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Summary 

Hematopoietic stem and progenitor cells (HSPCs) differentiate from hemogenic 

endothelial (HE) cells through an endothelial to hematopoietic cell transition (EHT). Newly 

formed HSPCs accumulate in intra-arterial clusters (IACs) before colonizing the fetal liver. 

To examine the cell and molecular transitions during the EHT, and the heterogeneity of 

HSPCs within IACs, we profiled ~37,000 cells from the caudal arteries of embryonic day 

9.5 (E9.5) to E11.5 mouse embryos by single-cell transcriptome and chromatin 

accessibility sequencing. We identified an intermediate developmental stage prior to HE 

that we termed pre-HE, characterized by increased accessibility of chromatin enriched 

for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE 

from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. 

Distinct developmental trajectories within IAC cells result in two populations of CD45+ 

HSPCs; an initial wave of lympho-myeloid-biased progenitors, followed by precursors of 

hematopoietic stem cells (pre-HSCs). 

  

Introduction 

Hematopoietic ontogeny involves multiple “waves” in which HSPCs with different 

potentials differentiate from HE cells. HE cells in the yolk sac (YS) differentiate into 

committed erythro-myeloid (EMP) and lymphoid progenitors, and the caudal arteries 

produce lymphoid progenitors and pre-HSCs (Auerbach et al., 1996; Hadland and 

Yoshimoto, 2018). YS hematopoiesis can be recapitulated in embryonic stem (ES) cell 

cultures, where the molecular events are well-described (Goode et al., 2016; Vanhee et 

al., 2015). Although groundbreaking studies described the transcriptomes of HE and pre-
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HSCs in the major caudal artery, the dorsal aorta, at single cell resolution (Baron et al., 

2018; Zeng et al., 2019; Zhou et al., 2016), these analyses did not examine the distribution 

of cells along the trajectory from E to pre-HSCs, or the chromatin landscapes of cells 

along the trajectory, due to the limited number of cells sequenced. To gain insights into 

the molecular mechanisms mediating the differentiation of arterial E cells into IACs and 

to examine heterogeneity within IACs, we utilized the 10x Genomics platform and 

performed single-cell RNA sequencing (scRNA-Seq) and single-cell assay for 

transposase-accessible chromatin sequencing (scATAC-Seq). Our data reveal a 

continuous trajectory from E to IAC cells, previously undefined transitional cell 

populations along the trajectory, the pathways and transcription factors active in these 

cells, and describe the molecular heterogeneity of IAC cells.  

  

Results 

scRNA-sequencing reveals a continuous trajectory from endothelial cells to IAC 

cells. 

Our strategy was to analyze all cells along the trajectory in a single sample to determine 

their distribution between different transcriptional states, and combine that with analyses 

of purified sub-populations to make accurate cell assignments and obtain additional 

coverage of rare cells. We captured the entire trajectory by purifying a population 

containing all E, HE, and IAC cells (E+HE+IAC) from E9.5 and E10.5 embryos using a 

combination of endothelial markers (Fig. 1a,b; Supplementary  Fig. 1). We then purified 

subpopulations of HE and E cells based on expression of green fluorescent protein (GFP) 

from the Runx1 locus (Lorsbach et al., 2004) (Fig. 1c). We confirmed that only HE cells 
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were capable of producing hematopoietic cells ex vivo (Fig. 1d).  Kithi IAC cells were 

excluded in the sorts, therefore HE and E cells were negligibly contaminated with HSPCs 

(Fig. 1e). We purified IAC cells from E10.5 and E11.5 embryos using antibodies 

recognizing endothelial markers and Kit (Fig. 1f), E9.5 yolk sac EMPs, and E14.5 fetal 

liver HSCs (FL-HSCs) (Supplementary  Fig. 1).  

  

Summary statistics for collected cell populations are in Fig. 2a and Supplementary Table 

1. We used uniform manifold approximation and projection (UMAP) to reduce the data 

dimension (Becht et al., 2018). After filtering out non-endothelial and non-hematopoietic 

cells, UMAP of the combined datasets shows a continuous trajectory from E to IAC cells 

(Fig. 2b,c, Supplementary Fig. 2). E14.5 FL-HSCs are disconnected from this trajectory, 

therefore, are more distantly related (Fig. 2b). Two streams of E cells expressing the 

arterial marker Efnb2 converge to form a stem leading to HE and IACs (Fig. 2d). Analyses 

of E10.5 E+HE+IAC cells manually separated into VU arteries and DA demonstrated that 

VU cells contribute to one of these streams and DA to both streams (Fig. 2e). The 

E+HE+IAC samples, which demonstrate the distribution of cells at various stages, show 

that at E9.5, IAC cells constitute only 0.5% of the population, but at E10.5 the fraction of 

IAC cells expands by 7 fold, representing 3.5% of the population, consistent with 

histological analyses of the temporal appearance of IACs in embryos at those two stages 

(Garcia-Porrero et al., 1995; Yokomizo and Dzierzak, 2010) (Fig. 2c,f).  

 

Louvain clustering identified 7 distinct populations in the combined dataset, and 

separated the two streams of arterial E cells into distinct clusters (Fig. 3a). One cluster of 
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cells, Wnthi E containing only DA cells, expresses high levels of Wnt target genes. The 

second cluster, Wntlo E containing both DA and UV cells, expresses lower levels of Wnt 

target genes. Wnthi E and Wntlo E converge to form a distinct cluster we term conflux E. 

Pseudo-time-ordered Wnthi and Wnthi E cells exhibit gradual decreases in transcriptome 

similarity, followed by a sharp increase as cells converge in conflux E (Fig. 3b,c). The 

increase in transcriptome similarity is driven by the loss of cluster-specific gene 

expression and increased transcript levels from late-stage-specific genes (Fig. 3d,e). For 

example, Wnthi E expresses high levels of Wnt target genes including Foxq1, while Wntlo 

E is characterized by high levels of Hpgd transcripts (Fig. 3e). Both Wnt target genes and 

Hpgd are subsequently significantly down-regulated in conflux E. Conflux E is 

characterized by elevated Notch signaling, indicated, for example, by increased 

expression of the Notch ligands Jag1 and Dll4 and the transcription factor Hey2 (Fig. 3e,f; 

Supplementary Figure 2c). Additional pathways activated during the convergence of Wnthi 

and Wnthi E into conflux E include pathways regulating cell shape and motility (“assembly 

of collagen fibrils”, “laminin interactions”, “gap junction trafficking”), lipid metabolism 

(“triglyceride biosynthesis”) and processes important in hematopoietic cells (“interleukin-

6 family signaling”, “MAPK signaling for integrins”) (Fig. 3f).  

 

Runx1 regulates progression through a developmental bottleneck between pre-HE 

and HE 

HE cells are characterized by high levels of Runx1 and Gfi1, and IAC cells at the far end 

of the trajectory are defined by expression of the pan-hematopoietic marker gene Ptprc 

(encoding CD45) (Fig. 4a,b; Supplementary Fig. 2c). Between conflux E and HE is a 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/848846doi: bioRxiv preprint 

https://doi.org/10.1101/848846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

distinct cluster of endothelial cells that we named pre-HE. UMAP and pseudotime 

trajectories of E10.5 E+HE+IAC reveal an accumulation of pre-HE cells, suggesting a 

bottleneck between pre-HE and HE (Fig. 2f, 4a). Gfi1, a direct RUNX1 target that 

participates in extinguishing endothelial fate (Lancrin et al., 2012), shows elevated 

expression immediately after cells pass through the bottleneck and become HE, while 

high levels of Sox17, the Notch target Hey2, and the arterial marker Cd44 are found in 

pre-bottleneck populations including conflux E and pre-HE (Fig. 4b).  To provide further 

evidence for the bottleneck, we utilized Velocyto, which infers directionality of 

differentiation by modeling dynamics of unspliced versus spliced RNAs when a gene is 

up or down-regulated (La Manno et al., 2018). Velocyto showed a marked decrease in 

RNA velocity in pre-HE cells, and many appear to revert to an earlier transcriptome state, 

suggesting a differentiation barrier restricting their progression towards HE (Fig. 4c). 

Once pre-HE cells transit to HE, however, they smoothly differentiate to IAC cells. Several 

pathways known to promote Runx1 expression and HSPC formation are upregulated in 

pre-HE, including Notch, tumor necrosis factor, fluid shear stress, cytokine signaling, and 

synthesis of eicosanoids, vitamins, and sterols (Adamo et al., 2009; Cortes et al., 2016; 

Espin-Palazon et al., 2014; Gu et al., 2019; Kim et al., 2014; Li et al., 2015; North et al., 

2009; North et al., 2007), suggesting these pathways are important in pre-HE (Fig. 4d, 

Supplementary Fig. 3a, Supplementary Table 2). Once cells transition to HE, RUNX1 

plays a predominant role.  

 

Runx1 expression is upregulated in approximately 7% of pre-HE cells suggesting that 

RUNX1 levels regulate passage through the bottleneck (Fig. 4b). To test this hypothesis, 
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we compared the distribution of cells between conflux E, pre-HE, and HE+IAC in Runx1+/-

and Runx1+/+ littermates. We observed a 74% reduction in the proportion of HE and IAC 

cells in E10.5 Runx1+/- compared to Runx1+/+ embryos, and a commensurate 58% 

increase in pre-HE, consistent with the hypothesis that Runx1 levels regulate transit 

through the bottleneck (Fig. 4e). To confirm that RUNX1 haploinsufficiency reduces 

functional HE cells, we utilized the arterial marker CD44 (Wheatley et al., 1993) in 

conjunction with other endothelial markers to purify cells enriched for conflux E, pre-HE, 

HE, and IAC (Supplementary Fig. 1g) and performed limiting dilution assays. RUNX1 

haploinsufficiency reduced the frequency of functional HE cells by 77% (Fig. 4f), 

equivalent to the reduction in UMAP plots (Fig. 4e), confirming that RUNX1 levels regulate 

the number of pre-HE cells that transit through the bottleneck to become HE cells. 

  

scATAC-Seq identifies putative Runx1 enhancers and transcription factor motifs 

that gain accessibility in pre-HE  

To identify signals that may activate Runx1 expression in pre-HE, we performed paired 

scRNA-Seq and scATAC-Seq on E10.5 CD44+ E+HE+IAC cells to identify Runx1 

enhancers and the stages they are accessible. High quality open chromatin profiles were 

obtained for 1670 cells, covering various cell types from E to IAC  (Supplementary Fig. 4). 

We were unable to separate HE from pre-HE cells due to the small representation of HE 

cells in the sample, therefore HE cells segregated with pre-HE. We devised a 

computational approach that aligns scATAC-Seq and scRNA-Seq data (Fig. 5a, 

Supplementary Fig. 5,6) and subsequently linked enhancers with their target promoters 

(Fig. 5b). Accuracy of our method was benchmarked using known hematopoietic and 
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endothelial enhancers (Fig. 5c-d). We applied chromVar (Schep et al., 2017) to assess 

differential transcription factor (TF) binding patterns along the EHT trajectory (Fig. 5e). 

Results show strong correlation with the TF expression patterns and are consistent with 

pathway analyses from scRNA-seq data. For example, strong TCF/LEF binding activity 

was detected in Wnthi arterial E that abruptly decreased in conflux E (Fig. 5e,f). SOX and 

FOX binding sites are mostly open in conflux E and pre-HE. Binding sites for a large group 

of TFs had increased accessibility beginning at the pre-HE stage, including HES1, GATA, 

SMAD, and TFs that regulate HSC homeostasis (MECOM, EGR1, YY1) (Goyama et al., 

2008; Lu et al., 2018; Min et al., 2008), the latter group suggesting that an HSC-specific 

transcriptional program may initiate at the pre-HE stage.  

 

Runx1 contains two promoters, an upstream P1 promoter that is first utilized in committed 

HSPCs, and a more proximal P2 promoter that is active in HE and HSPCs (Sroczynska 

et al., 2009). Consistent with this, P1 first becomes accessible in IAC cells, whereas P2 

is accessible in all endothelial cells including pre-HE (Fig. 6a), which may permit or 

contribute to the stochastic Runx1 expression observed in a subset of endothelial cells 

(Fig. 4b). Using our computational approach, we predicted 27 enhancer-promoter (E-P) 

interactions, which recapitulate 11 out of 22 previously identified E-Ps based on 

chromosome conformation capture assays (Chen et al., 2019; Marsman et al., 2017) (Fig. 

6a, also see Methods). All of the predicted enhancers exhibit higher co-accessibility with 

P1 compared to P2, therefore only E-Ps to P1 are indicated. Significance plot of the 

predicted E-Ps reveals several enhancers whose chromatin openness is significantly 

correlated with Runx1 expression, including the Runx1 +23 enhancer (Fig. 6b). Several 
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of the predicted enhancers exhibit stage-specific co-accessibility with the P1 promoter 

(Fig. 6c). Interestingly, one previously functionally-validated enhancer located 371 kb 

upstream of Runx1 P1 (Marsman et al., 2017) was accessible only in pre-HE and IACs, 

and not in other endothelial cell populations, suggesting it could initiate the opening of P1 

in pre-HE, and contribute to the activity of P1 in IAC cells (Fig. 6a,c). The ATAC-seq signal 

encompassing the -371 enhancer begins to increase in conflux E cells and reaches a 

maximum in pre-HE cells (Fig. 6a,d). This change in accessibility in pre-HE coincides with 

the activation of Runx1 expression in a subset of pre-HE cells (Fig. 6d). However, unlike 

the +23 enhancer, the chromatin accessibility of the -371 enhancer subsequently 

decreases in IAC cells and is no longer open in FL-HSCs (Fig. 6a). The  

-371 enhancer contains GATA, STAT, and JUN motifs, indicating that GATA2 and 

cytokine and/or inflammatory signaling may contribute to the opening of this enhancer in 

pre-HE (Fig. 6a). An independent co-expression analysis based on the scRNA-Seq data 

reveals that these factors form a co-expression gene module that precedes and correlates 

with Runx1 expression (Figure 6e), suggesting they may cooperatively regulate Runx1 

expression. Notably, neither the -371 nor +23 enhancers contain SOX motifs, which are 

recognized by a repressor of Runx1 expression, Sox17 (Bos et al., 2015). Other TF motifs 

enriched in the 27 called Runx1 enhancers, all of which are predicted to interact with P1, 

include ETS, FOX, SOX, KLF/SP, RUNX, and SMAD, which are recognized by TFs with 

well-documented roles in HSPC formation (Blank and Karlsson, 2011; Gilmour et al., 

2019; Menegatti et al., 2019).  

 

Two waves of HSPCs form in the IACs 
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We also examined the transition of HE to IAC cells and the composition of IAC cells. 

Principal component analysis (PCA) depicts a sharp U-turn as HE differentiates into IAC 

cells, reflective of a marked decrease in arterial endothelial gene expression and 

activation of hematopoietic genes (Fig. 7a). For example, the arterial E-specific gene Gja5 

is primarily expressed on the HE side of the trajectory, while expression of Spn (encoding 

CD43), Ptprc (encoding CD45) and the Rho GTPase Rac2 rapidly increases in IAC cells 

(Fig. 7b, Supplementary Fig. 3b,c). Transient expression of the chromatin remodeling 

protein Nupr1 occurs at the U-turn, while Hey1 and Sox17 transcripts significantly 

diminish as IAC cells mature (Fig. 7b, Supplementary Fig. 3c). 

  

IACs contain pre-HSCs that cannot engraft adult mice directly, but can mature in vivo or 

ex vivo into adult-repopulating HSCs (Kieusseian et al., 2012; Rybtsov et al., 2016; 

Rybtsov et al., 2011). Pre-HSCs are classified as type I or II based on CD45 

expression; type I are CD45-, and the more mature type II are CD45+ (Rybtsov et al., 

2011). E10.5 IACs contain only type I pre-HSCs, whereas E11.5 IACs contain both type 

I and II pre-HSCs (Rybtsov et al., 2011). Additionally, multiple progenitors with 

lymphoid, myeloid, lympho-myeloid, or multi-lineage potential emerge prior to or 

contemporaneously with pre-HSCs2, at least a subset of which are CD45+ (Baron et al., 

2018; Inlay et al., 2014; Ohmura et al., 1999). We compared E10.5 CD45+IAC cells that 

contain HSC-independent progenitors and lack pre-HSCs to E11.5 

CD45+CD27+CD144+ IAC cells enriched for type II pre-HSCs (E11.5 pre-HSCs) (Li et 

al., 2017; Rybtsov et al., 2011) to determine their developmental relationship (Fig. 1g,h, 

Supplementary Fig. 1). The two populations bifurcate in the third principal component of 
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PCA plots; specifically, the majority of E10.5 CD45+ IAC cells occupy one end of the 

PC3 axis, and E11.5 pre-HSCs reside on the other end (Fig. 7c,d). E11.5 pre-HSCs 

demonstrated a high correspondence with previously published data (Zhou et al., 2016) 

(Supplementary Fig. 7a). We determined the fraction of pre-HSCs in E10.5 and E11.5 

IAC cells using a k-nearest-neighbor classifier. About 2% of E10.5 IAC cells were found 

to be molecularly similar to E11.5 type II pre-HSCs; this fraction of pre-HSCs increases 

to 67% in E11.5 IAC cells (Figure 7d), consistent with previous limiting dilution assay 

results demonstrating an increase in functional pre-HSCs between E10.5 and E11.5 

(Rybtsov et al., 2016).  

 

The 974 genes more highly expressed in E11.5 pre-HSCs include known markers of 

pre-HSCs and/or HSCs (Eya2, Procr, Cd27, and Mecom) (Forsberg et al., 2005; 

Goyama et al., 2008; Iwasaki et al., 2010; Li et al., 2017; Zhou et al., 2016), while the 

877 genes up-regulated in E10.5 CD45+ IAC cells include proliferation related genes 

(Myc) and lympho-myeloid associated genes (Il7r, Fcer1g) (Fig. 7e,f, Supplementary 

Table 3). Pathway analysis suggests E11.5 pre-HSCs gain stem-cell specific features 

such as “OCT4, SOX2, NANOG represses genes related to differentiation”, while 

pathways associated with E10.5 CD45+ IAC cells are associated with cell cycle and/or 

related to a specific hematopoietic lineage, such as “TCF dependent signaling in 

response to WNT” (Fig. 7g, Supplementary Table 3). Interestingly, E11.5 pre-HSCs, 

although sampled 1 day later in development compared to E10.5 CD45+ IAC cells, 

retain many pathways from E/HE stages, such as “Signaling by BMP” and “eNOS 

activation”, suggesting a relatively slow shutdown of the E/HE program in pre-HSCs. In 
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contrast, subsets of E10.5 CD45+ IAC cells show lineage-specific differentiation bias; 

Il7r is up-regulated in 26%, and Gata1 in 3% of E10.5 CD45+ IAC cells (Fig. 7f). 

  

Previous scRNA-seq studies identified committed progenitors in E10.5 and E11.5 IACs 

but concluded they were contaminating erythro-myeloid progenitors (EMPs), likely 

originating from the yolk sac, that had been circulating in the blood and became 

attached to the IACs (Baron et al., 2018; Zhou et al., 2016). We addressed the 

possibility that the E10.5 CD45+ IAC cells we profiled are contaminating YS EMPs. 

Direct comparison shows E10.5 CD45+ IAC cells and YS EMP are molecularly and 

functionally distinct (Fig. 7h, Supplementary Fig. 7c). E10.5 CD45+ IAC cells contained 

progenitors of macrophages and granulocytes/monocytes, but very few erythroid or 

megakaryocytic progenitors compared to E9.5 YS EMPs (Fig. 7h). E10.5 CD45+ IACs 

have potent lymphoid potential; limiting dilution assays revealed a high frequency of 

cells (1:6) capable of producing B cells following culture on OP9 stromal cells or T cells 

on OP9 expressing the Notch ligand delta-like 1 (Fig. 7i,j). E10.5 CD45- IAC cells also 

contained progenitors with lymphoid and myeloid potential, although their frequency 

was lower than in the E10.5 CD45+ IAC population. In summary, E10.5 CD45+ IAC cells 

represent a distinct wave of lympho-myeloid-biased progenitors in IACs that appear 

prior to E11.5 type II pre-HSCs.  
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Discussion 

In summary, our single cell analyses provide new insights into the process by which 

endothelial cells differentiate into pre-HSCs. First, we define a precursor of HE we have 

named pre-HE, in which multiple molecules and pathways known to regulate HSPC 

formation appear to act. Also, through trajectory analyses and genetic perturbation 

experiments we identified a bottleneck separating pre-HE from HE, indicative of a 

developmental barrier that must be overcome at that transition. It is long known that 

embryonic hematopoiesis is exquisitely sensitive to Runx1 dosage, as reduced Runx1 

dosage decreases the number of HE cells, IACs and committed hematopoietic 

progenitors in the embryo (Cai et al., 2000; Lie et al., 2018; Wang et al., 1996).  Our 

scRNA-Seq analyses show that the deficits caused by reduced Runx1 dosage are 

caused, at least in part, by the inefficient transition of  pre-HE to HE cells. The molecular 

underpinnings of the bottleneck at the pre-HE to HE transition are not known. One 

possibility is that Runx1 expression may be actively repressed in the majority of pre-HE 

cells by TFs such as Sox17 (Bos et al., 2015; Lizama et al., 2015), which is highly 

expressed in pre-HE, and binding sites for which are accessible in pre-HE. A 

requirement for chromatin remodeling may also be a limiting factor in pre-HE, as 

multiple epigenetic regulatory proteins have been shown to affect Runx1 expression in 

HE, some of which may act at the pre-HE to HE transition (Kasper and Nicoli, 2018). 

 

Prior to HE, Runx1 is expressed at low levels in a subset of endothelial cells, consistent 

with the chromatin accessibility of the P2 promoter and of several Runx1 enhancers in 

endothelial cells. Runx1 expression in endothelial cells appears to be stochastic; it then 
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becomes elevated in a subset of pre-HE cells, and is uniformly high in HE and IACs. 

The mechanism by which Runx1 expression is activated in a subset of pre-HE cells is 

not known, but our experiments provide some clues. scATAC-Seq revealed a distal 

enhancer in Runx1(-371), conserved in mammals, that first becomes accessible in pre-

HE. Highly conserved TF motifs in the -371 enhancer include GATA, STAT, and JUN, 

implying that TFs that bind these motifs play a role in opening the enhancer in pre-HE. 

Gata2 expression is activated in a pulsatile manner in endothelial cells in the DA (Eich 

et al., 2018), which may contribute to the stochastic expression of Runx1 in arterial 

endothelial cells. STAT and JUN  are recognized by TFs that are effectors of 

inflammatory signaling pathways, including type I and II interferons, and tumor necrosis 

factor, all of which promote HSPC formation from arterial endothelium (Espin-Palazon et 

al., 2014; Li et al., 2014; Sawamiphak et al., 2014). Hence well-known signaling 

pathways known to promote later Runx1 expression in HE likely initiate Runx1 

expression in a subset of pre-HE cells by activating the -371 enhancer. At later stages, 

in IACs and FL-HSCs, multiple additional enhancers, including the +23 enhancer gain 

accessibility and interact with the P1 promoter to further elevate Runx1 expression. 

  

A second important concept gleaned from our data is that the IACs contain at least two 

distinct HSPC subtypes, committed lympho-myeloid biased progenitors and pre-HSCs, 

that can be distinguished molecularly. These appear sequentially, with CD45+ lympho-

myeloid biased progenitors preceding the formation of type II pre-HSCs. The 

mechanisms underlying the generation of these two types of HSPCs is of great interest. 

It is not known, for example, if they independently differentiate from an equivalent 

population of immature IAC cells. Alternatively, they may be derived from distinct 
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populations of HE cells. The lympho-myeloid biased progenitors are more 

developmentally “mature” compared to the type II pre-HSCs, suggesting that they are 

more driven towards terminal differentiation. A similar population of lympho-myeloid 

restricted progenitors that originates in the yolk sac colonizes the FL and thymus prior to 

HSCs (Boiers et al., 2013; Luis et al., 2016). Lympho-myeloid-biased progenitors in the 

arterial IACs may serve a similar function.   

 

The earlier emergence of lympho-myeloid-biased progenitors in the arteries may have 

implications for ongoing efforts to generate pre-HSCs from ES cells. The acquisition of 

lymphoid potential is often used as a surrogate for pre-HSC formation. However, it is 

possible that conditions favoring the production of this earlier population of committed 

lympho-myeloid progenitors may be suboptimal for the later formation of pre-HSCs. If 

this is the case, then inhibiting the differentiation of lympho-myeloid progenitors in ES 

cell cultures may improve pre-HSC production ex vivo. 

 

Data and analysis from this study can be interactively explored using a single cell EHT 

data explorer based on VisCello (Packer et al., 2019) and R shiny (Chang et al., 2019) 

(https://github.com/qinzhu/VisCello.eht). 

 

Data availability 

Data generated during this study have been deposited in the Gene Expression Omnibus 

(GEO) with the accession number GSE137117. The EHT atlas can be interactively 

explored using VisCello (Packer et al., 2019) (https://github.com/qinzhu/VisCello.eht).  
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Figure 1. Experimental design, sorting and functional characterization of cell 
populations. 
 
a.  The caudal part of embryos were isolated (boundaries are illustrated with 

scissors), then organs and gut tube removed. Vitelline and umbilical arteries (VU) were 

isolated and included in the sample. The tissue was dissociated and cells were isolated 

by FACS, then analyzed by scRNA-seq, scATAT-seq, or in functional assays. All cell 

populations purified and sequenced are listed in Supplemental Table 1, and additional 

sort plots are in Supplementary Fig. 1. 

b.      Representative scatter plots for purification of E+HE+IAC cells (Ter119-CD41med/-

CD31+CD144+ESAM+) from the caudal half of E10.5 embryos. Kit was not used in the 

sorts in order to capture cells throughout the trajectory, including IAC cells. Numbers on 

the x and y-axes are indicated on the first FACS plot on the left, and unless changed 

are not depicted on plots to the right of the preceding plot. See Supplementary Fig. 1a 

for E9.5 E+HE+IAC purification. 

c.   Representative scatter plots for purification of E (Ter119-CD41-CD45-

CD31+CD144+ESAM+Kit-GFP-) and HE (Ter119-CD41-CD45-CD31+CD144+ESAM+Kitlo/-

GFP+) cells from E9.5 RUNX1:GFP embryos(Lorsbach et al., 2004).  See 

Supplementary Fig. 1b for E10.5 E and HE purifications. 

d.    Frequency of purified endothelial cells from E9.5 and E10.5 embryos that gave 

rise to CD45+cells when cultured in a limiting dilution assay on OP9 stromal cells. 

Frequencies are indicated on top of the bars. HE, Runx1:GFP+ endothelial cells, purified 

as described in panel c; E, Runx1:GFP- endothelial cells. Error bars, mean ± standard 

deviation (SD); n = 5-6 experiments. Frequencies were calculated using ELDA 

software(Hu and Smyth, 2009). 
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e.  Colony forming units (CFU) representing frequency of contaminating committed 

HSPCs in purified HE and E populations. Meg, megakaryocyte; Mac, macrophage;  

GEMM, granulocyte/erythroid/monocyte/megakaryocyte; BFU-E, burst forming unit-

erythroid; GM, granulocyte/monocyte. Error bars, mean ± SD; n = 2-3 experiments. 

f. Representative scatter plots of E10.5 IAC cells (Ter119-CD41med/-

CD31+CD144+ESAM+Kit+). See Supplementary Fig. 1c  for E11.5 IAC cell purification. 

g.   Representative scatter plots for purification of E10.5 CD45+ IAC cells containing 

lympho-myeloid biased progenitors (Ter119-CD41med/-CD31+CD144+ESAM+Kit+CD45+). 

h.  Representative scatter plots for purification of E11.5 CD45+CD27+CD144+ IAC 

cells containing type II pre-HSCs (E11.5 pre-HSC). 
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Figure 2. Overview of single cell RNA-Seq data. 

a. The number of cells sequenced (x-axis) and genes per cell detected for 

representative samples. 

b.   UMAP of continuous EHT trajectory and FL-HSCs, with selected cell populations 

labeled. 

c. Distribution of cells from each dataset in the UMAP reflecting EHT trajectory.  

d.  UMAP illustrating the two streams of arterial E cells expressing high levels of 

Efnb2 that converge to form the stem leading to HE and IACs. 

e. E+HE+IAC cells separately purified from the vitelline and umbilical (VU) arteries, 

and from the dorsal aorta (DA) within the caudal half of the embryo, highlighted on the 

global UMAP plot.  

f.  Cell count along the pseudotime trajectory. Bar graph quantifies results from a 

single sort of E10.5 E+HE+IAC cells; heat maps below the graphs show distribution of 

cells in all sorted cell populations. 
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Figure 3. Two streams of endothelial cells converge before hemogenic 

endothelium.  

a.          UMAP of EHT trajectory (from Fig. 2b, with FL-HSC removed) showing 7 

clusters identified by Louvain clustering and differential expression analysis. 

b. Zoom-in UMAP highlighting the two streams of endothelial cells (1: Wntlo E; 2: 

Wnthi E) converging to conflux E. Numbers in yellow circles represent pseudotime bins 

up to the point of convergence. 

c. Pearson correlation between average gene expression in the two endothelial 

streams over pseudotime bins. 

d. Average expression of Wntlo E, Wnthi E, and pre-HE-specific genes over 

pseudotime. Differentially expressed genes were derived by pairwise expression 

analysis between Wntlo E and Wnthi E. Pre-HE specific genes were derived by 

comparing pre-HE with Wntlo plus Wnthi E. 

e. Expression of Wnt target Foxq1 and Hpgd decrease in conflux E, although Foxq1 

expression is regained in a subset of pre-HE cells. Notch ligand Jag1 is up-regulated in 

Wnthi E, while Dll4 is expressed in both Wntlo and Wnthi E. Expression of Jag1 and Dll4 

is elevated post convergence. 

f. Heatmap showing stream-specific Reactome pathway activity over pseudotime. 

Cells were grouped into Wntlo E, Wnthi E and CE/PHE (Conflux E or pre-HE) and 

ordered using pseudotime. AUCell package (Aibar et al., 2017) was used to compute a 

pathway activity score for each cell. One vs the rest Student t test were used to derive 

group-specific pathways and the top 5 most significant pathways plotted. 
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Figure 4. Developmental bottleneck between pre-HE and HE cells. 

a.  UMAP of E10.5 E+HE+IAC cells showing 7 clusters from Fig. 3a. 

b. Expression of key markers of clusters, including Hey2 in conflux E and pre-HE, 

Cd44 in conflux E, pre-HE, HE and IACs, Ptprc in IACs, Gfi1 and Runx1 in HE and 

IACs, and high levels of Sox17 in conflux E and pre-HE, with downregulation in HE. 

Note Runx1 is expressed at low levels in a subset of Wntlo E, Wnthi E, and Endo (other) 

cells. 

c. Velocyto analysis revealing different differentiation dynamics along the EHT in 

E10.5 E+HE+IAC cells. To the right is a zoom-in velocity of pre-HE cells that have 

accumulated at the bottleneck between pre-HE and HE. 

d.   Activity of pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database, computed for each cell using the AUCell method (Aibar et al., 2017).   

e. UMAP of E+HE+IAC cells from E10.5 Runx1+/+ and Runx1+/- littermates. Pie 

charts to the right depict the distribution of cells between conflux E, pre-HE, and 

combined HE+IAC populations in E10.5 Runx1+/+ and Runx1+/- littermates. HE and IAC 

cells were combined to increase the statistical power. P-values indicate significant 

differences in the distributions of cells in pre-HE and HE+IAC in Runx1+/+ versus 

Runx1+/- samples based on proportion test. 

f.   Limiting dilution assay to determine the frequency of HE in the CD44+ fraction of 

E+HE+IAC cells isolated from E10.5 embryos (see Supplementary Fig. 1g for FACS 

plots). Shown are frequencies of cells that yielded hematopoietic cells (B220+, CD19+, 

Mac1+, Gr1+, and/or CD41 and CD45) ex vivo. Frequencies were calculated by 

ELDA(Hu and Smyth, 2009). Data represent three independent cell purifications and 
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limiting dilution assays (mean ± SD, unpaired two-tailed Student’s t-test). 
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Figure 5. Joint scRNA-Seq and ATAC-Seq analysis of bottleneck populations. 
 
a. UMAP of 1637 cells from scRNA-Seq and 1186 cells from scATAC-Seq, aligned 

using Seurat algorithm with a custom defined gene-peak correspondence matrix (see 

Methods). The number of HE cells was too few to be resolved by UMAP, and clustered 

with pre-HE. To gain enough statistical power for predicting E-P, we pooled reads from 

10 nearest neighbors as “meta cells”, and paired scATAC meta cell to nearby scRNA 

meta cell. Additional details can be found in the Methods section. 

b. UCSC genome browser tracks showing open chromatin signal of Cldn5 promoter 

and its predicted enhancers. Dots below each aggregated signal track presents signal 

from 50 sampled cells of each type.  

c. Linear regression shows high correlation between Runx1 +23 enhancer 

chromatin accessibility and Runx1 expression levels (z-score transformed). Each point 

represents a paired ATAC-RNA meta cell in panel a, with pooled RNA expression on 

the y-axis and pooled enhancer accessibility on the x-axis.  

d.      Linear regression result for each expressed gene against scATAC-Seq peaks 

200k bp upstream and downstream of its transcription start site (TSS). We recapitulated 

the majority of known enhancer-promoter interactions (E-Ps) that function during EHT, 

with the Runx1 +23 enhancer (Nottingham et al., 2007) and Gfi1 enhancer (Wilson et 

al., 2010) among the top predictions.  

e.  TF binding patterns among called scATAC-Seq peaks assessed using chromVar 

(Schep et al., 2017), which defines a deviation score reflecting the accessibility change 

at binding sites of each TF across all cells. Binding sites were determined using DNA 

motif scan on the called enhancers, which does not discriminate TFs in the same family 
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with very similar motifs. Top significant TFs based on Mann-Whitney U test are plotted 

for each stage. 

f.   ChromVar deviation score for selected TF motifs plotted on the UMAP, showing 

specific binding pattern for Tcf7 in Wnthi E, Sox17 in conflux E, Foxc2 in pre-HE, Gata2 

and Klf2 in both pre-HE and IAC. Runx1 binding sites are highly accessible post 

bottleneck, but also exhibit medium to high level of chromatin accessibility in some early 

stage cells. 
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Figure 6.  Developmental-stage-specific enhancers of Runx1. 

a. UCSC genome browser tracks showing open chromatin signal for each of the 

populations. Tracks from E to IAC are cumulative scATAC-Seq signals (per-base 

unique fragment coverage) normalized by the number of cells in that population. Tracks 

for FL-HSC are bulk ATAC-Seq data from Chen, C. et al (Chen et al., 2019). 

Experimentally validated enhancers and E-Ps from Marsman et al. (Marsman et al., 

2017) are shown in magenta. Enhancers and E-P links from Chen, C. et al. (Chen et al., 

2019) are shown in dark green. E-P links were inferred based on linear regression on 

paired scRNA-scATAC meta cells (see Methods). Placental mammal conservation by 

PhastCons score is shown as grey track. For each of the inferred enhancers, we 

scanned for known motifs from CIS-BP database and grouped TFs from the same 

family having similar motifs. Motif hits of several previously reported early hematopoietic 

TFs are highlighted below the track. 

b. Distribution of linear regression P-values for predicted Runx1 enhancers. Highly 

significant peaks include the validated +23 and -371 enhancers. The most significant 

peak is ~3.6 kb downstream of P1. 

c. Co-accessibility of Runx1 P1 promoter and its predicted linked enhancers in each 

cell type. P-values for co-accessibility in each cell type were computed using Fisher’s 

exact test with multiple testing correction.    

d. Stage-specific chromatin accessibility of Runx1 -371 enhancer and Runx1 

expression levels (z-score transformed). Each point in the scatter plot represents a 

paired ATAC-RNA meta cell in Fig. 5a, with pooled RNA expression on the y-axis and 

pooled enhancer accessibility on the x-axis. A 2-dimensional density plot is 
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superimposed on the scatter plot. 

e. Co-expression of transcription factors that have binding motifs at Runx1 

enhancers and whose expression precedes Runx1. Correlations were computed using 

gene expression matrix including conflux E, pre-HE and HE cells. TFs with Pearson 

correlation with Runx1 < 0.05 were removed. Hierarchical clustering was performed on 

the correlation matrix and a strong TF co-expression module was highlighted.  
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Figure 7. Two waves of CD45+ HSPCs in IAC cells. 

a. PCA  plot of a subset of data containing IACs, illustrating the trajectory of IAC 

differentiation from HE along the PC1 axis. 

b.  Expression of Gja5, Hey1, and Rac2 illustrating the maturation of IAC cells along 

the trajectory. 

c.   PCA plot showing the separation of E10.5 and E11.5 IAC cells along the PC3 

axis. 

d.   E10.5 and E11.5 IAC cells, E10.5 CD45+ IAC cells, and E11.5 pre-HSCs plotted 

separately to visualize their relative distribution along the PC3 axis. A k-nearest-

neighbor classifier (k=3 with PC1-10 as feature input) was trained using E10.5 CD45+ 

IAC cells and E11.5 pre-HSCs to determine the fraction of pre-HSCs (labeled in red) in 

E10.5 and E11.5 IAC cells. 

e.  Heat map showing top differentially expressed genes in E10.5 CD45+ IAC cells 

versus E11.5 pre-HSCs. 

f.  Preferential expression of Mecom in E11.5 pre-HSCs and IAC cells, versus Myc, 

Il7r, and Gata1 in E10.5 CD45+ IAC enriched for lympho-myeloid-biased progenitors 

and in E10.5 IAC cells. 

g.  Reactome pathway analysis comparing E11.5 pre-HSC and E10.5 CD45+ IAC 

cells. Color indicates pathway activity score computed using the AUCell package (Aibar 

et al., 2017). 

h.  Methylcellulose (colony forming unit-culture, CFU-C) assay performed in the 

presence of stem cell factor (SCF), interleukin 3 (IL3), IL6, and erythropoietin (EPO) to 

measure the frequency of committed erythroid and myeloid progenitors in E10.5 CD45+ 
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IAC cells, CD45- IAC cells, and E9.5 yolk sac EMPs. BFU-E, burst forming unit-

erythroid; GM, granulocyte/macrophage; Mac, macrophage; MK, megakaryocyte; 

GEMM, granulocyte/erythroid/monocyte/megakaryocyte. Error bars; mean ±  SD. 

Frequencies of total progenitors are indicated above the bars. n = 3 experiments. 

i.   Limiting dilution assays on OP9 stromal cells to determine the frequencies of 

progenitors in purified E10.5 CD45+ IAC and E10.5 CD45- IAC cells yielding B 

(CD45+CD19+B220mid/lo), myeloid (M) (Gr1+Mac1+or Gr1+Mac1-), and B+myeloid (B/M) 

cells in culture. Also shown are frequencies of progenitors  in purified E10.5 CD45+ IAC 

and E10.5 CD45- IAC cells that produced T cells (CD90+ CD25+) when cultured on OP9 

cells expressing the Notch ligand delta like 1. Error bars; mean ± SD. Frequencies of all 

progenitors are indicated above the bars. n = 7 experiments. 

j.   Percentage of wells at the limiting cell dose containing B, M, or B/M cells from 

experiments in panel i. n=8 experiments. 
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Online Methods 

Animal husbandry 

B6C3F1/J 3-week old female mice were purchased from Jackson Laboratories (Stock no: 

100010). Females were injected with 5 IU pregnant mare serum gonadotropin (Sigma) 

and 48 hours later with 5 IU human chorionic gonadotropin (Sigma). Females were 

immediately paired overnight with C57BL6/J male mice. Runx1:GFP8 (Runx1tm4Dow) 

homozygous male mice were mated to super-ovulated B6C3F1/J 3-week old female mice 

to generate embryos for purification of E and HE cells. Female B6C3F1/J mice were 

mated with male B6129SF1/J mice for isolating fetal liver HSCs. The morning post mating 

is considered embryonic day (E) 0.5. E9.5-E11.5 embryos were accurately staged at the 

time of harvest by counting somites. Embryos that showed abnormal development were 

discarded. Mice were handled according to protocols approved by the University of 

Pennsylvania’s Institutional Animal Care and Use Committee and housed in a specific-

pathogen-free facility. 

Embryo dissection and FACS 

Yolk sacs were removed from embryos, and vitelline vessels were retained with the 

embryonic portion. The head, cardiac and pulmonary regions, liver, digestive tube, tail 

and limb buds were removed. The remaining portion containing the aorta-gonad-

mesonephros (AGM) region, portions of somite, umbilical and vitelline vessels were 

collected. E9.5 and E10.5 yolk sacs were collected for isolation of EMPs. Tissues were 

dissected in phosphate buffered saline (PBS)/10% Fetal Bovine Serum (FBS) and 

Penicillin/Streptomycin (Sigma), followed by dissociation in 0.125 Collagenase (Sigma) 
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for 1 hour. Tissues were washed and filtered through a 40-micron filter and 

resuspended in antibody solution (Supplementary Table 4). Cells were sorted on either 

BD Influx, MoFlow Astrios EQ (Beckman), BD Jazz, or BD Aria, all equipped with a 100-

micron nozzle, and run at a pressure of 17 psi with flow rates less than 4000 

events/second. Sorted cells for functional assays were collected in PBS/20% 

FBS/25mM HEPES. For scRNA-seq and scATAC-seq, cells were collected in 

IMDM/20% FBS in low-retention microcentrifuge tubes (Denville). 

OP9 co-culture assays 

FACS sorted cells were plated in limiting dilutions on OP9 (ATCC) or OP9-delta-like 1 

stromal cells in 96-well plates containing Minimum Essential Medium Eagle - alpha 

modification (alpha MEM), 20% FBS (Hyclone, Gibco) and Pen/Strep. 5 ng/mL Flt3L 

and 10 ng/mL IL-7 were added to the medium for OP9 co-cultures however, the medium 

for the OP9-DL1 co-cultures was supplemented with 5 ng/mL Flt3L and 1 ng/mL IL-7. 

Co-cultures were conducted for 10-13 days and subsequently, flow cytometry was 

performed on a LSR-II (BD). The flow cytometry antibody panel for OP9 co-cultures 

included the hematopoietic markers Mac1, Gr1, CD19, B220, and CD45, while the OP9-

DL1 co-cultures were analyzed for CD45, CD90, and CD25. Limiting range was 

determined using the extreme limiting dilution analysis (ELDA) software analysis tool 

(Hu and Smyth, 2009). 

  

Methylcellulose assays 

To enumerate erythroid, myeloid, and megakaryocyte progenitors, sorted cells were 
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cultured in M3434 (StemCell Technologies) for 7 days. Colonies were scored based on 

morphological criteria.   

Hemogenic endothelial (HE) cell assay 

Sorted cells were plated in limiting dilutions with OP9 stromal cells for 8-10 days in 

alpha MEM containing 10ng/mL of IL-3, IL-7, Flt3, and SCF. Cells were analyzed by 

flow cytometry for hematopoietic markers (B220, CD19, Mac1, Gr1, and CD45), and 

ELDA software analysis tool39 was used to determine the frequency of HE. 

scRNA-Seq 

Sorted cells were immediately processed for library preparation using the 10x Genomics 

Chromium controller, in conjunction with the Chromium Single Cell 3′ Reagent Kit v2, 

according to manufacturer’s protocol (CG00052, Rev D). Libraries were quantified using 

the dsDNA High-Sensitivity (HS) Assay Kit (Invitrogen) on the Qubit fluorometer and the 

qPCR-based KAPA assay (Kapa Biosystems). Library quality assessment was 

performed on the Agilent 2100 Bioanalyzer in combination with the Agilent High 

Sensitivity DNA kit. Indexed libraries were pooled and sequenced on an Illumina HiSeq 

4000 or NextSeq 550 using paired-end 26 × 98 bp read length. 

scATAC-Seq 

Sorted cells were centrifuged at 300x g for 5 minutes (min) at 4 °C and resuspended in 

50 µL of 1x PBS + 0.04% BSA. 45 µL of supernatant was carefully discarded, and 45 µL 

of chilled lysis buffer was added and mixed by pipetting gently. After incubation for 5 

min on ice, 50 µL of chilled wash buffer was added without mixing. The mix was 

centrifuged at 500x g for 5 min at 4 °C, and 95 µL of supernatant was discarded. 45 µL 
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of chilled diluted nuclei buffer was added without mixing, and the mix was centrifuged at 

500x g for 5 min at 4 °C. The nuclei pellet was resuspended in 7 µL of chilled diluted 

nuclei buffer. 2 µL of nuclei suspension was used to determine the cell concentration by 

a Countess II cell counter (Invitrogen), and the remaining 5 µL of nuclei suspension was 

processed for library preparation using the Chromium Single Cell ATAC Reagent Kits 

protocol. Libraries were quantified using the dsDNA HS Assay Kit on the Qubit 

fluorometer and the qPCR-based KAPA assay. Library quality assessment was 

performed using the Agilent 2100 Bioanalyzer with the Agilent High Sensitivity DNA kit. 

Indexed libraries were pooled and sequenced on an Illumina NextSeq 550 using paired-

end 50 × 50 bp read length. 

scRNA-Seq data analysis 

Data pre-processing and filtering of non-endothelial and non-hematopoietic cells 

Raw sequencing reads were first pre-processed with 10x Genomics Cell Ranger 

pipeline and aligned to the mouse mm10 reference genome. An initial filtering was 

performed on the raw gene-barcode matrix output by the Cell Ranger cellranger count 

function, removing barcodes that have less than 1000 transcripts (quantified by unique 

molecular identifier (UMI)) and 1000 expressed genes (“expressed” means that there is 

at least 1 transcript from the gene in the cell). Barcodes that pass this filter were 

considered as cells and were fed into downstream dimension reduction and clustering 

analysis. In the global UMAP with 37,766 cells combined from all datasets 

(Supplementary Fig. 2a), we noticed several contaminant cell types, including 

mesenchymal-like cells that express high levels of collagen, erythroid progenitors, and 

Lyve1+ endothelial cells that likely have a lymphatic or YS origin (Supplementary Fig. 
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2a). Since these contaminant cell types are not directly associated with EHT, we 

removed them from our downstream analyses, thereby obtaining a UMAP exclusively 

with endothelial cells and hematopoietic cells (Supplementary Fig. 2b). 

  

Unsupervised clustering on the cleaned global UMAP reveals a clear separation 

between IACs and other hematopoietic progenitors. For example, Haptoglobin (Hp) is 

highly expressed in most YS EMPs, but has almost zero expression in IAC cells 

(Supplementary Fig. 2b). The proximity of EMP and IAC is likely driven by their shared 

differentiation potential, as both populations contain cells expressing Gata1, which 

mediates megakaryocyte differentiation (Ferreira et al., 2005) (Supplementary Fig. 2b). 

We found a Bnip3hi population in the E10.5 CD44+ E+HE+IAC samples, and a group of 

low-quality endothelial cells marked by low UMI counts per cell (Supplementary Fig. 2b). 

After filtering out these cells, we obtained a final UMAP with 23,081 cells representing 

the EHT trajectory (Supplementary Fig. 2c). We ran Louvain clustering on this global 

UMAP and assigned cell types based on differentially expressed genes (Supplementary 

Fig. 2c). The cell distributions of each dataset post-cleaning are shown in Fig. 2c. 

  

Feature selection, dimension reduction, and unsupervised clustering 

Gene-barcode UMI count matrix combined from all datasets was first processed with a 

standard pipeline utilizing the Monocle 3 package (Qiu et al., 2017). An initial variable 

expressed gene (VEG) selection was performed on the size-factor corrected, log2 

transformed expression matrix using the feature dispersion table output by Monocle 

estimate Dispersions and dispersionTable function, which requires a gene to have 
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dispersion_empirical/dispersion_fit > 0.5 and express at least more than 1 transcript in a 

minimum of 10 cells in order to be used as a VEG for dimension reduction. To produce 

a low dimensional embedding of the data, principal component analysis (PCA) was 

performed on the VEG-cell matrix, and the top PCs were used as features for the UMAP 

algorithm. UMAP was computed using the umap function in the uwot R package, with 

“cosine” distance metric, 20 nearest neighbors, and the rest of the parameters utilized 

were default. Louvain clustering was run on the k-nearest neighbor graph (k = 20) 

constructed from cell embeddings on the UMAP. 

  

We noticed that VEGs selected using the Monocle 3 workflow contained genes that are 

cell-type specific, as well as genes associated with cell cycle and batch differences. 

Some highly expressed house-keeping genes are also called as VEGs, likely due to 

variation in sequencing depth across batches. The UMAP produced by the Monocle 3 

pipeline is globally reflective of cell type, but locally affected by batch and cell cycle, 

causing some Louvain clusters to be less representative of underlying cell states. 

  

To select features that are most reflective of cell type transitions during EHT and less 

affected by batch or cell cycle difference, we devised a feature selection procedure 

called informative feature (IFF) selection. IFF takes an initial clustering generated by 

other single-cell clustering methods such as Monocle 3 or SC3 (Kiselev et al., 2017) 

and then computes the expressed proportion of each gene for each cluster. Genes that 

are detected in less than 10% of cells in each cluster are filtered out. To determine the 

“inequality” of the gene’s expression across clusters, we calculated the expressed (non-
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zero) fraction for the remaining genes in each cluster and then determined Gini 

coefficient on the per-cluster-expressed-fraction vector. The distribution of Gini 

coefficients shows a clear peak on the left (Supplementary Fig. 5a). Genes in the peak 

are highly enriched in house-keeping and cell cycle function, while genes in the right 

long tail are strongly enriched with cell type specific ontologies (Supplementary Fig. 

5b,c). This allows us to separate the majority of “cell-type-informative-features” from 

“ubiquitous features”. We found that IFF significantly improves the initial clustering result 

and identifies more underlying cell subtypes and states.  The dimension reduction and 

clustering result based on IFF is highly robust across various PC inputs and parameter 

choices (UMAP with different parameters can be viewed by using the VisCello.eht 

package). 

  

The IFF selection procedure is conceptually similar to the dpFeature selection 

introduced by the Monocle 2 package, which requires an initial clustering that is most 

reflective of cell type and selects cell-type-specific features by differential gene 

expression test. However, unlike the dpFeature, IFF selection is more permissive, as it 

does not require a gene to be significantly differentially expressed in one cell type to be 

selected. Additionally, genes expressed in a subset of clusters with a relatively weak but 

specific pattern are informative of cell type segregation, and a high Gini coefficient 

enables them to be selected as IFFs. Since Gini coefficient computation was based on 

the per-cluster-expressed-fraction rather than normalized expression, this procedure is 

also insensitive to various modeling assumptions underlying different single cell data 

normalization methods.   
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Differential expression analysis 

We ran differential expression analysis using the “sSeq” algorithm implemented in the 

cellrangerRkit package and used FDR < 0.05 and log2 fold change >1 to call 

differentially expressed genes (DEGs).  

Pathway enrichment analysis 

To directly compute a per-cell enrichment score for each pathway in the Reactome 

database (Fabregat et al., 2016), we used an approach based on the AUCell package 

(Aibar et al., 2017). We slightly modified the standard AUCell pipeline; instead of using 

all genes for ranking, we initially removed the majority of housekeeping genes using the 

IFF selection method described above, thereby retaining genes that are mostly cell-type 

specific (top 25% of genes ranked by Gini coefficient). To derive pathways that are 

differentially active along the EHT trajectory and between pre-HSC and lympho-

myeloid-biased progenitors, we subsequently performed stage-wise Student t test on 

the enrichment score (q-value <= 0.01, Supplementary Table 2 and 3). For Fig. 3f, 7g, 

Supplementary Fig. 3a, we removed pathways with fewer than 5 genes. Redundant 

pathways were removed if the Jaccard index (number of shared genes/number of all 

genes) for the pair of pathways was greater than 0.1 and the pathway had a higher q-

value. For Supplementary Fig. 5b,c, we computed gene ontology (GO) enrichment 

using the ClusterProfiler package (Yu et al., 2012), q-value cutoff of 0.05 and ontology 

type “Biological Process”  (BP).  

Pseudotime assignment 

We applied Slingshot, one of the best performing trajectory inference methods based on 
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a benchmark study of 45 methods (Saelens et al., 2019), to the cleaned data, as 

described above. Slingshot infers trajectory by fitting a principal curve along a user-

selected low dimensional embedding of the data and assigns each cell a pseudotime 

based on its projection onto the curve. We used the UMAP in Fig. 2b, excluding FL-

HSC, as the input to the Slingshot algorithm. The starting cluster was set to the “E 

(other)” population, as it includes the majority of E9.5 E, and the terminal cluster was set 

to the “IAC” population. Computed pseudotime was used for ordering cells along 

heatmaps in Fig. 2f, 3f, and Supplementary Fig. 3a. Cells in heatmaps of Fig. 7e,g and 

Supplementary Fig. 3b were ordered based on the PC score, rather than Slingshot-

assigned pseudotime. 

Velocyto analysis 

We used the “velocyto run10x” command with mm10 reference genome to quantify 

spliced and unspliced mRNAs. The output loom file was analyzed using the “velocyto.R” 

package. For the E10.5 E+HE+IAC dataset shown in Fig. 4, we sequenced ~56 k 

reads/cell, and 13.3% UMIs contained unspliced intronic sequences. Velocyto analysis 

allows estimation of RNA velocity of single cells by distinguishing between unspliced 

and spliced mRNAs, which is predictive of the rate of transcriptome change along the 

EHT trajectory. We used the “gene.relative.velocity.estimates” function with fit.quantile = 

0.05, deltaT=1, kCells=20 to calculate RNA velocity and subsequently, visualized the 

velocity vector field in the UMAP using the “show.velocity.on.embedding.cor” function 

with 20-cell neighborhood and 80 grid points along each UMAP axis.    

Comparison with published scRNA-Seq data 

We compared our data to three published scRNA-Seq datasets. Zhou et al. (Zhou et al., 
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2016) sequenced 181 cells including E, pre-HSC and HSC cells. Baron et al. (Baron et 

al., 2018) sequenced 1121 E, HE, EHT and IAC cells from E10 and E11 AGM using 

CEL-Seq. Mass et al. (Mass et al., 2016) sequenced ~90 E10.25 EMP cells. First, we 

performed PCA on our data using shared genes with the public data, then used the top 

10 PCs to compute a UMAP using the umap function from uwot package. Using the 

PCA loading matrix, we projected public data onto the same PCA space, then predicted 

UMAP embedding using umap_transform function with previously computed UMAP 

model. The final co-embedding for public data with our data are shown in 

Supplementary Fig. 7. 

scATAC-Seq data analysis 

Data pre-processing and peak calling  

scATAC-Seq reads were aligned to the mouse mm10 reference genome using the 

“cellranger-atac mkfastq” command. Peaks were called using MACS2 with the FDR 

cutoff of 0.10 and the following parameters:  -q 0.10 --broad --broad-cutoff 0.10) (Zhang 

et al., 2008). Quality control statistics of the data are shown in Supplementary Fig. 4. 

We implemented a custom PERL script to quantify the reads overlapping with peaks 

individually for each cell. The read is considered to overlap with the peak if at least half 

of the read overlaps. By quantifying the reads for each individual cell, we obtained a 

peak-barcode matrix. The peak-barcode matrix underwent an initial filtering, requiring a 

barcode to have at least 2000 fragments, 1000 detected peaks and at least 20 percent 

fragments in peak to be considered as a “cell”. Additionally, for each peak, we 

computed the fraction of cells with non-zero value, and removed peaks that were 
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detected in fewer than 1% of all cells. The final cleaned matrix contains 1670 cells and 

150,427 peaks. We also computed a normalized data matrix by first log2 transforming 

the data (with 1 pseudocount added) and regressing out variance explained by total 

detected peaks per cell estimated with the “lmFit” function in the limma package (Ritchie 

et al., 2015). This normalized matrix was used for differential accessibility test and 

preliminary matching of scRNA-Seq and scATAC-Seq clusters. 

 

scATAC-Seq clustering and differential accessibility analysis 

Traditional feature selection methods designed for scRNA-Seq data do not work well on 

scATAC-Seq data, due to much greater sparsity and a close-to-binary data distribution 

(per genomic locus per cell, the expected read count is 0, 1 or 2). This makes it difficult 

to select the most informative features for clustering and cell identity mapping. 

 

Using the IFF selection method described above, we were able to obtain a UMAP with 

cells separated into several distinct neighborhoods, which significantly improved the 

Louvain clustering quality (Supplementary Fig. 5d-f). To identify differentially accessible 

peaks (DAPs), we first binarized data as either open (>1) or closed (0), then calculated 

the fraction of cells that have open states for each peak in each cluster. We ran one-vs-

rest Chi-square test on the fractions and called cluster-specific peaks (DAPs) using 

FDR < 0.05 and absolute log2 fold change >1. Fold change is defined as the ratio of 

open fractions between the two groups. 

  

We observed that DAPs and DEGs show strong co-enrichment patterns in genomic loci 
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for certain pairs of scATAC-Seq and scRNA-Seq clusters (Supplementary Fig. 5g). 

Many of the DAPs are located near promoters of the matched DEG, but some are much 

more distant. By computing a co-enrichment value, we established an initial mapping 

between DAPs and DEGs (Supplementary Fig. 5g).   

Seurat alignment and co-embedding of scATAC-Seq and scRNA-Seq cells 

We used the Seurat alignment algorithm (Stuart et al., 2019) to co-embed scATAC-Seq 

and scRNA-Seq cells onto a single UMAP shown in Fig. 5a. We first matched each cell-

type-specific DEGs with corresponding DAPs 200 kb up and downstream of the TSS, 

using the method described above, obtaining 12768 links between 2379 DEGs and 

10126 DAPs. We then summed up DAP fragments for each DEG, obtaining a gene-

peak correspondence matrix as the “gene activity matrix” for Seurat alignment. Transfer 

anchors were computed using the “FindTransferAnchors” function in Seurat, with 

dimension reduction method set to “cca” (canonical correlation analysis). scATAC-Seq 

cells were then transferred to scRNA-Seq reference using the “TransferData” function, 

using 15 nearest neighbors and PCA for computing the weighted correction vectors. 

Finally, scATAC-Seq and scRNA-Seq Seurat objects were merged using the 

“merge.Seurat” function, and joint UMAP was computed with top 20 PCs and 15 nearest 

neighbors. Cell type labels were transferred from scRNA to scATAC using Seurat. 

Contaminant cell types, including mesenchymal, Lyve1+ E and Bnip3hi E were removed 

from both scRNA-Seq and scATAC-Seq data, and only cells involved in EHT were used 

to generate the UMAP shown in Fig. 5a. 

  

Inference of enhancer-promoter (E-P) links  
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The DAP-DEG matching procedure could link cell-type-specific peaks to nearby cell-

type-specific genes. However, this association required both differential expression and 

differential chromatin accessibility to be significant, potentially missing E-P links with 

weaker signal. Inspired by the Seurat alignment algorithm and eQTL inference method, 

we used linear regression on matched scATAC-Seq and scRNA-Seq meta cells to find 

gene-distal peaks (defined as enhancers) that have a chromatin accessibility pattern 

significantly correlated with a gene’s expression. First, for each scATAC-Seq cell, we 

paired it to its nearest scRNA-Seq neighbor in the joint UMAP, establishing links 

between 1186 scATAC-Seq cells and 659 scRNA-Seq cells. Note that not all scRNA-

Seq cells were paired with a scATAC-Seq cell and some scRNA-Seq cells were paired 

to multiple scATAC-Seq cells, but the paired scRNA-Seq cells were uniformly 

distributed along the EHT trajectory.  

  

To overcome the sparsity in scRNA-Seq and scATAC-Seq data, we expanded the 

paired scATAC-Seq and scRNA-Seq neighbors to paired scATAC-Seq and scRNA-Seq 

neighborhoods by pooling counts from 10 nearest neighbors. We normalized the pooled 

expression and accessibility by regressing out per-meta-cell total counts from log2 

transformed data, followed by z-score transformation. For each expressed gene, we ran 

linear regression with its pooled expression against pooled accessibility peaks 200kb 

upstream and downstream of its TSS in the paired scATAC-Seq meta-cell. Links with 

Bonferroni corrected p-values < 0.01 and regression coefficients > 0.1 were considered 

significant and these called peaks are likely enhancers that contribute to the 

corresponding gene’s expression. E-P links for Runx1 shown in Figure 6 were called 
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separately, including additional peaks within 500kb upstream and downstream of Runx1 

P1. For genes with multiple promoters (defined as regions 2000 bp upstream and 500 

bp downstream of each TSS), we ran a second regression using the promoter 

accessibility as dependent variable and each called peak as independent variable. This 

allowed us to link each called enhancer to a specific promoter. We computed “cis-

regulatory-activity matrix” based on the called E-Ps, and observed consistent pattern 

between a gene’s expression and its cis-regulatory-activity score (Supplementary Fig. 

6). 

 

TF activity assessment using chromVar 

We assessed TF binding activity to enhancers with chromVar (Schep et al., 2017) using 

its default setting, but changed the default p.value cutoff in “matchMotifs” function to 0.1 

/ (2 * median(enhancer length)) to account for multiple testing. The input TF motifs were 

curated from the CIS-BP motif database (Weirauch et al., 2014). For each TF motif and 

each cell, a GC-bias and background-corrected deviation score was computed using 

the “computeDeviations” function, which represents the relative gain or loss of TF 

binding activity. Lastly, to identify TFs with stage-specific binding activity, we ran stage-

wise Mann-Whitney U-test with the deviation scores, and considered those with FDR < 

0.05 as significant. 
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