1B, and CD40LG were included as targets in the custom Luminex panel we used to quantify
179 CXCL12 and IL1RN in Fig. 4. Quantification of these potential regulators of CXCL4 indicated that
180 all remained below the limit of detection in the CSF prior to and after ZIKV infection (Fig. S5).

181

182 **Discussion**

183 We have shown that ZIKV causes acute and chronic neural perivascular inflammation and
184 that ZIKV compromises BBB integrity in adult IRMs. Consequently, this is an important NHP
185 model with high potential for elucidating facets of ZIKV-induced neuropathy in adult humans.

186 A striking observation is that ZIKV infection resulted in specific short- and long-term
187 augmented expression of the chemokine CXCL12 in the CNS of adult IRMs, while other cytokines
188 often triggered by viral infections appeared not to be expressed. Consequently, the way in which
189 ZIKV infection induces CXCL12 is likely central to understanding ZIKV-induced neural damage
190 and repair in adults. CXCL12 plays ubiquitous and diverse tasks in development, immunity, and
191 repair including in the CNS. CXCL12 expression results in the recruitment or retention of CXCR4-
192 effector cells to appropriate sites for function or homeostasis. In this regard, CXCL12 plays two
193 roles pertinent for understanding ZIKV-associated neuropathogenesis. First, this chemokine has
194 the capacity to regulate migration of lymphocytes through the BBB and into the CNS parenchyma
195 (11, 12). Entry of lymphocytes across the BBB can be essential for combating viral infection in
196 the CNS but the process can also lead to incidental neural damage through accompanying
197 inflammation. ZIKV infection also results in augmented CXCL12 expression in monocytes(26).

198 Trafficking of CXCL12-expressing monocytes across the BBB could further contribute to spatial
199 skewing of the the neural CXCL12 gradient. Second, CXCL12 is important in neural repair,
200 specifically mediating myelin restoration in the adult neural tissue through recruitment and
201 differentiation of oligodendrocyte progenitor cells (OPCs) to effect remyelination in the CNS (7,
202 8), and in Schwann cell migration during repair of the PNS (9, 10). We do not yet know whether
203 one or both of these CXCL12-dependent processes are of primary importance for understanding
204 adult ZIKV neuropathy in the IRM.

205 The molecular mechanism responsible for induction of CXCL12 expression in the CNS is
206 also unclear as we could not find overt evidence for upregulation of typical virus-induced triggers
207 of broad cytokine induction and inflammation including INF β , TNF, and CD40LG. The observation
208 that CXCL12 remains upregulated in the CNS at times long after initial infection is likely significant
209 for understanding the effect of ZIKV on the adult CNS. Sustained CXCL12 expression may be
210 mediated by a mechanism that narrowly protracts targeted expression without concomitant
211 expression of other cytokines. Specific post-transcription expression of CXCL12 is negatively
212 controlled by microRNA-23a(27). It is possible that ZIKV infection results in reduced expression
213 of this micro RNA in neural tissue. Regardless of the expression mechanism, long-term
214 maintenance of high CXCL12 levels is likely to reflect a heretofore unrecognized chronic
215 response of the host to ZIKV infection and may indicate the potential for virus-induced sequelae
216 arising long after infection.

217 Most of the animals used in our evaluation of ZIKV on the adult CNS were females that
218 had been infected during pregnancy. However, there does not appear to be an obvious effect of
219 pregnancy on virus-induced CXCL12 expression in the CNS or on neuroinflammation. CSF
220 samples taken following parturition, or from males, were not significantly different in CXCL12
221 levels than those obtained during pregnancy (Fig. S6). Similarly, there was not obvious correlation
222 between time of necropsy/histological evaluation revealing inflammation and pregnancy.

223 We found that ZIKV infection of adult IRMs resulted in neuroinflammation with a primary
224 outcome of high incidence meningitis. As reported here and elsewhere (19, 21), CSF-associated
225 ZIKV appears to be cleared during acute infection. Consequently, we were surprised that
226 neuroinflammation persisted long after infection and at times when virus is generally considered
227 to be cleared from the CNS and other tissues. Chronic neuroinflammation could indicate that ZIKV
228 replicates and remains in neural tissue at levels below the limit of detection. Alternatively the virus
229 may trigger a host response marked by persistent neuroinflammation and CXCL12 expression in
230 the absence of virus. In either case, protracted ZIKV-associated neuropathy has potentially
231 significant clinical ramifications.

232 African and Asian ZIKV strains are associated with phenotypic differences in both *in vitro*
233 replication and *in vivo* pathogenesis (28-31). The Rio-U1 ZIKV stock used in this study was a
234 primary stock isolated from a Brazilian patient and is not adapted to cell culture. The virus forms
235 smaller plaques on Vero cell monolayers than other strains. In addition, Rio-U1 is more
236 pathogenic than other commonly used American strains in AG129 mice (32). It will be interesting
237 to see whether other ZIKV strains elicit identical neuropathology to that described in this study.

238 While the mechanism of ZIKV-induced neuropathology in the IRM model remains to be
239 elucidated, the neural damage and repair we observe is likely to overlap with pre-clinical or clinical
240 ZIKV-induced GBS spectrum disease in humans. GBS and related disorders that affect the
241 peripheral and central nervous system comprise a continuum of pathologies marked by
242 inflammation and damage to the myelin sheath of neurons. Demyelination can arise from a
243 constellation of genetic and environmental causes (33-38), including infection by ZIKV (39-41),
244 and its relative Dengue virus (42, 43).

245 Diverse neurotropic viruses from multiple virus families gain access to the CNS
246 parenchyma causing disruption of the BBB. Japanese Encephalitis and West Nile viruses are
247 neurotropic viruses of the flavivirus genus, closely related to ZIKV. These viruses can replicate in
248 the CNS, cause encephalitis, and measurably affect BBB integrity (44-49). In contrast, results

249 from an *in vitro* BBB reconstitution model using a primary virus isolate from Thailand, and an
250 interferon receptor-deficient murine model using Ugandan and Brazilian isolates suggests that a
251 primary isolate of ZIKV doesn't significantly disrupt the BBB to gain access to the CNS and that
252 long-term damage to the BBB is minimal (50, 51). Similarly, productive ZIKV infection of human
253 MECs *in vitro* does not result in cytopathic effects (44). However, our study with the NHP model
254 indicates that ZIKV induces significant disruption of the meningeal BBB both acutely and long
255 after infection. We do not yet know whether BBB disruption is required for CNS access in the IRM
256 model or whether BBB damage occurs following viral CNS access and neural ZIKV replication.

257

258 **Materials and Methods**

259 **Ethics Statement**

260 The Indian origin rhesus macaques (IRMs)(*Macaca mulatta*) used in this study were
261 housed at the TNPRC. The TNPRC is fully accredited by AAALAC International (Association for
262 the Assessment and Accreditation of Laboratory Animal Care), Animal Welfare Assurance No.
263 A3180-01. Animals were cared for in accordance with the NRC Guide for the Care and Use of
264 Laboratory Animals and the Animal Welfare Act. Animal experiments were approved by the
265 Institutional Animal Care and Use Committee (IACUC) of Tulane University (protocols P0336 and
266 P0367). Social housing and interactive enrichment was used for all NHPs used in this study.
267 Animal care staff conduct routine husbandry procedures (e.g., cleaning, feeding and watering),
268 and animal care staff and veterinarians observed animals several times daily for signs of disease,
269 pain, and distress and this information was reported to the attending veterinarian through both
270 verbal and written communication in the animal's health record. The Tulane University IACUC
271 and the Division of Veterinary Medicine have established procedures to minimize pain and
272 distress through several means. The use of preemptive and post-procedural analgesia is required
273 for procedures that would likely cause more than momentary pain or distress in humans

274 undergoing the same procedure. For minor procedures such as blood collection animals are
275 anesthetized with ketamine hydrochloride (10 mg/kg IM).

276 **Viruses and challenge**

277 ZIKV strain Rio U-1/2016 (16) was isolated in Rio de Janeiro, Brazil in 2016 (KU926309).
278 Viral challenge stocks were prepared by propagating the virus in Vero cells for two passages post
279 virus isolation(16). The stocks were quantitated by viral plaque assay. The viral stocks were
280 diluted in Leibovitz's L-15 and SPG media as described previously(52). All animals were
281 challenged via the subcutaneous route, with 10^4 PFU.

282 **Luminex analysis of CSF cytokines**

283 Prior to assay, thawed serum samples were mixed well and then clarified by adding 120 μ l
284 of each to Ultrafree Centrifugal Filters, pore size 0.65 μ m (Millipore #UFC30DV00), and
285 centrifuged at 12,000xg for 4 minutes. Concentrations of cytokines and chemokines present in
286 the serum were quantified using the Life Technologies Cytokine Monkey Magnetic 37-Plex Panel
287 for LuminexTM Platform (#EPX370-40045-901, Thermo Fisher Scientific, Waltham, MA),
288 according to manufacturer's instructions. Assay Diluent from the kit was used to reconstitute
289 standards and to prepare standard serial dilutions. All standards, blanks, and samples were
290 assayed in duplicate wells. The analytes detected by this panel are indicated in Table S1. Final
291 reactions in the microtiter plates were read on a Bio-Plex[®] 200 System (Bio-Rad Laboratories,
292 Hercules, CA). Results were calculated using Bio-Plex ManagerTM Software v6.1 (Bio-Rad).

293 **Tissue sampling and fixation.**

294 Regular peripheral blood draws and CSF collections were performed during the course of
295 the study. At the end of the study all animals underwent a complete necropsy and tissue samples
296 were collected in either Zinc buffered formalin, RNA Later, RPMI media, or fresh frozen. Fixed
297 samples were trimmed, processed, and embedding in paraffin 2 days after necropsy. Paraffin

298 embedded tissues were cut in 5 um sections, adhered to charged glass slides, and stained
299 routinely with hematoxylin and eosin or left unstained for immunohistochemical and
300 immunofluorescent staining.

301 **Fibrinogen extravasation**

302 The percent of vessels demonstrating fibrinogen extravasation was determined using
303 immunofluorescence analysis with Alexa Fluor 594-labeled anti-fibrinogen and Alexa Fluor 488-
304 labeled anti-GLUT-1 Ab, and by running linear plot profiles on the green and red channels of
305 individual vessels and graphing the resulting numerical data in Graph Pad as dual overlay
306 histograms. The histograms were then analyzed to determine whether the fibrinogen was above
307 background levels outside of the two primary GLUT-1 peaks; vessels that displayed this phenotype
308 were considered to be extravasated. A total of 25 vessels were examined from each animal via
309 random imaging, but were required to meet the following criteria; vessels must be less than 10 μ m
310 in luminal diameter and no single radius can be more than twice the length of the smallest luminal
311 radius to ensure nearly horizontal cross sections. A Zeiss Axio Observer.Z1 fluorescence
312 microscope was used to analyze the fluorescent labeled sections. Zeiss AxioVision Release 4.8.2
313 was used to capture and merge fluorescence images. Adobe Photoshop CS12.1 was also used
314 to merge layers into a single image

315

316 **Immunohistochemistry**

317 Immunohistochemistry was performed using anti-CXCL12. Sections were deparaffinized
318 by incubating them for 1h at 58-60°C. After the sections were deparaffinized, they were rehydrated
319 and pretreated for antigen retrieval by microwaving in a citrate based Antigen Unmasking Solution.
320 Sections were washed with Tris-based saline (TBS) contain 0.05% Tween-20 for 10 min,
321 Following, sections were treated with peroxidase blocking solution for 10 min. After washing again,
322 sections were incubated with 5% normal goat serum in TBS for 30 minutes. Immediately following

323 the goat serum, sections were incubated with CXCL12 antibody for 1 h at room temperature. After
324 another wash in TBS, sections were incubated with biotinylated secondary antibody for 30 minutes.
325 After washing the sections in TBS, sections were then incubated with Avidin Biotin peroxidase
326 Complex for 30 min. Following another wash, sections were developed for 10 min
327 diaminobenzidine with Mayer's Hematoxylin used as a nuclear counterstain. Sections were
328 dehydrated and mounted using VectaMount. Using a Nikon Coolscope digital microscope, sections
329 were visualized and photos were captured. Imagej was used to set a threshold level of staining
330 and the area above this threshold was counted as positive staining with 20 random, 200x, images
331 analyzed per animal.

332

333 **Immunofluorescence microscopy**

334 Triple-label immunofluorescence was performed with anti-CXCL12, GLUT-1, and CD206.
335 As described above, sections were de-paraffinized and rehydrated, followed by antigen retrieval.
336 After washing with phosphate-buffered saline (PBS) containing 0.2% fish skin gelatin(FSG),
337 sections were permeabilized with PBS containing 0.2% FSG and 0.1% Triton X-100 for 1 h.
338 Following another wash, sections were incubated with 5% normal goat serum in PBS for 30 min
339 at room temperature before incubation for 1 h at room temperature with primary antibodies diluted
340 in PBS/FSG. After primary antibody incubation, the sections were washed in PBS/FSG and
341 incubated with an Alexa Fluor 350-, 488-, or 594- conjugated secondary antibody in PBS/FSG for
342 1 h at room temperature. The sections were washed with PBS/FSG before the addition of the next
343 primary antibody. After immunofluorescence staining, the sections were treated with 10 mM
344 CuSO₄ in 50 mM ammonium acetate buffer for 45 min to quench auto-fluorescence. The sections
345 were rinsed in distilled water, and cover slipped with Aqua-Mount aqueous mounting medium.
346 Confocal images were taken with a Zeiss 880 Laser scanning confocal microscope with a 100x
347 emersion oil objective. ZenBlack and ZenBlue programs were used to capture and merge
348 images.

349

350 **Measurement of viral RNA load (qRT-PCR)**

351 Quantitative realtime PCR (qRT-PCR) was used for the measurement of viral loads, based
352 on a previously validated assay(53, 54). In brief, RNA was extracted from 140 μ l to 1000 μ l of
353 frozen fluids, depending on availability, using the QIAamp Viral RNA Mini Kit or QIAamp
354 Circulating Nucleic Acid kit (Qiagen, Hilden, Germany). Total nucleic acid was eluted in two
355 centrifugation steps with 40 μ l of Buffer AVE each. A qRT-PCR reaction was then carried out with
356 20 μ l of samples and 10 μ l of primer, probes and TaqMan Fast Virus 1-Step Master Mix (Applied
357 Biosystems, Foster City, CA). We used pre-combined probe and primers (500 nM primers and
358 250 nM probe; IDT Technologies, Coralville, IA). The primer and probe sequences were designed
359 to match the sequences of the Brazilian ZIKV isolate KU321639 and were as follows: Primer 1
360 5'TTGAAGAGGCTGCCAGC3'; Primer 2 5'CCCACTGAACCCATCTATTG3'; Probe
361 5'TGAGACCCAGTGATGGCTTGATTGC3'. The probe was double-quenched (ZEN/Iowa Black
362 FQ) and labeled with the FAM dye (IDT Technologies, Coralville, IA). Ten-fold serial dilutions of
363 a 401 bp *in vitro* RNA transcript encoding the ZIKV capsid gene (KU321639) starting at
364 approximately 5×10^5 RNA copies μ l $^{-1}$ were used as standards. Results were reported as the
365 median equivalent viral RNA genomes per ml. The limit of detection was between 12 - 90 viral
366 RNA copies ml $^{-1}$, depending on the extracted volumes. ZIKV-positive and -negative samples were
367 included in every run.

368 **Data availability**

369 The data sets generated during and/or analysed during the current study are available from
370 the corresponding author on reasonable request.

371 **Acknowledgements**

372 This work was supported by the Bill and Melinda Gates Foundation (OPP1152818). The funders
373 had no role in study design, data collection and analysis, decision to publish, or preparation of the
374 manuscript.

375

376 **References**

377

- 378 1. White MK, Wollebo HS, David Beckham J, Tyler KL, Khalili K. Zika virus: An
379 emergent neuropathological agent. *Ann Neurol.* 2016;80(4):479-89.
- 380 2. Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a
381 review. *Brain.* 2016;139(Pt 8):2122-30.
- 382 3. Carteaux G, Maquart M, Bedet A, Contou D, Brugieres P, Fourati S, et al. Zika
383 Virus Associated with Meningoencephalitis. *N Engl J Med.* 2016;374(16):1595-6.
- 384 4. Mecharles S, Herrmann C, Poullain P, Tran TH, Deschamps N, Mathon G, et al.
385 Acute myelitis due to Zika virus infection. *Lancet.* 2016;387(10026):1481.
- 386 5. Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, Verma S. West Nile virus-
387 induced disruption of the blood-brain barrier in mice is characterized by the degradation
388 of the junctional complex proteins and increase in multiple matrix metalloproteinases. *J
389 Gen Virol.* 2012;93(Pt 6):1193-203.
- 390 6. Mathur A, Khanna N, Chaturvedi UC. Breakdown of blood-brain barrier by virus-
391 induced cytokine during Japanese encephalitis virus infection. *Int J Exp Pathol.*
392 1992;73(5):603-11.
- 393 7. Durrant DM, Williams JL, Daniels BP, Klein RS. Chemokines Referee
394 Inflammation within the Central Nervous System during Infection and Disease. *Adv
395 Med.* 2014;2014:806741.
- 396 8. Patel JR, Williams JL, Muccigrosso MM, Liu L, Sun T, Rubin JB, et al. Astrocyte
397 TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor
398 proliferation and differentiation within the adult CNS. *Acta Neuropathol.*
399 2012;124(6):847-60.
- 400 9. Gao D, Sun H, Zhu J, Tang Y, Li S. CXCL12 induces migration of Schwann cells
401 via p38 MAPK and autocrine of CXCL12 by the CXCR4 receptor. *Int J Clin Exp Pathol.*
402 2018;11(6):3119-25.
- 403 10. Negro S, Lessi F, Duregotti E, Aretini P, La Ferla M, Franceschi S, et al.
404 CXCL12alpha/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured
405 motor axon terminals. *EMBO Mol Med.* 2017;9(8):1000-10.
- 406 11. McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS. CXCL12 limits
407 inflammation by localizing mononuclear infiltrates to the perivascular space during
408 experimental autoimmune encephalomyelitis. *J Immunol.* 2006;177(11):8053-64.
- 409 12. McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, et al.
410 Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of
411 multiple sclerosis. *Am J Pathol.* 2008;172(3):799-808.

412 13. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the
413 chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. *Nature*.
414 1998;393(6685):595-9.

415 14. Zlotnik A. Involvement of chemokine receptors in organ-specific metastasis.
416 *Contrib Microbiol*. 2006;13:191-9.

417 15. DeVries ME, Kelvin AA, Xu L, Ran L, Robinson J, Kelvin DJ. Defining the origins
418 and evolution of the chemokine/chemokine receptor system. *J Immunol*.
419 2006;176(1):401-15.

420 16. Bonaldo MC, Ribeiro IP, Lima NS, Dos Santos AA, Menezes LS, da Cruz SO, et
421 al. Isolation of Infective Zika Virus from Urine and Saliva of Patients in Brazil. *PLoS Negl
422 Trop Dis*. 2016;10(6):e0004816.

423 17. Magnani DM, Rogers TF, Maness NJ, Grubaugh ND, Beutler N, Bailey VK, et al.
424 Fetal demise and failed antibody therapy during Zika virus infection of pregnant
425 macaques. *Nat Commun*. 2018;9(1):1624.

426 18. Maher F, Vannucci SJ, Simpson IA. Glucose transporter proteins in brain.
427 *FASEB J*. 1994;8(13):1003-11.

428 19. Aid M, Abbink P, Larocca RA, Boyd M, Nityanandam R, Nanayakkara O, et al.
429 Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus
430 Monkeys. *Cell*. 2017;169(4):610-20 e14.

431 20. Coffey LL, Pesavento PA, Keesler RI, Singapuri A, Watanabe J, Watanabe R, et
432 al. Zika Virus Tissue and Blood Compartmentalization in Acute Infection of Rhesus
433 Macaques. *PLoS One*. 2017;12(1):e0171148.

434 21. Hirsch AJ, Smith JL, Haese NN, Broeckel RM, Parkins CJ, Kreklywich C, et al.
435 Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues.
436 *PLoS Pathog*. 2017;13(3):e1006219.

437 22. Gardner WJ, Spitler DK, Whitten C. Increased intracranial pressure caused by
438 increased protein content in the cerebrospinal fluid; an explanation of papilledema in
439 certain cases of small intracranial and intraspinal tumors, and in the Guillain-Barre
440 syndrome. *N Engl J Med*. 1954;250(22):932-6.

441 23. Han Y, He T, Huang DR, Pardo CA, Ransohoff RM. TNF-alpha mediates SDF-1
442 alpha-induced NF-kappa B activation and cytotoxic effects in primary astrocytes. *J Clin
443 Invest*. 2001;108(3):425-35.

444 24. Peng H, Erdmann N, Whitney N, Dou H, Gorantla S, Gendelman HE, et al. HIV-
445 1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production
446 through IL-1beta. *Glia*. 2006;54(6):619-29.

447 25. Kim KW, Cho ML, Kim HR, Ju JH, Park MK, Oh HJ, et al. Up-regulation of
448 stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts
449 through interactions with T lymphocytes: role of interleukin-17 and CD40L-CD40
450 interaction. *Arthritis Rheum*. 2007;56(4):1076-86.

451 26. Michlmayr D, Andrade P, Gonzalez K, Balmaseda A, Harris E. CD14(+)CD16(+)
452 monocytes are the main target of Zika virus infection in peripheral blood mononuclear
453 cells in a paediatric study in Nicaragua. *Nat Microbiol*. 2017;2(11):1462-70.

454 27. Arbanian LS, Fierro FA, Stolzel F, Heder C, Poitz DM, Strasser RH, et al.
455 MicroRNA-23a mediates post-transcriptional regulation of CXCL12 in bone marrow
456 stromal cells. *Haematologica*. 2014;99(6):997-1005.

457 28. Simonin Y, Loustalot F, Desmetz C, Foulongne V, Constant O, Fournier-Wirth C,
458 et al. Zika Virus Strains Potentially Display Different Infectious Profiles in Human Neural
459 Cells. *EBioMedicine*. 2016;12:161-9.

460 29. Xia H, Luo H, Shan C, Muruato AE, Nunes BTD, Medeiros DBA, et al. An
461 evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. *Nat
462 Commun*. 2018;9(1):414.

463 30. McDonald EM, Duggal NK, Brault AC. Pathogenesis and sexual transmission of
464 Spondweni and Zika viruses. *PLoS Negl Trop Dis*. 2017;11(10):e0005990.

465 31. Smith DR, Sprague TR, Hollidge BS, Valdez SM, Padilla SL, Bellanca SA, et al.
466 African and Asian Zika Virus Isolates Display Phenotypic Differences Both In Vitro and
467 In Vivo. *Am J Trop Med Hyg*. 2018;98(2):432-44.

468 32. Magnani DM, Rogers TF, Beutler N, Ricciardi MJ, Bailey VK, Gonzalez-Nieto L,
469 et al. Neutralizing human monoclonal antibodies prevent Zika virus infection in
470 macaques. *Sci Transl Med*. 2017;9(410).

471 33. Eldar AH, Chapman J. Guillain Barre syndrome and other immune mediated
472 neuropathies: diagnosis and classification. *Autoimmun Rev*. 2014;13(4-5):525-30.

473 34. Guillain G, Barre JA, Strohl A. [Radiculoneuritis syndrome with hyperalbuminosis
474 of cerebrospinal fluid without cellular reaction. Notes on clinical features and graphs of
475 tendon reflexes. 1916]. *Ann Med Interne (Paris)*. 1999;150(1):24-32.

476 35. Lubetzki C, Stankoff B. Demyelination in multiple sclerosis. *Handb Clin Neurol*.
477 2014;122:89-99.

478 36. Wakerley BR, Uncini A, Yuki N, Group GBSC, Group GBSC. Guillain-Barre and
479 Miller Fisher syndromes--new diagnostic classification. *Nat Rev Neurol*. 2014;10(9):537-
480 44.

481 37. Wakerley BR, Yuki N. Mimics and chameleons in Guillain-Barre and Miller Fisher
482 syndromes. *Pract Neurol*. 2015;15(2):90-9.

483 38. Wijdicks EF, Klein CJ. Guillain-Barre Syndrome. *Mayo Clin Proc*.
484 2017;92(3):467-79.

485 39. Munoz LS, Barreras P, Pardo CA. Zika Virus-Associated Neurological Disease in
486 the Adult: Guillain-Barre Syndrome, Encephalitis, and Myelitis. *Semin Reprod Med*.
487 2016;34(5):273-9.

488 40. Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, et al. Zika
489 virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia,
490 December 2013. *Euro Surveill*. 2014;19(9).

491 41. Parra B, Lizarazo J, Jimenez-Arango JA, Zea-Vera AF, Gonzalez-Manrique G,
492 Vargas J, et al. Guillain-Barre Syndrome Associated with Zika Virus Infection in
493 Colombia. *N Engl J Med*. 2016;375(16):1513-23.

494 42. Carod-Artal FJ, Wichmann O, Farrar J, Gascon J. Neurological complications of
495 dengue virus infection. *Lancet Neurol*. 2013;12(9):906-19.

496 43. Verma R, Sahu R, Holla V. Neurological manifestations of dengue infection: a
497 review. *J Neurol Sci*. 2014;346(1-2):26-34.

498 44. Mladinich MC, Schwedes J, Mackow ER. Zika Virus Persistently Infects and Is
499 Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells.
500 *MBio*. 2017;8(4).

501 45. Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS.
502 Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via
503 competing innate cytokine signals. *MBio*. 2014;5(5):e01476-14.

504 46. Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. Mechanism of West Nile
505 virus neuroinvasion: a critical appraisal. *Viruses*. 2014;6(7):2796-825.

506 47. Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al.
507 Japanese encephalitis virus disrupts blood-brain barrier and modulates apoptosis
508 proteins in THBMEC cells. *Virus Res*. 2017;233:17-28.

509 48. Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, et al. Viral Infection of the Central
510 Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during
511 Japanese Encephalitis Virus Infection. *J Virol*. 2015;89(10):5602-14.

512 49. Pardigon N. Pathophysiological mechanisms of Flavivirus infection of the central
513 nervous system. *Transfus Clin Biol*. 2017;24(3):96-100.

514 50. Papa MP, Meuren LM, Coelho SVA, Lucas CGO, Mustafa YM, Lemos Matassoli
515 F, et al. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial
516 Cells, without Barrier Disruption. *Front Microbiol*. 2017;8:2557.

517 51. Alimonti JB, Ribecco-Lutkiewicz M, Sodja C, Jezierski A, Stanimirovic DB, Liu Q,
518 et al. Zika virus crosses an in vitro human blood brain barrier model. *Fluids Barriers
519 CNS*. 2018;15(1):15.

520 52. Durbin AP, Karron RA, Sun W, Vaughn DW, Reynolds MJ, Perreault JR, et al.
521 Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine
522 candidate with a 30 nucleotide deletion in its 3'-untranslated region. *The American
523 journal of tropical medicine and hygiene*. 2001;65(5):405-13.

524 53. Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J, Medina JF, et al.
525 Analytical and clinical performance of the CDC real time RT-PCR assay for detection
526 and typing of dengue virus. *PLoS neglected tropical diseases*. 2013;7(7):e2311.

527 54. Johnson BW, Russell BJ, Lanciotti RS. Serotype-specific detection of dengue
528 viruses in a fourplex real-time reverse transcriptase PCR assay. *Journal of clinical
529 microbiology*. 2005;43(10):4977-83.

530 55. Barry PA, Lockridge KM, Salamat S, Tinling SP, Yue Y, Zhou SS, et al.
531 Nonhuman primate models of intrauterine cytomegalovirus infection. *ILAR J*.
532 2006;47(1):49-64.

533

534

535 **Supporting Information Legends**

536 **Table S1.** Initial analysis of several animals was carried out using an NHP-specific panel designed
537 to detect key cytokines (Cytokine/Chemokine/Growth Factor 37 Plex NHP ProcartaPlex Panel).
538 The specific cytokines detected in the panel are listed above.

539

540 **Figure S1.** Acute viremia following ZIKV infection. (A) Viremia in eleven of the pregnant females
541 used in the current study. (B) Viremia in the three males used in the study. Infection of
542 nonpregnant adults results in rapid robust replication of virus as evidenced by quantification of
543 viral RNA in serum with viral clearance from blood after about 7 to 10 days whereas viremia in
544 pregnant females typically persists for longer times.

545

546 **Figure S2.** CSF samples collected at various times from 11 ZIKV-infected animals was analyzed
547 using ZIKV-specific RT-PCR. Virus was detectable in the CSF in seven of the animals. Females
548 are denoted using (x) and males by circles. None of the females used in the experiment were
549 pregnant.

550

551 **Figure S3.** Acute infection of IRMs results in upregulation of CXCL12 (A) and IL1RN (B) in the
552 CSF. At top, samples obtained from 14-30 days after infection are grouped to facilitate
553 comparison with preinfection controls. P values were determined using paired two-tailed T-tests
554 to compare CXCL12 or IL1RN concentrations following infection with that of preinfection controls.
555 At bottom, kinetics of cytokine expression are provided with available CSF samples.

556

557 **Figure S4.** CXCL12 and IL1RN concentrations in the CSF of ZIKV-infected animals. Samples
558 correspond to those in Fig. 4.

559

560 **Figure S5.** Quantification of TNF, IL1B, and CD40LG in the CSF of ZIKV infected IRMs. See text
561 for description. Samples were divided into three temporal groups to facilitate comparison with Fig.
562 4 b and c.

563

564 **Figure S6.** This figure is reconfigured version of Fig. 4B. Points denoted with an “x” indicate that
565 the sample was taken from a pregnant animal while points represented by a circle indicate that
566 the sample was taken from a nonpregnant animal.

567

568

569 **Author Contributions**

570 ATP, RVB, and WKK planned the studies. RVB, WKK, JBH, DGB, NJM, and BS conducted the
571 experiments. ATP, RVB, JBH, NJM, BS, and WKK, interpreted the studies. ATP and WKK wrote
572 the first draft. MCB provided reagents. ATP and WKK obtained funding. All authors reviewed,
573 edited, and approved the paper.

574

575

576 **Competing financial interests**

577 None claimed

578

579

580 **Figure Legends**

581

582 **Figure 1.** NHP study design. Fifteen female IRMs (17), and three male IRMs were infected with
583 10^4 PFU of ZIKV strain Rio-1. Pregnancy in the Rhesus macaque is divided into three 55-day
584 trimesters, which are equivalent in developmental landmarks to the trimesters in human
585 pregnancy (55). These trimesters are depicted in the timeline at top, as are relative times of
586 infection, sample collection, and necropsy for the dams. Acute viremia was detected in all
587 animals (Figure S1).

588

589 **Figure 2.** Neuroinflammation in the spinal cord of ID92 (A&B) and the spinal cord and brain of
590 HE27 (C-F). ID92 had multifocal glial nodules (arrows) within both the white (a) and grey (b)
591 matter of the spinal cord. HE27 had widespread perivascular inflammation (arrows) at multiple
592 levels of the cerebrum (c&d), cerebellum (e), and spinal cord (f). H&E, Bar = 100um.

593

594 **Figure 3.** ZIKV disrupts the BBB in adult IRMs as evidenced by an increase in extravasated
595 vessel fibrinogen during infection. Vessel endothelial cells were detected using Alexa Flour 488-
596 labeled anti-GLUT-1 Ab (green) and fibrinogen detected using Alexa Flour 594-labeled anti-
597 fibrinogen Ab (red). Nuclei were detected with DAPI. (A) Cross section and immunofluorescence
598 analysis of a stained vessel without extravasation and associated dual overlay histogram. (B)
599 Immunofluorescence stained vessel with extravasation and associated dual overlay histogram.
600 Percent of extravasated vessels in (C) cortical brain tissue, (D and E) spinal cord.

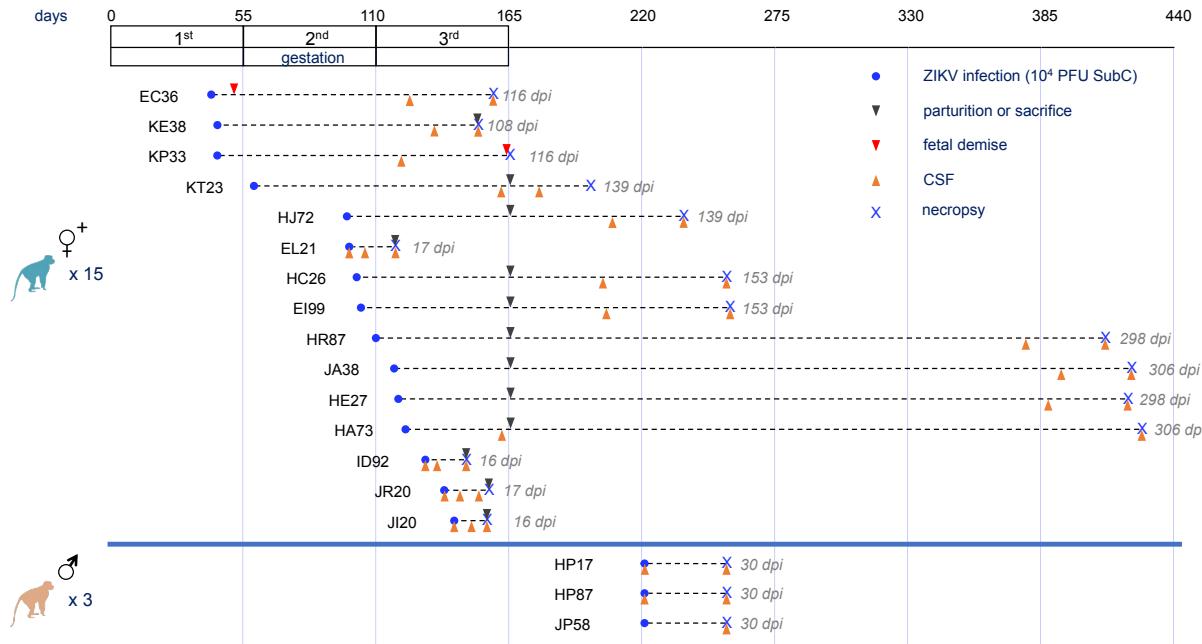
601

602 **Figure 4.** Upregulation of CXCL12 in the CSF of adult IRMs. (A) Total protein concentrations in
603 the CSF of acutely and chronically infected IRMs. For acutely infected animals (HP87, EL21, JI20,
604 and JR20) a two-tailed paired T-test was used to compare protein concentrations with match pre-
605 infection samples. For samples derived from later times following infection, comparison with the

606 pre-infection samples using a two-tailed unpaired T-test indicated that the means of the two
607 samples were below the threshold of significance ($P = 0.12$). (B) and (C) Concentrations of
608 CXCL12 and IL1RN in CSF samples following ZIKV infection, respectively. For purposes of
609 statistical analysis samples were placed in four groups based on time of collection relative to virus
610 infection. P values were determined by comparison to preinfection controls using two-tailed
611 unpaired T-tests. Exact times of CSF sample collection are displayed in Fig. S4. (D)
612 Immunohistochemistry using anti-CXCL12. CXCL12 was visualized and ImageJ was used to
613 quantify the area of CXCL12-positive staining in 20 random images per animal. A.U. – arbitrary
614 units.

615

616

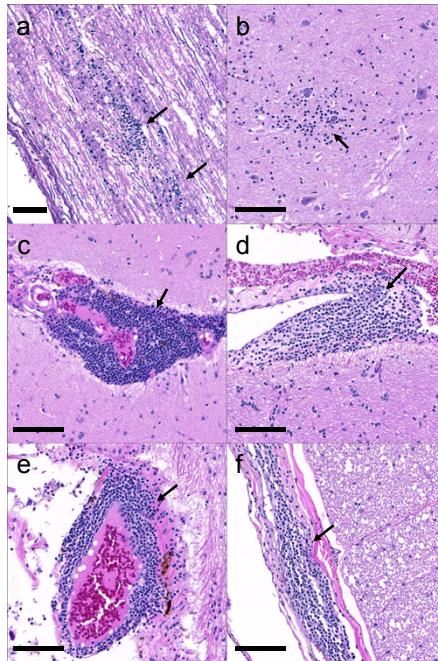

617

618

619 **Figures**

620

Figure 1


621

622 **Figure 1.** NHP study design. Fifteen female IRMs (17), and three male IRMs were infected with
623 10⁴ PFU of ZIKV strain Rio-1. Pregnancy in the Rhesus macaque is divided into three 55-day
624 trimesters, which are equivalent in developmental landmarks to the trimesters in human
625 pregnancy (55). These trimesters are depicted in the timeline at top, as are relative times of
626 infection, sample collection, and necropsy for the dams. Acute viremia was detected in all
627 animals (Figure S1).

628

629

Figure 2

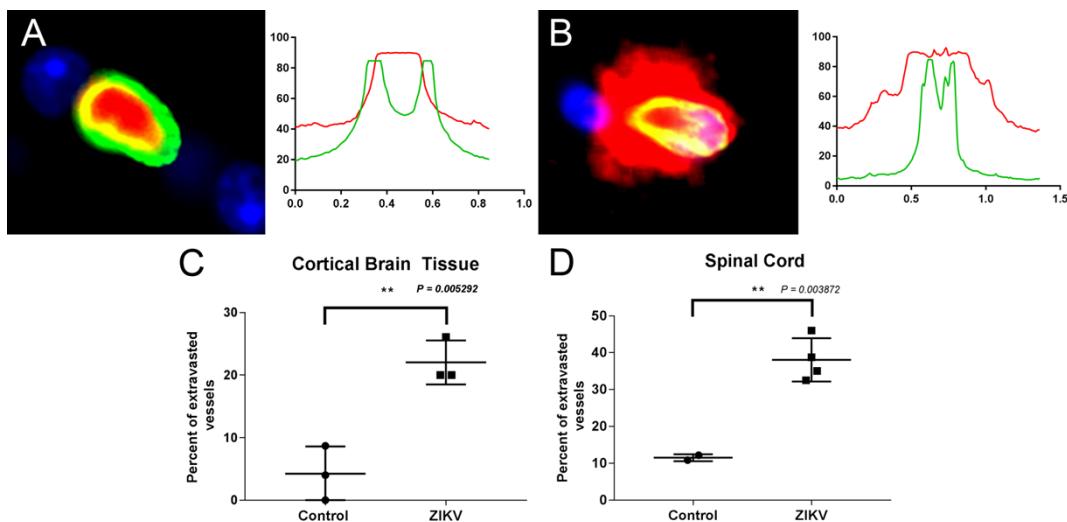
630

631

632 **Figure 2.** Neuroinflammation in the spinal cord of ID92 (A&B) and the spinal cord and brain of
633 HE27 (C-F). ID92 had multifocal glial nodules (arrows) within both the white (a) and grey (b)
634 matter of the spinal cord. HE27 had widespread perivascular inflammation (arrows) at multiple
635 levels of the cerebrum (c&d), cerebellum (e), and spinal cord (f). H&E, Bar = 100um.

636

637

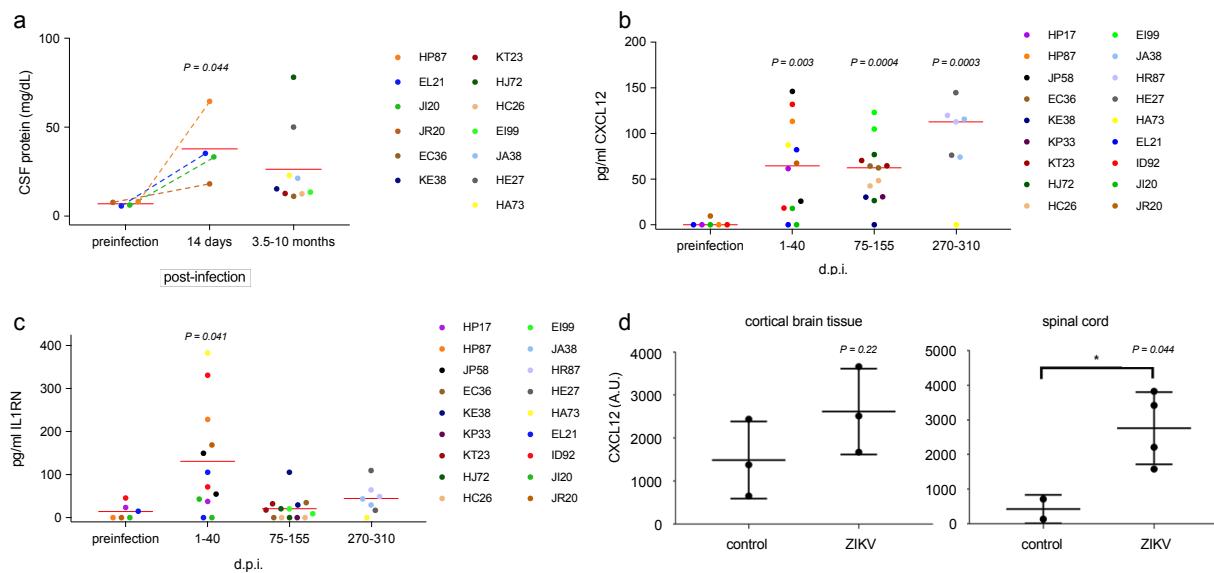

Table 1

Animal	Sciatic n.	Lumbar	Thoracic	Cervical	Choroid	Brainstem	Cerebellum	Occipital	Temporal	Frontal	Basal Ganglia
		cord	cord	cord	plexus			lobe	lobe	lobe	
EC36					+						
EL21	+		+		+					+	
HA73	+										
HE27		+				++	++		+	++	
ID92		+	+	+							
JA38	+		+			+					
JI20	+										
JR20		+	+				+		+	+	+
KE38					+			+			
KT23											
JP58		+									

Table 1. Summary of observed perivascular inflammation in the CNS and PNS of adult animals infected with ZIKV.

638

Figure 3



639

640 **Figure 3.** ZIKV disrupts the BBB in adult IRMs as evidenced by an increase in extravasated
641 vessel fibrinogen during infection. Vessel endothelial cells were detected using Alexa Flour 488-
642 labeled anti-GLUT-1 Ab (green) and fibrinogen detected using Alexa Flour 594-labeled anti-
643 fibrinogen Ab (red). Nuclei were detected with DAPI. (A) Cross section and immunofluorescence

644 analysis of a stained vessel without extravasation and associated dual overlay histogram. (B)
645 Immunofluorescence stained vessel with extravasation and associated dual overlay histogram.
646 Percent of extravasated vessels in (C) cortical brain tissue, (D and E) spinal cord.
647
648
649

Figure 4

650
651 **Figure 4.** Upregulation of CXCL12 in the CSF of adult IRMs. (A) Total protein concentrations in
652 the CSF of acutely and chronically infected IRMs. For acutely infected animals (HP87, EL21, JI20,
653 and JR20) a two-tailed paired T-test was used to compare protein concentrations with match pre-
654 infection samples. For samples derived from later times following infection, comparison with the
655 pre-infection samples using a two-tailed unpaired T-test indicated that the means of the two
656 samples were below the threshold of significance ($P = 0.12$). (B) and (C) Concentrations of
657 CXCL12 and IL1RN in CSF samples following ZIKV infection, respectively. For purposes of
658 statistical analysis samples were placed in four groups based on time of collection relative to virus
659 infection. P values were determined by comparison to preinfection controls using two-tailed

660 unpaired T-tests. Exact times of CSF sample collection are displayed in Fig. S4. (D)
661 Immunohistochemistry using anti-CXCL12. CXCL12 was visualized and ImageJ was used to
662 quantify the area of CXCL12-positive staining in 20 random images per animal. A.U. – arbitrary
663 units.

664