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Abstract

A major challenge in the care of preterm infants is the early identification of compromised
neurological development. While several measures are routinely used to track anatomical
growth, there is a striking lack of reliable and objective tools for tracking maturation of early
brain function; a cornerstone of lifelong neurological health. We present a cot-side method for
measuring the functional maturity of the newborn brain based on routinely-available
neurological monitoring with electroencephalography (EEG). We used a dataset EEG
recordings from 65 infants to train a multivariable prediction of functional brain age (FBA)
from EEG. Using machine learning on traditional and recently-developed computational EEG
measures yielded an FBA that correlated strongly with the postmenstrual age of an infant.
Moreover, individual babies follow well-defined individual trajectories. We validated the FBA
predictor on independent data from a different site with different recording configuration. In a
subgroup of infants with repeated EEG recordings, a persistently negative predicted age
difference was associated with poor neurodevelopmental outcome. The FBA enables the
tracking of functional neurodevelopment in preterm infants. Functional age assessment can be
used to assist clinical management and identify infants who will benefit most from early

intervention.
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Introduction

Preterm birth is a substantial risk to infant health. While mortality rates have dropped
considerably over recent years due to improvements in clinical care, these infants remain at
significant risk of neurodevelopmental delay and a host of other chronic impairments in later
life (1-3). It is therefore of critical importance to reduce the exposure of the preterm infant to
neurological adversities while in the neonatal intensive care unit (NICU), and to identify those
infants who will benefit most from early intervention (4). Recent advances in neurological care
have stressed the need for improving early functional biomarkers of neurodevelopment to

expedite cycles within clinical intervention trials.

Monitoring physiological and anatomical growth is crucial for clinicians when optimizing the
care of very or extremely preterm infants. Critical time periods for the direction of care are
usually the first days after birth, the time of discharge from tertiary care to step-down units, as
well as the follow-up visit at near term-equivalent age. The EEG is the best available tool for
cot-side assessment of brain function, and it is widely used for early therapeutic decisions as
well as the prediction of neurodevelopmental outcome in preterm infants (5-9). However, the
clinical use of EEG in the NICU is complicated by difficulties in interpretation and the
availability of expertise to perform interpretation (10). Computer-assisted analysis presents an
opportunity to solve both problems by providing simplified EEG measures that can be
interpreted by clinical staff, on demand and in real time.

Assessing brain maturity via the visual interpretation of the EEG during an infant’s stay in the
NICU has been a part of clinical practice for decades (11). Its use complements traditional
anatomical measures such as weight, length, and head circumference. A lag between estimated
functional brain age (FBA) and the chronological age of the individual — the predicted age
difference (PAD) — holds potential as a functional biomarker. It is crucial that the FBA is highly
correlated with chronological age to ensure that claims of ‘dysmaturity’ are valid and not
simply alternate manifestations of dysfunction or pathology. The concept of measuring PAD
has recently attracted interest for the diagnosis of a wide variety of neurological pathologies
over a wide range of ages (12). We have previously shown that it is possible to construct
computational measures that emulate many visually observed EEG phenomena such as inter-
burst interval, synchrony, discontinuity, and frequency content. The combination of these
computational measures can predict the EEG maturation of the brain with a high degree of

accuracy (13, 14).
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While ‘computerizing’ visual classification of EEG phenomena is a useful initial stage, it
suffers from two shortcomings. First, it is limited by the visual interpretation of EEG
characteristics and, therefore, lacks a robust physiological, physical, and technical foundation.
Second, it is inherently susceptible to a myriad of confounders that arise from the relationship
between conventionally-recognized EEG phenomenology and technical recording traditions.
Recent advances in computational neuroscience suggest that the EEG contains markers of brain
function that are not readily discernible by visual EEG review (15-19). Key information lies
within the widespread network of intermittent bursting that dominates early cortical activity
(20, 21). This developmentally unique activity is known to be crucial for supporting neuronal
growth and guiding early brain wiring (22, 23). It changes rapidly over the last trimester, is
sensitive to exogenous disturbances, and is predictive of future neurodevelopment (24-26).

We recently showed that bursting activity possesses the statistical properties of crackling noise
(15, 27), a form of complex, non-Gaussian noise that occurs when there is a critical balance
between amplifying (excitatory) and dissipating (inhibitory) influences within a system (brain)
(28). Measures of this noise have been shown to be able to detect neurological challenge in
preterm and term neonates (25, 29, 30). Here, we applied signal analysis methods derived from
the analysis of crackling noise to the assessment of early brain maturation, alongside other EEG
metrics. Initially, we assessed the accuracy of single variable models to predict PMA. We then
built a multivariable model of PMA, trained using machine learning techniques, to yield an
estimate of FBA. We validated the subsequent FBA on an independent dataset to address issues
of reproducibility and robustness of the method to other EEG recording settings and
environments. Finally, we evaluated the applicability of the difference between FBA and PMA
(a predicted age difference) as a predictor of neurodevelopmental outcome in a subgroup of

infants with multiple, serial recordings.
Results

The aim of this study was to determine the efficacy of automated EEG analysis for the
assessment of PMA in preterm infants. This study employed two different datasets of serial
EEG recordings of preterm infants recorded from NICUs in different countries. The first
dataset (recorded in Vienna: 65 infants, 177 EEG recordings) was used to train and evaluate
the FBA measure, as well as investigate the use of FBA as a predictor of neurodevelopmental
outcome (Fig. 1). The second dataset (recorded in Utrecht: 42 infants, 99 EEG recordings) was
used to validate the FBA measure trained on the first dataset. Infants were born before 29 weeks
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gestation, with EEG recorded serially at 25-39 weeks PMA (Vienna) or 25-34 weeks PMA
(Utrecht). We used machine learning techniques to form an estimate of FBA using quantitative
EEG (gEEG) variables that can be grouped into three categories: phenomenological analysis,
burst analysis, and other recently-developed analyses (Fig. S1 and Table S1).
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Figure 1: Data acquisition, training, evaluation and testing of the FBA. The histograms depict
the distribution of EEG recordings with PMA (in weeks) in each dataset. The bottom row
illustrates the analyses corresponding to each dataset. PAD is the predicted age difference
between functional brain age (FBA) and post-menstrual age (PMA).

PMA prediction using a single variable FBA

Across all metrics tested, the qEEG variable that had the highest correlation with PMA
was the asymmetry of average burst shape (Fig. 2A), which exhibits a strong linear relationship
with bursts becoming more symmetric with increasing PMA (Fig. 2B). Several additional
gEEG variables were strongly associated with PMA (see Table S1 of the supplementary
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Information). Metrics that were not reliably predictive of PMA were varied in nature and

included several relative band powers and measures of burst duration.
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Figure 2. Changes in burst characteristics with post-menstrual age (PMA). (A) Asymmetry of
average burst shape versus PMA (r is Pearson’s linear correlation coefficient). (B) Average
burst shape of the EEG amplitude grouped according to PMA with fortnightly steps from 25
weeks; the inset shows the entire average burst. The changes seen in (B) are best represented
by measures of burst asymmetry.

PMA prediction using the multivariable FBA

Combining several gEEG variables into a multivariable model improves the prediction
accuracy of the FBA (Table 1). Assessed within a leave-one-out cross-validation, the
multivariable FBA model had a significantly higher correlation with PMA than a single
variable model based on the single best variable (asymmetry of the burst shape) for models
based on bursts, phenomenological, and other newly proposed gEEG variables (Ar = 0.109,
95% ClI: 0.059 to 0.162; Ar = 0.095, 95% CI: 0.045 to 0.150; Ar = 0.094, 95% CI: 0.057 to
0.142; n = 177, respectively). The multivariable model using burst qEEG variables also had a
significantly higher correlation with PMA than multivariable models based on
phenomenological or other newly proposed qEEG variables (Ar = 0.030, 95% CI: 0.001 to
0.062; Ar =0.027, 95% CI: 0.005 to 0.049; n = 177, respectively).

Incorporating qEEG variables into a multivariable model, via a variable selection procedure,
further improved the accuracy of the FBA (Table 1). The FBA estimator identified PMA to
within 2 weeks for 90% of recordings, with a median absolute error of 0.7 weeks. A scatter
plot of FBA versus PMA exhibits a clear linear trend (Fig. 3A), with a tight clustering of FBA

within £2 weeks of the PMA. The performance of this FBA, which contained a mixture of
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burst, phenomenological, and other recently-developed EEG variables, was significantly
higher than multivariable models based on only phenomenological analysis, burst analysis or
other analyses alone (Ar = 0.045, 95%Cl: 0.020 to 0.073; Ar = 0.015, 95%CI: 0.002 to 0.028;
and Ar = 0.042, 95%Cl: 0.024 to 0.063, respectively; n = 177). Variable selection resulted in a
median of 53 variables (IQR; 49-55; n = 65 folds). In general, the most commonly selected
variables were burst shape (asymmetry, sharpness), burst number, relative spectral power,
activity synchrony index, path length, multi-scale entropy, EEG amplitude envelope, and inter-
burst interval — see the Supplementary Information for a complete list of variables and their
selection frequencies (Table S1 and Fig. S2).

Table 1: The performance of several multivariable FBA models for predicting PMA in preterm
infants on training (cross-validation) and validation datasets. r is the correlation coefficient, n
is the number of recordings included in analysis, m is the number of qEEG variables used in

the model (for variable selection this is the median number across folds of the cross-validation),
95% Cl is the 95™ percentile of the confidence interval, IQR is inter-quartile range.
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Validation of FBA on an independent dataset

To directly address the generalizability of our results, we validated the multivariable
model in an independent dataset. We found that the multivariable model trained on Vienna data
(evaluated via cross-validation) and applied to the Utrecht dataset performs near physiological
limits in prediction accuracy, with 90% of epochs correctly identified to within +2 weeks
(Table 1). The absolute error between the FBA and PMA (accuracy), when applied to the
Utrecht data, was equivalent to the cross-validation results from the Vienna dataset across a
similar range of PMA (Fig. 3B: p < 0.001; TOST, equivalence boundary of +0.5 weeks).

FBA for tracking individual growth and predicting neurodevelopmental outcomes
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The accuracy of FBA in tracking cot-side development raises the idea that FBA may
be useful for individualized assessment of functional maturity. We used linear mixed modelling
to account for serial recordings from individual infants which resulted in an adjusted correlation
of r =0.978 (95%CI: 0.974-0.987; n = 65). The improvement in correlation over a point-wise
estimate implies that individual infant trajectories are more highly correlated with PMA than
the cohort average. In other words, infants tend to follow their individual growth trajectories

(Fig. 4A), and the FBA is able to track these trajectories with high accuracy.
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Figure 3: The correlation between a multivariable FBA and chronological age (PMA). (A) The
multivariable FBA, with variable selection, evaluated on the Vienna dataset via leave-one-
subject-out cross-validation over the full range of EEG recording PMAS (24-38 weeks). (B)
The multivariable FBA trained on the Vienna dataset and applied to an independent dataset
recorded from Utrecht over the full range of EEG recording PMAs from the Utrecht dataset
(24-34 weeks). Dashed lines denote +2 weeks difference between FBA and PMA.

growth trajectories as a predictor of neurodevelopmental outcome. In a subgroup of infants
with more than two serial recordings (a median PMA range of 6.2 weeks, IQR: 4.6 to 7.5
weeks; Fig. 4B), the average predicted age difference (PAD: difference between FBA and
PMA) was significantly associated with neurodevelopmental outcome (One-way ANOVA: F
statistic = 3.980, df = 2, p = 0.029; n = 35, 3 groups: normal, mildly abnormal, abnormal — see
Fig. 4C; group variances were homogenous; Levene’s Test: p = 0.82). Infants with abnormal
outcome (n = 9) had a PAD that was significantly less than infants with mildly abnormal
outcome (n = 13) (Cohen’s D = 1.12, p = 0.025, corrected for multiple comparisons using
Tukey’s Range Test). The estimated PAD in these infants was also significantly below 0 weeks
(t-test: Cohen’s D = 0.661, p = 0.035; n = 9) suggesting a persistent delay in brain maturation

(i.e., negative PAD) in infants with abnormal outcome. These differences were not apparent
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when including infants with less than three serial EEG recordings (ANOVA: F statistic =
0.0112, df =2, p = 0.894; n = 54), suggesting that multiple recordings may be required to assess

a PAD associated with neurodevelopmental outcome.
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Figure 4: Functional brain age prediction using a multivariable model of quantitative EEG
measures. (A) Maturational trajectories of individual infants, with at least two serial recordings
per infant; n = 54, colored according to the average differences between FBA and PMA (PAD:
predicted age difference) in each infant. The color bar denotes the PAD in weeks. (B) Scatter
plot of the subgroup of data, with at least three serial recordings, used to evaluate the prediction
error for outcome prediction; n = 35, colored according to neurodevelopmental outcome.
Straight dashed lines denote a difference of plus or minus 2 weeks between PMA and predicted
age. (C) Subgroup analysis of EEG predicted age minus PMA with respect to outcome was
graded as N — normal (minimum Bayley’s score > 85), M — mildly abnormal (minimum
Bayley’s score between 70 and 85) and A — abnormal (minimum Bayley’s score < 70). The
asterisks denote p < 0.05 between outcome groups and when testing each outcome group
against a null hypothesis of zero mean EEG maturity. Data points in have been shifted for
clarity of presentation and are denoted with filled circles. Data points represented by triangles
are infants with intra-ventricular hemorrhage.
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Discussion

The brain matures rapidly in early life with a wide range of structural and functional indices
changing over time spans as short as a few weeks. Here, we showed that automated analysis of
preterm EEG can be used to track maturation of cortical function with high accuracy. This
multivariable prediction of age from the EEG enables the estimation of functional brain
maturity to within 1-2 weeks of PMA; an accuracy that generalized to an independent
validation dataset acquired under a considerably different EEG recording environment. The
margin of error is far lower than similar predictions in preterm infants based on functional
neuroimaging with fMRI (31), and orders of magnitude lower than what is achieved over later
stages of life using EEG or MRI (error margins of 5-10 years) (32- 34). Our findings are also
comparable to an array of somatic anatomical methods over similar preterm age ranges based
on measures of femur length, head circumference, weight, and structural MRI (cortical folding,
thickness) (35-38). This supports the concept of rapid and distinct changes in anatomy and
physiology throughout the preterm period and suggests that physiological and anatomical

growth are strongly intertwined (23, 26, 39).

The multivariable model developed here advances previous work that was designed to capture
key visual elements of EEG review for age prediction. Incorporating burst measures based on
the analysis of crackling noise resulted in the most accurate single variable model, improved
multivariable model accuracy, and provided a potential framework to explain the mechanistic
origins of rapidly evolving preterm EEG signals. The existence of asymmetric burst shapes
replicates our previous findings in independent datasets when identifying pathological changes
in the EEG at or near birth (25, 30). We also validated several recently proposed qEEG
variables of maturation: suppression curve, mPLI, global ASI, multi-scale entropy, and path
length (coherence) as excellent predictors of age prediction in the preterm period. This supports
the use of automated measures of EEG (qEEG) for the extraction of useful information in

excess of visual interpretation.

We also successfully validated the model's robustness on unseen data. This showed that the
prediction accuracy of the multivariable model holds when translating to a dataset collected
within a different clinical environment and with different recording parameters (e.g. amplifier,
electrode type, number, and location). This is a crucial hurdle for the clinical translation of new
methods, which is impossible to establish in a dataset acquired under uniform conditions.

Notably, the independent validation dataset was collected using a 4-channel recording montage

10
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that is commonly used in brain monitoring with the amplitude integrated EEG (40-42). This
validation on heterogeneous data establishes the wider clinical applicability of determining

functional brain age from EEG.

Various measures of growth are commonly used in health care. The finding that neurological
dysfunction manifests as immaturity in the EEG is intuitively appealing, and indeed, has been
a cornerstone of clinical EEG review for decades (5, 43-45). This hypothesis can only be
accurately tested with gEEG measures that are strongly correlated with age. We show that most
phenomenological measures used in clinical EEG research, such as inter-burst interval, EEG
amplitude, or spectral power, are only weakly correlated with age, which challenges their
applicability for maturational EEG assessment. We show that more recently proposed qEEG
measures (such as asymmetry and sharpness of burst shape, suppression curve, mPLI, MSE,
and path length) and multivariable models of age are strongly correlated with PMA and,

therefore, more relevant for maturational analyses.

We show that infants follow individual functional maturation trajectories in a highly
predictable manner. Analysis of these trajectories with measures such as PAD (the difference
between FBA and PMA) can be used to predict neurodevelopmental outcome. We used serial
EEG recordings to identify persistent PADs. This suggests that early neurological adversities
become embedded in cortical function (EEG recordings), accumulating steadily over the course
of neurodevelopmental (46). It would be clinically useful to assess whether single PAD
measurements at a later stage such as term equivalent age, can provide a sufficiently accurate
prediction of future outcomes and, hence, an important proxy for accumulated developmental

adversities.

Limited sample sizes, a reality when studying critically ill infants, mean that the reported links
between PAD and outcome cannot take into account the variety of factors that may confound
this result such as physiological challenges, routine cares, and interventions experienced by
preterm infants during their stay in intensive care. These factors will also confound the FBA.
There is evidence to suggest that several of these challenges, interventions (many which are
designed to accelerate maturation), and other relevant clinical variables can influence EEG
activity and, therefore, contribute to variability in the FBA and, therefore, PAD. These
variables include the difference between GA and PMA (intra-uterine vs extra-uterine
maturation), post-natal adaption, medications, ventilation, birthweight, kangaroo care/infant
massage, and gender (47-56). We aim to investigate these effects in future work to differentiate

11
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them from other potential causes of inter-subject variability such as natural variability in the
course of in-utero growth (57). Nevertheless, FBA provides an accurate prediction of PMA
even when based on a small training sample with an array of potentially confounding factors
that were not explicitly modelled.

The clinical value of FBA is twofold. First, tracking of individual growth trajectories is
becoming an important part of individualized medicine for preterm infants (58-60). Tracking
FBA provides a crucial functional complement to anatomical growth charts, being sensitive to
the functional consequence of perinatal adversities specific to early neurological development.
Second, these analyses may have an important role in clinical trials, as recent progress in early
therapeutic interventions has been hampered by delays due to the assessment of outcome
several years after birth. The use of very early measures of neurodevelopmental, like FBA,
could lead to dramatically expedited study cycles by allowing more dynamic, adaptive study
designs with optimized sample sizes and research questions (61). The estimation of FBA also
has clear applications in developmental neuroscience, where the assessment of maturation
based on cortical function can be used to benchmark models of early human neurological

development across species and within human brain organoids (62, 63).

Materials and Methods

Data Acquisition

The training dataset consisted of 67 preterm infants admitted to the NICU at the Vienna
General University Hospital, Austria (see Table 2). Infants were included if they were born
before 29 weeks of gestational age (GA) and parental consent was received. EEG was acquired
with nine scalp electrodes using a Brain Quick / ICU EEG (MicroMed, Treviso, Italy) at a
sampling frequency of 256 Hz. Electrode positions reflect the 10-20 international system
(modified for neonates) and were located at Fp1, Fp2, C3, C4, T3, T4, O1, 02, with a reference
at Cz. A bipolar montage (double banana) was used in analysis: Fp1-C3, C3-01, Fpl1-T3, T3-
01, Fp2-C4, C4-02, Fp2-T4, T4-02 (Fig. S1). The EEG was recorded as soon as possible after
birth and at fortnightly intervals until term equivalent age, where possible.

Each EEG recording was split into 1 h epochs (with a 75% overlap). Epochs with excessive
artefact were excluded from further analysis (see Table 2). GA was defined according to the
last menstrual period (LMP). If the LMP-based assessment of gestation deviated considerably

from ultrasound findings in the first trimester, ultrasound measurements were used as a
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surrogate measure of LMP. PMA, defined as the sum of GA and postnatal age, was used as the

benchmark, true age of an infant.

The neurodevelopmental outcome of infants was assessed at ages 1 y and 2 y (Bayley Scales
of Infant Neurodevelopment Il and 11l - BIl and BIII, respectively; assessed against German
norms). Of the 67 preterm infants initially included in the study, 2 were assessed with BIl at
1y, 19 were assessed with Bll at 2 y, 35 were assessed with Blll at 2 y, and 11 infants were
not assessed for neurodevelopmental outcome. Infants were stratified according to outcome
using the following rules applied to the latest available assessment (either 1 y or 2 y): normal
(mental developmental index and physical developmental index > 85 [scale Il]; or cognitive
index, language index, and motor index > 85 [scale IlI]), or abnormal (either mental
developmental index or physical developmental index <70 [scale I1]; or either cognitive index,
language index, or motor index < 70 [scale 111]). Those infants with intermediate scores that

did not fit into the normal or abnormal categories were categorized as mildly abnormal.

A summary of the database before and after the rejection of artefactual epochs is presented in
Table 2. Data collection was approved by the local ethics committee and written, informed,
parental consent was received for each infant included in the database (Medical University
Vienna, Austria; study protocol EK Nr 67/2008).

Data Acquisition for Independent, Validation Dataset

We used an independent dataset to validate the single and multivariable models of age
prediction. This validation dataset contained EEG recordings from 43 neonates admitted to the
NICU at the Wilhelmina Children’s Hospital, Utrecht, Netherlands. The data were collected as
part of a multi-center European study (65). Infants were included in this study if they were born
less than 28 weeks GA and informed, written parental consent was received. Infants were
excluded if the presence of chromosomal or congenital abnormalities were identified and if the
neuro-monitoring was performed with devices other than the BrainZ BRM3 monitor (Natus
Medical Incorporated, Seattle, USA). Long duration EEG recordings (~72 h) were recorded as
close as possible to admission, followed by shorter recordings (~4-6h) at weekly intervals (up
to a post-natal age of approximately four weeks). EEG was recorded with a BrainZ BRM3
monitor and needle electrodes at a sampling frequency of 256 Hz. Two derivations were
recorded and used in the analysis: F4-P4 and F3-P3. All neonates had a neurological
examination and psychological testing at 30 months of corrected age (Bayley Scales of Infant

and Toddler Development IlI; assessed against Dutch norms). Neonates with normal
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neurodevelopmental outcome at this age were included in the validation cohort (normal was
defined as per the Vienna dataset; n = 43 infants satisfied these criteria). The data collection

protocol was approved by the local medical ethics committee.

Table 2: A summary of infants and EEG recordings before and after application of artefact
rejection. Percentages refer to the number of infants/recordings/1 h epochs that were in the
initial set that passed the artefact rejection stage. For intraventricular hemorrhage and
periventricular leukomalacia, roman numerals indicate increasing grades of severity; assessed
by cranial ultrasound and classified according to (64). Values are presented as median
(interquartile range) where applicable.

Development: Vienna

Initial

post-artefact rejection

gestational age (weeks)
birthweight (g)

PMA of EEG recording
1st

2nd

3rd

4th

5th

6th

intraventricular hemorrhage

25.3 (24.5-27.0)
707 (605-920)

27.0 (26.6-29.4; n=67)
30.8 (29.2-31.8; n=59)
33.7 (32.0-34.4; n=54)
35.3 (33.1-36.4; n=37)
36.5 (35.2-37.4; n=16)

38.6 (n=1)

14 (1/11=10, N1/1V=4)

25.3 (24.5-27.0)
704 (604-922)

27.9 (26.7-29.6; n=52)
31.0 (29.5-31.8; n=43)
33.6 (32.0-34.4; n=46)
35.2 (34.1-36.0; n=36)
36.4 (34.9-36.7; n=9)
38.6 (n=1)

14 (1/11=10, N1/1V=4)

periventricular leukomalacia 2 (I/11=2) 1(/M=1)
necrotizing enterocolitis 3 3
chronic lung disease 19 19
patent ductus arteriosus 49 48

infants recordings 1 h epochs
initial 67 234 1686
post-EEG assessment 65 177 1137
outcome
normal 20 (100%) 57 (76%) 376 (65%)
mildly abnormal 18 (95%) 57 (78%) 338 (73%)
abnormal 16 (94%) 41 (75%) 238 (62%)
unknown 11 (100%) 22 (71%) 185 (71%)

Validation: Utrecht

initial

post-EEG assessment

gestational age (weeks)
birthweight (g)

infants

recordings

1 h epochs

26.9 (26.0-27.6)
920 (830-1068)
43

105

6561

26.9 (26.1-27.6)
920 (830-1070)
42

99

6101
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Prediction of Post-Menstrual Age using gEEG

EEG recorded in an intensive care environment is prone to contamination from electrical
activity that is not cortical in origin. All data were high pass filtered with a high pass filter
(Butterworth, 4™ order, cutoff frequency at 0.5Hz) and then a low-pass filter (Butterworth, 6"
order, cutoff frequency at 16 Hz) to eliminate high frequency activity that is more commonly
associated with artefacts, including muscle activity (66). EEG recordings were then segmented
into 1 h epochs. Epochs were scrutinized for further artefacts and were ignored if there was
significant spatial differences in amplitude, and if the amplitude was too high or too low (see

Supplemental Information for details).

Single and multivariable models of PMA were calculated using regression analysis. The qEEG
variables used in this study can be grouped into three categories (Fig. S1): phenomenological
analysis (m = 46), burst analysis (m = 40), and other analysis paradigms (m = 10).
Phenomenological analysis extracts gEEG variables that mirror the visual interpretation of the
EEG. Burst analysis extracts gEEG variables that identify important characteristics of highly
irregular (“crackling”) noise, through analysis of EEG bursts. Other advanced analyses extract
qEEG variables that represent complex characteristics of the preterm EEG such as entropy,
global connectivity, and cross-channel coupling. Details on these gEEG variables can be found
in the Supplemental Information and implementations of these analysis methods are available
via GitHub (see Code Availability).

Leave-one-subject-out cross-validation was used when generating models with a single or
multivariable input and FBA as output. In the case of N subjects (infants), a training set
consisting of the burst metrics from N-1 subjects was used to define the model parameters. This
model was then applied to the left-out subject to generate a predicted age and, hence, a
prediction error. The process was repeated until all subjects had been left out, allowing
prediction accuracy to be estimated. Single multivariable model parameters were estimated
using support vector regression with a medium Gaussian kernel (a kernel scale of 10, a box
constraint equal to the interquartile range of PMA/1.349 and epsilon equal to the box
constraint/10). Support vector regression is tolerant of redundant and irrelevant variables;
nonetheless, we implemented a process of variable selection to rank the importance of each
gEEG variable to the determination of age and to reduce the computational burden of the
multivariable model. Backwards selection was used (4-fold cross-validation within the training

set), with the mean square error between FBA and PMA as a cost function to be minimized.
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Independent Validation

A multivariable model was trained on all available data in the Vienna dataset and then applied
to the independent dataset collected at the Wilhelmina Children’s Hospital, Utrecht,
Netherlands. Adjustments were required to overcome sources of heterogeneity, namely
different ranges of PMA and different electrode recording configurations. Exploiting the denser
electrode array in the Vienna dataset, we generated a two-channel version of the estimator. It
was applied to the sparser 4 electrode bipolar montage that is a standard in the brain monitoring
practice, also known by clinicians as amplitude-integrated EEG monitoring (72). The
multivariable model was trained on the two fronto-central derivations (Fp1-C3, Fp2-C4) of the
Vienna dataset and then applied to the F3-P3 and F4-P4 derivations of the Utrecht dataset. This
was the closest, spatially, approximation given the available recording configurations of the
Vienna dataset. Multivariable model parameters were estimated using support vector
regression with a Gaussian kernel (kernel scale = 10, box constraint = interquartile range of
PMA/1.349 and epsilon = interquartile range of PMA/13.49). Model efficacy was only
compared across a similar PMA range between the two datasets (24-33 weeks PMA). The
artefact rejection paradigm applied to the Vienna dataset was also implemented on the Utrecht

dataset.
Statistical Analysis

A prediction was made on a 1 h epoch of EEG; if multiple EEG epochs exist per recording then
the average predicted age per recording was used. The goodness-of-fit between predicted age
(single and multivariable models) and PMA was evaluated using the correlation coefficient
(Pearson’s) and was used to determine the accuracy of the prediction. The bias, variance, and
absolute error between predicted age and PMA were also used as measures of goodness-of-fit
(13). The use of repeated (serial) measures allowed the application of a linear mixed effects
model (LMM) where the model output was a fixed effect and the infant ID was a random effect.
The LMM was implemented using the fitime function in Matlab [pma ~ model output + (1 |
infant ID)]. The adjusted r value was used to assess the goodness-of-fit taking into account
multiple recordings from each infant. Statistical comparisons of measures of the goodness-of-
fit between EEG metrics for the prediction of PMA were performed using resampling methods
(bootstrap). A correlation coefficient was deemed significantly different if the 95% confidence
interval of differences (estimated via a bootstrap) did not span zero, i.e., was either positive or
negative. Differences in prediction accuracy (absolute error) between the Vienna (training) and

16


https://doi.org/10.1101/848218
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/848218; this version posted November 20, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Utrecht (validation) sets were evaluated using equivalence testing with a two, one-sided t-tests
(TOST) procedure based on Welch’s t-test (73). We used a mean difference in absolute error
of £0.5 weeks as a conservative equivalence boundary based on the results of previous work
which reported an absolute prediction error of approximately +1 week (14). Differences in FBA
trajectories (FBA subtracted from PMA and then averaged across all serial recordings) between
outcome groups were tested using a one-way ANOVA, with Levene’s test for homogeneity of
group variances and a post hoc analysis performed using Tukey’s Range test to correct for
multiple comparisons. Furthermore, FBA trajectories in each group were assessed to determine
if they were significantly different from zero using a t-test. For post-hoc analyses, Cohen’s D
statistic, with small sample size correction, was used to estimate the effect size between groups.

All tests were two-tailed and used a level of significance of 0.05.

Data availability

Access to the raw EEG recordings is available at request (LdV and MINLB for the Utrecht
dataset and KKS for the Vienna dataset).

Code availability

Implementations of the analysis methods are available via GitHub -

github.com/nstevensonUH/Neonatal-EEG-Analysis/tree/master/Preterm_Features_Literature.
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Supplementary Information

Fig. S1: Analysis overview. Estimating FBA from the EEG signal using a 'bag of features'

combined using kernel support vector regression.

Fig. S2: Variable selection in a multivariable model of post-menstrual age based on qEEG

analysis.

Fig. S3: The number of EEG epochs rejected as artefactual compared to a visual interpretation

of the level of contamination by artefact.

Table S1: Correlation between single variable predictions based on a single qEEG variables

and PMA within a leave-one-subject-out cross-validation.

Table S2: Differences in prediction accuracy from increasing the training data with infants with

non-optimal outcome.
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