

1 **Characterisation of the *ERF102* to *ERF105* genes of *Arabidopsis thaliana* and their role in  
2 the response to cold stress**

3

4 Sylvia Illgen<sup>1</sup>, Stefanie Zintl<sup>1</sup>, Ellen Zuther<sup>2</sup>, Dirk K. Hincha<sup>2</sup>, Thomas Schmülling<sup>1</sup>

5

6 *<sup>1</sup>Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie  
7 Universität Berlin, D-14195 Berlin, Germany*

8 *<sup>2</sup>Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam, Germany*

9

10

11 **Corresponding author:**

12 Thomas Schmülling

13 Institute of Biology/Applied Genetics

14 Dahlem Centre of Plant Sciences (DCPS)

15 Freie Universität Berlin

16 Albrecht-Thaer-Weg 6

17 D-14195 Berlin, Germany

18

19 Email: [tschmue@zedat.fu-berlin.de](mailto:tschmue@zedat.fu-berlin.de)

20

21

22 **Abstract**

23 The *ETHYLENE RESPONSE FACTOR (ERF)* genes of *Arabidopsis thaliana* form a large  
24 family encoding plant-specific transcription factors. Here, we characterise the four  
25 phylogenetically closely related *ERF102/ERF5*, *ERF103/ERF6*, *ERF104* and *ERF105*  
26 genes. Expression analyses revealed that these four genes are similarly regulated by  
27 different hormones and abiotic stresses. Analyses of tissue-specific expression using  
28 *promoter:GUS* reporter lines revealed their predominant expression in root tissues  
29 including the root meristem (*ERF103*), the quiescent center (*ERF104*) and the root  
30 vasculature (all). All GFP-ERF fusion proteins were nuclear-localised. The analysis of  
31 insertional mutants, amiRNA lines and 35S:*ERF* overexpressing transgenic lines  
32 indicated that *ERF102* to *ERF105* have only a limited impact on regulating shoot and root  
33 growth. Previous work had shown a role for *ERF105* in the cold stress response. Here,  
34 measurement of electrolyte leakage to determine leaf freezing tolerance and expression  
35 analyses of cold-responsive genes revealed that the combined activity of *ERF102* and  
36 *ERF103* is also required for a full cold acclimation response likely involving the CBF  
37 regulon. Together, these results suggest a common function of these *ERF* genes in  
38 regulating root architecture and the response to cold stress.

39

40 *Key-words:* *Arabidopsis thaliana*, cold acclimation, *ETHYLENE RESPONSE FACTOR* genes,  
41 freezing tolerance, root architecture, transcription factor

42

43

44

45

46

47

48 **INTRODUCTION**

49 The *ERF* genes encode plant-specific transcription factors forming a large gene family with  
50 122 members in *Arabidopsis thaliana* (Nakano, Suzuki, Fujimura & Shinshi, 2006). The ERF  
51 transcription factors are members of the APETALA2/ETHYLENE RESPONSE FACTOR  
52 (AP2/ERF) superfamily, which also contains the AP2 and RAV families and which is defined by  
53 the AP2/ERF DNA-binding domain (Riechmann *et al.*, 2000). This domain is about 60 amino  
54 acids long and forms an interface of three antiparallel β-strands and one α-helix (Ohme-Takagi  
55 & Shinshi, 1995). The β-strands bind to an 11 bp consensus sequence (5'-TAAGAGCCGCC-3'),  
56 the GCC-Box, in the major groove of the DNA double helix (Hao, Ohme-Takagi & Sarai, 1998).  
57 ERF transcription factors are involved in the regulation of numerous developmental processes  
58 (Riechmann & Meyerowitz, 1998) and they are important for the response to various biotic and  
59 abiotic stresses including cold (Agarwal, Agarwal, Reddy & Sopory, 2006b; Kizis, Lumbrieras &  
60 Pages, 2001; Srivastava & Kumar 2019; Xie, Nolan, Jiang & Yin, 2019).

61 Previously, we identified four phylogenetically closely related *ERF* genes with similar  
62 transcriptional responses to cytokinin (Brenner, Romanov, Köllmer, Bürkle & Schmülling, 2005).  
63 These genes, *ERF102* (AT5G47230; known as *ERF5*), *ERF103* (AT4G17490; identical to  
64 *ERF6*), *ERF104* (AT5G61600) and *ERF105* (AT5G51190) are members of group IXb of the  
65 ERF family (Nakano *et al.*, 2006). Expression of *ERF102* to *ERF105* is regulated by cold and  
66 different cold stress-related hormones, and it was demonstrated that *ERF105* has a function in  
67 the freezing tolerance and cold acclimation of *Arabidopsis* (Bolt, Zuther, Zintl, Hincha &  
68 Schmülling, 2017). All four *ERF* genes are also involved in the response to other stresses.  
69 *ERF102* and *ERF103* regulate leaf growth inhibition upon mild osmotic stress (Dubois *et al.*,  
70 2013, 2015) and *ERF103* additionally regulates oxidative stress responses (Sewelam *et al.*,  
71 2013). *ERF103*, *ERF104* and *ERF105* are involved in the fast retrograde signalling response  
72 and the acclimation response to high light (Moore, Vogel & Dietz, 2014; Vogel *et al.*, 2014).  
73 Further studies have shown that *ERF102* to *ERF105* play a role in plant immunity (Bethke *et al.*,

74 2009; Cao *et al.*, 2019; Mase *et al.*, 2013; Meng *et al.*, 2013; Moffat *et al.*, 2012; Son *et al.*,  
75 2012). Thus, ERF102 to ERF105 match the profile of other ERF transcription factors designated  
76 as a regulatory hub integrating hormone signalling in the plant response to abiotic stresses  
77 (Müller & Munné-Bosch, 2015).

78 The close phylogenetic relationship among the four *ERF* genes and the similarity of their  
79 transcriptional responses to different cues suggested that they share some common functions  
80 in response to cold. Cold stress adversely affects plant growth and development and several  
81 pathways to respond to cold stress have been described. Plants from temperate and boreal  
82 climates have evolved mechanisms to acquire freezing tolerance through cold acclimation, a  
83 process in which upon exposure to low non-freezing temperatures the ability to survive freezing  
84 temperatures increases (Xin & Browse, 2000). A central cold signalling pathway is the CBF  
85 (C-REPEAT-BINDING FACTOR/DEHYDRATION-RESPONSE ELEMENT-BINDING  
86 PROTEIN) regulon. The *CBF1* (*DREB1b*), *CBF2* (*DREB1c*) and *CBF3* (*DREB1a*) genes are  
87 the central regulatory elements of this regulon (Chinnusamy, Zhu & Zhu, 2007; Liu *et al.*, 1998).  
88 The INDUCER OF C-REPEAT-BINDING FACTOR EXPRESSION 1 (ICE1), a MYC-type bHLH  
89 (basic helix-loop-helix) transcription factor, is post-translationally activated in response to cold  
90 (Chinnusamy *et al.*, 2003; Ding *et al.*, 2015; Li *et al.*, 2017; Miura *et al.*, 2007). ICE1 in turn  
91 activates the transcription of the *CBF3* gene (Chinnusamy *et al.*, 2003). Besides ICE1,  
92 expression of the cold-regulated *CBF* genes is positively controlled by several other  
93 transcription factors including ICE2 and CALMODULIN-BINDING TRANSCRIPTION  
94 ACTIVATOR 3 (CAMTA3) (Doherty, Van Buskirk, Myers & Thomashow, 2009; Fursova,  
95 Pogorelko & Tarasov, 2009). Negative regulators of the CBF regulon are, for instance, the  
96 C2H2 zinc finger transcription factor ZAT12 (Vogel, Zarka, Van Buskirk, Fowler & Thomashow,  
97 2005) and MYB15 (Agarwal *et al.*, 2006a). MYB15 is in turn negatively regulated by ICE1  
98 (Agarwal *et al.*, 2006a) and phosphorylation of MYB15 by MPK6 reduces its affinity to bind to  
99 the *CBF3* promoter (Kim *et al.*, 2017). The CBF proteins regulate the expression of the COLD-

100 *REGULATED (COR)* genes and physiological responses (e.g. accumulation of cryoprotective  
101 compounds, modification of cellular structures) that together confer cold acclimation  
102 (Thomashow, 1999; Yamaguchi-Shinozaki & Shinozaki, 2006). Transcriptomic analyses of the  
103 CBF regulon has revealed that only part (~11%) of the cold-responsive genes is under control  
104 of the CBF regulon (Park *et al.*, 2015), which was confirmed by gene expression analysis in *cfb*  
105 triple mutants (Jia *et al.*, 2016; Zhao, Zhang, Xie, Si, Li & Zhu, 2016). It was concluded that  
106 only about one-third of the increase in freezing tolerance that occurs in response to low  
107 temperature is dependent on the CBF regulon (Park *et al.*, 2015). Together, this suggests that  
108 an extensive regulatory network involving numerous transcription factors in addition to the best  
109 known CBF core regulators governs the response to cold.

110 We previously identified the *ERF105* gene of *Arabidopsis* as an important factor for  
111 *Arabidopsis* freezing tolerance and cold acclimation (Bolt *et al.*, 2017). The strongly reduced  
112 expression of cold-responsive genes in *ERF105* mutants upon cold acclimation suggests that  
113 its action is linked to the CBF regulon. Also the expression of three closely related transcription  
114 factor genes, *ERF102*, *ERF103* and *ERF104*, is induced by cold (Bolt *et al.*, 2017; Lee,  
115 Henderson & Zhua, 2005; Park *et al.*, 2015; Vogel *et al.*, 2005). It is therefore possible that  
116 these transcription factors have a function in the response to cold stress. Here, we have  
117 extended our analysis of the *ERF105* gene family. We provide additional transcript data  
118 supporting a similar response profile of the *ERF105* family members and show the tissue-  
119 specific expressions of *pERF102:GUS* to *pERF104:GUS* as well as the subcellular localisations  
120 of GFP-ERF102 to GFP-ERF104 fusion proteins. Single and combined loss-of-function mutants  
121 and lines overexpressing single *ERF* genes were analysed for their growth characteristics and  
122 cold stress response and reveal partial functional redundancy of the members of this  
123 transcription factor subfamily.

124

125 **MATERIAL AND METHODS**

126 **Plant material**

127 *Arabidopsis thaliana* accession Col-0 was used as wild type. The *erf105* mutant, *ERF105*  
128 overexpressing lines, *pERF105:GUS* lines, complementation lines of *erf105*, as well as  
129 35S:ami104 and 35S:ami104/105 lines have been described previously (Bolt *et al.*, 2017). The  
130 T-DNA insertion line *erf102* (SAIL\_46\_C02) was obtained from the Nottingham Arabidopsis  
131 Stock Centre (NASC). After selection of homozygous plants, the location of the T-DNA insertion  
132 was verified by sequencing and plants were backcrossed twice with Col-0 to eliminate possible  
133 multiple insertions and other background mutations. Complementation of the *erf102* phenotype  
134 was tested by introgressing *ERF102ox-1* and *ERF102ox-2* into the *erf102* background. To  
135 generate lines overexpressing *ERF102* to *ERF104*, the genomic coding sequences of *ERF102*  
136 to *ERF104* were amplified by PCR, cloned into pDONR221 (Invitrogen, Carlsbad, USA) by  
137 using the Gateway cloning system and transferred subsequently into vector pK7WGF2 (Karimi,  
138 Depicker & Hilson, 2007b). To generate *pERF102:GUS* to *pERF104:GUS* reporter genes, the  
139 promoter regions of the *ERF* genes (~2 kb upstream of the start codon) were amplified by PCR  
140 and cloned into pDONR P4-P1R (Invitrogen). To generate the binary destination vectors, the  
141 pDONR P4-P1R constructs with the *ERF* promoters and the Gateway entry clone pEN-L1-SI-L2  
142 (Karimi, Bleys, Vanderhaeghen & Hilson, 2007a) harboring the *GUS* reporter gene were then  
143 combined into the destination vector pK7m24GW,3 using MultiSite Gateway (Karimi, De Meyer  
144 & Hilson, 2005). Artificial microRNA (amiRNA) was used to generate lines with a reduced  
145 *ERF103* expression (Schwab, Ossowski, Riester, Warthmann & Weigel, 2006). amiRNAs  
146 directed against *ERF104* and *ERF105* were described (Bolt *et al.*, 2017). The amiRNA  
147 sequence targeting *ERF103* was 5'-TAACGTCGTAACCTTCCCCCG-3'. The sequence was  
148 selected and the expression construct was made using the Web MicroRNA Designer (WMD3)  
149 and the protocol available under <http://wmd3.weigelworld.org>. The amiRNA precursor was  
150 cloned into pDONR221 (Invitrogen) and subsequently into pH2GW7 (Karimi *et al.*, 2007b)  
151 harboring the cauliflower mosaic virus (CaMV) 35S promoter to yield 35S:ami103. All primers

152 used for cloning are listed in Table S1. The binary constructs were transformed into Col-0 plants  
153 by *Agrobacterium tumefaciens* (GV3101:pMP90) using the floral dip method as described by  
154 Davis, Hall, Millar, Darrah & Davis (2009). Higher order mutants with reduced expression of  
155 *ERF* genes were generated by crossing amiRNA lines with T-DNA insertion lines.

156

157 **Growth conditions, hormone and stress treatment**

158 For hormone and stress treatments, plants were grown *in vitro* under long day (LD)  
159 conditions (16 h light/8 h dark) and 21 °C in half strength liquid Murashige and Skoog (MS)  
160 medium (for hormone treatment) or on solid MS medium (for stress treatment), in each case  
161 containing 0.1 % sucrose (Murashige & Skoog, 1962). Eleven days after germination (DAG),  
162 hormonal treatments were performed by adding the respective hormone to the liquid medium.  
163 Seedlings grown on solid medium were exposed to different stress treatments eleven DAG,  
164 including heat treatment at 42 °C in darkness, high light stress (1000  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) instead of  
165 standard light (100–150  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ), oxidative stress by spraying seedlings with 500 mM  $\text{H}_2\text{O}_2$ ,  
166 drought stress by transferring seedlings to dry filter paper, or salt/osmotic stress by  
167 transplanting seedlings to MS medium including 200 mM NaCl or 200 mM mannitol,  
168 respectively, for different time periods. Control plants were treated with the respective control  
169 conditions, which were the respective mock solution in the hormone experiment, 21 °C in the  
170 heat stress experiment, standard light conditions in the high light experiment, spraying with  
171 mock solution in the oxidative stress experiment and transferring to moist filter paper in the  
172 drought experiment, or mock medium in the salt and osmotic stress experiment.

173 For the analysis of growth and developmental parameters, plants were grown on soil in the  
174 greenhouse under LD conditions (16 h light/8 h dark) at a light intensity of 130–160  $\mu\text{mol m}^{-2} \text{s}^{-1}$   
175 and 21 °C. Fourteen, 21, 28, and 35 DAG rosette diameter and shoot height were determined.  
176 Furthermore, the flowering time, defined as opening of the first flower, was recorded. Leaf  
177 senescence was recorded based on visual inspection of the oldest leaves turning yellow.

178 For analysis of roots, plants were grown *in vitro* in vertically placed square petri dishes on  
179 half strength MS medium containing 10 g L<sup>-1</sup> phytagel. The elongation of the primary root was  
180 determined from digital images between four and ten DAG using the software ImageJ  
181 (Abràmoff, Magalhaes & Ram, 2004). The number of lateral roots was determined ten DAG  
182 from the same images.

183 For electrolyte leakage experiments, plants were grown for two weeks under SD conditions  
184 and then for four weeks under LD conditions at 200 µmol m<sup>-2</sup> s<sup>-1</sup> and 20 °C during the day,  
185 18 °C during the night (non-acclimated plants). For cold acclimation, plants were transferred to a  
186 cold chamber and cultivated under LD (90 µmol m<sup>-2</sup> s<sup>-1</sup>) at 4 °C for additional 14 days.

187

### 188 **RNA analysis**

189 Total RNA was extracted from tissues (seedlings in Fig. 2; leaves from six-week-old plants  
190 in Figure 6 and Figure S3) using the NucleoSpin RNA Plant Kit (Macherey & Nagel, Düren,  
191 Germany) according to the manufacturer's instructions, including an on-column DNase  
192 digestion. As a control, quantitative real-time PCR (qRT-PCR) measurements using intron-  
193 specific primers for AT5G65080 were performed to confirm the absence of genomic DNA  
194 contamination (Zuther, Schulz, Childs & Hincha, 2012). For RT-PCR, 500 ng RNA were reverse  
195 transcribed using the QIAGEN OneStep RT-PCR Kit according to the manufacturer's  
196 information (Qiagen, Hilden, Germany). The sequences of primers were as follows: *Actin2*-F,  
197 5'-TACAACGAGCTTCGTGTTGC-3'; *Actin2*-R, 5'-GATTGATCCTCCGATCCAGA-3';  
198 *ERF102*-F, 5'-CTGCACTTGGTTCATCGAG-3'; *ERF102*-R, 5'-GAGATAACGGCGACAGAACG-3'. For qRT-PCR analyses, 1 µg RNA was transcribed into  
199 cDNA by SuperScript III Reverse Transcriptase (Invitrogen) according to the manufacturer's  
200 instructions using a combination of oligo(dT) primers and random hexamers. qRT-PCR  
201 analyses were performed as previously described by Bolt *et al.* (2017). Four biological replicates  
202

203 were used and each qRT-PCR experiment was performed twice. In all cases both experiments  
204 yielded similar results and one result is shown exemplarily.

205

206 **GUS staining and microscopy**

207 Histochemical analysis to detect GUS reporter enzyme activity was performed as described  
208 by Jefferson, Kavanagh & Bevan (1987) with some modifications as described by Bolt *et al.*  
209 (2017). GUS analyses were carried out with two or three independent *pERF:GUS* lines for each  
210 of the constructs and identical expression patterns were seen. The histochemical analyses were  
211 repeated several times with plants of different age.

212

213 **Transient gene expression in *Nicotiana benthamiana* and confocal laser scanning  
214 microscopy**

215 Subcellular localisation of GFP fused to ERF proteins was done in leaves of 6-week-old  
216 *N. benthamiana* according to Sparkes, Runions, Kearns & Hawes (2006) with the equipment  
217 described by Bolt *et al.* (2017).

218

219 **Electrolyte leakage**

220 Electrolyte leakage was determined with detached leaves over a temperature range from -1  
221 to -16 °C for non-acclimated plants and from -2 to -22 °C for cold acclimated plants, cooled at a  
222 rate of 4 °C h<sup>-1</sup> as described in detail in Thalhammer, Hincha & Zuther (2014). Four technical  
223 replicates were analysed for each temperature point, and for each of these replicates leaves  
224 from three different plants were pooled. The temperature of 50 % electrolyte leakage (LT<sub>50</sub>) was  
225 calculated as the log EC50 value of sigmoidal curves fitted to the leakage values using the  
226 software GraphPad Prism3 (GraphPad Software, Inc., La Jolla, USA).

227

228 **Statistical analyses**

229 Every experiment was conducted at least twice. Figures show data of a single experiment that is  
230 representative of two or three experiments showing similar results. Data are presented as the  
231 mean  $\pm$  standard error. Statistical analyses were performed using SAS or GraphPad Instat  
232 Software (one-way ANOVA or two-way repeated measures ANOVA with Tukey's post hoc test).  
233 Normality and homogeneity of variance were tested using the Shapiro-Wilk and Levene tests  
234 (Neter, Kutner, Nachtsheim & Wasserman, 1996). In order to meet the assumptions, data sets  
235 were transformed using log or square-root transformation. If assumptions were not met, a  
236 nonparametric Kruskal-Wallis test was carried out followed by a Mann-Whitney test to perform a  
237 pairwise comparison.

238

## 239 **RESULTS**

### 240 **Phylogenetic analysis and description of the ERF102 to ERF105 proteins of *Arabidopsis***

241 ***thaliana***

242 According to 'The *Arabidopsis* Information Resource' (TAIR) (Huala *et al.*, 2001), *ERF102*  
243 to *ERF105* are relatively small, intronless genes with coding regions for proteins containing 300  
244 (*ERF102*), 282 (*ERF103*), 241 (*ERF104*) and 221 (*ERF105*) amino acids. Like all AP2/ERF  
245 transcription factors they possess the characteristic AP2/ERF domain and are the only proteins  
246 in group IX with one (*ERF102* and *ERF103*) or two (*ERF104* and *ERF105*) putative  
247 phosphorylation sites (Nakano *et al.*, 2006). Moreover, *ERF102* to *ERF105* possess acidic  
248 regions that might function as transcriptional activation domains (Fujimoto, Ohta, Usui, Shinshi  
249 & Ohme-Takagi, 2000). According to WoLF PSORT (Horton *et al.*, 2007) *ERF103* has a single  
250 nuclear localisation signal (NLS) whereas *ERF102*, *ERF104* and *ERF105* have two NLS  
251 (Figure 1a).

252 Comparison of the amino acid sequences of *ERF102* to *ERF105* using MUSCLE (Edgar,  
253 2004) revealed a sequence identity of 40 % between all four proteins with high conservation of  
254 the AP2/ERF domain. The protein pairs share 67 % (*ERF102* and *ERF103*) and 52 % (*ERF104*

255 and ERF105) amino acid identity. Phylogenetic analysis confirmed that ERF102 to ERF105 are  
256 closely related, with ERF102 and ERF103 together on one branch and ERF104 and ERF105 on  
257 the other branch of the phylogenetic tree (Figure 1b).

258

259 **The *ERF102* to *ERF105* transcription factor genes show a similar transcriptional  
260 regulation pattern**

261 Analysis of transcriptional regulation may yield indications on functional context, therefore  
262 the previous work showing that *ERF102* to *ERF105* are regulated similarly by cold and different  
263 cold stress-related hormones, including ethylene, jasmonate and abscisic acid (Bolt *et al.*,  
264 2017), was extended. First we complemented the comparison of the hormonal transcriptional  
265 regulation of the four *ERF* genes and analysed their response to auxin and salicylic acid (SA).  
266 Auxin (NAA) rapidly and strongly induced the transcript abundances of all four *ERF* genes about  
267 180-fold (*ERF102*), 100-fold (*ERF103*), 13-fold (*ERF104*) and 130-fold (*ERF105*) after 30 min.  
268 This increase was transient as 2 h after auxin treatment the transcript abundances were only  
269 increased between 11-fold (*ERF102*) and 2-fold (*ERF105*) (Figure 2a). In contrast, the transcript  
270 levels of all four *ERF* genes were downregulated by SA to about 50 % of the initial level after 2 h  
271 (Figure 2b).

272 Next, the response to different stress treatments was studied. Heat stress (42 °C) induced  
273 an upregulation of *ERF104* and *ERF105* of about 5-fold and 8-fold, respectively, after 2 h  
274 (Figure 2c). High light (1000  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) provoked a rapid upregulation of all four genes about  
275 4-fold (*ERF102*), 3-fold (*ERF103* and *ERF104*) and 4.5-fold (*ERF105*) after 30 min. The  
276 transcripts were back to their initial levels after 2 h (Figure 2d). Oxidative stress imposed by  
277  $\text{H}_2\text{O}_2$  treatment resulted in a rapid upregulation of all four genes after 15 min by about 3.5-fold  
278 (*ERF102*), 4.5-fold (*ERF103*), 6.5-fold (*ERF104*), and 8.5-fold (*ERF105*). After 2 h transcript  
279 levels were increased further to about 5-fold (*ERF102*), 9-fold (*ERF103*), 10-fold (*ERF104*) and  
280 12-fold (*ERF105*) compared to the initial level (Figure 2e). Oxidative stress imposed by

281 treatment with the superoxide-generating herbicide paraquat showed a similar result (Figure 2f).  
282 A fast transcriptional response of the *ERF* genes was also observed after drought stress that led  
283 to an about 2-fold (*ERF102* and *ERF104*), 3.5-fold (*ERF103*) and 5.5-fold (*ERF105*)  
284 upregulation of transcript levels within 15 min, which were decreased again after 1 h  
285 (Figure 2g). Salt stress (200 mM NaCl) also caused a rapid but transient upregulation of the  
286 *ERF* genes up to about 6–7-fold for the *ERF102*, *ERF103* and *ERF105* genes (Figure 2h). Two  
287 of the genes (*ERF102*, *ERF105*) also responded rapidly to mannitol application (Figure 2i).

288 Taken together, the four *ERF* genes showed similar, very rapid and often transient  
289 transcriptional responses to different plant hormones, including an extraordinarily strong  
290 induction by auxin, as well as rapid, strong and often comparable responses to different stress  
291 treatments. Some individual response profiles such as stronger responses to heat by *ERF104*  
292 and *ERF105* or the lack of response to NaCl and mannitol by *ERF104* were observed as well.  
293 These partly similar stress response profiles would be consistent with overlapping functions in  
294 response to these stresses.

295

296 ***pERF102:GUS* to *pERF105:GUS* reporter genes are expressed in different tissues in**  
297 ***Arabidopsis thaliana***

298 Transgenic plants expressing the *GUS* reporter gene under the control of ~2 kb of the  
299 *ERF102* to *ERF104* promoters located 5' upstream of the coding regions were analysed to  
300 determine the tissue-specific expression of these genes.

301 Thirty h after imbibition, strong GUS activity of *pERF102:GUS* plants was detected in the  
302 root tip transition zone of germinated seedlings (Figure 3a) and expanded within the next 30 h  
303 within the radicle (Figure 3b). Ten DAG, *pERF102:GUS* was expressed in all root tissues except  
304 root tips and root hairs. The strongest GUS activity was observed in the vascular bundle of  
305 primary roots and in cortex cells that surround emerging lateral roots (Figure 3c–e). Weak

306 *pERF102:GUS* expression was detected in the shoot apical meristem (SAM) of seedlings  
307 (Figure 3f).

308 *pERF103:GUS* activity was detected 60 h after imbibition in the root tip (Figure 3g) and  
309 seven DAG in the whole root (Figure 3h). Very high activity was detected in the root apical  
310 meristem (RAM) (Figure 3j). *pERF103:GUS* was also expressed in the root tip of lateral roots,  
311 but only after stage VIII of lateral root development (Péret *et al.*, 2009) (Figure 3k). GUS activity  
312 was observed in the vasculature of primary roots (Figure 3l), but not in the vasculature of  
313 emerging or fully developed lateral roots, and in cortex cells that surround emerging lateral roots  
314 (Figure 3m). In shoot tissues, weak expression of *pERF103:GUS* was detected only in the shoot  
315 apex (Figure 3i).

316 *pERF104:GUS* expression was also detected early after germination. Sixty h after  
317 imbibition, *pERF104:GUS* was weakly expressed in the vasculature of hypocotyls and  
318 cotyledons and slightly stronger in the vasculature of radicles (Figure 3n). Seven-day-old  
319 seedlings showed GUS activity in the vascular tissues as well as in the shoot apex (Figure 3o–  
320 q). A particularly well-defined local GUS signal was noted in the quiescent center of roots  
321 (Figure 3r and 3s). In addition, GUS activity was detected in the style of the gynoecium and at  
322 the base and in the apex of siliques (Figure 3t and 3u).

323 As plants matured, GUS activity of *pERF102:GUS* to *pERF104:GUS* plants was present in  
324 the same tissues as in young seedlings but declined progressively (data not shown). Together,  
325 *promoter:GUS* fusions of all three *ERF* genes were predominantly expressed in root tissues,  
326 similar to *pERF105:GUS* (Bolt *et al.*, 2017).

327

### 328 **GFP-ERF102 to GFP-ERF105 are located in the nucleus**

329 To examine the subcellular localisation of the ERF102 to ERF104 proteins, full-length  
330 cDNAs of *ERF102* to *ERF104* were fused in frame to the 3' end of the *GREEN FLUORESCENT*  
331 *PROTEIN* (*GFP*) coding sequence. The resulting *GFP-ERF102*, *GFP-ERF103* and

332 *GFP-ERF104* fusion genes driven by the cauliflower mosaic virus (CaMV) 35S promoter were  
333 transiently expressed in *Nicotiana benthamiana* leaf cells. Confocal imaging of GFP  
334 fluorescence in leaf cells showed that all three fusion proteins were predominantly located in the  
335 nucleus, weaker signals were derived from the cytosol (Figure 4). This pattern was similar to the  
336 predominant nuclear localisation of GFP-ERF105 (Bolt *et al.*, 2017).

337

### 338 **Characterisation of plants with altered *ERF102* to *ERF105* expression levels**

339 To identify and compare biological functions of the *ERF102* to *ERF104* genes, we studied  
340 transgenic lines with altered expression levels. For *ERF102*, a homozygous T-DNA insertion  
341 line (*erf102*; SAIL\_46\_C02) was obtained. Verification of the annotated location of the T-DNA  
342 insertion in *erf102* by sequencing revealed that the T-DNA is located at position +507 within the  
343 AP2/ERF domain (Figure S1a). RT-PCR analysis did not detect any expression of *ERF102* in  
344 *erf102* plants, suggesting that it is a null allele (Figure S1b). The morphological phenotype of the  
345 *erf102* mutant described below (Figure S2e) was fully complemented by introgression of the  
346 35S:*ERF102* gene (Figure S1c–1f). In several available T-DNA insertion lines for *ERF103*  
347 (SALK\_087356, GABI\_085B06) or *ERF104* (SALK\_024275, SALK\_057720, SALK\_152806) we  
348 detected residual *ERF* expression. Therefore, lines with a reduced *ERF103* or *ERF104*  
349 expression were constructed using artificial microRNAs (amiRNAs) (Schwab *et al.* 2006). Two  
350 independent, homozygous amiRNA expressing lines with the lowest residual expression of the  
351 target genes were selected for further experiments (Figure S2a and Bolt *et al.*, 2017). Moreover,  
352 lines overexpressing *ERF102* to *ERF104* under control of the CaMV 35S promoter were  
353 constructed and two strongly expressing lines selected (Figure S2b–2d).

354 Morphological analysis of plants with reduced or increased *ERF102* to *ERF104*  
355 expression revealed in most cases only slight differences of shoot growth compared to wild-type  
356 plants. Furthermore, plants with altered expression of *ERF102*, *ERF103* or *ERF104* flowered at

357 the same time as wild-type plants and showed a similar onset of leaf senescence (data not  
358 shown). In contrast, root elongation, the formation of lateral roots as well as the lateral root  
359 density was more strongly affected by altered expression of these genes (Figure 5c–5e).

360 The *erf102* mutant exhibited an about 10 % reduced shoot height compared to the wild  
361 type. Overexpressing lines of *ERF102* exhibited a slightly but not significantly increased shoot  
362 height as well as a 10 % (*ERF102ox-1*) and 8 % (*ERF102ox-2*) bigger rosette diameter  
363 (Figure 5a and 5b). Moreover, ten DAG *erf102* exhibited 27 % less and *ERF102ox-1* and  
364 *ERF102ox-2* 48 % and 51 % more lateral roots compared to wild type (Figure 5d). Lateral root  
365 density was increased 29–31 % in the *ERF102ox* lines (Figure 5e).

366 Both 35S:ami103 lines were smaller in size, with an 8 % reduced shoot height and a 6–  
367 9 % reduced rosette diameter compared to the wild type, while *ERF103* overexpression did not  
368 cause phenotypic differences in shoot height and rosette size (Figure 5a and 5b). Primary root  
369 elongation was about 13 % lower in both 35S:ami103 lines whereas *ERF103ox-1* and  
370 *ERF103ox-2* exhibited 12 % and 17 % longer primary roots compared to wild type (Figure 5c).  
371 Similarly, 35S:ami103 lines had up to 32 % less and *ERF103ox* plants up to 31 % more lateral  
372 roots than wild type (Figure 5d).

373 35S:ami104 lines had a 9 % (35S:ami104-1) and 18 % (35S:ami104-2) reduced shoot  
374 height, but an unchanged rosette diameter (Figure 5a and 5b). Primary root elongation of  
375 35S:ami104 lines was slightly reduced (about 13 % in 35S:ami104-2) and enhanced by up to  
376 29 % in *ERF104* overexpressing lines (Figure 5c). The number of lateral roots was reduced by  
377 about 20 % in both 35S:ami104 lines, while *ERF104ox-1* and *ERF104ox-2* exhibited 57 % and  
378 53 % more lateral roots (Figure 5d) and had a 30 % and 22 % higher lateral root density  
379 compared to wild type (Figure 5e).

380 Bolt *et al.* (2017) described that the shoot phenotype of *erf105* and *ERF105ox* lines  
381 resembled the wild type. Here, root analysis revealed 23 % less lateral roots in the *erf105*  
382 mutant compared to wild type (Figure 5c). *ERF105ox* lines showed a 17–25 % higher primary

383 root elongation, 53-83 % more lateral roots and a 31-44 % higher lateral root density compared  
384 to wild type (Figure 5c–5e).

385 To examine a potentially redundant role of the four *ERF* genes, several higher order  
386 mutants were generated, namely *erf102* 35S:ami, *erf102* 35S:ami,  
387 *erf105* 35S:ami, and *erf102* 35S:ami. These lines include all possible  
388 combinations of at least two *ERF* genes that are mutated or have a lowered expression, except  
389 combined loss of function of *ERF103* and *ERF104*. Higher order mutants did not show a  
390 phenotypic additive effect compared to the respective single mutants with respect to rosette  
391 diameter, shoot height, primary root elongation, number of lateral roots and flowering time (data  
392 not shown). These results suggest that *ERF102* to *ERF105* are not acting redundantly on  
393 growth regulation. However, we cannot exclude that the degree of downregulation achieved by  
394 amiRNAs is insufficient to uncover redundant gene activities.

395

396 **Analysis of the functional redundancy of the *ERF102* to *ERF105* genes in the cold  
397 acclimation response**

398 *ERF105* is a positive regulator of *Arabidopsis* freezing tolerance and cold acclimation (Bolt  
399 *et al.*, 2017). Therefore, we analysed whether the *ERF102* to *ERF104* genes, which are also  
400 regulated by cold (Bolt *et al.*, 2017; Lee *et al.*, 2005; Park *et al.*, 2015; Vogel *et al.*, 2005), also  
401 play a role in regulating freezing tolerance and cold acclimation. To this end, we studied the  
402 transcript accumulation of selected cold responsive genes in *ERF* single and double mutants  
403 and analysed the freezing tolerance of these mutants.

404 First, we examined the expression levels of selected cold-responsive genes in plants  
405 with reduced or enhanced expression of a single *ERF102* to *ERF104* gene before  
406 (non-acclimated, NA) and after 14 d of cold acclimation (ACC14) and compared these to wild  
407 type. The transcript levels of cold-responsive genes were in all lines similar to wild type (Figure

408 S3), which contrasts with the strongly altered transcript levels displayed by the *erf105* mutant  
409 and *ERF105* overexpressing lines (Bolt *et al.*, 2017).

410 The analysis of higher order mutants revealed that under non-acclimated (NA) conditions  
411 the steady state mRNA levels of *CBF1*, *CBF2*, *COR15A*, and *COR15B* were up to 60 % lower in  
412 the *erf105* 35S:ami103-1 plants compared to those of the wild type (Figure 6). In all other  
413 mutant combinations the basic expression level of these cold-responsive genes was slightly, but  
414 not significantly lower than in the wild type. After 14 d of acclimation at 4 °C (ACC14), the  
415 expression levels of these genes were elevated between 2- and 5-fold in wild type compared to  
416 NA plants. ACC14 plants with mutated *ERF102* or *ERF105* genes combined with reduced  
417 expression of *ERF103* or *ERF104* showed, in most cases, a lower induction of the cold-  
418 responsive genes. For example, the induction levels of *CBF2* and *COR15B* were reduced in all  
419 hybrid lines to about 50 % of the wild-type level. Strikingly, the induction of *CBF3* was  
420 completely absent in all mutant lines while it was induced about 2-fold in wild type. In contrast,  
421 *ZAT12* gene expression showed a stronger increase in *erf102* 35S:ami103-1,  
422 *erf102* 35S:ami104-2 and *erf105* 35S:ami103-1 than in wild type (Figure 6f).

423 Next, we determined the freezing tolerance of plants with reduced *ERF102*, *ERF103* and  
424 *ERF104* gene expression before and after 14 d of cold acclimation at 4 °C by an electrolyte  
425 leakage assay of detached leaves (Thalhammer *et al.*, 2014). To take into account the almost  
426 complete arrest of plant growth at 4 °C, the electrolyte leakage assay was performed at the  
427 same developmental state for both NA and ACC plants. *erf105* mutant plants used as positive  
428 control showed higher  $LT_{50}$  (temperature of 50 % electrolyte leakage) values ( $-3.99 \pm 0.13$  °C in  
429 NA plants and  $-8.99 \pm 0.17$  °C in ACC14 plants) compared to wild type ( $-4.7 \pm 0.11$  °C in NA  
430 plants and  $-10.82 \pm 0.12$  °C in ACC14 plants) (Figure 7a), which is consistent with previous  
431 results (Bolt *et al.*, 2017). In contrast, *erf102*, 35S:ami103-1 and 35S:ami104-2 plants did not  
432 show differences in  $LT_{50}$  values compared to wild type. Also, overexpression of single *ERF102*,

433 *ERF103* or *ERF104* genes did not lead to altered freezing tolerance under NA conditions  
434 (Figure S4). The behavior of the overexpressing lines in response to acclimation was not tested.

435 Analysis of the freezing tolerance of higher order mutants revealed that only the *erf105*  
436 35S:ami103-1 plants showed higher  $LT_{50}$  values ( $-4.93 \pm 0.12$  °C) compared to wild type  
437 ( $-5.46 \pm 0.12$  °C) under NA conditions (Figure 7b). Following cold acclimation, several  
438 combinations exhibited higher  $LT_{50}$  values compared to wild type ( $-9.54 \pm 0.18$  °C). The  
439 strongest change was shown by *erf102* 35S:ami103-1 ( $-7.89 \pm 0.24$  °C), while  
440 *erf105* 35S:ami103-1 ( $-8.78 \pm 0.25$  °C) as well as *erf102* 35S:ami104/105-1 ( $-8.79 \pm 0.25$  °C)  
441 showed smaller effects. In contrast, *erf102* 35S:ami104-2 showed a similar  $LT_{50}$  as wild type  
442 after cold acclimation (Figure 7b).

443

#### 444 **DISCUSSION**

445 Recently, we reported that *ERF102* to *ERF105* are regulated by cold and different cold stress-  
446 related hormones, and we demonstrated that *ERF105* has a function in the freezing tolerance  
447 and cold acclimation of *Arabidopsis* (Bolt *et al.*, 2017). In the present study we significantly  
448 extended this work and first investigated further expression characteristics of the gene family  
449 members and then explored their potentially redundant roles in regulating plant growth and the  
450 cold acclimation response.

451

#### 452 *The ERF102 to ERF105 genes show overlapping expression patterns*

453 The similar profiles of gene expression in response to hormone or stress treatment are  
454 consistent with a partial functional redundancy of *ERF102* to *ERF105*. For instance, all genes  
455 were rapidly downregulated by SA (Figure 2b) and upregulated by high light or H<sub>2</sub>O<sub>2</sub> (Figure 2e  
456 and 2f). Network analysis of publicly available transcriptome data using for instance  
457 GeneMANIA (Warde-Farley *et al.*, 2010) also showed that these four *ERF* genes are co-  
458 regulated and co-expressed in a large number of conditions including numerous hormone and

459 chemical treatments (Figure S5). However, some individual response profiles were discovered  
460 as well. Thus, not all four *ERF* genes were transcriptionally regulated by heat, drought, NaCl, or  
461 mannitol (Figure 2). Together, the analysis of transcriptional regulation is in line with the idea  
462 that *ERF102* to *ERF105* have roles in multiple hormone and stress responses as was shown for  
463 these and other ERFs in a number of cases (Bethke *et al.*, 2009; Dubois *et al.*, 2013, 2015;  
464 reviewed by Licausi, Ohme-Takagi & Perata 2013; Mase *et al.*, 2013; Meng *et al.*, 2013; Moffat  
465 *et al.*, 2012; Moore *et al.*, 2014; Sewelam *et al.*, 2013; Son *et al.*, 2012; Vogel *et al.*, 2014; Xie *et*  
466 *al.*, 2019).

467

468 *The ERF102 to ERF105 genes have a limited impact on plant growth*

469 The tissue-specific expression patterns of *pERF102:GUS* to *pERF105:GUS* are partly  
470 overlapping, which is in accordance with a redundant function of the ERF proteins. All four  
471 genes are predominantly expressed in the root, only for *pERF105:GUS* a significant expression  
472 was detected also in several shoot tissues such as vasculature, apical shoot and stomata (Bolt  
473 *et al.*, 2017). Expression of all four *pERF-GUS* reporter genes was visible shortly after  
474 germination in different cell types of the radicle and later in distinct root tissues and cell types.  
475 For example, *pERF102:GUS*, *pERF103:GUS* and *pERF105:GUS* were expressed in the cortex  
476 cells that surround emerging lateral roots. Interestingly, expression of *ERF102*, *ERF103* and  
477 *ERF105* is regulated by cytokinin and auxin, two key hormones of lateral root development  
478 (Benková *et al.*, 2003; Casimiro *et al.*, 2003; Chang, Ramireddy & Schmülling, 2013, 2015;  
479 Swarup *et al.*, 2008). However, insertional mutants or amiRNA lines did not reveal a major role  
480 of these genes in regulating root architecture. 35S:ami103 and 35S:ami104 lines had shorter  
481 roots and most loss-of-function mutants formed less lateral roots. However, the differences were  
482 small and the lateral root density mostly not significantly altered (Figure 5c-e). Opposite and  
483 stronger phenotypic changes were noted in the respective overexpressing lines, which had  
484 longer roots, an increased number (by up to ~85 %) of lateral roots and a higher lateral root

485 density. Although overexpression experiments may produce artefacts and are not fully  
486 conclusive they have been often informative about the functional context of a given gene. Loss-  
487 of-function phenotypes of genes regulating root architecture can be subtle or depend on the  
488 environmental or developmental context (Motte, Vanneste & Beeckman, 2019) and thus might  
489 have gone unnoticed in the *erf* mutants. The strong regulation of the four *ERF* genes by  
490 different stressors suggests that they might be particularly relevant under stressful conditions. It  
491 cannot be excluded that members of the *ERF105* gene subfamily studied here contribute to  
492 regulating root architecture under specific environmental conditions, this requires further  
493 investigation.

494 Among the expression sites of the four *ERF* genes, the expression of *pERF104:GUS* in the  
495 quiescent center (Figure 3r) particularly intriguing. Noteworthy, among the direct targets of  
496 *ERF104* is the transcription factor gene *SCARECROW* (*SCR*) (Sparks *et al.*, 2016). *SCR* is,  
497 together with *SHORTROOT*, essential for quiescent center specification and maintenance (Salvi  
498 *et al.*, 2018; reviewed by Benfey, 2016). Further, in a yeast two-hybrid screen the transcription  
499 factor *MYB56/BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING CENTER* (*BRAVO*)  
500 was identified as an interactor of *ERF104* (our unpublished result). *MYB56/BRAVO* represses  
501 cell divisions in the quiescent center thus counteracting *SCR* (Di Laurenzio *et al.*, 1996;  
502 Vilarrasa-Blasi *et al.*, 2014). It is known that interaction with other transcription factors  
503 modulates the activity of *ERFs* (Licausi *et al.*, 2013; Xie *et al.*, 2019). While these data suggest  
504 that *ERF104* might be part of the transcription factor network in the quiescent center, we have  
505 been unable to detect any changes of cellular organisation in the quiescent center and  
506 surrounding cells nor did we detect altered *SCR* gene expression in the 35S:ami104 and  
507 *ERF104ox* lines (data not shown). It could be that the decrease in *ERF104* expression obtained  
508 in the amiRNA lines is not sufficient to cause a strong loss-of-function phenotype, analysis of a  
509 null mutation could be more informative.

510

511 *The ERF102 to ERF105 genes redundantly regulate the response to cold stress*

512 One important goal of this work was to analyse the possible roles of the ERF105-related  
513 transcription factors in the response to cold stress. *ERF102* to *ERF105* are rapidly cold-induced  
514 (Bolt *et al.*, 2017) in parallel with the first wave transcription factors of the cold stress response  
515 including the *CBF* genes (Park *et al.*, 2015). Mutation or reduced expression of *ERF102*,  
516 *ERF103* or *ERF104* single genes did not lead to an altered freezing tolerance. In case of the  
517 amiRNA lines this could be due to residual gene expression (Figure 7a and S1). Thus, among  
518 the four genes only the mutation of *ERF105* resulted in a decreased freezing tolerance before  
519 and after cold acclimation compared to wild type underpinning its primary role (Figure 7a and  
520 Bolt *et al.*, 2017). However, the analysis of freezing tolerance of higher order mutants indicated  
521 that *ERF102* and *ERF103* also play a role in cold acclimation, since the reduced expression of  
522 both genes resulted in altered expression of cold response genes (Figure 6) and higher freezing  
523 sensitivity (Figure 7b). The eventual role of *ERF104* cannot be determined with certainty as only  
524 amiRNA lines were available and not all combinations with other *ERF* genes were tested.  
525 35S:ami104 lines in combination with the *erf102* mutation showed an altered expression of cold-  
526 responsive genes similar to other double mutant combinations (Figure 6) and the  $LT_{50}$  value  
527 was higher than in wild type although the significance was below the threshold ( $p < 0.05$ ),  
528 indicating that *ERF104* might be involved in the response to cold as well. Our attempts to  
529 demonstrate a role of these *ERF* genes at low temperatures in the root as was reported for  
530 *CRF2* and *CRF3* belonging to a different class of *ERF* genes (Jeon *et al.*, 2016), have failed.  
531 Such an activity could, as was stated above, be masked by incomplete loss of function and/or  
532 the unknown nature of their specific activities.

533 Based on transcript data which show a lowered activation of *CBF* and *COR* genes in *erf*  
534 gene mutants after cold acclimation (Figure 6), *ERF102*, *ERF103* and *ERF104* may also play a  
535 role upstream of these genes as was suggested for *ERF105* (Bolt *et al.*, 2017). Increased *CBF3*  
536 expression upon cold acclimation was even completely lacking in the *erf* mutants (Figure 6c) but

537 the gene was still cold responsive at earlier time points although with a reduced amplitude as  
538 compared to wild type (Figure S6). A proximity of the four *ERF* genes to the CBF regulon was  
539 also suggested by the result of the network analysis which placed several proteins that are part  
540 of the CBF regulon (CBF2/DREB1c, ZAT10 und RAP2.13/RAP2.4) in the vicinity of *ERF102* to  
541 *ERF105* (Figure S5).

542 The lower activation of the *CBF* and *COR* genes in cold-acclimated *erf* gene mutants could  
543 be at least partially due to enhanced expression of another gene belonging to the CBF regulon,  
544 *ZAT12* (Figure 6f). *ZAT12* encodes a zinc-finger protein known to be a negative regulator of the  
545 CBF regulon and is usually induced in parallel with *CBF* and *COR* genes providing a negative  
546 regulatory feedback loop (Vogel *et al.*, 2005). The higher expression of *ZAT12* in the *erf* higher  
547 order mutants suggests that these *ERF* genes may act as negative regulators of *ZAT12*  
548 expression and in this way as positive regulators of *CBF* and *COR* genes. Notably, the *ZAT12*  
549 gene does not possess the specific DNA-binding motif of *ERF* transcription factors, the GCC-  
550 box, in its promoter region (Hao *et al.*, 1998) suggesting that additional factors might be required  
551 for its repression by *ERFs*.

552 Knockout/knockdown of single *ERF102* to *ERF104* genes did not cause an altered  
553 transcript level of cold-responsive genes after 14 d of cold acclimation (Figure S3), which is  
554 again in line with the assumption that these *ERF* genes may have redundant roles. Lines  
555 overexpressing *ERF102* to *ERF104* did neither show a differential expression of cold-  
556 responsive genes nor an altered freezing tolerance (Figure S3 and S4), similar to *ERF105*  
557 overexpressing lines (Bolt *et al.*, 2017). It is possible that *ERF102* to *ERF105* are required for  
558 the transcriptional activation of these target genes but are not the rate-limiting factors, for  
559 example because they function as part of a complex. Alternatively, activity of these proteins  
560 under cold may depend on additional regulatory steps such as phosphorylation which could be  
561 transient. Indeed, the phosphorylation of *ERF102* to *ERF104* by MPK3 and/or MPK6 was shown  
562 (Bethke *et al.*, 2009; Son *et al.*, 2012; Wang, Du, Zhao, Miao & Song, 2013) and functions of

563 MPK3 and MPK6 in the cold signalling pathway have been described (Kim *et al.*, 2017; Li *et al.*,  
564 2017; Zhao *et al.*, 2017).

565 Taken together, the data document redundant functions of *ERF102* to *ERF105* in response  
566 to cold. Notably, combined action of related *ERF* transcription factor genes has also been  
567 reported in other cases (Jeon, Cho, Lee, Van Binh & Kim, 2016; Kim, Jang & Park, 2016).  
568 Future work will investigate how the *ERF102* to *ERF105* proteins are integrated in the extensive  
569 transcriptional network governing the response to cold.

570

## 571 SUPPORTING INFORMATION

572 **Figure S1. Characterisation of the *erf102* mutant SAIL\_46\_C02.** (a) Structure of the  
573 *Arabidopsis* *ERF102* (AT5G47230) gene. The black line denotes the untranslated region, the  
574 black box represents the exon, the T-DNA insertion at position +507 is shown by a triangle. The  
575 positions of primers that were used for RT-PCR are indicated by arrows. (b) RT-PCR analysis of  
576 *ERF102* expression using total RNA extracted from seedlings of wild type and *erf102*. The  
577 *Actin2* gene was used as internal control. (c–f) Complementation of the *erf102* mutant by  
578 introgression of the 35S:*ERF102* gene. Shoot height (c) and rosette diameter (d) of 35-day-old  
579 plants. (e) Elongation of the primary root and (f) number of lateral roots of plants grown on half-  
580 strength MS medium. Asterisks indicate significant differences to the wild type ( $n \geq 30$ ),  
581 (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ). Error bars represent SE.

582

583 **Figure S2. Analysis of lines with altered *ERF102* to *ERF104* expression levels.** (a–d)  
584 Relative expression level of *ERF* genes in eight pooled eleven-day-old seedlings of wild type,  
585 lines expressing amiRNA directed against *ERF103* (a) and lines overexpressing *ERF102* (b),  
586 *ERF103* (c,) or *ERF104* (d). Transcript levels of wild-type samples were set to 1 ( $n \geq 4$ ).  
587 Asterisks indicate significant differences to the wild type (\*\*\*,  $p < 0.001$ ). Error bars represent

588 SE. (e–g) Shoot phenotype of plants grown 35 days under long day conditions. The pictures are  
589 complementary to the data shown in Figure 5a and 5b.

590

591 **Figure S3. Expression of selected cold-responsive genes in lines with reduced or**  
592 **enhanced *ERF102* to *ERF104* expression.** Relative expression of *CBF1* (a), *CBF2* (b),  
593 *COR15A* (c), and *COR15B* (d) genes in lines with reduced or enhanced *ERF102* to *ERF104*  
594 expression before (non-acclimated, NA) and after 14 days (acclimated, ACC14) of cold  
595 acclimation at 4 °C. Transcript levels of wild-type samples under non-acclimated conditions  
596 were set to 1 (n ≥ 4). Error bars represent SE.

597

598 **Figure S4. Electrolyte leakage assays of lines with enhanced *ERF102* to *ERF104***  
599 **expression.** Electrolyte leakage assays on detached leaves of lines overexpressing *ERF102*,  
600 *ERF103* or *ERF104* before (non-acclimated, NA) and after 14 days (acclimated, ACC14) of cold  
601 acclimation at 4 °C. The bars represent the means ± SE from four replicate measurements  
602 where each replicate comprised leaves from three plants.

603

604 **Figure S5. Network of co-localisation, co-expression, genetic and physical interactions of**  
605 ***ERF105*.** The blue connecting lines between two genes represent co-localisation, purple lines  
606 co-expression, green lines genetic interactions and red lines physical interactions. ABI1, ABA  
607 INSENSITIVE 1; AZF3, ZINC-FINGER PROTEIN 3; CAF1-9, CCR4-ASSOCIATED FACTOR 1  
608 HOMOLOG 9; CYP707A3, CYTOCHROME P450, FAMILY 707, SUBFAMILY A,  
609 POLYPEPTIDE 3; DREB1C (CBF2), DEHYDRATION-RESPONSE ELEMENT-BINDING  
610 PROTEIN 1C/C-REPEAT-BINDING FACTOR 2; ERF, ETHYLENE RESPONSE FACTOR;  
611 PP2CA, PROTEIN PHOSPHATASE 2CA; PUMP4, PLANT UNCOUPLING MITOCHONDRIAL  
612 PROTEIN 4; RAP2-13 (RAP2.4/WIND), RELATED TO AP2 13; SZF1, SALT-INDUCIBLE ZINC-

613 FINGER; ZAT10 (STZ), ZINC FINGER PROTEIN 10 (SALT TOLERANCE ZINC FINGER).

614 Analysis was done using GeneMANIA (Warde-Farley *et al.*, 2010).

615

616 **Figure S6. Expression of selected cold-responsive genes in lines with reduced *ERF102* to**

617 ***ERF105* expression.** Relative expression of *CBF1*, *CBF2* and *CBF3* genes in lines with

618 reduced *ERF102* to *ERF105* after 4 h of cold treatment at 4 °C. Transcript levels of wild-type

619 samples under control conditions were set to 1 (n≥4). Asterisks indicate significant differences

620 to the wild type (\*, p < 0.05; \*\*\*, p < 0.001). Error bars represent ± SE.

621

622 **Table S1. Sequences of primers used for cloning.** Small letters in the primer sequences

623 indicate the integrated *attB4*- or *attB1*-sites for cloning DNA fragments into the vector pDONR

624 P4-P1R. Small italic letters in the primer sequences indicate the integrated *attB1*- or *attB2*-sites

625 for cloning DNA fragments into the vector pDONR221. Underlined letters are the nucleotides

626 added to keep the sequence in the right frame.

627

## 628 **ACKNOWLEDGEMENTS**

629 We acknowledge funding by Deutsche Forschungsgemeinschaft (Collaborative Research

630 Centre 973, [www.sfb.973](http://www.sfb.973)).

631

## 632 **REFERENCES**

633 Abràmoff M.D., Magalhaes P.J. & Ram S.J. (2004) Image processing with ImageJ. *Journal of*  
634 *Biophotonics* 11, 36–43.

635 Agarwal M., Hao Y., Kapoor A., Dong C.H., Fujii H., Zheng X. & Zhu J.K. (2006a) A R2R3 type  
636 MYB transcription factor is involved in the cold regulation of *CBF* genes and in acquired  
637 freezing tolerance. *Journal of Biological Chemistry* 281, 37636–37645.

- 638 Agarwal P.K., Agarwal P., Reddy M.K. & Sopory S.K. (2006b) Role of DREB transcription  
639 factors in abiotic and biotic stress tolerance in plants. *Plant Cell Reports* 25, 1263–1274.
- 640 Benfey PN (2016). Defining the path from stem cells to differentiated tissue. *Current Topics*  
641 *Developmental Biology* 116, 35–43.
- 642 Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G. & Friml J.  
643 (2003) Local, efflux-dependent auxin gradients as a common module for plant organ  
644 formation. *Cell* 115, 591–602.
- 645 Bethke G., Unthan T., Uhrig J.F., Pöschl Y., Gust A.A., Scheel D. & Lee J. (2009) Flg22  
646 regulates the release of an ethylene response factor substrate from MAP kinase 6 in  
647 *Arabidopsis thaliana* via ethylene signaling. *Proceedings of the National Academy of*  
648 *Sciences USA* 106, 8067–8072.
- 649 Bolt S., Zuther E., Zintl S., Hincha D.K. & Schmülling T. (2017) ERF105 is a transcription factor  
650 gene of *Arabidopsis thaliana* required for freezing tolerance and cold acclimation. *Plant Cell*  
651 *Environment* 40, 108–120.
- 652 Brenner W.G., Romanov G.A., Köllmer I., Bürkle L. & Schmülling T. (2005) Immediate-early and  
653 delayed cytokinin response genes of *Arabidopsis thaliana* identified by genome-wide  
654 expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action  
655 through transcriptional cascades. *The Plant Journal* 44, 314–333.
- 656 Cao F.Y., Khan M., Taniguchi M., Mirmiran A., Moeder W., Lumba S., Yoshioka K. & Desveaux  
657 D. (2019) A host-pathogen interactome uncovers phytopathogenic strategies to manipulate  
658 plant ABA responses. *The Plant Journal*, doi: 10.1111/tpj.14425.
- 659 Casimiro I., Beeckman T., Graham N., Bhalerao R., Zhang H., Casero P., ... & Bennett M.J.  
660 (2003) Dissecting *Arabidopsis* lateral root development. *Trends in Plant Science* 8, 165–  
661 171.

- 662 Chang L., Ramireddy E. & Schmülling T. (2013) Lateral root formation and growth of  
663 Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. *Journal*  
664 *of Experimental Botany* 64, 5021–5032.
- 665 Chang L., Ramireddy E. & Schmülling T. (2015) Cytokinin as a positional cue regulating lateral  
666 root spacing in Arabidopsis. *Journal of Experimental Botany* 66, 4759–4768.
- 667 Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M. & Zhu J.K. (2003) ICE1: a  
668 regulator of cold-induced transcriptome and freezing tolerance in *Arabidopsis*. *Genes &*  
669 *Development* 17, 1043–1054.
- 670 Chinnusamy V., Zhu J. & Zhu J.K. (2007) Cold stress regulation of gene expression in plants.  
671 *Trends in Plant Science* 12, 444–451.
- 672 Davis A.M., Hall A., Millar A.J., Darrah C. & Davis S.J. (2009) Streamlined subprotocols for  
673 floral-dip transformation and selection of transformants in *Arabidopsis thaliana*. *Plant*  
674 *Methods* 5, 1–7.
- 675 Di Laurenzio L., Wysocka-Diller J., Malamy J.E., Pysh L., Helariutta Y., Freshour G., ... &  
676 Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is  
677 essential for generating the radial organization of the *Arabidopsis* root. *Cell* 86, 423–433.
- 678 Ding Y., Li H., Zhang X., Xie Q., Gong Z. & Yang S. (2015) OST1 kinase modulates freezing  
679 tolerance by enhancing ICE1 stability in *Arabidopsis*. *Developmental Cell* 3, 278–289.
- 680 Doherty C.J., Van Buskirk H.A., Myers S.J. & Thomashow M.F. (2009) Roles for *Arabidopsis*  
681 CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.  
682 *Plant Cell* 21, 972–984.
- 683 Dubois M., Skirycz A., Claeys H., Maleux K., Dhondt S., De Bodt S., ... & Inzé D. (2013)  
684 Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting  
685 conditions in *Arabidopsis*. *Plant Physiology* 162, 319–332.

- 686 Dubois M., Van den Broeck L., Claeys H., Van Vlierberghe K., Matsui M. & Inzé D. (2015) The  
687 ETHYLENE RESPONSE FACTORS ERF6 and ERF11 antagonistically regulate mannitol-  
688 induced growth inhibition in *Arabidopsis*. *Plant Physiology* 169, 166–179.
- 689 Edgar R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high  
690 throughput. *Nucleic Acids Research* 32, 1792–1797.
- 691 Fujimoto S.Y., Ohta M., Usui A., Shinshi H. & Ohme-Takagi M. (2000) *Arabidopsis* ethylene  
692 responsive element binding factors act as transcriptional activators or repressors of GCC  
693 box-mediated gene expression. *Plant Cell* 12, 393–404.
- 694 Fursova O.V., Pogorelko G.V. & Tarasov V.A. (2009) Identification of ICE2, a gene involved in  
695 cold acclimation which determines freezing tolerance in *Arabidopsis thaliana*. *Gene* 429,  
696 98–103.
- 697 Hao D., Ohme-Takagi M. & Sarai A. (1998) Unique mode of GCC box recognition by the DNA-  
698 binding domain of ethylene-responsive element-binding factor (ERF domain) in plants.  
699 *Journal of Biological Chemistry* 273, 26857–26861.
- 700 Horton P., Park K.J., Obayashi T., Fujita N., Harada H., Adams-Collier C.J. & Nakai K. (2007)  
701 WoLF PSORT: protein localization predictor. *Nucleic Acids Research* 35, 585–587.
- 702 Huala E., Dickerman A.W., Garcia-Hernandez M., Weems D., Reiser L., LaFond F., ... & Rhee  
703 S.Y. (2001) The *Arabidopsis* Information Resource (TAIR): a comprehensive database and  
704 web-based information retrieval, analysis, and visualization system for a model plant.  
705 *Nucleic Acids Research* 2, 102–105.
- 706 Jefferson R.A., Kavanagh T.A. & Bevan M.W. (1987) GUS fusions: beta-glucuronidase as a  
707 sensitive and versatile gene fusion marker in higher plants. *The EMBO Journal* 6, 3901–  
708 3907.
- 709 Jeon J., Cho C., Lee M.R., Van Binh N. & Kim J. (2016) CYTOKININ RESPONSE FACTOR2  
710 (CRF2) and CRF3 regulate lateral root development in response to cold stress in  
711 *Arabidopsis*. *Plant Cell* 28, 1828–1843.

- 712 Jia Y., Ding Y., Shi Y., Zhang X., Gong Z. & Yang S. (2016) The *cbfs* triple mutants reveal the  
713 essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in  
714 *Arabidopsis*. *New Phytologist* 212, 345–353.
- 715 Karimi B., Bleys A., Vanderhaeghen R. & Hilson P. (2007a) Building blocks for plant gene  
716 assembly. *Plant Physiology* 145, 1183–1191.
- 717 Karimi M., De Meyer B. & Hilson P. (2005) Modular cloning in plant cells. *Trends in Plant  
718 Science* 10, 103–105.
- 719 Karimi M., Depicker A. & Hilson P. (2007b) Recombinational cloning with plant Gateway  
720 vectors. *Plant Physiology* 145, 1144–1154.
- 721 Kim S.H., Kim H.S., Bahk S., An J., Yoo Y., Kim J.Y. & Chung W.S. (2017) Phosphorylation of  
722 the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for  
723 freezing tolerance in *Arabidopsis*. *Nucleic Acids Research* 45, 6613–6627.
- 724 Kim N.Y., Jang Y.J. & Park O.K. (2018) AP2/ERF family transcription factors ORA59 and  
725 RAP2.3 interact in the nucleus and function together in ethylene responses. *Frontiers in  
726 Plant Science* 19, 1675.
- 727 Kizis D., Lumbreras V. & Pages M. (2001) Role of AP2/EREBP transcription factors in gene  
728 regulation during abiotic stress. *FEBS Letters* 498, 187–189.
- 729 Li H., Ding Y., Shi Y., Zhang X., Zhang S., Gong Z. & Yang S. (2017) MPK3- and MPK6-  
730 mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in  
731 *Arabidopsis*. *Developmental Cell* 43, 630–642.
- 732 Lee B., Henderson D.A. & Zhua J. (2005) The *Arabidopsis* cold-responsive transcriptome and  
733 its regulation by ICE1. *Plant Cell* 17, 3155–3175.
- 734 Licausi F., Ohme-Takagi M. & Perata P. (2013) APETALA2/Ethylene Responsive Factor  
735 (AP2/ERF) transcription factors: mediators of stress responses and developmental  
736 programs. *New Phytologist* 199, 639–649.

- 737 Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. & Shinozaki K.  
738 (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding  
739 domain separate two cellular signal transduction pathways in drought- and low-  
740 temperature-responsive gene expression, respectively, in *Arabidopsis*. *Plant Cell* 10, 1391–  
741 1406.
- 742 Mase K., Ishihama N., Mori H., Takahashi H., Kaminaka H., Kodama M. & Yoshioka H. (2013)  
743 Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-  
744 triggered programmed cell death. *Molecular Plant Microbe Interaction* 26, 868–879.
- 745 Meng X., Xu J., He Y., Yang K.Y., Mordorski B., Liu Y. & Zhang S. (2013) Phosphorylation of an  
746 ERF transcription factor by *Arabidopsis* MPK3/MPK6 regulates plant defense gene  
747 induction and fungal resistance. *Plant Cell* 25, 1126–1142.
- 748 Miura K., Jin J.B., Lee J., Yoo C.Y., Stirm V., Miura T., ... & Hasegawa P.M. (2007) SIZ1-  
749 mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in  
750 *Arabidopsis*. *Plant Cell* 19, 1403–1414.
- 751 Moffat C.S., Ingle R.A., Wathugala D.L., Saunders N.J., Knight H. & Knight M.R. (2012) ERF5  
752 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against  
753 *Botrytis cinerea* in *Arabidopsis*. *PLoS One* 7, e35995.
- 754 Moore M., Vogel M. & Dietz K. (2014) The acclimation response to high light is initiated within  
755 seconds as indicated by upregulation of AP2/ERF transcription factor network in  
756 *Arabidopsis thaliana*. *Plant Signaling & Behaviour* 9, 976479.
- 757 Motte H., Vanneste S. & Beeckman T. (2019) Molecular and environmental regulation of root  
758 development. *Annual Review of Plant Biology* 70, 465–488.
- 759 Müller M. & Munné-Bosch S. (2015) Ethylene response factors: A key regulatory hub in  
760 hormone and stress signaling. *Plant Physiology* 169, 32–41.
- 761 Murashige T. & Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco  
762 tissue cultures. *Physiologia Plantarum* 15, 473–497.

- 763 Nakano T., Suzuki K., Fujimura T. & Shinshi H. (2006) Genome-wide analysis of the *ERF* gene  
764 family in *Arabidopsis* and rice. *Plant Physiology* 140, 411–432.
- 765 Neter J., Kutner M.H., Nachtsheim C.J. & Wasserman W. (1996) Applied linear statistic models.  
766 McGraw-Hill, New York
- 767 Ohme-Takagi M. & Shinshi H. (1995) Ethylene-inducible DNA binding proteins that interact with  
768 an ethylene-responsive element. *Plant Cell* 7, 173–182.
- 769 Park S., Lee C.M., Doherty C.J., Gilmour S.J., Kim Y. & Thomashow M.F. (2015) Regulation of  
770 the *Arabidopsis* CBF regulon by a complex low-temperature regulatory network. *The Plant  
771 Journal* 82, 193–207.
- 772 Péret B., De Rybel B., Casimiro I., Benková E., Swarup R., Laplaze L., ... & Bennett M.J. (2009)  
773 *Arabidopsis* lateral root development: an emerging story. *Trends in Plant Sciences* 14, 399–  
774 408.
- 775 Riechmann J.L. & Meyerowitz E.M. (1998) The AP2/EREBP family of plant transcription factors.  
776 *Biological Chemistry* 379, 6336–6346.
- 777 Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C., Keddie J., ... & Yu G. (2000)  
778 *Arabidopsis* transcription factors: genome-wide comparative analysis among eukaryotes.  
779 *Science* 290, 2105–2110.
- 780 Salvi E, Di Mambro R, Pacifici E., Dello Ioio R., Costantino P., Moubayidin L. & Sabatini S.  
781 (2018). SCARECROW and SHORTROOT control the auxin/cytokinin balance necessary for  
782 embryonic stem cell niche specification. *Plant Signaling & Behaviour* 13, e1507402.
- 783 Schwab R., Ossowski S., Riester M., Warthmann N. & Weigel D. (2006) Highly specific gene  
784 silencing by artificial microRNAs in *Arabidopsis*. *Plant Cell* 18, 1121–1133.
- 785 Sewelam N., Kazan K., Thomas-Hall S.R., Kidd B.N., Manners J.M. & Schenk P.M. (2013)  
786 Ethylene response factor 6 is a regulator of reactive oxygen species signaling in  
787 *Arabidopsis*. *PLoS One* 8, e70289.

- 788 Son G.H., Wan J., Kim H.J., Nguyen X.C., Chung W.S., Hong J.C. & Stacey G. (2012)  
789 Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate  
790 immunity response. *Molecular Plant-Microbe Interactions* 25, 48–60.
- 791 Sparks E.E., Drapek C., Gaudinier A., Li S., Ansariola M., ... & Benfey P.N. (2016)  
792 Establishment of expression in the SHORTROOT-SCARECROW transcriptional cascade  
793 through opposing activities of both activators and repressors. *Developmental Cell* 39, 585–  
794 596.
- 795 Sparkes I.A., Runions J., Kearns A. & Hawes C. (2006) Rapid, transient expression of  
796 fluorescent fusion proteins in tobacco plants and generation of stably transformed plants.  
797 *Nature Protocols* 1, 2019–2025.
- 798 Srivastava R. & Kumar R. (2019) The expanding roles of APETALA2/Ethylene Responsive  
799 Factors and their potential applications in crop improvement. *Briefings in Functional*  
800 *Genomics* 00, 1–15. Steinert J., Schiml S., Fauser F. & Puchta H. (2015) Highly efficient  
801 heritable plant genome engineering using Cas9 orthologues from *Streptococcus*  
802 *thermophilus* and *Staphylococcus aureus*. *Plant Journal* 84, 1295–1305.
- 803 Swarup K., Benková E., Swarup R., Casimiro I., Péret B., Yang Y., ... & Bennett M.J. (2008)  
804 The auxin influx carrier LAX3 promotes lateral root emergence. *Nature Cell Biology* 10,  
805 946–954.
- 806 Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. (2013) MEGA6: Molecular  
807 evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution* 30, 2725–2729.
- 808 Thalhammer A., Hincha D.K. & Zuther E. (2014) Measuring freezing tolerance: electrolyte  
809 leakage and chlorophyll fluorescence assays. *Methods in Molecular Biology* 1166, 15–24.
- 810 Thomashow M.F. (1999) Plant cold acclimation: Freezing tolerance genes and regulatory  
811 mechanisms. *Annual Review of Plant Physiology and Plant Molecular Biology* 50, 571–599.

- 812 Vilarrasa-Blasi J., González-García M.P., Frigola D., Fàbregas N., Alexiou K.G., LópezBigas N.,  
813 ... & Caño-Delgado A.I. (2014) Regulation of plant stem cell quiescence by a  
814 brassinosteroid signaling module. *Developmental Cell* 30, 36–47.
- 815 Vogel J.T., Zarka D.G., Van Buskirk H.A., Fowler S.G. & Thomashow M.F. (2005) Roles of the  
816 CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of  
817 *Arabidopsis*. *The Plant Journal* 41, 195–211.
- 818 Moore M.O., König K., Pecher P., Alsharafa K., Lee J. & Dietz K.J. (2014) Fast retrograde  
819 signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED  
820 PROTEIN KINASE6, and AP2/ERF transcription factors in *Arabidopsis*. *Plant Cell* 26,  
821 1151–1165.
- 822 Wang P., Du Y., Zhao X., Miao Y. & Song C.P. (2013) The MPK6-ERF6-ROS-responsive *cis*-  
823 acting Element7/GCC box complex modulates oxidative gene transcription and the  
824 oxidative response in *Arabidopsis*. *Plant Physiology* 161, 1392–1408.
- 825 Warde-Farley D., Donaldson S.L., Comes O., Zuberi K., Badrawi R., Chao P., ... & Morris Q  
826 (2010) The GeneMANIA prediction server: biological network integration for gene  
827 prioritization and predicting gene function. *Nucleic Acids Research* 38, 214–220.
- 828 Xie Z., Nolan T.M., Jiang H. & Yin Y. (2019) AP2/ERF transcription factor regulatory networks in  
829 hormone and abiotic stress responses in *Arabidopsis*. *Frontiers of Plant Science* 10, 228.
- 830 Xin Z. & Browse J. (2000) Cold comfort farm: the acclimation of plants to freezing temperatures.  
831 *Plant Cell & Environment* 23, 893–902.
- 832 Yamaguchi-Shinozaki K. & Shinozaki K. (2006) Transcriptional regulatory networks in cellular  
833 responses and tolerance to dehydration and cold stresses. *Annual Review of Plant Biology*  
834 57, 781–803.
- 835 Zhao C., Zhang Z., Xie S., Si T., Li Y. & Zhu J.K. (2016) Mutational evidence for the critical role  
836 of CBF transcription factors in cold acclimation in *Arabidopsis*. *Plant Physiology* 171, 2744–  
837 2759.

- 838 Zhao C., Wang P., Si T., Hsu C.C., Wang L., Zayed O., ... & Zhu JK. (2017) MAP kinase  
839 cascades regulate the cold response by modulating ICE1 protein stability. *Developmental*  
840 *Cell* 43, 618–629.
- 841 Zuther E., Schulz E., Childs L.H. & Hincha DK. (2012) Clinal variation in the non-acclimated and  
842 cold-acclimated freezing tolerance of *Arabidopsis thaliana* accessions. *Plant Cell &*  
843 *Environment* 35, 1860–1878.

844

845 **FIGURE LEGENDS**

846 **Figure 1. Description of the ERF102 to ERF105 proteins of *Arabidopsis thaliana*.** (a)  
847 Structure of the *Arabidopsis* ERF102 to ERF105 proteins. The schematic representation shows  
848 the protein structures of ERF102 to ERF105 according to Nakano *et al.* (2006). The striped lines  
849 represent the protein sequences, the hexagons indicate the AP2/ERF DNA-binding domain,  
850 black lines putative phosphorylation sites, dashed lines the putative transactivation domains  
851 (Nakano *et al.*, 2006) and grey boxes the nuclear localisation signals determined with WoLF  
852 PSORT (Horton *et al.*, 2007). (b) An unrooted phylogenetic tree of group IXb ERF transcription  
853 factors showing the close evolutionary relationship between ERF102 to ERF105 (red box) that  
854 are studied. The phylogenetic tree was constructed using MEGA6, the numbers indicate  
855 bootstrap values (Tamura, Stecher, Peterson, Filipski & Kumar, 2013).

856

857 **Figure 2. Regulation of ERF102 to ERF105 gene expression.** Relative expression of *ERF102*  
858 to *ERF105* in eleven-day-old wild-type seedlings (eight pooled seedlings per sample) after  
859 hormone or stress treatment. (a) Auxin (10  $\mu$ M NAA), (b) salicylic acid (10 mM SA), (c) heat  
860 (42 °C), (d) high light (1000  $\mu$ mol  $m^{-2} s^{-1}$ ), (e and f) oxidative stress (e; 500 mM  $H_2O_2$ , f; 30  $\mu$ M  
861 paraquat), (g) drought, (h) salt (200 mM NaCl) and (i) osmotic stress (200 mM mannitol).  
862 Transcript levels of wild-type samples under control conditions were set to 1 ( $n \geq 4$ ). Asterisks  
863 indicate significant differences to the respective mock treatment (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ;  
864 \*\*\*,  $p < 0.001$ ). Error bars represent SE.

865

866 **Figure 6. Expression of selected cold-responsive genes in lines with reduced ERF102 to**  
867 **ERF105 expression.** Relative expression of *CBF1* (a), *CBF2* (b), *CBF3* (c), *COR15A* (d),  
868 *COR15B* (e) and *ZAT12* (f) genes in lines with reduced *ERF102* to *ERF105* expression before  
869 (non-acclimated, NA) and after 14 days (acclimated, ACC14) of cold acclimation at 4 °C.

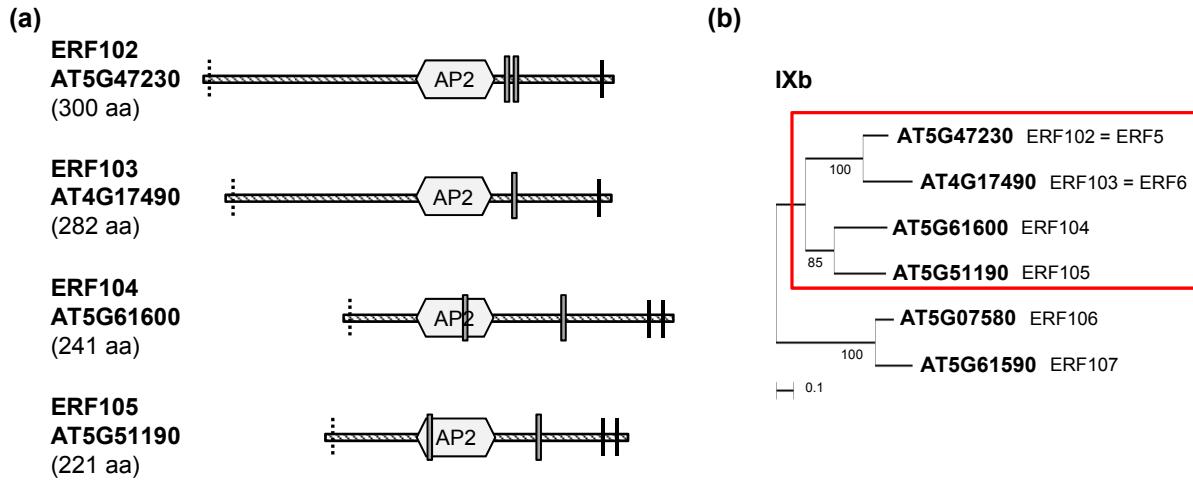
870 Transcript levels of wild-type samples under non-acclimated conditions were set to 1 ( $n \geq 4$ ).

871 Asterisks indicate significant differences to the respective wild-type condition, (\*,  $p < 0.05$ ; \*\*,

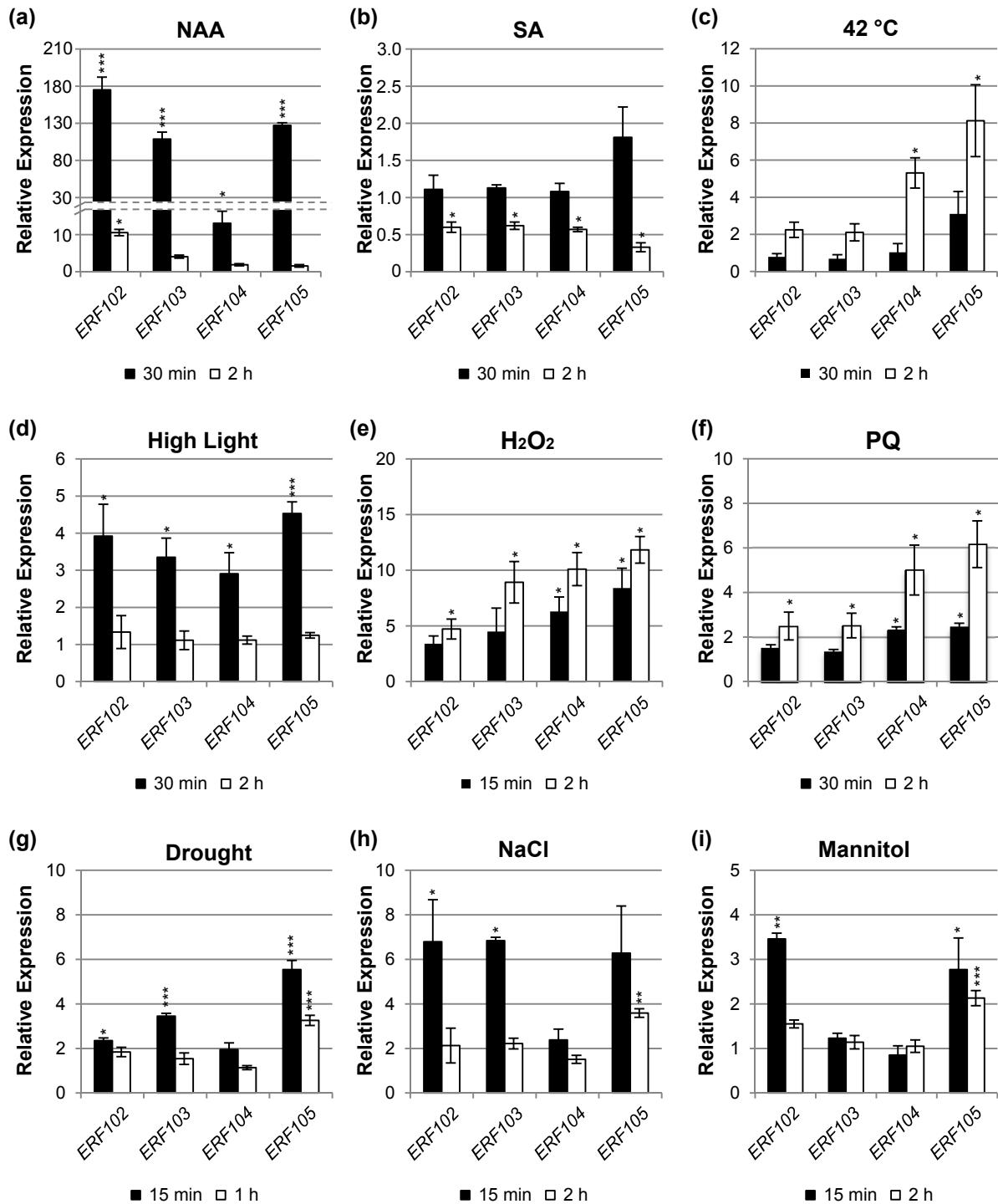
872  $p < 0.01$ ; \*\*\*,  $p < 0.001$ ). Error bars represent SE.

873

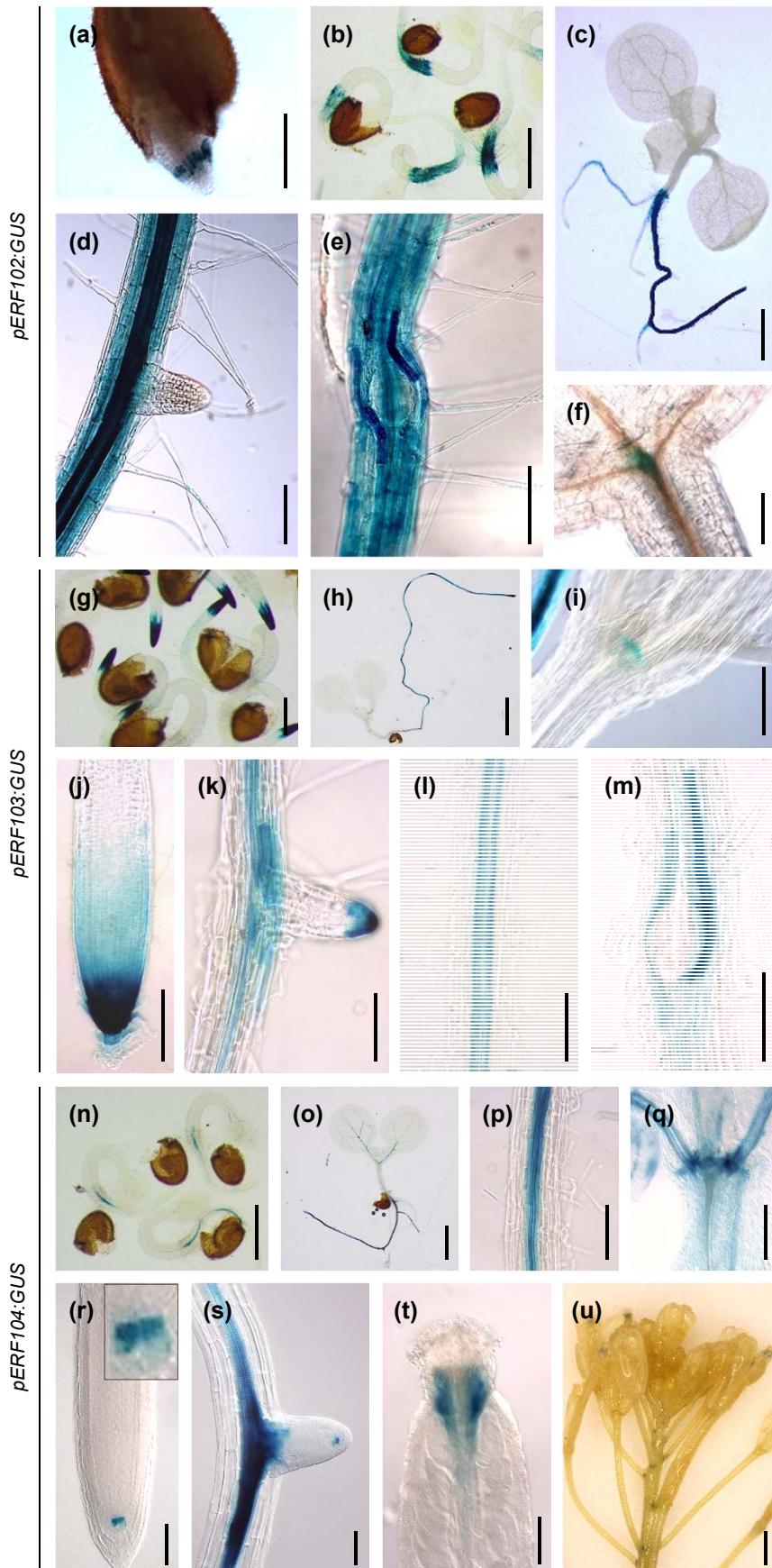
874 **Figure 7. Electrolyte leakage assays of lines with reduced *ERF102* to *ERF105* expression.**


875 Electrolyte leakage assays with detached leaves of lines with mutations or reduced expression

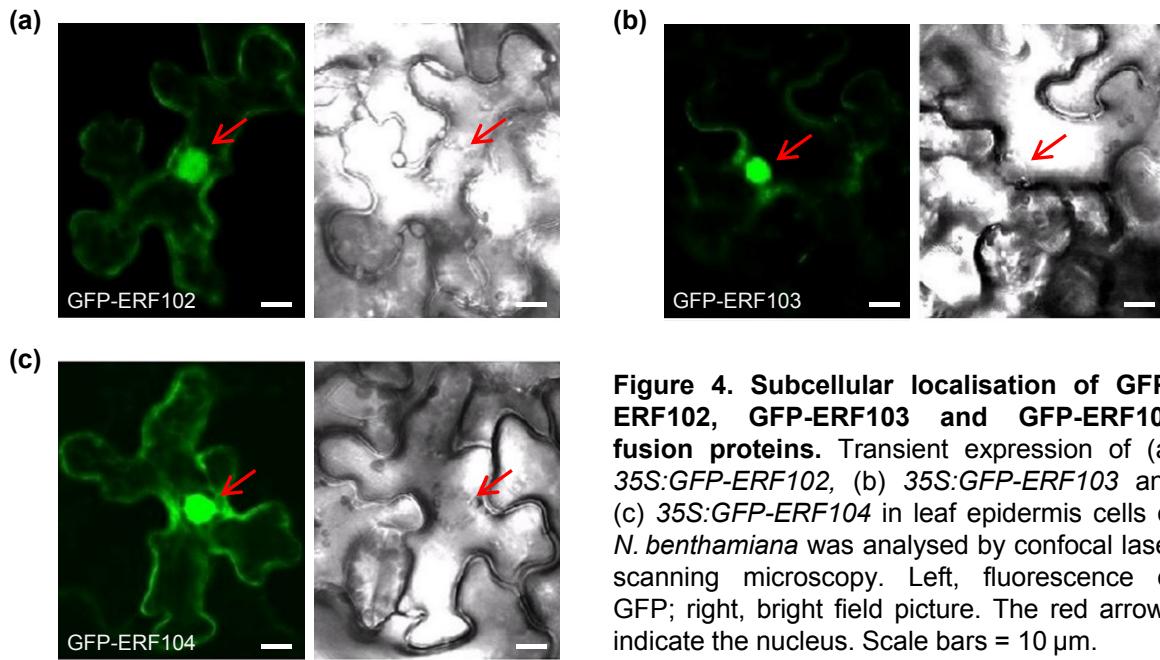
876 affecting single *ERF* genes (a) or several *ERF* genes (b) before (non-acclimated, NA) and after


877 14 days (acclimated, ACC14) of cold acclimation at 4 °C. The bars represent the means  $\pm$  SE

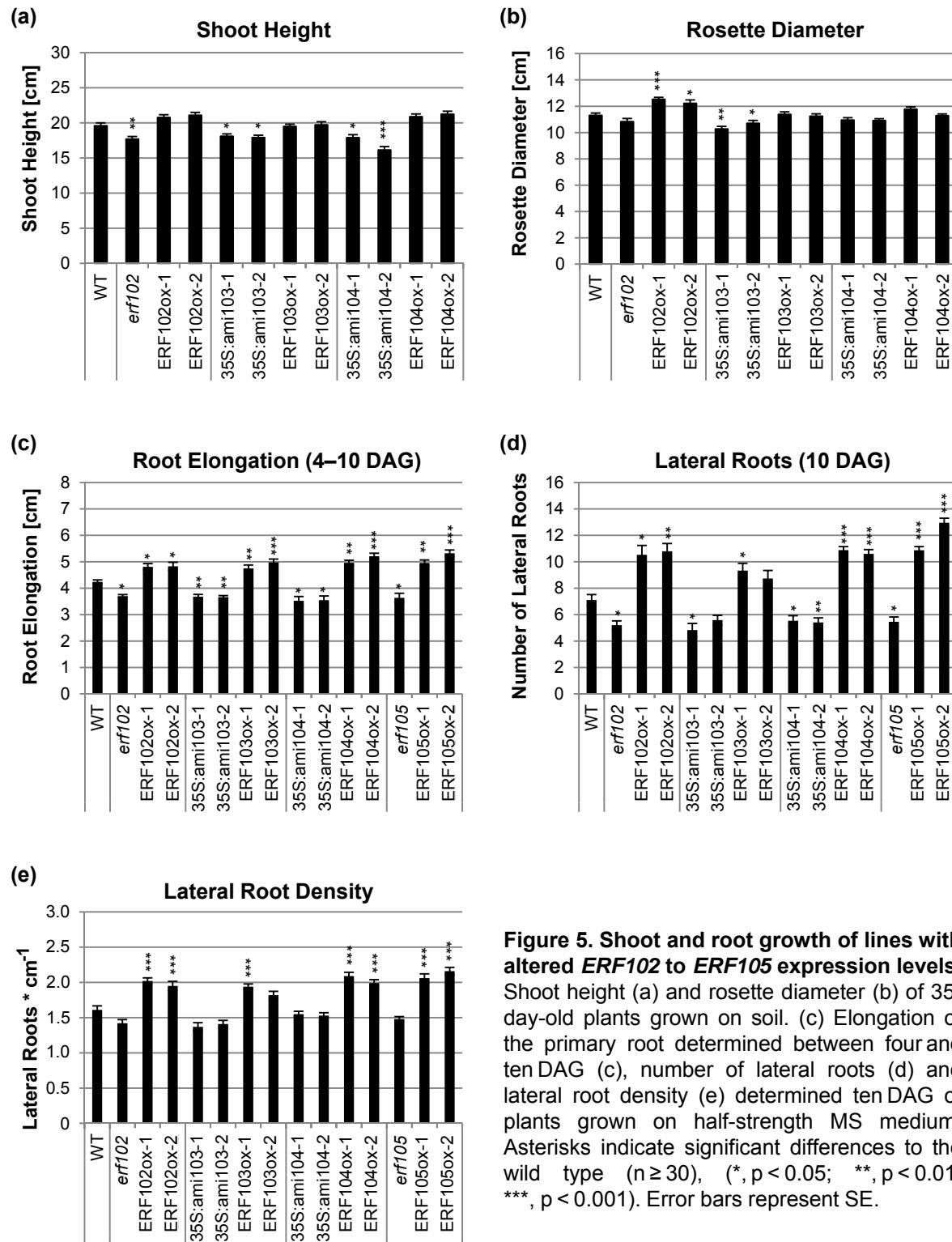
878 from four replicate measurements where each replicate comprised leaves from three plants.


879 Asterisks indicate significant differences to the wild type (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ; \*\*\*,  $p < 0.001$ ).

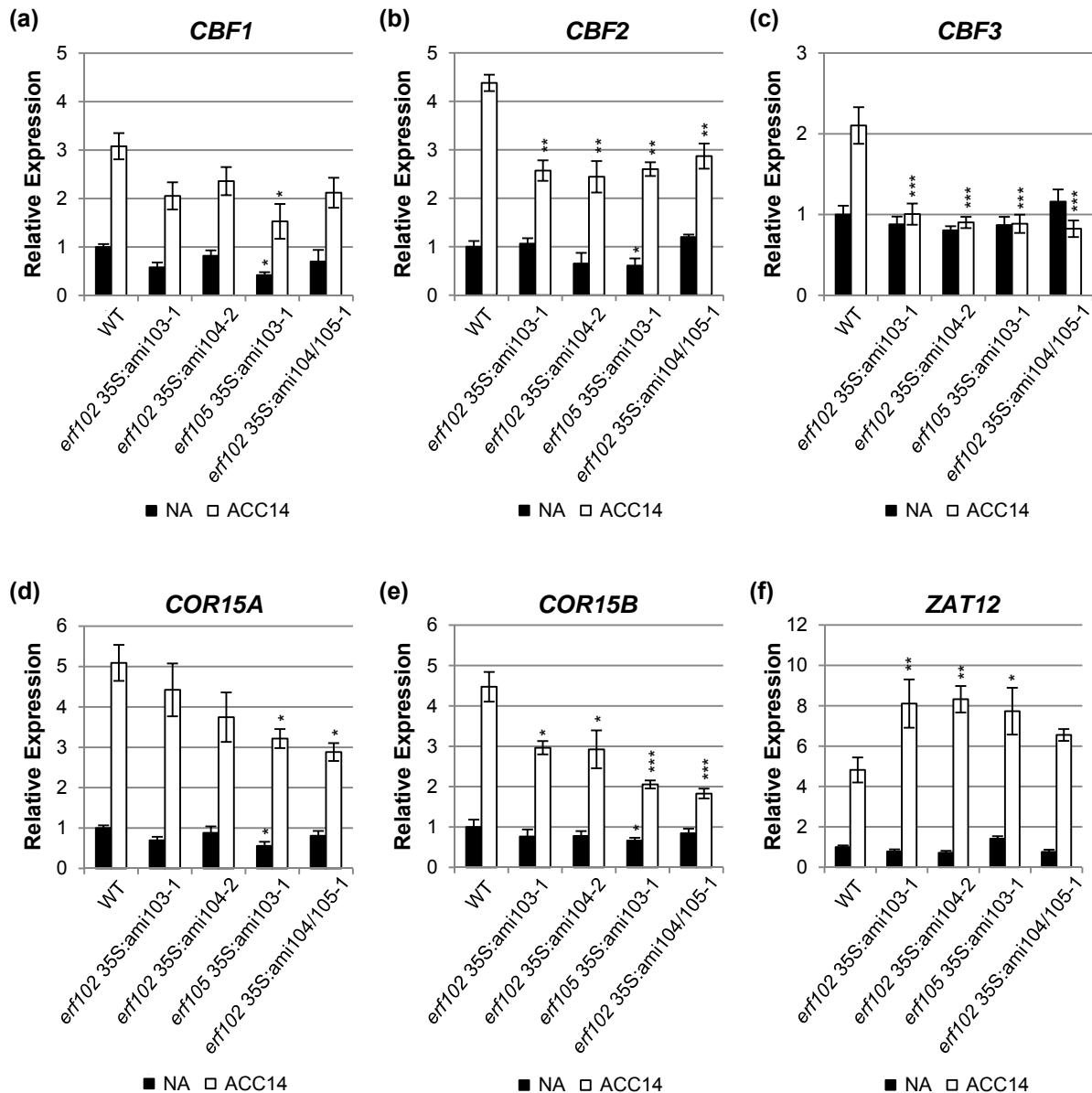



**Figure 1. Description of the ERF102 to ERF105 proteins of *Arabidopsis thaliana*.** (a) Structure of the *Arabidopsis* ERF102 to ERF105 proteins. The schematic representation shows the protein structures of ERF102 to ERF105 according to Nakano *et al.* (2006). The striped lines represent the protein sequences, the hexagons indicate the AP2/ERF DNA-binding domain, black lines putative phosphorylation sites, dashed lines the putative transactivation domains (Nakano *et al.*, 2006) and grey boxes the nuclear localisation signals determined with WoLF PSORT (Horton *et al.*, 2007). (b) An unrooted phylogenetic tree of group IXb ERF transcription factors showing the close evolutionary relationship between ERF102 to ERF105 (red box) that are studied. The phylogenetic tree was constructed using MEGA6, the numbers indicate bootstrap values (Tamura, Stecher, Peterson, Filipski & Kumar, 2013).

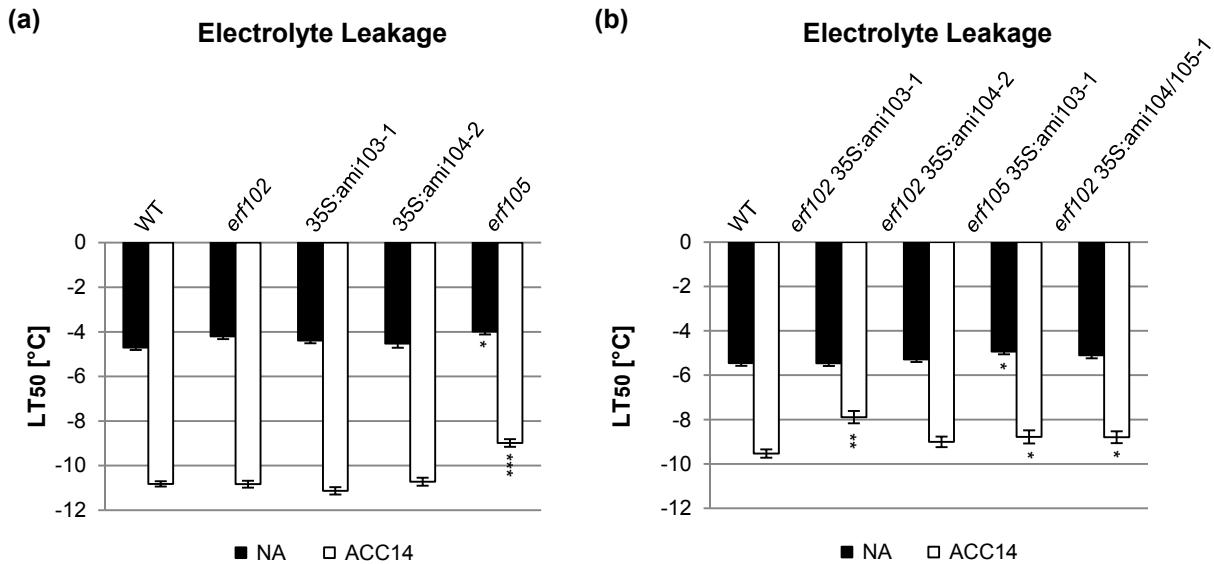



**Figure 2. Regulation of *ERF102* to *ERF105* gene expression.** Relative expression of *ERF102* to *ERF105* in eleven-day-old wild-type seedlings (eight pooled seedlings per sample) after hormone or stress treatment. (a) Auxin (10  $\mu$ M NAA), (b) salicylic acid (10 mM SA), (c) heat (42 °C), (d) high light (1000  $\mu$ mol  $m^{-2}$  s $^{-1}$ ), (e and f) oxidative stress (e; 500 mM H<sub>2</sub>O<sub>2</sub>, f; 30  $\mu$ M paraquat), (g) drought, (h) salt (200 mM NaCl) and (i) osmotic stress (200 mM mannitol). Transcript levels of wild-type samples under control conditions were set to 1 ( $n \geq 4$ ). Asterisks indicate significant differences to the respective mock treatment (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ; \*\*\*,  $p < 0.001$ ). Error bars represent SE.




**Figure 3. Expression of the GUS reporter gene under control of the *ERF102*, *ERF103* and *ERF104* promoters.** Histochemical localisation of GUS activity in *Arabidopsis* *pERF:GUS* reporter lines. *pERF102:GUS* seedlings 30 h (a) and 60 h (b) after imbibition of seeds and ten DAG (c-f). (a) and (b) germinating seeds, (c) whole seedling, (d) and (e) primary root with emerging lateral roots and (f) shoot apex with a stained apical meristem. *pERF103:GUS* seedlings 60 h (g) after imbibition of seeds and seven DAG (h-m). (a) Germinating seeds. (h) whole seedling. (i) shoot apex with




**Figure 4. Subcellular localisation of GFP-ERF102, GFP-ERF103 and GFP-ERF104 fusion proteins.** Transient expression of (a) 35S:GFP-ERF102, (b) 35S:GFP-ERF103 and (c) 35S:GFP-ERF104 in leaf epidermis cells of *N. benthamiana* was analysed by confocal laser scanning microscopy. Left, fluorescence of GFP; right, bright field picture. The red arrows indicate the nucleus. Scale bars = 10  $\mu$ m.



**Figure 5. Shoot and root growth of lines with altered *ERF102* to *ERF105* expression levels.** Shoot height (a) and rosette diameter (b) of 35-day-old plants grown on soil. (c) Elongation of the primary root determined between four and ten DAG (c), number of lateral roots (d) and lateral root density (e) determined ten DAG of plants grown on half-strength MS medium. Asterisks indicate significant differences to the wild type ( $n \geq 30$ ), (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ; \*\*\*,  $p < 0.001$ ). Error bars represent SE.



**Figure 6. Expression of selected cold-responsive genes in lines with reduced *ERF102* to *ERF105* expression.** Relative expression of *CBF1* (a), *CBF2* (b), *CBF3* (c), *COR15A* (d), *COR15B* (e) and *ZAT12* (f) genes in lines with reduced *ERF102* to *ERF105* expression before (non-acclimated, NA) and after 14 days (acclimated, ACC14) of cold acclimation at 4 °C. Transcript levels of wild-type samples under non-acclimated conditions were set to 1 ( $n \geq 4$ ). Asterisks indicate significant differences to the respective wild-type condition (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ; \*\*\*,  $p < 0.001$ ). Error bars represent SE.



**Figure 7. Electrolyte leakage assays of lines with reduced *ERF102* to *ERF105* expression.** Electrolyte leakage assays on detached leaves of lines with mutations or reduced expression affecting single *ERF* genes (a) or several *ERF* genes (b) before (non-acclimated, NA) and after 14 days (acclimated, ACC14) of cold acclimation at 4 °C. The bars represent the means  $\pm$  SE from four replicate measurements where each replicate comprised leaves from three plants. Asterisks indicate significant differences to the wild type (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ; \*\*\*,  $p < 0.001$ ).