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Abstract 

A major challenge in the care of preterm infants is the early identification of compromised 

neurological development. While several measures are routinely used to track anatomical 

growth, there is a striking lack of reliable and objective tools for tracking maturation of early 

brain function; a cornerstone of lifelong neurological health. We present a cot-side method for 

measuring the functional maturity of the newborn brain based on routinely-available 

neurological monitoring with electroencephalography (EEG). We used a dataset EEG 

recordings from 65 infants to train a multivariable prediction of functional brain age (FBA) 

from EEG. Using machine learning on traditional and recently-developed computational EEG 

measures yielded an FBA that correlated strongly with the postmenstrual age of an infant. 

Moreover, individual babies follow well-defined individual trajectories. We validated the FBA 

predictor on independent data from a different site with different recording configuration. In a 

subgroup of infants with repeated EEG recordings, a persistently negative predicted age 

difference was associated with poor neurodevelopmental outcome. The FBA enables the 

tracking of functional neurodevelopment in preterm infants. Functional age assessment can be 

used to assist clinical management and identify infants who will benefit most from early 

intervention. 

 

Keywords: neuro-monitoring, brain age, EEG, predicted age difference, preterm infants 
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Introduction 

Preterm birth is a substantial risk to infant health. While mortality rates have dropped 

considerably over recent years due to improvements in clinical care, these infants remain at 

significant risk of neurodevelopmental delay and a host of other chronic impairments in later 

life (1-3). It is therefore of critical importance to reduce the exposure of the preterm infant to 

neurological adversities while in the neonatal intensive care unit (NICU), and to identify those 

infants who will benefit most from early intervention (4). Recent advances in neurological care 

have stressed the need for improving early functional biomarkers of neurodevelopment to 

expedite cycles within clinical intervention trials.  

Monitoring physiological and anatomical growth is crucial for clinicians when optimizing the 

care of very or extremely preterm infants. Critical time periods for the direction of care are 

usually the first days after birth, the time of discharge from tertiary care to step-down units, as 

well as the follow-up visit at near term-equivalent age. The EEG is the best available tool for 

cot-side assessment of brain function, and it is widely used for early therapeutic decisions as 

well as the prediction of neurodevelopmental outcome in preterm infants (5-9). However, the 

clinical use of EEG in the NICU is complicated by difficulties in interpretation and the 

availability of expertise to perform interpretation (10). Computer-assisted analysis presents an 

opportunity to solve both problems by providing simplified EEG measures that can be 

interpreted by clinical staff, on demand and in real time.  

Assessing brain maturity via the visual interpretation of the EEG during an infant’s stay in the 

NICU has been a part of clinical practice for decades (11). Its use complements traditional 

anatomical measures such as weight, length, and head circumference. A lag between estimated 

functional brain age (FBA) and the chronological age of the individual – the predicted age 

difference (PAD) – holds potential as a functional biomarker. It is crucial that the FBA is highly 

correlated with chronological age to ensure that claims of ‘dysmaturity’ are valid and not 

simply alternate manifestations of dysfunction or pathology. The concept of measuring PAD 

has recently attracted interest for the diagnosis of a wide variety of neurological pathologies 

over a wide range of ages (12). We have previously shown that it is possible to construct 

computational measures that emulate many visually observed EEG phenomena such as inter-

burst interval, synchrony, discontinuity, and frequency content. The combination of these 

computational measures can predict the EEG maturation of the brain with a high degree of 

accuracy (13, 14).  
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While ‘computerizing’ visual classification of EEG phenomena is a useful initial stage, it 

suffers from two shortcomings. First, it is limited by the visual interpretation of EEG 

characteristics and, therefore, lacks a robust physiological, physical, and technical foundation. 

Second, it is inherently susceptible to a myriad of confounders that arise from the relationship 

between conventionally-recognized EEG phenomenology and technical recording traditions. 

Recent advances in computational neuroscience suggest that the EEG contains markers of brain 

function that are not readily discernible by visual EEG review (15-19). Key information lies 

within the widespread network of intermittent bursting that dominates early cortical activity 

(20, 21). This developmentally unique activity is known to be crucial for supporting neuronal 

growth and guiding early brain wiring (22, 23). It changes rapidly over the last trimester, is 

sensitive to exogenous disturbances, and is predictive of future neurodevelopment (24-26). 

We recently showed that bursting activity possesses the statistical properties of crackling noise 

(15, 27), a form of complex, non-Gaussian noise that occurs when there is a critical balance 

between amplifying (excitatory) and dissipating (inhibitory) influences within a system (brain) 

(28). Measures of this noise have been shown to be able to detect neurological challenge in 

preterm and term neonates (25, 29, 30). Here, we applied signal analysis methods derived from 

the analysis of crackling noise to the assessment of early brain maturation, alongside other EEG 

metrics. Initially, we assessed the accuracy of single variable models to predict PMA. We then 

built a multivariable model of PMA, trained using machine learning techniques, to yield an 

estimate of FBA. We validated the subsequent FBA on an independent dataset to address issues 

of reproducibility and robustness of the method to other EEG recording settings and 

environments. Finally, we evaluated the applicability of the difference between FBA and PMA 

(a predicted age difference) as a predictor of neurodevelopmental outcome in a subgroup of 

infants with multiple, serial recordings. 

Results  

The aim of this study was to determine the efficacy of automated EEG analysis for the 

assessment of PMA in preterm infants. This study employed two different datasets of serial 

EEG recordings of preterm infants recorded from NICUs in different countries. The first 

dataset (recorded in Vienna: 65 infants, 177 EEG recordings) was used to train and evaluate 

the FBA measure, as well as investigate the use of FBA as a predictor of neurodevelopmental 

outcome (Fig. 1). The second dataset (recorded in Utrecht: 42 infants, 99 EEG recordings) was 

used to validate the FBA measure trained on the first dataset. Infants were born before 29 weeks 
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gestation, with EEG recorded serially at 25-39 weeks PMA (Vienna) or 25-34 weeks PMA 

(Utrecht). We used machine learning techniques to form an estimate of FBA using quantitative 

EEG (qEEG) variables that can be grouped into three categories: phenomenological analysis, 

burst analysis, and other recently-developed analyses (Fig. S1 and Table S1). 

 

Figure 1: Data acquisition, training, evaluation and testing of the FBA. The histograms depict 

the distribution of EEG recordings with PMA (in weeks) in each dataset. The bottom row 

illustrates the analyses corresponding to each dataset. PAD is the predicted age difference 

between functional brain age (FBA) and post-menstrual age (PMA). 

  

PMA prediction using a single variable FBA 

Across all metrics tested, the qEEG variable that had the highest correlation with PMA 

was the asymmetry of average burst shape (Fig. 2A), which exhibits a strong linear relationship 

with bursts becoming more symmetric with increasing PMA (Fig. 2B). Several additional 

qEEG variables were strongly associated with PMA (see Table S1 of the supplementary 
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Information). Metrics that were not reliably predictive of PMA were varied in nature and 

included several relative band powers and measures of burst duration.  

 

Figure 2. Changes in burst characteristics with post-menstrual age (PMA). (A) Asymmetry of 

average burst shape versus PMA (r is Pearson’s linear correlation coefficient). (B) Average 

burst shape of the EEG amplitude grouped according to PMA with fortnightly steps from 25 

weeks; the inset shows the entire average burst. The changes seen in (B) are best represented 

by measures of burst asymmetry.  

 

PMA prediction using the multivariable FBA 

Combining several qEEG variables into a multivariable model improves the prediction 

accuracy of the FBA (Table 1). Assessed within a leave-one-out cross-validation, the 

multivariable FBA model had a significantly higher correlation with PMA than a single 

variable model based on the single best variable (asymmetry of the burst shape) for models 

based on bursts, phenomenological, and other newly proposed qEEG variables (r = 0.109, 

95% CI: 0.059 to 0.162; r = 0.095, 95% CI: 0.045 to 0.150; r = 0.094, 95% CI: 0.057 to 

0.142; n = 177, respectively). The multivariable model using burst qEEG variables also had a 

significantly higher correlation with PMA than multivariable models based on 

phenomenological or other newly proposed qEEG variables (r = 0.030, 95% CI: 0.001 to 

0.062; r = 0.027, 95% CI: 0.005 to 0.049; n = 177, respectively). 

Incorporating qEEG variables into a multivariable model, via a variable selection procedure, 

further improved the accuracy of the FBA (Table 1). The FBA estimator identified PMA to 

within 2 weeks for 90% of recordings, with a median absolute error of 0.7 weeks. A scatter 

plot of FBA versus PMA exhibits a clear linear trend (Fig. 3A), with a tight clustering of FBA 

within ±2 weeks of the PMA. The performance of this FBA, which contained a mixture of 
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burst, phenomenological, and other recently-developed EEG variables, was significantly 

higher than multivariable models based on only phenomenological analysis, burst analysis or 

other analyses alone (r = 0.045, 95%CI: 0.020 to 0.073; r = 0.015, 95%CI: 0.002 to 0.028; 

and r = 0.042, 95%CI: 0.024 to 0.063, respectively; n = 177). Variable selection resulted in a 

median of 53 variables (IQR; 49-55; n = 65 folds). In general, the most commonly selected 

variables were burst shape (asymmetry, sharpness), burst number, relative spectral power,  

activity synchrony index, path length, multi-scale entropy, EEG amplitude envelope, and inter-

burst interval – see the Supplementary Information for a complete list of variables and their 

selection frequencies (Table S1 and Fig. S2).  

Table 1: The performance of several multivariable FBA models for predicting PMA in preterm 

infants on training (cross-validation) and validation datasets. r is the correlation coefficient, n 

is the number of recordings included in analysis, m is the number of qEEG variables used in 

the model (for variable selection this is the median number across folds of the cross-validation), 

95% CI is the 95th percentile of the confidence interval, IQR is inter-quartile range.  

 r (95%CI) 
bias 

(weeks) 

variance 

(weeks) 

absolute 

difference 

(weeks) 

±1 

week 

(%) 

±2 

weeks 

(%) 

Phenomenological 

(n = 177; m = 46) 
0.894 

[0.859-0.919] 
-0.1 2.1 

0.9 

[0.4-1.6] 
55 83 

Other 

(n = 177; m = 10) 
0.896 

[0.866-0.920] 
-0.1 2.1 

0.9 

[0.5-1.5] 
53 84 

Bursts 

(n = 177; m = 40) 
0.923 

[0.905-0.940] 
-0.2 1.6 

0.9 

[0.3-1.4] 
60 89 

Variable Selection 

(n = 177; m = 53) 
0.938 

[0.922-0.952] 
-0.1 1.3 

0.7 

[0.4-1.3] 
63 90 

Validation: Vienna 

(n = 134; m = 53) 

0.900 

[0.873-0.929] 
-0.2 1.1 

0.6 

[0.3-1.2] 
64 92 

Validation: Utrecht 

(n = 99; m = 53) 

0.765 

[0.665-0.846] 
0.1 1.5 

0.9 

[0.4-1.3] 
61 90 

 

Validation of FBA on an independent dataset 

To directly address the generalizability of our results, we validated the multivariable 

model in an independent dataset. We found that the multivariable model trained on Vienna data 

(evaluated via cross-validation) and applied to the Utrecht dataset performs near physiological 

limits in prediction accuracy, with 90% of epochs correctly identified to within ±2 weeks 

(Table 1). The absolute error between the FBA and PMA (accuracy), when applied to the 

Utrecht data, was equivalent to the cross-validation results from the Vienna dataset across a 

similar range of PMA (Fig. 3B: p < 0.001; TOST, equivalence boundary of ±0.5 weeks). 

FBA for tracking individual growth and predicting neurodevelopmental outcomes 
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The accuracy of FBA in tracking cot-side development raises the idea that FBA may 

be useful for individualized assessment of functional maturity. We used linear mixed modelling 

to account for serial recordings from individual infants which resulted in an adjusted correlation 

of r = 0.978 (95%CI: 0.974-0.987; n = 65). The improvement in correlation over a point-wise 

estimate implies that individual infant trajectories are more highly correlated with PMA than 

the cohort average. In other words, infants tend to follow their individual growth trajectories 

(Fig. 4A), and the FBA is able to track these trajectories with high accuracy. 

 

Figure 3: The correlation between a multivariable FBA and chronological age (PMA). (A) The 

multivariable FBA, with variable selection, evaluated on the Vienna dataset via leave-one-

subject-out cross-validation over the full range of EEG recording PMAs (24-38 weeks). (B) 

The multivariable FBA trained on the Vienna dataset and applied to an independent dataset 

recorded from Utrecht over the full range of EEG recording PMAs from the Utrecht dataset 

(24-34 weeks). Dashed lines denote ±2 weeks difference between FBA and PMA.  

 

growth trajectories as a predictor of neurodevelopmental outcome. In a subgroup of infants 

with more than two serial recordings (a median PMA range of 6.2 weeks, IQR: 4.6 to 7.5 

weeks; Fig. 4B), the average predicted age difference (PAD: difference between FBA and 

PMA) was significantly associated with neurodevelopmental outcome (One-way ANOVA: F 

statistic = 3.980, df = 2, p = 0.029; n = 35, 3 groups: normal, mildly abnormal, abnormal – see 

Fig. 4C; group variances were homogenous; Levene’s Test: p = 0.82). Infants with abnormal 

outcome (n = 9) had a PAD that was significantly less than infants with mildly abnormal 

outcome (n = 13) (Cohen’s D = 1.12, p = 0.025, corrected for multiple comparisons using 

Tukey’s Range Test). The estimated PAD in these infants was also significantly below 0 weeks 

(t-test: Cohen’s D = 0.661, p = 0.035; n = 9) suggesting a persistent delay in brain maturation 

(i.e., negative PAD) in infants with abnormal outcome. These differences were not apparent 
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when including infants with less than three serial EEG recordings (ANOVA: F statistic = 

0.0112, df = 2, p = 0.894; n = 54), suggesting that multiple recordings may be required to assess 

a PAD associated with neurodevelopmental outcome. 

 

Figure 4: Functional brain age prediction using a multivariable model of quantitative EEG 

measures. (A) Maturational trajectories of individual infants, with at least two serial recordings 

per infant; n = 54, colored according to the average differences between FBA and PMA (PAD: 

predicted age difference) in each infant. The color bar denotes the PAD in weeks. (B) Scatter 

plot of the subgroup of data, with at least three serial recordings, used to evaluate the prediction 

error for outcome prediction; n = 35, colored according to neurodevelopmental outcome. 

Straight dashed lines denote a difference of plus or minus 2 weeks between PMA and predicted 

age. (C) Subgroup analysis of EEG predicted age minus PMA with respect to outcome was 

graded as N – normal (minimum Bayley’s score > 85), M – mildly abnormal (minimum 

Bayley’s score between 70 and 85) and A – abnormal (minimum Bayley’s score < 70). The 

asterisks denote p < 0.05 between outcome groups and when testing each outcome group 

against a null hypothesis of zero mean EEG maturity. Data points in have been shifted for 

clarity of presentation and are denoted with filled circles. Data points represented by triangles 

are infants with intra-ventricular hemorrhage. 
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Discussion  

The brain matures rapidly in early life with a wide range of structural and functional indices 

changing over time spans as short as a few weeks. Here, we showed that automated analysis of 

preterm EEG can be used to track maturation of cortical function with high accuracy. This 

multivariable prediction of age from the EEG enables the estimation of functional brain 

maturity to within 1-2 weeks of PMA; an accuracy that generalized to an independent 

validation dataset acquired under a considerably different EEG recording environment. The 

margin of error is far lower than similar predictions in preterm infants based on functional 

neuroimaging with fMRI (31), and orders of magnitude lower than what is achieved over later 

stages of life using EEG or MRI (error margins of 5-10 years) (32- 34). Our findings are also 

comparable to an array of somatic anatomical methods over similar preterm age ranges based 

on measures of femur length, head circumference, weight, and structural MRI (cortical folding, 

thickness) (35-38). This supports the concept of rapid and distinct changes in anatomy and 

physiology throughout the preterm period and suggests that physiological and anatomical 

growth are strongly intertwined (23, 26, 39).  

The multivariable model developed here advances previous work that was designed to capture 

key visual elements of EEG review for age prediction. Incorporating burst measures based on 

the analysis of crackling noise resulted in the most accurate single variable model, improved 

multivariable model accuracy, and provided a potential framework to explain the mechanistic 

origins of rapidly evolving preterm EEG signals. The existence of asymmetric burst shapes 

replicates our previous findings in independent datasets when identifying pathological changes 

in the EEG at or near birth (25, 30). We also validated several recently proposed qEEG 

variables of maturation: suppression curve, mPLI, global ASI, multi-scale entropy, and path 

length (coherence) as excellent predictors of age prediction in the preterm period. This supports 

the use of automated measures of EEG (qEEG) for the extraction of useful information in 

excess of visual interpretation.  

We also successfully validated the model's robustness on unseen data. This showed that the 

prediction accuracy of the multivariable model holds when translating to a dataset collected 

within a different clinical environment and with different recording parameters (e.g. amplifier, 

electrode type, number, and location). This is a crucial hurdle for the clinical translation of new 

methods, which is impossible to establish in a dataset acquired under uniform conditions. 

Notably, the independent validation dataset was collected using a 4-channel recording montage 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2019. ; https://doi.org/10.1101/848218doi: bioRxiv preprint 

https://doi.org/10.1101/848218
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

that is commonly used in brain monitoring with the amplitude integrated EEG (40-42). This 

validation on heterogeneous data establishes the wider clinical applicability of determining 

functional brain age from EEG. 

Various measures of growth are commonly used in health care. The finding that neurological 

dysfunction manifests as immaturity in the EEG is intuitively appealing, and indeed, has been 

a cornerstone of clinical EEG review for decades (5, 43-45). This hypothesis can only be 

accurately tested with qEEG measures that are strongly correlated with age. We show that most 

phenomenological measures used in clinical EEG research, such as inter-burst interval, EEG 

amplitude, or spectral power, are only weakly correlated with age, which challenges their 

applicability for maturational EEG assessment. We show that more recently proposed qEEG 

measures (such as asymmetry and sharpness of burst shape, suppression curve, mPLI, MSE, 

and path length) and multivariable models of age are strongly correlated with PMA and, 

therefore, more relevant for maturational analyses.  

We show that infants follow individual functional maturation trajectories in a highly 

predictable manner. Analysis of these trajectories with measures such as PAD (the difference 

between FBA and PMA) can be used to predict neurodevelopmental outcome. We used serial 

EEG recordings to identify persistent PADs. This suggests that early neurological adversities 

become embedded in cortical function (EEG recordings), accumulating steadily over the course 

of neurodevelopmental (46). It would be clinically useful to assess whether single PAD 

measurements at a later stage such as term equivalent age, can provide a sufficiently accurate 

prediction of future outcomes and, hence, an important proxy for accumulated developmental 

adversities. 

Limited sample sizes, a reality when studying critically ill infants, mean that the reported links 

between PAD and outcome cannot take into account the variety of factors that may confound 

this result such as physiological challenges, routine cares, and interventions experienced by 

preterm infants during their stay in intensive care. These factors will also confound the FBA. 

There is evidence to suggest that several of these challenges, interventions (many which are 

designed to accelerate maturation), and other relevant clinical variables can influence EEG 

activity and, therefore, contribute to variability in the FBA and, therefore, PAD. These 

variables include the difference between GA and PMA (intra-uterine vs extra-uterine 

maturation), post-natal adaption, medications, ventilation, birthweight, kangaroo care/infant 

massage, and gender (47-56). We aim to investigate these effects in future work to differentiate 
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them from other potential causes of inter-subject variability such as natural variability in the 

course of in-utero growth (57). Nevertheless, FBA provides an accurate prediction of PMA 

even when based on a small training sample with an array of potentially confounding factors 

that were not explicitly modelled. 

The clinical value of FBA is twofold. First, tracking of individual growth trajectories is 

becoming an important part of individualized medicine for preterm infants (58-60). Tracking 

FBA provides a crucial functional complement to anatomical growth charts, being sensitive to 

the functional consequence of perinatal adversities specific to early neurological development. 

Second, these analyses may have an important role in clinical trials, as recent progress in early 

therapeutic interventions has been hampered by delays due to the assessment of outcome 

several years after birth. The use of very early measures of neurodevelopmental, like FBA, 

could lead to dramatically expedited study cycles by allowing more dynamic, adaptive study 

designs with optimized sample sizes and research questions (61). The estimation of FBA also 

has clear applications in developmental neuroscience, where the assessment of maturation 

based on cortical function can be used to benchmark models of early human neurological 

development across species and within human brain organoids (62, 63). 

Materials and Methods 

Data Acquisition 

The training dataset consisted of 67 preterm infants admitted to the NICU at the Vienna 

General University Hospital, Austria (see Table 2). Infants were included if they were born 

before 29 weeks of gestational age (GA) and parental consent was received. EEG was acquired 

with nine scalp electrodes using a Brain Quick / ICU EEG (MicroMed, Treviso, Italy) at a 

sampling frequency of 256 Hz. Electrode positions reflect the 10-20 international system 

(modified for neonates) and were located at Fp1, Fp2, C3, C4, T3, T4, O1, O2, with a reference 

at Cz. A bipolar montage (double banana) was used in analysis: Fp1-C3, C3-O1, Fp1-T3, T3-

O1, Fp2-C4, C4-O2, Fp2-T4, T4-O2 (Fig. S1). The EEG was recorded as soon as possible after 

birth and at fortnightly intervals until term equivalent age, where possible.  

Each EEG recording was split into 1 h epochs (with a 75% overlap). Epochs with excessive 

artefact were excluded from further analysis (see Table 2). GA was defined according to the 

last menstrual period (LMP). If the LMP-based assessment of gestation deviated considerably 

from ultrasound findings in the first trimester, ultrasound measurements were used as a 
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surrogate measure of LMP. PMA, defined as the sum of GA and postnatal age, was used as the 

benchmark, true age of an infant.  

The neurodevelopmental outcome of infants was assessed at ages 1 y and 2 y (Bayley Scales 

of Infant Neurodevelopment II and III - BII and BIII, respectively; assessed against German 

norms). Of the 67 preterm infants initially included in the study, 2 were assessed with BII at 

1 y, 19 were assessed with BII at 2 y, 35 were assessed with BIII at 2 y, and 11 infants were 

not assessed for neurodevelopmental outcome. Infants were stratified according to outcome 

using the following rules applied to the latest available assessment (either 1 y or 2 y): normal 

(mental developmental index and physical developmental index > 85 [scale II]; or cognitive 

index, language index, and motor index > 85 [scale III]), or abnormal (either mental 

developmental index or physical developmental index <70 [scale II]; or either cognitive index, 

language index, or motor index < 70 [scale III]). Those infants with intermediate scores that 

did not fit into the normal or abnormal categories were categorized as mildly abnormal.  

A summary of the database before and after the rejection of artefactual epochs is presented in 

Table 2. Data collection was approved by the local ethics committee and written, informed, 

parental consent was received for each infant included in the database (Medical University 

Vienna, Austria; study protocol EK Nr 67/2008). 

Data Acquisition for Independent, Validation Dataset 

We used an independent dataset to validate the single and multivariable models of age 

prediction. This validation dataset contained EEG recordings from 43 neonates admitted to the 

NICU at the Wilhelmina Children’s Hospital, Utrecht, Netherlands. The data were collected as 

part of a multi-center European study (65). Infants were included in this study if they were born 

less than 28 weeks GA and informed, written parental consent was received. Infants were 

excluded if the presence of chromosomal or congenital abnormalities were identified and if the 

neuro-monitoring was performed with devices other than the BrainZ BRM3 monitor (Natus 

Medical Incorporated, Seattle, USA). Long duration EEG recordings (~72 h) were recorded as 

close as possible to admission, followed by shorter recordings (~4-6h) at weekly intervals (up 

to a post-natal age of approximately four weeks). EEG was recorded with a BrainZ BRM3 

monitor and needle electrodes at a sampling frequency of 256 Hz. Two derivations were 

recorded and used in the analysis: F4-P4 and F3-P3. All neonates had a neurological 

examination and psychological testing at 30 months of corrected age (Bayley Scales of Infant 

and Toddler Development III; assessed against Dutch norms). Neonates with normal 
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neurodevelopmental outcome at this age were included in the validation cohort (normal was 

defined as per the Vienna dataset; n = 43 infants satisfied these criteria). The data collection 

protocol was approved by the local medical ethics committee.  

Table 2: A summary of infants and EEG recordings before and after application of artefact 

rejection. Percentages refer to the number of infants/recordings/1 h epochs that were in the 

initial set that passed the artefact rejection stage. For intraventricular hemorrhage and 

periventricular leukomalacia, roman numerals indicate increasing grades of severity; assessed 

by cranial ultrasound and classified according to (64). Values are presented as median 

(interquartile range) where applicable. 

Development: Vienna Initial post-artefact rejection 

gestational age (weeks) 25.3 (24.5-27.0) 25.3 (24.5-27.0) 

birthweight (g) 707 (605-920) 704 (604-922) 

PMA of EEG recording   

1st 27.0 (26.6-29.4; n=67) 27.9 (26.7-29.6; n=52) 

2nd 30.8 (29.2-31.8; n=59) 31.0 (29.5-31.8; n=43) 

3rd 33.7 (32.0-34.4; n=54) 33.6 (32.0-34.4; n=46) 

4th 35.3 (33.1-36.4; n=37) 35.2 (34.1-36.0; n=36) 

5th 36.5 (35.2-37.4; n=16) 36.4 (34.9-36.7; n=9) 

6th 38.6 (n=1) 38.6 (n=1) 
   

intraventricular hemorrhage 14 (I/II=10, III/IV=4) 14 (I/II=10, III/IV=4) 

periventricular leukomalacia 2 (I/II=2) 1 (I/II=1) 

necrotizing enterocolitis 3 3 

chronic lung disease 19 19 

patent ductus arteriosus 49 48 
   

 infants recordings 1 h epochs 

initial 67 234 1686 

post-EEG assessment 65 177 1137 

outcome    

normal 20 (100%) 57 (76%) 376 (65%) 

mildly abnormal 18 (95%) 57 (78%) 338 (73%) 

abnormal 16 (94%) 41 (75%) 238 (62%) 

unknown 11 (100%) 22 (71%) 185 (71%) 

    

Validation: Utrecht initial  post-EEG assessment  

gestational age (weeks) 26.9 (26.0-27.6) 26.9 (26.1-27.6) 

birthweight (g) 920 (830-1068) 920 (830-1070) 

infants 43 42 

recordings 105 99 

1 h epochs 6561 6101 
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Prediction of Post-Menstrual Age using qEEG 

EEG recorded in an intensive care environment is prone to contamination from electrical 

activity that is not cortical in origin. All data were high pass filtered with a high pass filter 

(Butterworth, 4th order, cutoff frequency at 0.5Hz) and then a low-pass filter (Butterworth, 6th 

order, cutoff frequency at 16 Hz) to eliminate high frequency activity that is more commonly 

associated with artefacts, including muscle activity (66). EEG recordings were then segmented 

into 1 h epochs. Epochs were scrutinized for further artefacts and were ignored if there was 

significant spatial differences in amplitude, and if the amplitude was too high or too low (see 

Supplemental Information for details). 

Single and multivariable models of PMA were calculated using regression analysis. The qEEG 

variables used in this study can be grouped into three categories (Fig. S1): phenomenological 

analysis (m = 46), burst analysis (m = 40), and other analysis paradigms (m = 10). 

Phenomenological analysis extracts qEEG variables that mirror the visual interpretation of the 

EEG. Burst analysis extracts qEEG variables that identify important characteristics of highly 

irregular (“crackling”) noise, through analysis of EEG bursts. Other advanced analyses extract 

qEEG variables that represent complex characteristics of the preterm EEG such as entropy, 

global connectivity, and cross-channel coupling. Details on these qEEG variables can be found 

in the Supplemental Information and implementations of these analysis methods are available 

via GitHub (see Code Availability). 

Leave-one-subject-out cross-validation was used when generating models with a single or 

multivariable input and FBA as output. In the case of N subjects (infants), a training set 

consisting of the burst metrics from N-1 subjects was used to define the model parameters. This 

model was then applied to the left-out subject to generate a predicted age and, hence, a 

prediction error. The process was repeated until all subjects had been left out, allowing 

prediction accuracy to be estimated. Single multivariable model parameters were estimated 

using support vector regression with a medium Gaussian kernel (a kernel scale of 10, a box 

constraint equal to the interquartile range of PMA/1.349 and epsilon equal to the box 

constraint/10). Support vector regression is tolerant of redundant and irrelevant variables; 

nonetheless, we implemented a process of variable selection to rank the importance of each 

qEEG variable to the determination of age and to reduce the computational burden of the 

multivariable model. Backwards selection was used (4-fold cross-validation within the training 

set), with the mean square error between FBA and PMA as a cost function to be minimized.  
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Independent Validation  

A multivariable model was trained on all available data in the Vienna dataset and then applied 

to the independent dataset collected at the Wilhelmina Children’s Hospital, Utrecht, 

Netherlands. Adjustments were required to overcome sources of heterogeneity, namely 

different ranges of PMA and different electrode recording configurations. Exploiting the denser 

electrode array in the Vienna dataset, we generated a two-channel version of the estimator. It 

was applied to the sparser 4 electrode bipolar montage that is a standard in the brain monitoring 

practice, also known by clinicians as amplitude-integrated EEG monitoring (72). The 

multivariable model was trained on the two fronto-central derivations (Fp1-C3, Fp2-C4) of the 

Vienna dataset and then applied to the F3-P3 and F4-P4 derivations of the Utrecht dataset. This 

was the closest, spatially, approximation given the available recording configurations of the 

Vienna dataset. Multivariable model parameters were estimated using support vector 

regression with a Gaussian kernel (kernel scale = 10, box constraint = interquartile range of 

PMA/1.349 and epsilon = interquartile range of PMA/13.49). Model efficacy was only 

compared across a similar PMA range between the two datasets (24-33 weeks PMA). The 

artefact rejection paradigm applied to the Vienna dataset was also implemented on the Utrecht 

dataset.  

Statistical Analysis  

A prediction was made on a 1 h epoch of EEG; if multiple EEG epochs exist per recording then 

the average predicted age per recording was used. The goodness-of-fit between predicted age 

(single and multivariable models) and PMA was evaluated using the correlation coefficient 

(Pearson’s) and was used to determine the accuracy of the prediction. The bias, variance, and 

absolute error between predicted age and PMA were also used as measures of goodness-of-fit 

(13). The use of repeated (serial) measures allowed the application of a linear mixed effects 

model (LMM) where the model output was a fixed effect and the infant ID was a random effect. 

The LMM was implemented using the fitlme function in Matlab [pma ~ model output + (1 | 

infant ID)]. The adjusted r value was used to assess the goodness-of-fit taking into account 

multiple recordings from each infant. Statistical comparisons of measures of the goodness-of-

fit between EEG metrics for the prediction of PMA were performed using resampling methods 

(bootstrap). A correlation coefficient was deemed significantly different if the 95% confidence 

interval of differences (estimated via a bootstrap) did not span zero, i.e., was either positive or 

negative. Differences in prediction accuracy (absolute error) between the Vienna (training) and 
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Utrecht (validation) sets were evaluated using equivalence testing with a two, one-sided t-tests 

(TOST) procedure based on Welch’s t-test (73). We used a mean difference in absolute error 

of ±0.5 weeks as a conservative equivalence boundary based on the results of previous work 

which reported an absolute prediction error of approximately ±1 week (14). Differences in FBA 

trajectories (FBA subtracted from PMA and then averaged across all serial recordings) between 

outcome groups were tested using a one-way ANOVA, with Levene’s test for homogeneity of 

group variances and a post hoc analysis performed using Tukey’s Range test to correct for 

multiple comparisons. Furthermore, FBA trajectories in each group were assessed to determine 

if they were significantly different from zero using a t-test. For post-hoc analyses, Cohen’s D 

statistic, with small sample size correction, was used to estimate the effect size between groups. 

All tests were two-tailed and used a level of significance of 0.05. 

Data availability  

Access to the raw EEG recordings is available at request (LdV and MJNLB for the Utrecht 

dataset and KKS for the Vienna dataset).  

Code availability 

Implementations of the analysis methods are available via GitHub -

github.com/nstevensonUH/Neonatal-EEG-Analysis/tree/master/Preterm_Features_Literature. 
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analysis.  
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