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Abstract

Cognitive control is typically understood as a set of mechanisms which enable humans to reach goals
that require integrating the consequences of actions over longer time scales. Importantly, using
routine beheavior or making choices beneficial only at a short time scales would prevent one from
attaining these goals. During the past two decades, researchers have proposed various computational
cognitive models that successfully account for behaviour related to cognitive control in a wide range
of laboratory tasks. As humans operate in a dynamic and uncertain environment, making elaborate
plans and integrating experience over multiple time scales is computationally expensive, the specific
guestion of how uncertain consequences at different time scales are integrated into adaptive decisions
remains poorly understood. Here, we propose that precisely the problem of integrating experience
and forming elaborate plans over multiple time scales is a key component for better understanding
how human agents solve cognitive control dilemmas such as the exploration-exploitation dilemma. In
support of this conjecture, we present a computational model of probabilistic inference over hidden
states and actions, which are represented as a hierarchy of time scales. Simulations of goal-reaching
agents instantiating the model in an uncertain and dynamic task environment show how the
exploration-exploitation dilemma may be solved by inferring meta-control states which adapt
behaviour to changing contexts.

Keywords: meta-control, arbitration, exploration-exploitation dilemma, hierarchy of time scales,
probabilistic inference, prior over policies
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Introduction

The concept of cognitive control is generally used as a summary term for a set of processes that enable
humans to flexibly configure perceptual, emotional, and response selection processes in accordance
with superordinate goals. These processes are especially pronounced when goal attainment requires
novel or non-routine action sequences, and there is competition from otherwise stronger habitual or
impulsive responses (Botvinick and Cohen 2014; Egner 2017; Goschke 2003, 2013; Miller and Cohen
2001). Cognitive control is considered essential for some of the most advanced cognitive capacities of
humans, such as the ability to pursue long-term goals and to respond flexibly to changing contexts and
task demands. However, much of the experimental research on cognitive control has focused on
relatively simple laboratory tasks, as, for instance, interference paradigms such as Stroop or flanker
task (e.g., Kalanthroff et al. 2018; Scherbaum et al. 2011), or paradigms assessing cognitive flexibility
such as task switching (Koch et al. 2018). Many of these tasks are aimed at inducing conflicting internal
representations, which trigger responses that are in contradiction to the instructed task goal and may
lead to an incorrect response. Such tasks have been remarkably useful as psychological ‘probes’ into
component mechanisms of cognitive control such as response inhibition or goal shielding, as they
enable researchers to study how the brain copes with crosstalk between conflicting representations
and competing responses. Accordingly, many computational models of cognitive control postulate a
hierarchical mechanism, where higher-level representations of goals or task-sets serve as a biasing
signal, which modulates processing at a lower level, such that information congruent with instructed
goals gains higher priority in determining the selection of responses (Cohen 2017; Goschke 2003, 2013;
Miller and Cohen 2001; Scherbaum et al. 2012). More recently, hierarchical models have been used to
establish how the brain might determine the intensity and allocation of biasing signals to specific tasks,
based on the estimated costs and benefits of recruitment of control (e.g., Shenhav, Botvinick, and
Cohen 2013).

Although these approaches to study and model cognitive control have been highly successful and are
widely used, they focus on a specific class of task, which differ in a key aspect from real-life goal-
reaching scenarios in which humans typically use cognitive control. This difference is that experimental
cognitive control tasks typically require little planning, i.e. the participant is not required to plan ahead
(e.g. across several trials) to choose an action. By planning we mean that to select an action, an agent
has to predict the consequences of this action over longer time periods than just the current trial in a
task. Clearly, planning is an important part of cognitive control because it is necessary to reach goals,
as formalized mathematically in the reinforcement learning and active inference frameworks
(Botvinick, Niv, and Barto 2009; Friston et al. 2017; Pezzulo, Rigoli, and Friston 2015). Some recent
studies have tapped explicitly into planning using sequential decision making tasks, where, to reach a
goal over a series of trials, participants have to plan ahead for around 30 seconds, (e.g., Economides
et al. 2014; Kolling, Wittmann, and Rushworth 2014; Schwartenbeck et al. 2015).

Planning in uncertain environments

Although not always obvious to us, human planning is for many tasks in daily life a computational feat
yet unrivalled by any machine. Research in robotics and artificial intelligence has found that planning
ahead, in an online fashion, in our typically uncertain environment is a hard problem for artificial
agents, (e.g., Kurniawati et al. 2011). Even for mundane activities such as safely driving a car through
typical traffic, artificial planning performance is currently well below human routine performance (for
a current review see Schwarting, Alonso-Mora, and Rus 2018). Here, planning is required because a
car responds rather slowly to one’s actions so that one must predict the consequences of one’s own
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actions into the future for at least a few seconds or even longer, especially in the presence of other
traffic participants, whose behaviour must also be predicted. Although there are recent findings that
artificial agents perform better than humans in specific planning tasks like playing the board game Go
(Silver et al. 2017), the question is what makes planning challenging in scenarios such as driving a car.
Here, we will focus on two of these features, which are also probably the most relevant for addressing
cognitive control research questions.

Firstly, for a goal-directed agent, most environments are packed with uncertainty. This uncertainty is
induced by various sources. For example, the noise of exteroceptive and interoceptive input, the
usually hidden causes of events or the intentions of other agents that must be inferred from their
behaviour. In a board game like Go, the only source of uncertainty is the opponent, whereas the agent
has full knowledge of the current state of the board, which is free from sensory noise and contains no
hidden parts, and the rules are deterministic and define unambiguously which moves are admissible
and which are forbidden. This stands in stark contrast to real-life planning scenarios like driving, where
we cannot observe all other traffic participants continuously with high precision, objects may be
blocked from our view, traffic rules are probabilistic, because other participants may violate them, and
instead of a single opponent, there are multiple traffic participants with hidden intentions. These
sources of uncertainty in real environments make planning difficult because the number of possible
ways in which the environment may develop grows massively the further into the future one tries to
plan ahead (Huys et al. 2012).

Secondly, in our environment, things change at different time scales. For example, in the board game
Go the relevant time scale is well defined and choices matter only within the confines of the game,
similar to a trial or a block of trials in an experiment. In our environment, very different time scales co-
exist. For instance, a pedestrian’s quick glance over her shoulder (which occurs on a time scale of a few
hundred milliseconds) may indicate that she will be crossing the street (which may take several
seconds), which may be part of the action plan to meet a friend at a café (which may span a time scale
of two hours), which may be motivated by the intention to maintain positive social relations (which
spans a time scale of years), (e.g., Mylopoulos and Pacherie 2019). In other words, in real life situations
we are confronted with uncertainty about the relevance of different time scales, that is, one problem
is to infer the relevant time scales for one’s planning and goal reaching. Although it is clear that Go
strategies evolve also over several time scales (a single move, several moves, the whole game), shorter
time scales or time scales beyond the end of the game are typically not relevant for an agent playing
Go. In contrast, in real-life an observed quick glance can provide rich information for slower, more
coarse-grained time scales. Similarly, very slow time scales are highly relevant as real life hopefully
lasts for many years to come.

There is recent experimental and theoretical evidence in the cognitive neurosciences that these
multiple time scales are a critical dimension of how the brain structures its environment (Badre and
Nee 2018; Chaudhuri et al. 2015; Dixon and Christoff 2017; Kiebel, Daunizeau, and Friston 2008;
Koechlin, Ody, and Kouneiher 2003). In the domain of cognitive control, the relevance of different time
scales is well established in the context of, for instance, intertemporal choice conflicts, where agents
have to choose between a smaller reward that can be obtained immediately versus a larger reward
that can only be obtained only after a delay (Dai, Pleskac, and Pachur 2018; Kable 2014; Scherbaum et
al. 2013).
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Uncertainty and a hierarchy of time scales

Below we will present a simple experimental task that requires planning at two different time scales
under several sources of uncertainty. One of the aims of this paper is to illustrate how one can build a
computational agent for this task and implement the function of cognitive control in this mechanistic
model. The conceptual backbone of the model is that the representation of environmental dynamics
is organized as a hierarchy of time scales (Kiebel, Daunizeau, and Friston 2008). Such modelling
approaches have been proposed in cognitive control in the context of hierarchical reinforcement
learning (HRL), (e.g., Botvinick and Weinstein 2014; Holroyd and McClure 2015) and are naturally also
an increasingly relevant topic in artificial intelligence research (e.g., Bacon and Precup 2018; Pang et
al. 2019; Le, Vien, and Chung 2018; Mnih et al. 2015). In general, HRL models are based on the idea
that action sequences can be chunked and represented as a new temporally extended state, (see also
Maisto, Donnarumma, and Pezzulo 2015) for a probabilistic modelling alternative. For example,
making tea is a state that lasts about 30 seconds and requires performing a series of actions. Each of
these actions (e.g. to get some water) is at a faster, more fine-grained time scale and last only a few
seconds. This principled idea to represent behaviour as a hierarchy of sequences has also been
proposed as a way how one may understand recent findings in fields such as speech (Hasson et al.
2008), memory and the hippocampus (Collin, Milivojevic, and Doeller 2017), and decision making (Hunt
and Hayden 2017). Note that the principled idea that goal-directed control is organised as a hierarchy
with elements represented at different time scales can be traced back to concepts outlined for
example by Miller, Galanter, and Pribram (1960) and pursued in action control theories (Gollwitzer and
Bargh 1996; Heckhausen and Kuhl 1985; Kuhl and Goschke 1994). We will use the principle as
exemplified by recent HRL modelling work but critically complement the resulting model by three
components, which we believe are important to explain specific cognitive control phenomena. Note
that all three components have been used before in probabilistic modelling approaches and are not
novel by themselves. Our point is that the combination of these specific model features may make a
difference for research into cognitive control.

Firstly, as motivated above, planning in our environment must incorporate various sources of
uncertainty, which requires that we formulate the hierarchical model probabilistically (see Methods
for details). Secondly, hierarchical reinforcement learning models previously applied in the cognitive
neurosciences (e.g., Holroyd and McClure 2015) typically assume that agents aim at maximizing future
return (instrumental value - 1V). This approach works well for modelling and analysing experimental
tasks, which require participants to reach goals in an already well-learned task environment. However,
when considering cases in which an agent has not yet learned its task environment, actions should not
only serve the maximization of reward but also the reduction of uncertainty about task-relevant states
and parameters (Ghavamzadeh 2015). To be able to model such uncertainty-reducing, explorative
actions of an agent, we will use the expected free energy, which combines instrumental value with the
epistemic value of different actions, thereby leading to a reduction of uncertainty about the state of
the world (Kaplan and Friston 2018). Thirdly and most importantly, we introduce specific hidden states,
which we call in the following ‘meta-control states’. We use these states for letting the agent represent
which policies it should prefer for planning. Meta-control states do not represent the environment but
represent how the agent should behave in a specific context. As we will show below meta-control
states can be inferred by the agent online and be used to provide a learnable mapping from the task
context to the subset of behavioural policies that are most suitable for reaching a goal. We will also
show that these meta-control states effectively cause the computation of control signals, which guide
concrete low-level behaviour. In simulations, we will focus on the usefulness of meta-control states to
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solve the exploration-exploitation dilemma and will discuss how inference over meta-control states
may be used to resolve other cognitive control dilemmas.

Cognitive control dilemmas

Agents with an extended future time perspective, who pursue goal-directed action in changing and
uncertain environments are confronted with a set of antagonistic adaptive challenges. These
challenges can be conceived of as fundamental control dilemmas, which require a context-sensitive
adjustment of complementary control modes and control parameters (Goschke 2003, 2013; Goschke
and Bolte 2014). For instance, while the ability to shield long-term goals from competing responses
promotes behavioural stability and persistence, it increases the risk of overlooking potentially
significant changes in the environment and may lead to rigid and perseverative behaviour. Conversely,
while a broad scope of attention supports background-monitoring for potentially significant changes
and facilitates flexible goal switching, it also increases distractibility and may lead to volatile behaviour
that is driven by every minor change in the environment (Dreisbach and Goschke 2004; Goschke and
Bolte 2014). Agents must thus not only decide which action is best suited to attain a goal, but they
have to cope with meta-control problems (e.g., should one ignore an unexpected change and shield a
current goal from distraction or should one process task-irrelevant information, because it may signal
that one should switch to a different goal?). Given that antagonistic adaptive constraints cannot be
satisfied simultaneously to an arbitrary degree, because stable versus flexible control modes incur
complementary costs and benefits, goal-directed agents must solve meta-control problems, which
raise the question how the brain achieves a context-sensitive balance between complementary control
modes and how control parameters are adjusted to optimize goal attainment in changing and
uncertain environments.

While control dilemmas arise in a range of processing domains (e.g., goal shielding vs. goal shifting;
focused attention vs. background-monitoring; anticipation of future needs vs. responding to current
desires; computationally demanding but flexible goal-directed control vs. less demanding but inflexible
habitual control, see below for a brief discussion), here we focus on the trade-off between exploration
and exploitation as one of the most widely investigated control dilemmas (Blanchard and Gershman
2018; Cohen, McClure, and Yu 2007; Addicott et al. 2017).

It is obviously adaptive for agents to exploit and select those actions that maximized reward in the
past. However, to learn about such actions or find better ones, agents must explore previously untried
actions. Thus exploitation may prevent learning about task-relevant actions and states; conversely,
exploration supports learning and may return relatively little reward or even lead to risky behaviour.

In the following, we will describe a simple task incorporating planning under uncertainty in the
presence of two time scales and an agent that can perform adaptively in this task. Our focus will be on
using meta-control states to describe how agents can adapt their behaviour in a way that is reminiscent
of the exertion of cognitive control.

Simple experimental task

We use a sequential decision making task, similar to previous studies where participants had to collect
points in a series of trials to surpass a known point threshold (e.g., Kolling, Wittmann, and Rushworth
2014). The task combines the rationale of such sequential decision making tasks with aspects of
probabilistic reversal learning tasks (Cuevas Rivera et al. 2018; Markovic, Reiter, and Kiebel 2019).
Instead of using only two different contexts, our task comprises six contexts. The goal of the design is
to differentiate unambiguously between explorative and exploitative behaviour of the agent.
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In the task, runs of five trials form a segment, during which the participant can collect points in each
trial by choosing one of four different options. Each of these options returns probabilistically one blue
point, one red point, or no point. The number of collected points is evaluated after the fifth trial, where
the reward is only given if the agent succeeded to collect at least four points of the same colour. For
example, 4 red points and O blue points are rewarded, while 3 red points and 1 blue point are not
rewarded. Although this setup and the following task description may appear quite complex in relation
to typical cognitive control tasks like the Stroop task, we found that this level of task complexity is
required to measure clear behavioural differences when doing the task in either an explorative or
exploitative mode.

The experiment consists of a series of five-trial segments where, in addition, we impose changes at a
slower time scale to introduce so-called contexts. A context determines the payoff matrix for all five
trials of a segment, i.e. a context determines the point outcomes and probabilities for the four options.
Context changes occur whenever five segments, i.e. 25 trials, have been completed. Similar to a typical
reversal learning task, changes are not explicitly indicated so that the agent can infer the current
context only from a sequence of choice outcomes. There are six different contexts (see Figure 1),
where the conceptual idea of the experiment is that in three of these contexts explorative behaviour
is more successful than exploitative behaviour, and vice versa in the other three contexts. This means
that a goal-directed agent, which employs meta-control, should use either explorative or exploitative
behaviour depending on the context. The six contexts come in three pairs. Each context pair, e.g.
context 1A and 1B (see Figure 1), consists of the context variant A in which exploitative behaviour
should be preferred, and the very similar context variant B in which explorative behaviour should be
preferred. As can be seen in Figure 1, for each context pair, the variants A and B differ only in the payoff
of one of the four choice options while the payoffs of the remaining three options are identical. For
example, for both contexts 3A and 3B, option 1 returns a red point with 80% probability, and options
2 and 3 return a red point with 10% probability each. The one different option is number 4, where in
variant B a red point is received with 100% probability but in variant A with 0% probability. This specific
construction of context pairs has the effect that if an agent knows that the current context is context
3 but does not know its variant (A or B), option 1 has the highest expected reward (0.8 red points) of
all options while the expected reward for option 4 is only 0.5 red points. This makes explorative versus
exploitative behaviour easily identifiable because an exploitative agent, once it infers the context pair,
e.g. number 3, will try to maximize expected reward by choosing the 80% option number 1, while an
explorative agent would reduce its uncertainty about the context variant (A or B) by choosing option
4. As in real life, sometimes exploration pays off, and if an agent with explorative behaviour finds itself
in one of the three context variants B, it will outperform an agent with exploitative behaviour because
the explorative agent will quickly find the 100% option. However, in the three context variants A, an
agent with exploitative behaviour will collect on average more reward than an explorative agent
because it sticks with the 80% option.

The main point of the simulations below will be to demonstrate that, given the task, we can now build
a probabilistic inference agent that changes its exploration-exploitation behaviour depending on
context. We will do this by using a model based on a hierarchy of time scales and active inference,
where the agent does not only performe inference over hidden context and meta-control states but
also inference over control signals which determine preferable modes of behaviour. As we will show
below in detail, agents doing the task will learn task parameters during a training period, just as human
participants would do. Specifically, agents have to learn the outcome probabilities (blue, red, no point)
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associated with each option, in each of the six contexts to be successful in the task. Importantly, the
agent is informed that there are only six different contexts.

Context 1A Context 2A Context 3A
Context 1B Context 2B Context 3B
1 2 3 4 1 2 3 4 1 2 3 4
option option option

Figure 1: Illustration of payoff in six different contexts. Each context is defined by the payoff probabilities associated with four
different options. In context variants A (top row), agents with exploitative behaviour will on average be more successful in
reaching the segment-wise goal to surpass the threshold of four points of a single colour, in comparison to agents with
explorative behaviour, and vice versa in the context variants B (bottom row). Furthermore, the only difference between each
context pair, e.g. contexts 1A and 1B, is the option with the point probability of 100% in the B variants, i.e. option 4 in each
context. All other options return a blue, red or no point with 80% probability and the other two outcomes with 10%
probability. Note that option types (point probabilities associated with an option) are shared across context, e.g. the point
probabilities (80% blue point, 10% red point, 10% no point) is used four times in contexts 1A, 1B, 2A and 2B. If an agent does
not know the current context variant (A or B), the expected return of choosing the fourth option is lower compared to options
associated with 80% point probability, e.g. option 1 in context pair 3A/3B. However, options which return a point (or no point)
with 100% probability are the most informative because they resolve the uncertainty about the context variant A or B.

Behavioural model

We constructed the task such that the current context can be inferred only with uncertainty due to
the probabilistic outcomes of the four options. Consequently, we will model decision making by the
agent as a partially observable Markov decision process (POMDP), (Littman 2009; Kaelbling, Littman,
and Cassandra 1998). As the agent cannot directly observe the underlying states, e.g. which of the six
contexts is the current one, the agent has to form beliefs over possible states and make decisions
based on these beliefs. This means that the decisions of the agent are made under uncertainty about
the current context. To build an agent and reflect the task structure of trials embedded into segments
under specific contexts, we first define a generative hierarchical model with two levels. This generative
model defines a set of rules and statistical dependencies that an agent uses to make probabilistic
predictions and infer its belief about the underlying state of the environment from choice outcomes.

Specifically, the agent’s generative model represents the probabilistic mapping between the four
choices and the possible outcomes of receiving a point. The agent represents the duration of each
segment (five trials) and that success depends on collecting at least four coloured points of a single
colour. The agent represents six possible contexts at the second level, i.e. it is informed that in each
trial one of the six contexts is active. The agent is not informed that the context switches every five
segments but has the knowledge that the context can change to any other context with probability
p=1/5 between segments. Note that in all simulations below the agent has no expectation about the
identity of the next context and no means of learning such expectations. See Figure 2 for a graphical
representation of the two-level hierarchical model. The importance of the second (higher) level is that
the agent represents at this level the slow time scale of segments and possible context switches
between segments. Each of the six contexts is associated with a specific probabilistic choice-outcome
mapping, see Figure 1. This mapping is used at the lower level, which represents the trial-specific faster
time scale of choosing options and observing outcomes. The agent will be initially uninformed about
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these context-specific choice-outcome mappings and has to learn these mappings in a training period
by interacting with the task environment.

To reach the segment-wise goal of collecting four points of a specific colour, the agent has to plan
ahead and select behavioural policies, i.e. sequences of actions. When the agent has learned the
relation between states (e.g., having two red and one blue point on trial 3 and being in context 2), and
how a specific choice produces an outcome that will change this state (e.g., choosing option 2 may
provide an additional blue point), the agent can make predictions about the consequences of selecting
a specific policy, reaching further than a single trial.

To enable the agent to deal with the exploration-exploitation dilemma based on these predicted
consequences, we will provide the agent with two aims: (i) to maximize the expected instrumental
value, i.e., the amount of reward, here the number of segments, in which the agent has collected four
points of one colour after the fifth trial of a segment and (ii) to maximize so-called epistemic value, the
amount of information (see e.g., Kaplan and Friston 2018). As outlined in the previous section, we have
designed our task such that the 4™ option in each context (see Figure 1) carries the highest epistemic
value because it clearly differentiates between the context variants A or B, while its expected
instrumental value is relatively low, in comparison to the 80% options. Note that pursuing both these
aims is equivalent to minimising the expected free energy of an agent’s actions. In the task, the
expected free energy is minimized by making choices which (i) brings the agent into a preferred state
(obtaining a reward at the end of a segment) and/or (ii) reduces the agent’s uncertainty about hidden
states (e.g., current context and choice-outcome probability).

hidden stat
first level aden states

O~

o state transition probabilities
1 / 't
B, —p (5t+1|5t,7r )

first level BZ S (5.,!;4_1 |q;/ 7]—”)

mini-blocks

Al = plog]st, A

i @ e observation likelihoods
T R " "eoAn
J _o_ - = ploxlsi, A”)

link probabilities

second level Ly — p(s)]s1)

P

trials

Figure 2. Factor graph representation of the hierarchical generative model for the presented task. The graph consists of two
types of nodes: (i) Random variables (circles), which can be either evidence variables (red) whose value is observed or hidden
state variables (grey) whose value has to be inferred. (ii) Factors (squares), which define the relationship between random
variables. At the highest level of the hierarchy, the agent entertains beliefs (a probability distribution over the set of possible
states) about the current context and its meta-control state, hence s; = (ci/,i}), the c-i pair defines the observation
likelihood of the outcome o, at the end of a segment (success or failure). The behavioural policy at the second level of the
hierarchy "’ consists of selecting the appropriate meta-control state for the next segment, depending on the expected
changes in the context. The link probability Ly, relates second level states to the prior beliefs about the lower level states s,.
The lower level states factorise into the chosen options (13, ..., 17) and auxiliary context and control states cy, i}, (fixed states
during each segment) which capture lower level information about higher level states. Importantly, the auxiliary context states
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¢y, determine currently active observation likelihood, and the auxiliary control states i), set prior over policies p(r'|i}) at the
first level of the hierarchy. For details see the methods section.

Simulations

Here we expose the agent to the task, see Figure 1 and the previous section for a description. We will
proceed in three stages. First, to illustrate the basic features of the model, we will show the behaviour
of agents that are fixed in their explorative versus exploitative stance, i.e. do not have meta-control.
Second, we will introduce meta-control states, which enables an agent to resolve the exploration-
exploitation dilemma by adapting its meta-control states in a context-dependent fashion. Third, we
will show that the proposed model also enables an agent to infer that it should change its meta-control
state already before a context switch when the agent can predict probabilistically an impending
context change.

In the first illustrative simulation, we exposed agents to the task for 200 segments, i.e. 1,000 trials. In
Figure 3, we show group mean success rates of three different agent types, where each group consists
of n = 100 agents of the same type. One of these agents simply serves as a reference random choice
agent. The other two agent types differ in their policy selection objective. In one case, the policy
selection objective corresponds to the instrumental value (V) only and in the other case to the
expected free energy (EFE), i.e. the combined instrumental and epistemic value (see Priors over
policies — expected free energy sub-section in Methods for details). In the task, maximizing IV only
results in exploitative behaviour of an IV agent while an EFE agent is expected to show more
explorative behaviour because of the EFE’s epistemic value component. We assume that the two
agents have sufficiently learned the choice-outcome probabilities for the six contexts after 100
segments. Note that we used the alternating pattern of context variants A and B to maximize the need
for adapting to a new context, see also below. As expected, there are large performance differences
between context types A (indicated by black circles) and B. This is because in context types B, for each
of the three contexts, there is the 4™ option that returns a point with 100% probability, see the task
description above. In context variants B, the EFE agent reaches in context B types the highest
performances because the affinity toward informative choices enables the agent not only to resolve
the uncertainty about the current context but also to collect points with maximal probability. In
context A types, the EFE agent has clearly a worse performance than the IV agent.
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Figure 3. Success rates of three different agents. (a) Group mean success rates for the expected free-energy agent (EFE; blue
line), instrumental agent (IV; orange line), and a random choice agent (green line), which randomly selects one of the four
options on a trial with equal probabilities. The black dashed line denotes the expected success rate for always selecting an
option which returns a coloured point with probability p = 0.8. (b) Context change schedule across segments. Circles denote
segments under context variants A, in which exploration lowers success probability.

To understand the difference of mean success rates of the IV and EFE agents in both contexts variants
A and B we now take a closer look at their choice probabilities. In Figure 4, one can see that the EFE
agent is more likely to select the 4™ option, which is the most informative about the current context,
see Figure 1. This allows the agent to resolve uncertainty about the context rapidly, leading to higher
performance in context variants B and similar performance in context variants A as only a few trials
are needed to resolve uncertainty and identify the true context.
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Figure 4. Probability of selecting different options in different contexts and context variants. The probabilities are estimated
from 100 simulations for each agent type (the same as used for Figure 3) and pooled across the last 100 segments of the
experiment. The three context variants A are shown in the upper row and the three context variants B in the lower row. The
EFE agent (blue bars) selects the informative options (option type 100%-1) with the highest rate when exposed to variant B,
and is also more likely to select the informative option (option type 100%-0) when exposed to variant A, compared to the |V
agent (orange bars). For visualisation, we have pooled options that return a point with high probability (independent of the
colour, 80%-1 and 100% -1) and options that return no points with high probability (80%-0 and 100%-0)

Adaptive control of exploration-exploitation dilemma

Up to now, we have shown that there are interesting behavioural differences between an agent that
just maximizes instrumental value (V) and an expected free-energy (EFE) agent that, in addition, also
considers information gain when selecting its policy. As we have found, not unexpectedly, the EFE
agent follows more informative policies, which results, due to the task design, in a performance
advantage in context variants B, and loss of performance in context variants A. Critically, the relative
contributions of the instrumental and epistemic value to the policy selection were fixed in both the IV
and EFE agent. However, one could argue that agents should be able to adapt their behavioural mode
depending on the context, i.e. use autonomously controlled contributions of the two value terms for
policy selection, akin to human meta-control.

Here, we implemented the conceptual idea to enable such meta-control in an agent by linking the
inference over meta-control states, which define contributions of the instrumental and epistemic
values, to policy selection. These meta-control states iy are part of the second level states sy (see the
graphical model in Figure 2) and linked to each context via observations of success or failure in each
segment. Specifically, the meta-control states adapt the selection of policies by changing the prior over
policies at the lower level (where we define this prior as the expected free energy), see also (Parr and
Friston 2019). Intuitively, the prior over policies can be interpreted as a behavioural mode or a strategy
because the prior simply tells an agent which action sequences it should currently prefer. Importantly,
the prior over policies, depending on the meta-contol state, will either take the epistemic value term
into account or ignore it. However, the uncertainty over currently preferred meta-control states will


https://doi.org/10.1101/847566
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/847566; this version posted November 20, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

13

lead to a continuous weighting of the epistemic value term. The adaptive weighting biases the set of a
priori viable policies which in turn influences the computations of the posterior over policies. We
anticipate that such an adaptive agent will learn to be biased towards exploitative behaviour in context
variant A and towards explorative behaviour in context variant B. In other words, an observer of the
agent’s behaviour would possibly conclude that this agent resolves the exploration-exploitation
dilemma by exerting meta-control.

Critically, the meta-control states do not represent external states of the environment but rather
internal modes of behaviour. Note that the prior over policies does not exclude any policies in a hard-
wired fashion. Rather, some policies become more likely to be selected than others.
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Figure 5. Success rates and meta-control states of an adaptive (controlled) and two non-adaptive agent types. (a) Group
mean success rate for 100 agents of the adaptive (green), exploratory (orange) and exploitative (violet) agent type, plotted
over the second half of the experiment. The horizontal black dashed line denotes the expected mean success rate for always
selecting an option which returns a coloured point with probability p = 0.8. Note that the success rates of the adaptive and
the exploratory agents are similar in the context variants B so that the green line is often not visible. (b) Trajectories of the
weighting @ of the epistemic value contribution to the policy selection. The closer this value is to zero the more exploitative
the agent becomes. To show the variability of the 100 agents’ individual @ trajectories, we plotted the median & trajectory
(vellow), the average @ trajectory (red) and the individual @ trajectories (blue). The context change schedule is the same as
shown in Figure 3b.

To show this, we will compare the behaviour of this adaptive agent to the behaviour of the IV and EFE
agents, which we used in the simulations above. These two non-adaptive agents represent the two
extreme modes of the adaptive agent: the IV agent corresponds to a zero weighting of the epistemic
value term, and the EFE agent to the unit weighting of the epistemic value term. In Figure 5a, we show
the group mean success rates of the adaptive and the two non-adaptive agents, using the same task
design, as shown in Figure 3b. One can see that the adaptive agent is on average similar in performance
to the explorative agent in the context variants B, which shows that the adaptive agent switches to an
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exploratory mode if in contexts where maximum success rate can be obtained using exploratory
behaviour. However, in context variants A, the performance of the adaptive agent is only slightly better
as compared to the exploratory agent and far below the exploitative agent. The reason for this
apparent non-adaptation to an exploitatory mode can be seen in Figure 5b, where we plotted the
trajectories of the weighting & of the epistemic value for policy evaluation, i.e. a value of 1 indicates
that the adaptive agent is in an explorative mode, while a value of 0 indicates an exploitative mode.
Due to the learning in the first half of the experiment, the dynamics of the weighting factor @ are
history dependent, as can be seen for the trajectories of 100 agent instances doing exactly the same
task with the same context sequence but with differently sampled outcomes, see Figure 5b (blue lines).
This implies that the stochasticity of the outcomes interacts with the learning process on both levels
of the hierarchy generating unique, adaptive behaviour that is sensitive to previous experience. To
further quantify the differences between the adaptive agent and the two non-adaptive agents, we
looked at two other quantities: (i) The context inference accuracy, see Figure 6a. We have defined
context inference accuracy as the probability that the agent correctly identifies the current context
(measured by the highest posterior probability for the true context). The adaptive agent achieves high
levels of inference accuracy in both context variants. In other words, the adaptation of the behavioural
modes does not have a detrimental impact on the ability of the adaptive agent to resolve its
uncertainty about the current state of the world. (ii) The success probability of different agents and
their time course as shown in Figure 6b (see Methods for the precise definition of the success
probability). Note that unlike the success rate in Figure 5a, which is computed as a mean over multiple
agent instances, the success probability is agent-instance specific, i.e. specific to a single agent. In
context variants B, the success probability of the adaptive agent is as high as the success probability of
the exploratory agent. However, in context variants A, the adaptive agent’s success probability is lower
as compared to the one of the exploitative agent, but significantly higher than the explorative agent
(p<0.05 as per Wilcoxon signed-rank test for all relative segment values). This average, lower
performance can be directly related to the wide distribution of trajectories of the weighting factor a
as shown in Figure 5b. In other words, many out of the 100 adaptive agents, due to the high
stochasticity of the task (e.g., there is uncertainty on the current context and on the actual reward
probabilities), do not learn how to behave exploitatively in context variants A. This point of variability
in experience-dependent adaptation is stressed by showing the average success probability of a subset
of ten instances of the adaptive agent which learned to down-regulate @. We selected these ten agent
instances using the criterion of a downregulated epistemic weight below the 0.5 level in context
variants A. One can clearly see (Figure 6b, black line) that the average success probability of this subset
of adaptive agents is close to the performance level of the exploitative agent.

The overall low performance of the adaptive agent in the context variants A may be explained by the
difficulty of downregulating exploratory tendencies in the presence of various sources of uncertainty.
This is because the adaptive agent has to continuously update its beliefs about the current context,
choice probabilities, and relations between the meta-control states, contexts and the success
probability for a segment. In other words, the adaptive agent works as expected, but the stochasticity
of its task environment keeps the adaptive agent in a limbo of uncertainty and drives the agent into an
exploratory mode. This suggests that the adaptive agent can fare better in our task environment if we
reduced the agent’s overall uncertainty by letting it acquire a more accurate representation of changes
in their task environment. In the simulations so far, we have limited the agent to an imprecise prior
on when to expect a context change, i.e. an agent expects a change after each segment with probability
p=1/5. It is reasonable to assume that a human participant would learn after an extended period of
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100 segments (500 trials) that there might be a context change around every 5 segments, where the
stochasticity of the task still makes the exact duration of a context difficult to predict, but at least there
should not be an anticipation that there is a context change after each segment. If we gave such a prior
about the duration between context switches to an adaptive agent, it could in principle anticipate the
moment of change more accurately and maintain high precision on the current context for a longer
time. In the next section, we will show how representing the moment of change can improve the
performance of adaptive agent and bring it much closer to the performance of the exploitative agent
(IV agent) in context variants A.
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Figure 6. Quantification of between-agent differences in group context inference accuracy and group mean success rates. (a)
Context inference accuracy histogram for the two contexts variants A and B, for the adaptive (green), exploratory (orange)
and exploitative (violet) agent type, estimated over the last 100 segments of the experiment and defined as group probability
of assigning the posterior mode to the current context. (b) Average success probability estimated over n = 100 instances of
each agent type, over the last 100 segments of the experiment. We used the last 100 segments of the experiment to estimate
success probability per instance of each agent type. The relative segment number denotes the segment number relative to the
moment of context change, where zero corresponds to the segment at which the context changed. The error bars show the
25th and the 75t percentile. The same colour scheme as in (a) applies, where in addition, we show as black solid lines the
average success probability of a subset of 10 instances of the adaptive agent which were the most efficient in down-regulating
exploratory behaviour (see text for more details).

Anticipatory control of behaviour

The agents described so far were limited to expecting context change in every segment with a constant
switch probability (of p = 1/5). Here we enable agents to represent the temporal structure of the task
better and anticipate a switch around every five segments: to understand how introducing temporal
representations drives anticipatory behaviour we will not consider a precise prediction of a switch after
five sements, but a low uncertainty over possible durations between subsequent changes, see
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Methods for details. We introduce temporal expectation by extending the representational space of
the adaptive agent with durations, that is, the number of segments before the next change occurs.
This representation corresponds to replacing the hidden Markov framework with the hidden semi-
Markov framework (see Markovic, Reiter, and Kiebel 2019).

If the adaptive agent can form predictions about the moment of change, it can use that prediction to
adapt its meta-control states and any control signal a priori, before observing outcomes of the
upcoming segment. To illustrate this, we show in Figure 7 prior beliefs about the meta-control state
(which is represented by the weighting factor @) for two variants of an adaptive agent, one with weak
predictions as we used in the simulations above, and one with strong predictions, see Methods for
details. Importantly, one can see that the agent with strong predictions also changes its prior beliefs
about its meta-control states when anticipating change (i.e., at the relative segment number 0 the
group mean prior beliefs are reduced already before the change was observed in terms of outcomes).
In contrast, the agent with weak predictions (i.e. the adaptive agent described above with a constant
switch probability of p = 1/5) changes its prior beliefs only after interacting with the environment and
observing a change of context at relative segment number 1.

weak change prediction strong change prediction
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Figure 7. Modulation of prior beliefs over meta-control states by the anticipation of upcoming context change. (Left) The
adaptive agent with weak change prediction, where prior probabilities over meta-control states during two types of
transitions are plotted. These prior probabilities are entertained by the agent after the end of a segment before observing
the outcome of the first trial of the next segment. One transition type changes from a context variant B to A (blue), the
other from a context variant A to B (orange). The solid lines denote the mean, estimated over multiple transitions between
two context variants, and the error bars show the 10t and 90t percentile. (Right) The adaptive agent with strong
prediction, i.e. high precision on the belief about the moment of change. The agent with strong prediction, in comparison
to the agent with weak prediction, adapts its prior belief over the meta-control state before having seen evidence for this
change. This can be seen by comparing the prior probabilities of the two agents at relative segment number 0. One can
also see that the agent with strong prediction has on average more extreme prior probabilities (closer to 0 and 1). This
indicates that strong change predictions also enables the adaptive agent to gain more certainty about the current
behavioural mode.

How does strong change prediction change an agent’s performance in the two context variants A and
B? In Figure 8 we show a comparison of success probabilities of the three agent types. As expected,
we find that all agent types benefit from strong predictions of context changes, in comparison to weak
predictions, as shown in Figure 6. In context variant A, we find a significantly higher performance
(p<0.05 per Wilcoxon signed-rank test) of the adaptive agent, relative to the exploratory agent, for
relative segments 2 and 4. However, we expect that increasing number of instances (simulations) will
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trivially lead to significant differences for all comparisons. Furthermore, as the higher average
performance of the adaptive agent is stable over repeated simulations (data not shown), we can
exclude a chance occurance of performance differences. In contrast to adaptive agents with weak
change prediction, we find that with strong change prediction the majority of agent instances (90 out
of 100) down-regulates the use of epistemic value in context variants A (below 0.5 level as above).
Note that the exploitative agent is insensitive to the epistemic value and therefore does not base policy
selection on its subjective uncertainty about the current context. As a consequence, the exploitative
agent will stick with the less informative options and have a higher chance of succeeding in context
variants A. This becomes obvious for the relative segment 0 in Figure 8, where the adaptive and
exploratory agents aim at reducing context uncertainty and at relative segment 4 just before another
context change. Here, although the two agents have a strong prior for change prediction, they still
expect the change with some probability at relative segment 4 already so that they experience
increased uncertainty about their current context.
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Figure 8. Success probability of three different agent types with strong change prediction. Mean success probability estimated
as the average of success probabilities of n = 100 instances of each agent type in (left) context variants A and (right) in
context variants B. Note that in context variant B the adaptive agent (green line) shows the same mean success probability as
the explorative agent (orange line) so that the green line is hidden from view. We used the last 100 segments of the experiment
to estimate success probability relative to the moment of change. The relative segment number denotes the segment number
relative to the moment of context change, where zero corresponds to the segment at which the context changed. The error
bars show the 25t and the 75t percentile.

Another view at the results shown in Figure 8 is to not focus on the differences in mean success
probabilities, as one would in the analysis of a psychological experiment, but to evaluate agent
performance from a competitive ‘survival of the fittest’ perspective. The question is then what agent
type, after an initial learning period, has the highest chance to produce the best-performing agent
instances, the non-adaptive or the adaptive, controlled agent? In Figure 9 we show the so-called
survival function of cumulative successes of the three agent types with strong change predictions
(adaptive, exploratory and exploitatory). The survival function is estimated over n = 100 simulations
of each agent type, and as in Figure 8 we used the last 100 segments (where we pooled over context
variants A and B) of the experiment to estimate success probability per instance. Critically, we found
that 50% instances of the adaptive agents achieved a success probability = 80%), leading to the largest
probability of observing a high performing adaptive agent instance among the three agent types. For
example, in an environment where an agent requires at least an 80% success probability to survive,
this world would be populated mostly (66%) by adaptive agents (i.e., agents with meta-control).
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Figure 9. Survival function of success probabilities. Survival function (i.e., complementary cumulative distribution) for three
different agent types with strong change prediction, using the same simulations as in Figure 8 over the last 100 segments of
the experiment. We pooled across the two context variants A and B. The adaptive agent has the highest chance of generating
a high performing instance over most success probabilities.

Discussion

We have proposed a model which casts meta-control as an arbitrating, context-specific mechanism
underlying planning and decision making under uncertainty. We used the example of the exploration-
exploitation dilemma to illustrate how an agent adapts its behavioural modes (encoded as the so-
called prior over policies), i.e. its internal preferences to specific sequences of actions. Critically, the
agent arbitrates between explorative and exploitative behaviour by changing the relative weight of
epistemic value (expected information gain) relative to the instrumental value (expected reward) when
evaluating the value of different policies . As we have shown, this context-specific weighting results in
adaptive transitions between explorative or exploitative behaviour, depending on the context inferred
by the agent. The key element of the proposed model are meta-control states, which encode the
different modes of behaviour, and can be used to learn the association between contexts and
appropriate modes of behaviour. We have shown that inference over meta-control states and control
signals (which make the agent behave according to its specific meta-control states) leads to adaptive
meta-control as a function of the agent’s beliefs about the current context .

Meta-control: mapping of contexts to strategies

The model describes a way to compute meta-control as a way of associating specific contexts with
specific behavioural policies (modes of behaviour). Crucially, this is precisely the way Heilbronner and
Hayden (2016) describe in a recent review the hypothesized function of dorsal anterior cingulate cortex
(dACC). In their section ‘Mapping contexts to strategies’ they write ‘We propose, therefore, that the
dACC embodies a type of storage buffer that tracks task-relevant information to guide appropriate
action ... . Clearly, this ‘storage buffer’ may translate to the beliefs over meta-control states. In
addition, it is a long-standing experimental result, which Heilbronner and Hayden use to motivate their
dACC hypothesis (‘mapping of context to strategies’), that dACC also represents task-relevant states.
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This stance is congruent with proposals that dACC is involved when switching away from the current
task set (Collins and Koechlin 2012; Duverne and Koechlin 2017) or an ongoing task (Kolling et al. 2012),
where the idea is that dACC does not only represent the ongoing context including task-relevant states
and prior over policies but also potentially relevant alternative contexts and in particular their
associated prior over policies. In the proposed model, the representation of the current and potentially
relevant alternative contexts is the only way the agent can infer, when faced with uncertainty about
the current context, the appropriate setting of the meta-control states. In other words, the reason why
dACC seems so involved in representing task-relevant and potentially task-relevant states states may
be that inference about the current context is typically not straightforward as there are several sources
of uncertainty that will obscure context identity and must be routinely resolved by the brain, even in
well-controlled experimental settings. It is also of note that Heilbronner and Hayden refer to
‘strategies’ and describe dACC’s function as ‘guiding action’. This is important because in the proposed
model, meta-control states do not select actions directly but instead modulate the action selection
process by adapting the prior over policies. This means that the prior over policies shapes viable
behavioural strategies as the prior constrains the space of available policies, and supresses selection
of policies that were associated with lower performance contexts.

Control signals

Assuming that dACC guides the action selection process (Heilbronner and Hayden 2016), it is an open
guestion what control signals are effectively sent to lower motor hierarchies like primary motor
cortex? For example, Shenhav, Botvinick, and Cohen (2013) argue that the brain should compute a
control signal of a specific identity (what is controlled?) and a specific intensity (how strongly?) where
itis an open question how these control signals are computed and how they modulate concrete action
selection in a given task. It is precisely this sort of quantitative questions that one may address using
the proposed model. For example, in Figure 5b, we show the inference of the agent how much the
epistemic value contributes to action selection in a specific context and specific trial. These variations
directly modulate the prior over policies and can be readily interpreted as a control signal of specific
identity (what policies are preferred) and intensity (how high is the prior for each policy). In other
words, the proposed model and variants may be used in the future for making testable predictions
how strong specific actions are preferred in a given trial, for a specific experimental sequential decision
making task where participants have to plan under uncertainty, in order to reach goals.

Relevance of meta-control for human-machine interaction

Both in psychology and cognitive neuroscience on one side and artificial intelligence on the other,
there is agreement on the question what makes human behaviour so adaptive, in contrast to machines:
It is the human ability to be good at meta-control, for example at deciding how to decide (Boureau,
Sokol-Hessner, and Daw 2015; Gershman, Horvitz, and Tenenbaum 2015; Caccavale and Finzi 2019;
Pezzulo, Rigoli, and Friston 2015). How can humans and also other animals so quickly decide and
predict what strategies and what behavioural stance are a priori the most useful in a given situation?
It is not unreasonable to assume that this research question will be highly relevant for any future
attempts to let (heavy) machines like autonomous cars operate close to humans, in an unconstrained
fashion (see e.g., Ridel et al. 2018). The reason is that human decision making, and especially rapid
switches in behaviour, can presumably be best predicted, on sufficiently long time scales, if the
artificial agent’s model is informed about how humans solve cognitive control dilemmas and how these
solutions constrain their policies.
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Beyond exploration-exploitation: extension to other cognitive control dilemmas

The general question of meta-control, i.e. how humans infer how to make their decisions, results in a
wide range of experimentally established cognitive control dilemmas. Three examples of these are (i)
the goal shielding-shifting dilemma which relates to a problem a decision maker faces when pursuing
a long-term goal in multi-goal settings. To reach a long-term goal, the agent has to ignore (shield)
competing goals to prevent premature goal shifts (Goschke and Dreisbach 2008). However, the agent
has still to be aware of the existence of alternative goals as in dynamic environment agent should be
able to flexibly switch between goals and adapt behaviour to changing task demands or reward
contingencies. (ii) The selection-monitoring dilemma relates to the problem a decision maker faces
when deciding to pay attention to a specific part of the environment while trying to reach a goal
(Goschke and Dreisbach 2008). Typically, not all available information is relevant for the task at hand,
and paying attention to all of it would be detrimental for performance. However, completely ignoring
currently irrelevant information would prevent the agent from noticing a crucial change in the
environment and adapting its behaviour. (iii) The anticipation-discounting dilemma relates to the
problem a decision maker faces when having to decide whether or not to forgo an immediate reward
and wait for a delayed but potentially more substantial reward (Dai, Pleskac, and Pachur 2018; Kable
2014; Scherbaum et al. 2013). We speculate the proposed modelling approach specific to the
exploration-exploitation dilemma will enable progress into determing the computations of how the
brain resolves these and other meta-control dilemmas. The key conceptual idea is to build on the
assumption that control dilemmas can be formulated as an inference problem over external states
(contexts), internal states (meta-control states), and control signals (actions). For example, the
selection-monitoring dilemma can be also understood as a hierarchical inference problem in which an
agent has to decide to which aspect of the environment it should pay attention to. The probabilistic
hierarchical inference would, as we have shown here, enable an agent to infer and predict that the
context might change and and at the same time infer its behavioural mode which is the most
appropriate for the expected context change. One of the consequences of this inference will be that
the agent will use the preferred policies for this new context and, for example, infer that different
states will become task-relevant, i.e. an experimenter would measure the redirection of attention to
different task features.

Metareasoning as context inference

For artificial agents, another prominent control dilemma has been subsumed under the topic of
rational metareasoning, i.e. how agents can select a strategy that selects actions in time and strikes a
balance between expected computational costs and expected performance (Boureau, Sokol-Hessner,
and Daw 2015; Gershman, Horvitz, and Tenenbaum 2015; Lieder and Griffiths 2017). Here, an
interesting research question is whether one can reduce this type of meta-control to context learning
and probabilistic context inference. The idea here is that previously encountered contexts enable the
agent to learn a prior over policies for this context, see (Maisto, Friston, and Pezzulo 2019) for a recent
example for modelling the arbitration between habits and goal-directed control. It would be quite
cumbersome for an artificial agent to predict, in an online fashion, the computational costs of the
various way of how to do a task, i.e. predict and evaluate cost-benefit ratios for specific policies (Lieder
and Griffiths 2017). Rather, an alternative divide-and-conquer approach with lower computational cost
would be for an agent to first learn a repertoire of contexts, i.e. a discrete tiling of its environment into
contextual boxes. Conjointly, as we have shown, the agent can also learn for each of these contexts a
prior over policies, which can be considered the set of default behaviour of an agent in this specific
context. If the brain used such a discrete contextual tiling of its environment, phenomena like
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maladaptive habits, where metareasoning seems short-circuited, could be at least partially explained
by suboptimal context inference, as may be the case in Pavlovian to Instrumental Transfer experiments
(Garbusow et al. 2014).

Methods

Hidden states and observables

Hidden states and observables (random variables) are depicted as circles in the factor graph shown in
Figure 2. We will use x"’ to denote hidden states at the second level of the hierarchy and x' to denote
hidden states at the first level. Similarly, o, denotes observations (evidence) at the second level of the
hierarchy, which is defined as a binary variable (success or failure), and 0;.+ = (04, ..., 07) a sequence
of observations at the first level of the hierarchy. At any trial t an observation o, at the first level of the
hierarchy consists of three factors:

(i) point type f; € {0,1}?,
(ii) total number of points of each type w; € {0, ...,5}3,
(iii) selected option [; € {1, ...,4}.

Hence o; = (f;, W, l;). Note that the point type f; is expressed as a three dimensional vector (Null —
(1,0, 0), Blue—(0, 1, 0), Red - (0, 0, 1)) hence the total number of points w; is obtained as

t
We = fi +Weq =W0+an
n=1

where wy = (0, 0,0). At the first level of the hierarchy the hidden states s;.rconsist of the following
factors (I;, iy, ct), selected option, control state and context. Note that iy, c;, play a role of the auxiliary
and constant variables at the first level, which are linked to the dynamic counterparts on the second
level. The auxiliary variables are necessary to guide learning of the observation likelihood A}, and
policy selection at the first level. At the second level of the hlerarchy, hidden states s; factorise into
context ¢, context duration d;/, and meta-control state i}/, hence s/ = (¢}, dy, iy

Likelihoods and transition probabilities

The latent state of the selected option is directly observable, hence the corresponding observation
likelihood p(l;|l}) corresponds to the identity matrix. We express the relation between latent states
s¢ and observations o, as

p(oclse, A’y 0i—1) = pWelfe, we— ) (fellt CllcrA,)p(ltlll,:)

Where the likelihood over point types f; is a learnable quantity

Lf c.ch
p(ftllt'CtJA)_l_[Alc: ”t t ZAlClz

Lc,i

We will define the prior over point type probabilities 4, . ; as a Dirichlet distribution
p(a) = | [pircaicla,o
lLc

At the first level of the hierarchy policies ' correspond to a sequence of five option choices, hence
n' = (ay, ..., ar). Each choice deterministically sets the state of selected option [;, hence

pUeralle, ) = pLeyq |1t ar)
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Where
1 if ap =1
iy =1l,a ={' ot
p( t+1 | tr t) 0' lf a + l
In contrast, latent factors ¢y, and ij, are stable during one segment. Hence their transition probabilities
can be ignored.

At the second level of the hierarchy, we define the state transition probability of contexts ¢;’ and
context duration d}/ in the form of explicit duration hidden Markov model (Yu 2015), where

8d,d,’(’—1’if d;cl >1

dll — d dll —
p( k+1 | k {po(d),lfdl’(’:

Similarly,

144

. n
" _ ” d _ 6C,C,’{” lf dk > 1
p(crs1 = clcg, dy) =

{P(C|Cl’c’) =Jo — le if dl,c, =

where we use J¢ to denote a six dimensional all ones matrix, I a six dimensional identity matrix.
Intuitively these state transition probabilities describe a deterministic count-down process. As long as
the context duration d}; is above one, the context remains fixed (c;,; = ¢y ) and the state duration is
reduced by one (d}/;,; = d}, — 1). Once the duration of one is reached a new context will be uniformly
selected in the next segment from the reaming five contexts, and a new context duration is sampled
from the duration prior po(d).

We will express here the duration prior as a discrete gamma distribution with bounded support, hence
L D
po(d) = 7d®1e P ¢ = ) a0 temhd
d=1

where D = 20. In Figure 10a we illustrate the duration priors for agents with strong (8 = 20, § = 4)
and weak (8 =1, § = 0.2) prior beliefs about the moment of change. Both priors, have the same
mean but different variances. Importantly, the strong and weak priors correspond to strong and weak
predictions about the future moment of change as illustrated in Figure 10b using an effective change
probability defined as

§(t) =1— p(ciire1 =cleir =c,cf =c),forvec e{1,..., 6}

In other words, the effective change probability measures the probability that the current context ¢
will change as some future segment 7. Note that the weak priors correspond to the hidden Markov
model as the effective change probability remains constant.
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Figure 10. Specific cases of duration priors and the context change predictions. (a) Visualisation of the weak and strong prior
distributions of duration d. The dashed vertical line marks the mean of both distributions. (b) Effective context change
probability at a future segment k + t. The effective change probability corresponds to the probability of change of current
context after T segments conditioned on a change in kth segment. Note that for strong duration prior the temporal profile
of transition probability has clearly defined periods of low and high transition probability. In the case of weak duration prior
the change probability § is constant, corresponding to the hidden Markov model.

Priors over policies — expected free energy
The policy prior at different levels of the hierarchy corresponds to the expected free energy obtained
as (Schwartenbeck et al. 2019)

G(m,7) = Eg[ln Q(x;, A|m) — In P (0, x, A|T)]
= E5[InQ(4) + In Q(x;|m) — In P(Alx, 0r, ) — In P(x;|07, ) — In P(0,)]
i _E(j[an(Alx‘r' O‘L':T[) - an(A) +In Q(xrlo‘r: T[) - an(x'L'lT[)] - EQ[lnP(O‘E)]

[ ——
Epistemic Value—EV (&,T) Instrumental Value—1V (rt,T)

where Q = Q(o;, x;, A|m) = Q(0;. x;|A, m)Q(A) denotes a joint distribution over likelihoods A and
prediction over states and outcomes at future step T conditioned on policies  and likelihoods. In
addition, the instrumental value (IV) term corresponds to the expectation over utility over outcomes
U(o,) = InP(o;), where P(0,) denotes prior outcome preferences.

In our case of a hierarchical generative model, we will adapt the above relation and define the
following priors over policies and corresponding expected free energy at different levels of the
hierarchy. At the second level of the hierarchy as

p(r") = a(=G(x")
G(n'") = Eg[lnQ(A") + InQ(siy1Im")
—InQ(A"[sK+1,0k+1, ") = INQ(SK41l0k41, ") — U(0g41)]
where we define the utility over outcomes as

2,if op4q1 = Suceess

InP(0p+1) =U(0k+1) = {_2 if Ox4q = failure

Importantly, as the expected free energy depends only on the single future step (segment) there are
only two possible behavioural policies ("' € {1, 2}) at the second level of the hierarchy, which sets
the agent either in first or second control state.

Similarly, the first level of the hierarchy as

p('li) = o(=G('lix))
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T
Ga'|ih) = Z G’ Tlil)
T=t+1

G(r',t|iy) = —a(ip,)EV(n',t) — IV(n',T)

where a(i)) denotes a weight of the epistemic value that controls its contribution in policy selection
via the second level meta-control state. Setting @ = 1 we obtain exploratory agent variant, and setting
a = 0 we obtain the exploitative agent variant. These two agents are non-adaptive hence they have
only one available meta-control state. In contrast, the adaptive agent contains two meta-control
states, hence iy, i, € {1,2} states, and the weighting function

oy (Lforip =1
(i) = {O, forij, =2

Finally, we defined the outcome utility at the first level of the hierarchy as

1,ifw, > 4,andt =T
0, otherwise

U = Uw) = |

The behavioural policies at the first level of the hierarchy correspond to a set of sequences of all
possible choices (option selection). Hence, 7’ € {1, ...,1024}.

Generative model
Here we will provide a formal description of the hierarchical generative model presented in Figure 2.
The joint probability distribution at different levels of the hierarchy can be expressed as

- Firstlevel
T
BAPEIOPEIP 16 | [ ploclt, 4 pIL 17
t=1

where the link distributions p(cy|cy) and p(iy|ix) correspond to the identity matrix, meaning
that for each context and control state at the second level of the hierarchy there is a matching
auxiliary state at the first level of the hierarchy, and p(4’) = p(4’| [07]*¥~1) corresponds to the
approximate posterior of likelihoods estimated in the last segment.

- Second level
p(A)p(r" )p(s Im" )p(oklsy, A")

where p(A4”) = p(A"|0y_1, [07]1¥*~1) corresponds to an approximate posterior estimate at the
end of the previous segment k — 1, and conditioned on the sequence of past observations at both
n

levels of the hierarchy. Similarly, ﬁ(s,’{’|7r”)=Zslr(r_lp(s,'{'lsk_l,n")Q(S;'{'_l), denotes the

predictive probability over the current hidden states s},

Note that the full generative model is obtained by multiplying conditional joint distributions at
different levels of the hierarchy.

Variational inference

Inverting the generative model requires computing posterior beliefs over hidden states and
behavioural policies at different levels of the hierarchy. This computation is analytically intractable and
can be approximated using variational inference. Under variational inference, the true posterior is
approximated as a product of multiple independent factors, hence
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p(A", 7", si, A, ', sirlolif, 014) & QAQ()Q(s{ IM)Q(A") Q()Q(StIT)

The approximate posterior is found as the minimiser of the variational free energy

Q)
p(0k, 057 1D (x)

= f dxQ(x)In
where x = (A", ", s}/, A', 7', St). The minimum of the variational free energy corresponds to the
following relations

- Second level

QA" (A" exp > Q(si) Inp(ogIsy, 4)

!
Sk

Q") x p(n'") exp —ZQ(S,’”T[") In QlsicIn™)

p(ok, siIm")
Q(si ") < p(oy|sy) p(sklm") exp {Z Q(sg) Inp(sg sy }
T

where p(oklsi) = | dA"B(A")p(oxlsk, A").

- First level

Q) x expd ¥ Q(si) Inp(lsi) — F()

Qs .., LI

F "N = 4 l’,...,l,,1~ T/ 7 N\ (!
(") Z Q(sK)QUy, .., L) np(0t|5t)p(l1' o LB (s))

S1:t
where 5(071S7) = [ dA'Q(ANTTf p(oilsi, A", and B(si) = Xy o P IB(sK I Ip(skIsi
To estimate the beliefs over a sequence of hidden states [1.; we use the Bethe approximation and
the corresponding belief propagation algorithm (Schwébel, Kiebel, and Markovi¢ 2018)

QU1 e explinFloclty) + In il |w") + In il "))
Inploclt) = ) Qs In f dA'QLAYP(oclth, 5t A4)

Finally, we obtain the posterior beliefs over likelihoods as
T
QA & BAYexp] > > Q(sD Inp(oclsi, A)
t=1 St

Note that we used a product of Dirichlet distributions as the prior and the posterior over likelihoods
at the two levels of the hierarchy, hence we write

p(A) = nDlr(a
p(A") = Dlr(ﬁk D)

and the corresponding approximate posterior as
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Q) = 1_[ Dir(ak))
cl
Q(A") = Dir(B*)

Statistics

We use the following definitions of the group mean success rate and success probability. Lets O ,, the
sequence of outcomes (successes — 1, failures 0) at the second level of the hierarchy for the nth
simulation after K = 200 segments. Then the group mean success rate at kth segment is defined as

N
1
<0k)group = N z [ok]n
n=1

Similarly, to define instance specific success probability, we use the following relation

1
(Oll{l,n) = M Z [Ok]n

kEQ

where () denotes set of valid segments, and M = |Q|]. For example, when computing success
probability at different time points (relative segment numbers) of a repeated context type, the set of
valid segment Q will consist of a sequence (101, 106, ...) for the relative segment number r = 0, of a
sequence (102,107, ...), for the relative segment number r = 1, and so on for the three remaining
relative segment numbers.
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