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Abstract

High-throughput cell-data technologies such as single-cell RNA-Seq create a
demand for algorithms for automatic cell classification and characterization. There exist
several classification ontologies of cells with complementary information. However, one
needs to merge them in order to combine synergistically their information. The main
difficulty in merging is to match the ontologies since they use different naming conventions.
To overcome this obstacle we developed an algorithm that merges ontologies by
integrating the name-matching search between class label names with the structure
mapping between the ontology elements. To implement our algorithms, we developed
FOntCell, a software module in Python for efficient automatic parallel-computed fusion of
ontologies in the same or similar knowledge domains. It processes the ontology attributes
to extract relations and class synonyms. FOntCell integrates the semantic, name with
synonyms, mapping with a structure mapping based on graph convolution. Since the
structure mapping assessment is time consuming process, we designed two methods to
perform the graph convolution: vectorial structure matching and constraint-based structure
matching. To perform the vectorial structure matching we designed a general method to
calculate the similarities between vectors of different lengths for different metrics.
Additionally, we adapted the slower Blondel method to work for structure matching. These
functionalities of FOntCell allow the unification of dispersed knowledge in one domain into
a unique ontology. FOntCell produces the results of the merged ontology in OBO format
that can be iteratively reused by FOntCell to adapt continuously the ontologies with the
new data, such of the Human Cell Atlas, endlessly produced by data-driven classification
methods. To navigate easily across the fused ontologies, it generates HTML files with
tabulated and graphic summaries, and an interactive circular Directed Acyclic Graphs of
the merged results. We used FOntCell to fuse CELDA, LifeMap and LungMAP Human
Anatomy cell ontologies to produce comprehensive cell ontology.
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Author Summary

There is a strong belief in the research community that there exist more cell types
than the described in the literature, therefore new technologies were developed to produce
a high volume of data to discover new cells. One issue that arises once the cells are
discovered is how to classify them. One way to perform such classification is to use
already existing cell classifications from different ontology sources but it is difficult to
merge them. An ontology has semantic information providing the meaning of each term
and structural information providing the relationship between terms as a graph. We
developed a new Python module, FOntCell that merges efficiently cell ontologies and
integrates semantic and structure information with our own graph convolution technique.
Since the structure mapping assessment is time-consuming process we designed two
methods to optimize the graph convolution: vectorial and constraint-based structure
matching. To perform the vectorial structure matching we designed a method that
calculates the similarities between vectors describing the graphs of different sizes. The
functionalities of FOntCell allow the unification of dispersed knowledge into a unique
ontology, to adapt continuously from new data, and to navigate across the fused
ontologies by a graphic use interface.
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Introduction

Precision biomedicine technologies produce a growing quantities of detailed
information in the form of high throughput data from finer-grained biomedical samples
reaching single-cell (1) and subcellular (2) levels. This increasingly precise cellular data
make obsolete the existing cell classification systems and creates the demand for
automatic comprehensive data-driven cell classification methods. Among the structures to
classify knowledge domain items are the ontologies; they can be defined in several ways
depending on the context of use (3). In information science, an ontology is defined as a
seven-tuple, O:={L, C, R, F, G, T, A}, where L:=LC U LR is a lexicon of concepts LC and
relations LR; C is a set of concepts; R is a set of binary relations on C; F is a function
connecting symbol concepts to sets of concepts Sub(LC)—Sub(C); G is a function
connecting symbol relations to sets of relations, Sub(LR)—Sub(R); T is a taxonomy for the
partial ordering of C, T(C;, Cj), and A is a set of axioms with elements C and R (3). A critical
question needing an answer during the design of ontology is the level of detail covered by
the ontology. Thus, different ontologies of the same knowledge domain use different
conceptualizations to obtain the desired level of granularity. In the case of cell ontologies,
there are several cell type classifications in various formats; the most frequently used
being the format of Open Biomedical Ontologies (OBO). Single-cell analysis is broadening
the discovery of new cell types, prompting the need for advanced methods to classify
these new cells as branches of the existing cell ontologies. Traditionally, such cell
classification relies on human data curation. However, the growing number of cell types
boosted by high throughput data generation such as single cell RNA-Seq creates a
necessity to develop automatic computational methods assisting cell ontology creation (4).
New cell ontologies can be created by reusing the information dispersed in multiple cell
ontologies and merging it.

There exist numerous semiautomatic tools for alignment and merging of ontologies
(Table 1). Tools like ATOM (6) are omitted since they are algorithms for ontology merging
that do not introduce alignment methods and require mapping as input. The majority of the
methods require an initial input and some intermediate user inputs for performing correct
alignment thus they are semi-automatic methods. Nowadays, new cell discoveries are
abundant thanks to single-cell RNA-Seq technologies and international research initiatives
such as the Human Cell Atlas (HCA). To decrease the human involvement to a minimum in
the merging of new cell ontologies, we developed an algorithm and implemented it as a
software package in Python, FOntCell, for automatic fusion of ontologies. We applied
FOntCell to create a new, more comprehensive and fine-grained cell ontology by merging
cell ontologies, thus expanding automatically the hierarchical information of the component
ontologies.

Table 1. Tools for alignment and merging of ontologies and their features, adapted from
Table 9 from Lambrix and Tan(5).

Tool Linguistic Structure |Constraints Instances |Auxiliary Automatic |Reference
ArtGen |name parents, domain- WordNet [semi or fully Mitra & Wiederhold (14)
children specific
documents
ASCO  |name, parents, WordNet [fully Le et al. (15)
label, children,
description |siblings, path
from root
Chimaeraname parents, semi McGuinness et al. (16)
children
FCA- name domain- semi Stumme & Maedche (17)
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Merge specific
documents
FOAM |name, parents, equivalence semi Ehrig & Staab(18)
label children
GLUE name instances semi Doan et al. (19)
HCONE |hame neighbourhoo WordNet |semi Kotis & Vouros (20)
d
IF-Map parents, instances |reference [semi Kalfoglou & Schorlemmer (21)
children ontology
iMapper domain, instances |WordNet semi Su et al. (22)
range
Onto name parents, documents semi Prasad et al. (23)
Mapper children
Anchor- name direct graphs semi Noy & Musen (24)
PROMPT
SAMBO |name, is-a & part-of, domain- WordNet |semi Lambrix & Tan (5)
synonym |descendants specific UMLS
& ancestors documents
S-Match |label sully Giunchiglia et al. (25)
FOntCell [label, direct graphs, jontology fully This work
synonym |[attribute attribute,
relation linguistic
match

Tool: merging algorithm. Linguistic: type of data used by the linguistic based method.
Structure: type of data used by the structure based method. Constraints: type of data
used to perform a constraint-based alignment. Instances: data from the instance ontology
attribute used for the alignment: Auxiliary: external tool used for improve the alignment.
Automatic: indicates whether the merging is performed automatically requiring only an
initial input (fully), or the algorithm requires an initial input and some additional
intermediate user inputs for performing correct alignment (semi).

There are multiple ontologies with biomedical information (genomics, proteomics, and
anatomy) (7). Two of the biggest cell type ontologies are CELDA (8) and LifeMap (9).
CELDA integrates information about gene expression, localization, development and
anatomy for in vivo and in vitro human and mouse cells, as well as cell development. With
FOntCell, we aim to build a comprehensive and more specific ontology of the cellular
development, giving rise to all cell types of the human body, which is highly needed for the
characterization of the growing quantities of data produced by single-cell analysis in
projects such as the HCA. Therefore, we focused on the ‘development’ annotation
information of CELDA stored in the fields CL (Cell Ontology), CLO (Cell Line Ontology) and
EFO (Experimental Factor Ontology). Another important repository for cell information is
LifeMap (9); storing knowledge on in vivo cellular development, cell type and gene
expression. LifeMap provides contrasted data and enough cell types to be fused
synergistically with CELDA, both ontologies containing cell types missing in the other. An
issue arising when fusing CELDA and LifeMap is their different labelling systems. The two
ontologies use different labels to name same cell types, thus, a simple word matching
cannot find equivalences. Therefore, it is necessary to align ontologies (10), setting the
classes of one ontology equivalent to the classes of the other ontology. We developed an
algorithm that can interpret two classes from two ontologies as equivalent, taking into
account not only the class labelling but also the internal structure of the ontologies.

Results

The merging of CELDA with LifeMap produced a growth of CELDA by 67.42%
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To find the optimal parameters of FOntCell for the merging of CELDA with LifeMap, we
performed a bidimensional scanning of the parameters local name threshold 6,5 and
window length W in the range [0.1, 0.8] and [1, 8], respectively, using steps of 0.1 for 6,
and 1 for W for all structure mapping metrics: the three vectorial structure matching
methods, namely Euclidean, Pearson, and cosine, the constraint-based structure
matching, and Blondel structure matching (Fig.1A). We kept the name mapping threshold
Oy that provides good name matching results at 0.85. For all possible pairwise
combinations of 6,y and W, we observed a variation between the structure matching
obtained by structure scores T*5(ij) that pass the 67 and 6,y thresholds between ontology
A = CELDA and B = LifeMap. The constraint-based method does not involve local name
matching assessment, therefore 6,y was not used.

Figure 1. FOntCell performance merging CELDA with LifeMap. (A) Heat maps of the
matches obtained with two-parameter combinations, window length and name score
threshold, using five structure matching methods: the three vectorial structure matching
Euclidean, Pearson, and cosine; constraint-based structure matching, and Blondel
structure matching. The two optimized parameters are the window length W and the local
sequence threshold 6,y in the ranges [0.1, 0.8] and [1, 8], respectively, using steps of 0.1
for 6.n, and 1 for W. Bluer colour corresponds to higher number of synonyms. (B) Run
time for the five structure-matching methods and window sizes W in the range [1, 8]. The
vectorial structure matching {Cosine, Euclidean, Pearson} have similar runtime lines and
are represented by a single line. (C) Percentages of matches, new classes and new
relations, obtained with the five structure matching methods with merging parameters W =
4,06y =0.85,and 6,5=0.7.

We observed that a name threshold 6y = 0.85 assigns as similar class labels those
labels that differ in orthographic variations, such as ‘s’ endings, apostrophes, etc.
Therefore, we set for the remaining analysis 6,y = 0.7 to be less than 6s = 0.85 since we
expected more name variability in nodes between subgraphs comparisons than in class-
to-class comparison. We should note that we use the term node when we refer to graphs
or subgraphs associated to ontologies and the term class when we refer directly to
ontologies. Thus, 6,y < By recovers some meaningful cases during the structure mapping
match and helps constrain the graph isomorphism problem arising during subgraph
comparisons. Since smaller W produces smaller subgraphs, the possibility to slip into
isomorph subgraphs is higher. Therefore, the topology metric is more sensitive to 6,y A
window W = 4 minimizes the sensitivity to 6,y In the CELDA and LifeMap fusion, it is
interesting to reduce the 6,y sensitivity since a more sensitive method finds more isomorph
subgraphs. If W is very large, the method considers very unrelated between the two
graphs (corresponding to ontologies) nodes. We studied the run time of the five structure
mapping methods and we found that the vectorial based methods (cosine, Euclidean and
Pearson) are the faster ones and at least one order of magnitude faster that the Blondel
method (Fig.1B).

To analyse the effect of each of the five structure mapping methods on the
percentages of matches, new classes and new relations between them, we performed a
FOntCell merging of CELDA and LifeMap for the optimized fusion parameters: W =4, 6y =
0.85 and 6,5 = 0.7, for every type of structure matching method. The results show a similar
quantity of classes and relations added by the different structure matching methods, and
similar number of matches (Fig.1C). The constraint-based method with W = 4 slips into
many subgraph isomorphism, i.e., it finds too many synonyms (Fig.1A), has higher
sensitivity to the change of the window size W than other vectorial methods. The
Euclidean method is more restrictive than the other vectorial methods but more sensitive
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to 6.n (Fig.1A). The Pearson and cosine methods are similar in the distribution of number
of matches obtained for all combinations of fusion parameters (Fig.1A). The cosine
method obtains exactly the same number of synonyms for all pairs of parameters (Fig.1A)
and is much faster than the Blondel method (Fig.1B). Therefore, we chose to use the
cosine method in the remaining analysis. For a less restrictive pair of parameters 6,5 = 0.1
and W = 1 using the cosine metric, 39.1% of classes from CELDA have a structure
matching in LifeMap independently of the used structure matching method. For more
restrictive parameters 6,y = 0.7 and W = 7, we obtained 32.2% of classes with structure

mapping.

The fusion of CELDA and LifeMap with 6,5 = 0.7 and W = 4 resulted in a merged
ontology integrating all the 841 classes from CELDA with 567 classes from LifeMap, thus,
increasing by 67.42% the cell ontology information of CELDA (Fig.2). The Interactive
circular Directed Acyclic Graphs (DAGs) of CELDA, LifeMap and the resultant merged
ontology are presented in Fig.3. We generate DAGs as output to visualize the input and
output ontologies and illustrate which parts of the input ontologies were enriched because
of the merging.

Figure 2. Statistics of the merging of CELDA and LifeMap with the Cosine structure
matching metric and 6,5 = 0.7 and W = 4 merging parameters. (A) Donut plot of the
percentages of classes added by name mapping versus the classes added by structure
mapping to CELDA (outer circle) from LifeMap (inner circle). (B) Euler-Venn diagram with
the number of classes before and after merging. The blue and light green rectangles frame
the number of classes in CELDA and LifeMap, respectively, before the merging, the dark
green rectangle frames the sum of name and structure equivalent classes, and the orange
rectangle frames the total number of classes in the resultant CELDA and LifeMap merged
ontology.

Figure 3. Merging of CELDA and LifeMap ontologies. Screenshots of the Interactive
circular Directed Acyclic Graphs (DAGs) of (A) CELDA, (B) LifeMap and (C) the merged
CELDA+LifeMap ontology, respectively. The orange and blue nodes are the non-matched
contributions from ontology A and ontology B, respectively. The green and red nodes are
the nodes with name and structure mapping, respectively. The ontology labels associated
to the nodes appear when hovering over the nodes. The concentric red rings are zoom
guides.

FOntCell has precision of 98.63% of name mapping and mean precision of 54.84% of
the five structure mapping methods when merging CELDA and LifeMap

We calculated the precision of the different mapping methods of FOntCell algorithm
when merging CELDA and LifeMap with the parameters W = 4, 6,y = 0.7 and 6y = 0.85
(Fig. 4A). The results obtained through name mapping and the different structure mapping
methods were validated checking manually failures (False Positive) and successes (True
Positives) on the matching of the cell types. The precision was evaluated as

.. True Positive
Precision = — — (1)
True Positive+False Positive

The name matching shows 98.63% precision (Fig. 4A) and has the highest number
of matches (Fig. 4C), 512, in comparison with the other matching methods of FOntCell.
Among the structure mapping methods, highest precision of 62.10% is shown by the
constraint-based method, followed by the cosine and the Pearson, 56.42%, Blondel,
50.27%, and the Euclidean, 48,99%, methods (Fig. 4A). Evaluating the whole FOntCell
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mapping process, name and structure mapping methods taken together, we observe
similar total precision with all the methods: ~ 87% using the vectorial methods, 86.1% with
the Blondel method, and 86% with the constraint-based method (Fig. 4B). Anyway, total
values are highest using the vectorial methods since they contribute fewer matches than
the constraint-based method and the Blondel method.

When consider only structure mapping precision (Fig. 2A) the Blondel method has
the second worst one, slightly higher than of the Euclidean method (Fig. 4A), however
when combined with name mapping, all the vectorial methods, even then Euclidean
method, surpass the precision of the Blondel method (Fig. 4B). This happens since the
Blondel method has more number of matches during the structure matching than the
Euclidean (Fig. 4C). This indicates that the synergies arising between name mapping and
structure method combinations are stronger for the vectorial methods than for the Blondel
method at least in the case of CELDA and LifeMap merging.

Considering only the structure mapping precision, the Euclidean method has the
lowest one of 48.99% (Fig. 4A), while combined with name mapping it has precision of
87.44%, similar to the combined precision of the other vectorial methods, cosine and
Pearson (Fig. 4B). This is due to the low number of matches obtained during structure
matching, which is actually the lowest (Fig. 4C). This indicates that the synergies arising
between name mapping and structure method combinations equilibrate for all the vectorial
methods. The constraint-based method contributes the highest number of matches (Fig.
4C), and although it has the highest precision of 62.1% among the structure mapping
methods (Fig. 4A), it decreases the total precision compared with others combined
methods (Fig. 4B).

The Pearson and cosine methods show equal performance, both with the same
number of matches, 179 (Fig. 4C), and the same structure mapping precision of 56.42%
(Fig. 4A), which results, in combination with the name mapping, a total precision of 87.69%
when combined with the name mapping (Fig. 4B). In conclusion, the cosine and Pearson
methods in combination with name mapping achieve highest total precision and smallest
number of matches. Therefore, we chose the cosine method as default structure matching
method of FOntCell. Anyway, we could have chosen the Pearson structure method with
equal results.

Figure 4. Performance of the different mapping methods of FOntCell when merging
CELDA and LifeMap with parameters W = 4, 6,y = 0.7 and 6y = 0.85. (A) Precisions of
name mapping and the different structure methods taken separately. (B) Combined
precision of the name matching with the different structure mapping methods. The blue
bars show the contribution to the precision of the name mapping, while the bars with
different hues of orange show the contribution to the precision of the different structure
methods. (C) Number of matches during ontology matching with the different mapping
methods. Name mapping is shown in blue and the structure mappings in different hues of
orange.

The fusion of a general cell ontology CELDA+LifeMap with the LungMAP Human
Anatomy (LMHA) ontology produced 65 new relations and 39 new classes related to
endothelial and lymphoid cells

One of the applications of FOntCell is to merge an ontology from a broad, general
description, with an ontology with very specific knowledge within the same knowledge
domain. We used this functionality to merge the already merged CELDA+LifeMap with the
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Cell Ontology for Human Lung Maturation (LMHA) from LungMAP, i.e. a specific ontology
of cells for lung development starting ~36 weeks of human fetal gestation and continuing
after birth with some variation in when the alveolar stage commences and when it is
complete. The .owl file used in the merging was generated by the LungMAP Consortium
[UO1HL122642] and downloaded from (www.lungmap.net), on April 7, 2018. The LungMAP
consortium and the LungMAP Data Coordinating Center (1U01HL122638), National Heart,
Lung, and Blood Institute (NHLBI). To direct the fusion, we contextualized LMHA, adding
new relations to redirect the fusion. First, we deleted the classes that do not provide
information about specific cell types such as the ‘immune cell’ or ‘cell type’ classes.
Second, we provided some new relations and synonyms to lead the fusion. This
information was written in a .txt file that allowed editing LMHA when parsed. The fusion of
CELDA+LifeMap and LMHA produced 65 new relations and 39 new classes related to
endothelial and lymphoid cells (Fig.5).

Figure 5. Merging of CELDA+LifeMap with LungMAP Human Anatomy (LMHA)
ontology. (A) Circular Directed Acyclic Graphs (DAGs) of the merged ontology. The
orange and blue nodes are the non-matched contributions from CELDA+LifeMap and
LMHA, respectively. The green and red nodes are the nodes with name and structure
mapping, respectively. In the interactive application generated automatically in html by
FOntCell, the ontology labels associated to the nodes appear when hovering over the
nodes. The concentric red rings are zoom guides. (B) Donut plot of the percentages of
classes added by name mapping versus the classes added by structure mapping to the
fused CELDA and LifeMap (outer circle) from LMHA (inner circle). (C) Euler-Venn diagram
with the number of classes before and after the fusion. The blue and light green rectangles
frame the number of classes in CELDA+LifeMap and LMHA before the merging,
respectively, the dark green rectangle frames the sum of name and structure equivalent
classes, and the orange rectangle frames the total number of classes in the resultant
CELDA+LifeMap+LMHA merged ontology.

Materials and Methods

Different ontologies use different terms to address same concepts, therefore, the first step
in the fusion two or more ontologies is to align the ontologies and find the equivalent,
synonymous nodes between them. Equivalent nodes are detected by a combination of
text-sequence (name matching) and graph-topological similarity (structure matching)
(Figure 6C). The main steps for ontology fusion are preceded by preprocessing of the
ontologies: detection of equivalent nodes between the two ontologies (matching), and
expansion of the non-common edges branching from the equivalent nodes (merging) (Fig.
6B). The merging works through expansion of the non-common relations branching from
the matched classes (Fig. 6A). Matched classes are detected by a combination of text-
sequence (name matching) and graph-topological similarity (structure matching)
converting the ontologies to a graph structure according to their relations. FOntCell
searches for similar (to match them) and different (to append them during the merging)
classes.

Figure 6. FOntCell algorithms. (A) Conceptual example of merging of ontologies. For
merging two ontologies A and B into an ontology C, FOntCell matches first equivalent
classes between A and B and then merges the non-common relations that branch from the
equivalent classes. Equivalent classes are marked with same colours in the two ontologies
A and B. (B) FOntCell flux diagram. 0 is a vector with the merging parameters 6y, 6r and
O:n. (C) Flux diagram of the compilation of the structure mapping for ontologies A and B.
Agrapn @nd Bgrapn denote the graphs of ontology A and B, respectively. {A} and {B;} denote
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the sets of subgraphs around nodes i and j of ontology A and B classes, respectively. The
rhombi mark two alternative decisions and the octagons three alternative processes.

Data pre-processing and ontology parsing

FOntCell can merge any two ontologies sharing some classes and knowledge
domain; however, our main interest is to apply the algorithm to the merging of cell
ontologies. Different ontologies store the information in different data structures. FOntCell
allows selecting as an input argument the data relation type (instances, children, parents).
Since CELDA provides its cell type development information as a class attribute that has to
be parsed, we implemented a pre-processing tool for parsing the cell development
relations of CELDA. Additionally, the tool implements functions for class label
preconditioning. In an iterative approach of use of FOntCell, the pre-processing parser
reads the ontologies and selects the relations of interest (simple ascendant-descendant
relations or as an argument), producing a file with parent-children relations. The parser
edits automatically the ontology files to improve the fusion. Therefore, we recommend to
run a ‘test’ in order to detect incorrectly fused which classes, scan useless or irrelevant
information about the selected topic, and then create a .txt file with the ontology features
which will be used to direct the parsing of the ontology in the next FOntCell run. Directing
the parsing is a way to edit, or precondition the ontologies with FOntCell.

On one hand, CELDA uses information from other ontologies, therefore the original
CELDA structure is not compact; it is split into several trees and contains information
related to tissues, immortal cell lines, species, etc. Thus, FOntCell filtered CELDA by live
cell-types, and by ‘human’ or ‘mouse’ species label. Additionally, in some cases CELDA
does not specify the mouse-human cell origin, thus producing ‘disconnections’ in a
figurative ontology associated tree. Therefore, to generate a connected cell-type
development graph, we implemented a method to reconnect loose nodes (classes from
ontology) to the nearest ascendant in CELDA, creating new ontology relations between
classes.

On another hand, the pre-processing of LifeMap is conditioned by the fact that
LifeMap is not in an OWL format, however its information about cellular type development
is available at the LifeMap website repository (9). For LifeMap pre-processing we
implemented a parser to substitute automatically all the symbols (-’, ‘7, ‘") in cell type
labels by blank spaces. We automatically searched the LifeMap website and obtained all
the information related to cell name and synonyms, development hierarchy and cell
localization.

Ontologies can have redundant or missing relations. To solve such issues FOntCell
can modify the original ontology relations by adding, deleting and/or fusing classes and
relations with an ‘Automatic ontology editor’ that given an auxiliary .txt file that defines the
disconnected/redundancy automatically edits and rewires the ontology. The format of such
file is described in the FOntCell user manual. The parsing of CELDA and LifeMap
generates two two-column matrices A and B, respectively, with as many rows as the
number of cell type relations in the respective ontology. The first column contains the name
of each class, and the second column, the name of one of its descendants. Building the
matrices A and B is the first step of FOntCell in fusing the ontologies. FOntCell can merge
any two ontologies in an .owl file in an OWL format, or in .ods files in parent-child
relationship format compatible with the pyexcel-ods Python module.

Calculation of the name-mapping matrix
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FOntCell builds a name-mapping matrix measuring the similarity between the labels
of two classes and, optionally, of the synonyms from the synonym attribute of two classes
of different ontologies using string matching. FOntCell, among other string processing
tasks, removes mismatching words, splits words, selects substrings, selects only the class
name, or uses lists of synonyms representing variation of the class names.

In the simplest case of not activating the option to use synonyms, to measure the
similarity between each class label of two ontologies A and B, FOntCell builds a name
mapping matrix, S*5, using the Levenshtein metric (11), which measures the minimum
number of insertions, deletions and necessary replacements to make two strings equal. To
obtain the similarity in the range [0, 1], we use the opposite of the scaled Levenshtein
metric:

§48(i,))=1- lev(Label{,Label?) /max(|Label{|,|Label ?|) (2)

where lev is the Levenshtein distance between two strings. For two strings a and b of
lengths |a| and |b|, respectively, the Levenshtein distance lev(|a|,|b]) is (11):

I{ max (i,)) if min(i,j) =0,
lev(lal, 16D _4 lev(i—1,j)+1 3
evilal, B | min lev(i,j—1) +1 otherwise. (3)

k lev(i — 1,j — 1) + 1(ai¢bj)

where 1@z is the indicator function equal to 0 when a; = b;, and equal to 1 otherwise, and
lev(i,j) is the distance between the first i characters of a and the first j characters of b.
Informally, the Levenshtein distance is the minimum number of single-character edits
(insertions, deletions or substitutions) required to change one string into the other string.
Label{ and Label? are the labels of the class i and j of the ontologies A and B,

respectively, and | | is the length of the string. Applying the pairwise expression (2) for each
stripped label class i of A, and the stripped label class j of B, FOntCell builds the name
mapping matrix S*# between A and B.

In the case of selecting the option to use the synonym attribute of the classes, the
similarity between two classes based on both synonym attribute and class label, {i}€A and
{}€B, is calculated as a submatrix of the name matching S** between each synonym of
class {i} and each synonym of class {j} (including the principal label of the class) using the
Levenshtein distance and taking the highest score of S¥® as the matching between the
two classes to be used in the final name mapping matrix S*2(ij) = max S®%. FOntCell
considers that two labels have a name matching, if their score given by eq. 1 is greater
than a name score threshold 6 (default 0.85).

Calculation of the structure mapping matrix

Not all classes from one ontology are identifiable as classes of the other ontology,
e.g. in the CELDA and LifeMap merging, = 60% of the classes from CELDA are initially not
assigned to LifeMap with name mapping. FOntCell allows selecting among several types
of methods to identify unmatched classes. One of the functionalities of FOntCell is to
recognize matchings between two ontologies and merge them into a unique class, i.e. two
labels of two classes having very different name labelling but corresponding to the same
concept. FOntCell discovers synonymous classes between two ontologies using the
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hypothesis of structure mapping, i.e. two classes have a match if, creating a graph
structure from ontology descendency, they have similar surrounding subgraphs. FOntCell
measures the structure mapping between two graphs using different methods to build a
structure mapping matrix T8 (a x b), where a and b are the number of classes of a graph
from ontology A and a graph from ontology B, and A and B are the respective adjacency
matrices, corresponding to these graph. Once a window length W (default 4) is selected,
for each node i from A FOntCell constructs the surrounding subgraph of nodes {i} € Au(/)
and calculates its similarity with all subgraphs {j}e B.(j), where A,(/) and By(j) are the
subgraphs of length W centred in i and j, respectively. Each subgraph A,(i) is defined by a
centre node i and all the nodes inside a window length W upstream or downstream of |.
Thus, FOntCell performs a ‘structure convolutional matching’, tailoring different metrics to
calculate the similarity between subgraphs Au(i) and By()).

The Blondel method initially developed to measure the similarity between graph
vertices (12) can be used to assess the structure matching between two networks but is
quite slow (Fig.1B). To improve the speed of the structure mapping assessment, we
designed two new methods that calculate the structure matching of ontologies in a
convolutional fashion: Vectorial structure matching and Constraint-based structure
matching; additionally, we adapted the Blondel method to work for such new structure
convolutional matching approach. An example of a convolution window sliding across a
graph is depicted in Fig.7A.

Figure 7. (A) Example of three consecutive steps of the sliding window of length W = 2
used in the calculation of the structure convolutional matching. For each central node,
marked with a colour circle, the nodes involved in the calculation of the structure
convolutional matching are framed with a rectangle of the same colour as its
corresponding central node. (B) Example of six steps of the sliding window in the
calculation of similarity between two vectors 7 and j of lengths 9 and 4, respectively

Vectorial structure matching

For each possible pair of nodes i € A and j € B, and window length W, we search
for all possible nodes {k} € Au(i) and {l} € B.(j), where A,(/) and By(j) are the subgraphs of
length W centred in i and j, respectively. We take the corresponding rows 7 and j of the
adjacency matrices 4,,(i) and B,,(j). Those rows are not necessarily of the same length;
therefore we calculate all the possible convolution similarities of the shorter row over the
longer row (Fig.6B), using one of the metrics M = {1 - cosine, Euclidean, 1 - Pearson}. |.e.
if aw; > bwj, we calculate by, - aw; + 1, convolution similarities p;, where ay; and by, are the
lengths of the rows 7 and j of the adjacency matrices, respectively. Then, we select the
maximum similarity p{;’a". Finally, the maximum similarity p}?* for a j** € B across all
j€ B is assigned to the structure mapping matrix T°2(i, j). For brevity, throughout the whole
text we name the vectorial structure matching using the (1 - cosine) and (1 - Pearson)
metric cosine and Pearson structure matching, respectively.

Constraint-based structure matching

For all possible pairs of nodes i € A and j € B, and for a window length W, we
search for all possible similar sequence pairs of lists of nodes {k} € Au(i) and {[} € Bu()),
where A,(/) and B,(j) are the subgraphs of length W centred in i and j, respectively. Then,
for each node k in the list {k} we calculate the shortest path s, to /, and we produce a list
{s«} of shortest paths. Next, we assign to each sx a constraint value c,; = W + 1 — sy;.
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Finally, we sum the list {c«} to produce an accumulated constraint C; and assign it to the
structure mapping matrix 7°2(j, j).

Blondel structure matching
FOntCell uses the Blondel metric

BTABAt + BtTAB &
AB _ BTy k
Tiyr = |BTAB at+BETABA|| (4)

where t is the transpose operator and eq. 4 is calculated iteratively until an even number of
steps k of convergence to a stable structure matching T*2. For each node i from A,
FOntCell constructs the surrounding subgraph {i}€A and calculates its similarity with all
subgraphs {j}€ B of B using eq. 4 with the adjacency matrices of each subgraph. FOntCell
performs a structure convolution, tailoring eq. 4 to the case of subgraphs {i} and {j}

0o _ o Vet Ve
k+1 ” mT}El}{J}{T}t+{7}tTél}{J}m ”

S

where {t} and {7} are the adjacency matrices of the respective subgraphs {i} and {j}.

Finally, the structure score on the position of j and j in the Tk{fi"} matrix is assigned to T*4(;,
J)-

Each of the above defined structure matching methods returns a structure score
between two nodes (i, j) defined by T"5(i, j) where i € A and j € B. This convolution
improves the result of the structure mapping over the whole graphs since it reduces the
influence of distant nodes and edges. Name mapping and structure mapping carry
complementary information and FOntCell regains information from both.

Ontology matching

To match classes, FOntCell initially selects the best match for each node i from A
with a node j from B, using the name mapping matrix S*2. If S*3(ij) > 6y, FOntCell
considers classes i and j as matched and classifies this assignment as a ‘name match’. If
S*8(ij) < 6y, FOntCell takes the element T*4(, ) from one of the aforementioned structure
matching methods selected by the user to calculate the structure mapping and considers
the nodes i and j matched if T°2(i, j) = 67, where 67 is a structure mapping threshold
selected by the user. To improve the result achieved with the structure matching method,
FOntCell performs a further local name comparison using the name mapping matrix to
calculate the mean of the name match S of each subgraph pair {/}TEQ built around the
central nodes i and j, and the same window size W used to calculate T"*. FOntCell takes
the best name scores from S*5(j, j), calculates the mean of these name matching scores
for the pair {}} {j}, and then builds a new name matching matrix of {} {}}: S™. If S > g,
where 6,y is a local name matching threshold (default value 6,5 = 0.7), FOntCell considers
nodes i and j as synonyms and classifies the corresponding classes as a ‘structure match’
(see Fig.5C). FOntCell creates a file with the relevant information about each node from A:
with columns (1) native node label in A, (2) translated node label assigned from B, (3)
name score, (4) structure score and (5) type of assignment’ (Name/Structure). In case of
no assignment, the ‘type of assignment’ is marked as ‘Non-matched’.

Ontology merging
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Once the matched classes between two ontologies are detected, FOntCell
translates the name-labels of all classes from ontology B to their equivalent names, if any,
in ontology A. Next, FOntCell appends the translated classes from B to A. Then, it
performs an ordered-set operation to eliminate all the possible class-relations repeats
generated from the appendage. The resulting relation array represents the merging of the
two ontologies. In addition, FOntCell creates an OWL format file with the result of the
fusion by reading the .owl file of ontology A and appending the new classes from B at the
start of the ontology class site. The information stored in these new classes is: (1) new ID,
(2) class label, (3) class synonyms, and (4) ascendant relationship. Finally, FOntCell
creates an .html file with an interactive circular Directed Acyclic Graph (DAG) of the
original and fused ontologies, and statistical information of the fusion, i.e. percentage and
number of added classes/relations and type of matches in textual and graphical form.

Implementation

FOntCell is developed in Python v3.7 and uses the Python library NetworkX to
derive the digraph relation of the ontology and to transform each class to a node and each
hierarchy step to an edge. NetworkX graphs allows FOntCell access the sorted list of
nodes without repeats, and produce digraphs compatible with graph visualization tools
such as graphviz and matplotlib. For specific data manipulation, FOntCell uses numpy,
pyexcell ods, argparse, stringdist, and basic Python libraries such as os,
collections and itertools. The algorithm complexity (Big O) is quadratic time O(n?).
For parallelization and the structure mapping, FOntCell uses BigMPl4py (13). We added a
demo function to the FOntCell distribution package merging CELDA with LifeMap.

The automatic installation installs all the dependencies. If some issues occur during
installation or run, please see the title page at https:/pypi.org/project/fontcell/. Full
instructions of the prerequisites for installation, the downloading of FOntCell, the user
manual, an example of use of how to run FOntCell and an example of the html output
created by FOntCell are provided in the Supplementary material file.

Software Availability

The FOntCell software package, written as a Python module is available at
https://pypi.org/project/fontcell/, and the resulting fusion of CELDA and LifeMap cell
ontologies in OWL format at https://gitlab.com/JavierCabau/fontcell
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FOntCell is a software module in Python for automatic computed fusion of ontologies.
FOntCell produces the results of the merged ontology in OBO format that can be iteratively
reused by FOntCell to adapt continuously the ontologies with the new data, such of the
Human Cell Atlas, endlessly produced by data-driven classification methods. To navigate
easily across the fused ontologies, it generates HTML files with tabulated and graphic
summaries, and an interactive circular Directed Acyclic Graphs of the merged results.

This document contains:
e The prerequisites for installation of FOntCell.
The instructions to download FOntCell.
The User manual of FOntCell.
Example of how to run FOntCell.
Example of the html output created by FOntCell.

 Prerequisites for installation of FOntCell

Python3
pip3|

It is necessary to use pip3 to download FOntCell and use it with python3.
To install pip3 over Python3 use the command:

\ sudo apt-get install python3-pip

Tkinter library is a dependency that will not be installed during FOntCell installation.
If TKinter has not been previously installed, an error will occur during FOntCell import.
To install TKinter over Python3 use the command:
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\ sudo apt-get install python3-tk

Mpi.h is an mpidpy dependency that might not have been installed during mpidpy
installation, and if it is had not been installed, an error might occur.
To install mpi.h use the command:

\ sudo apt-get install libopenmpi-dev

Instructions to download FOntCell

FOntCell module is available at PyPl and can be installed using the command:

\ sudo pip3 install FOntCell

User manual of FOntCell

After downloading and installing FOntCell using pip3, the user has to create the following
directories:

output folde

Is the directory where FOntCell will output the results:
e Fused ontology file
e htmlfiles
e Figures

input folde

The input folder should contain a Configuration file, the two ontologies, and the
ontology_edit documents, that should be placed there by the user.

Files required in the Input directory

IConfiguration file|

The configuration file should have the following arguments in .txt format.
Most arguments will be for ontology 1 (A) and ontology 2 (B)

Arguments Type Description

input_folder str path to input directory

output folder str path to output directory
Parallelization bool if True, perform parallelization

Proc int number of processors’

parse ontology1 bool if True, perform parsing of ontology1
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parse_ontology2 bool if True, perform parsing of ontology2

file1 str path to ontology 1?2

file1 str path to ontology222

take synonyms1 bool if True, take also the synonyms from ontology1 classes?

take synonyms2 bool if True, take also the synonyms from ontology?2 classes?

ontologyName1 str name of ontology1?

ontologyName?2 str name of ontology2?

synonym_type1 str one or more, ontology1 arguments specifying the location
of the labels of the synonyms?

synonym_type2 str one or more, ontology2 arguments specifying the location
of the labels of the synonyms?

label_type1 str one or more, ontology1 arguments specifying the location
of the labels of the classes?®

label_type2 str one or more, ontology2 arguments specifying the location
of the labels of the classes?®

relative_type1 str one or more, ontology1 arguments specifying the location
of the IDs of the ascendants?®

relative_type2 str one or more, ontology2 arguments specifying the location
of the IDs of the ascendants?®

file_clean_ontology1  str name of the script file with the instructions to FOntCell for
the automatic editing of ontology 12?2

file_clean_ontology2  str name of the script file with the instructions to FOntCell for
the automatic editing of ontology22?

del_old_trials_files bool if True, deletes old files. Recommended for every new
use of FOntCell

onto_fuse classes1  bool if true, fuse the classes in ontology1 if they have the
same label

onto_fuse classes2  bool if true, fuse the classes in ontology? if they have the
same label

onto_restriction1 bool if true, fuse the classes in ontology1 if they have the
same ID (or secondary info) and the same label

onto_restriction2 bool if true, fuse the classes in ontology?2 if they have the
same ID (or secondary info) and the same label

onto_list clear1 str one or more, delete the introduced words from labels of
ontology1*

onto_list clear2 str one or more, delete the introduced words from labels of
ontology2*

Semantical bool if true, perform the synonyms with label name matching

text process bool if true, perform test processing

split_from1 str split and take the labels of ontology1
from the introduced word to end*

split_from2 str split and take the labels of ontology2
from the introduced word to end*

split_since1 str split and take the labels of ontology1
from the beginning since the word introduced+*

split_since2 str split and take the labels of ontology2
from the beginning since the word introduced*

Windowsize int size of the convolutional window (in edges)
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Namethreshold float  threshold between [0.0-1.0] for name mapping

Localnamethreshold  float  threshold between [0.0-1.0]
for local name mapping (used in structure mapping)

structure threshold float  threshold between [0.0-1.0] for structure mapping*

structure_method str structure matching type: 'blondel', ‘cosine’, 'euclidean’,
'pearson' or 'constraint-based'
Automatic bool if true run FOntCell automatic (unsupervised),

if false run FOntCell semi-automatic, user control at
structure alignment

* Argument can be blank if your analysis does not require those arguments
"only if parallelization is True

2 files must be at input directory

3only if parse ontology is True

* if textprocess is True

Every argument of the configuration.txt file needs to be precede by a a ">' character forward
to be parsed.

The user does not have to introduce a threshold for a test that it has not been selected

[Ontology edition files|

These files allows the user to edit the ontology after parse in order to direct the ontology
fusion.

The document must be in .txt file with the following instructions defining how to automatic
edit the ontology file:
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Instruction Syntax Description Example
delete class ... deletes the nodes/classes that ‘ontology label x'
contains the label

concatenate [[...], [...]] concatenates two classes, allows [[[ontology class_synony

classes introduce new classes ms]1, 1D:0],
[[ontology_class_synonym
s2], ID:1]]

delete class ID: ... deletes the class that has the ID ID:"xxxxx'
from ID introduced

fuse classes f[[...], [...]] fuses two classes. The resultant f[[ontology synonyms1],
class conserves the ID from the [ontology_synonyms2]]
first class, and the descendant-
ascendant relations)

Ontology files|

The ontologies to be fused can be in .owl format (that requires a parse) or in a .ods
format, if one wishes to save the parse step.

The .ods file has the graph-edge information in two columns as in the following example:

[[class synonyms 1], ID class 1] [[class synonyms 2], ID class 2]
[[class synonyms 1], ID class 1] [[class synonyms 3], ID class 3]
[[class synonyms 2], ID class 2] [[class synonyms 4], ID class 4]

The first column corresponds to ‘parent' and the second column to the 'descendant’. The
possible synonyms of each class are separated by commas.

Files created in the Output directory after fusion

This document is the resultant ontology from the fusion of two ontologies. The structure is
the same as of ontology 1 (A), with the new classes added from ontology 2 (B) at the top of
ontology class section.

IFOntCell_OntologyA_OntologyB.html file|

This file contains information about the fusion. First, one can see three interactive circular
graphs: ontology A, ontology B and the merged ontology. Additionally, it contains other
information such as: the different thresholds values and statistics about the fusion. The file
also shows a direct link to the OBO-format merged ontology, and a representative image of
type of node assignation between ontology A and B (a donut graph) and an image of an
Euler-Venn diagram (using squares) about how the fusion has worked.

l.html of DAGs and .png of figures files|

These files are the files encrusted in the FOntCell_OntologyA OntologyB.html file. The
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.html files are all the different interactive circular graphs, and the .png files contain the
Euler-Venn diagram and the donut graph.

Troubleshooting

For parallel computation FOntCell requires bigmpi4py:
(https://www.biorxiv.org/content/10.1101/517441v1)

If bigmpi4py has been installed in a different conda environment from the one of the
FOnNtCell installation, the parallelization will not work well (all the processes will run on a
single processor). In this case, FOntCell will work but without parallelization.

Running FOntCell will raise a problem if graphviz has not been properly installed. For a
correct graphviz installation, type in the command line:

| sudo apt-get install graphviz |

' Example of how to run FOntCell

Open python3 in bash:

\ sudo python3

Import the FOntCell module:

import FOntCell

| import FOntCell

After the FOntCell module is imported, one can use the following functions:

To run the fusion of two ontologies:

\ FOntCell.run(‘path_to/configuration_file.txt’)

To run the demo of the fusion of CELDA with Lifemap:

\ FOntCell.run_demo()

To clean internal files from old runs (recommended for use before a new fusion, especially
if one of the ontologies from a previous fusion will be used again):

\ FOntCell.clean(‘path_to/configuration_file.txt’) \

Example of the html output created by FOntCell

In the next pages is attached the html file resulting of using FOntCell to merge CELDA and
LifeMap ontologies to produce comprehensive cell ontology.
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===y FOntCell

I\Z Fusion of CELDA and LifeMap

LTiL ]

(a) DAG of CELDA ontology classes (nodes in orange)

(b) DAG of LifeMap ontology classes (nodes in blue)
(c) DAG of the Fused ontology classes (nodes in orange (from CELDA), blue(from
LifeMap), red for structure match and green for name match)

The ontology labels associated to the classes appear when hovering over the nodes.

Some nodes may appear overlapping.

Parameters of the FOntCell fusion algorithm
e Name matching threshold ©g: 0.85

e structure matching method: cosine
e Local Name matching threshold g : 0.7

e Structure matching threshold ©1: 0.0

Statistics of the input ontologies
e Number of classes of CELDA ontology: 841
e Number of relations between classes of CELDA ontology: 966
¢ Number of classes of LifeMap ontology: 796
e Number of relations between classes LifeMap ontology: 924

Statistics of the merged ontology

Statistics of the merged by name mapping
e Number of classes with equivalence found in CELDA by name mapping: 512
e Number of classes with equivalence found in LifeMap by name mapping: 204
e Percentage of classes (in relation to the number of classes of CELDA ontology)
added to CELDA by name mapping: 60.88%
e Percentage of nodes added to LifeMap (in relation to the number of nodes of
LifeMap ontology) by name mapping: 25.63%

Statistics of the fusion by structure mapping
e Number of classes with equivalence found in CELDA by structure mapping: 179
e Number of classes with equivalence found in LifeMap by structure mapping: 52
e Percentage of classes added to CELDA (in relation to the number of classes of
CELDA ontology) by structure mapping: 21.28%
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e Percentage of classes added to LifeMap (in relation to the number of classes of
LifeMap ontology) by structure mapping: 6.53%

Statistics of the fusion of non-matched nodes
e Number of classes in CELDA non-matched in LifeMap: 150
e Percentage of classes in CELDA non-matched in LifeMap (in relation to the number
of classes of CELDA ontology): 17.84%
e Number of classes in LifeMap non-matched in CELDA: 540
e Percentage of classes in LifeMap non-matched in CELDA (in relation to the number
of classes of LifeMap ontology): 67.84%

Statistics of the fusion by name and structure mapping

e Number of classes added in total (by name mapping and by structure mapping): 567

e Percentage of classes added in total (by name mapping and by structure mapping):
67.42%

¢ Number of relations between classes added in total (by name mapping and by
structure mapping): 890

e Percentage of relations between classes added in total (by name mapping and by
structure mapping): 92.13%

Added classes refers to the descendants classes founded on the mapping

' Merged ontology in OBO format

Merged ontology from CELDA and LifeMap:
here

Results of the merged ontology

Percentages of contribution of classes to the merged ontology in relation to the
classes of each contributing ontology

Outter circle: Numbers and percentages of CELDA
¢ Blue: Classes with name match: 512, percentage: 60.88
e Green: Classes with structure match: 179, percentage: 21.28
e Orange: Non-matched classes: 150, percentage: 17.84

Inner circle: Numbers and percentages of LifeMap
¢ Blue: Classes with name match: 204, percentage: 25.63
e Green: Classes with structure match: 52, percentage: 6.53
e Orange: Non-matched classes: 540, percentage: 67.84
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Euler-Venn diagram of the classes of CELDA and LifeMap merging
CELDA

s Name
LifeMap mam Structure
mam Non-match

Classes from CELDA: 841 (blue)

Classes from LifeMap: 796 (green)

Synonyms found in CELDA: 691 (Blue-green)

Resulted ontology classes: CELDA classes: 841 + added classes: 567

| Additional results

ontolo

Files with results on detection of matchs, merging and name matching matrix are available
at: /usr/local/lib/python3.6/dist-packages/FOntCell/fontcell_files/
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