OO UT W -

bioRxiv preprint doi: https://doi.org/10.1101/847020; this version posted November 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

1

A principal component approach to improve association testing with polygenic risk
scores
Brandon ]. Coombes,! Joanna M. Biernackal2

1Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
Z2Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905, USA

Correspondence: coombes.brandon@mayo.edu


https://doi.org/10.1101/847020
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

bioRxiv preprint doi: https://doi.org/10.1101/847020; this version posted November 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

2

Abstract (250 words)

Polygenic risk scores (PRSs) have become an increasingly popular approach for
demonstrating polygenic influences on complex traits and for establishing common
polygenic signals between different traits. PRSs are typically constructed using pruning and
thresholding (P+T), but the best choice of parameters is uncertain; thus multiple settings
are used and the best is chosen. This optimization can lead to inflated type I error. To
correct this, permutation procedures can be used but they can be computationally
intensive. Alternatively, a single parameter setting can be chosen a priori for the PRS, but
choosing suboptimal settings result in loss of power. We propose computing PRSs under a
range of parameter settings, performing principal component analysis (PCA) on the
resulting set of PRSs, and using the first PRS-PC in association tests. The first PC reweights
the variants included in the PRS with new weights to achieve maximum variation over all
PRS settings used. Using simulations, we compare the performance of the proposed PRS-
PCA approach with a permutation test and a priori selection of p-value threshold. We then
apply the approach to the Mayo Clinic Bipolar Disorder Biobank study to test for PRS
association with psychosis using a variety of PRSs constructed from summary statistics
from the largest studies of psychiatric disorders and related traits. The PRS-PCA approach
is simple to implement, outperforms the other strategies in most scenarios, and provides
an unbiased estimate of prediction performance. We therefore recommend it to be used

PRS association studies where multiple phenotypes and/or PRSs are being investigated.
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Introduction

Polygenic risk scores (PRSs) have become an increasingly popular tool in genetics
research. PRSs leverage summary statistics from previous genome-wide association studies
(GWASSs) to predict risk for individuals in a new population. If the individuals’ predicted
risk is associated with their phenotype, this approach provides evidence of polygenetic
effect even when no genome-wide significant variants exist. When a PRS for one trait is
associated with another trait, this approach can be used to establish common polygenic
signals between two different traits?.

A PRS is a weighted sum of an individual’s alleles, where allele weights are estimated
based on their effects in a GWAS in a different sample?. A simple summation across single
nucleotide polymorphisms (SNPs) while ignoring the linkage disequilibrium (LD) among
them would not be appropriate because trait-associated regions with high LD would be
over-weighted. There are several approaches that account for LD in PRS construction. The
most common approach, the so-called “pruning-and-thresholding” (P+T) method,
constructs the PRS by first removing SNPs in high LD to obtain a set of roughly independent
SNPs (pruning) and then including only SNPs that have a p-value below a certain value
(thresholding)?3. Other methods use penalization to shrink most of the SNP effects to zero*
or use a Bayesian prior that incorporates the LD structure to place downward bias on all of
the SNP effects>®.

Regardless of the method, construction of a PRS requires specification of tuning
parameters, such as the pruning and thresholding parameters in the P+T method. Typically
PRS analysis involves constructing multiple PRSs across a range of the tuning parameters,

followed by selection of the optimal PRS for prediction (i.e. the one that gives the strongest
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4
evidence for association). This optimization can inflate the probability of a type I error, if
the multiple testing inherent in choosing the best PRS is not accounted for. Inflated type 1
error can be guarded against by using permutations to evaluate significance of the selected
PRS; we refer to this approach as Opt-perm. Here, while the p-value would be corrected for
multiple testing, the optimized PRS may still be over-fit and thus the corresponding R?
value, which measures the proportion of variation in the trait explained by the PRS, would
be inflated. Moreover, it should be noted that permutation procedures can become quite
computationally intensive. It has also been proposed to use external or internal validation
to choose tuning parameters and avoid permutations. However, external validation
datasets are often not available, especially for rarely-studied phenotypes?, and in smaller
samples, splitting the data into training and validation sets can decrease power. As an
alternative to the optimization approach, one could a priori choose a single tuning
parameter setting (e.g. fixing the p-value threshold and LD pruning level) to construct a
single PRS. This approach was used recently in two different investigations to test for
association of one PRS with many phenotypes®°. By not optimizing over a set of tuning
parameters for each test of association, this strategy avoids further increasing the multiple
testing and computation time. However, a sub-optimal PRS may be selected, leading to poor
prediction and power to test for association of the PRS with the trait.

Here, we instead compute PRSs over a range of tuning parameter settings, perform
principal component analysis (PCA) on the set of PRSs, and use only the first PRS-PC for
association testing. The first PC captures the largest amount of variation in the computed
PRSs and thus could have better discrimination of the phenotype we are testing. This

strategy was recently implemented in a study of rare copy number variation and polygenic
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5
risk of schizophrenial0. This unsupervised approach incorporates all computed scores
across a range of tuning parameters and, importantly, is ignorant of the outcome of interest
and thus maintains correct type I error. Additionally, the PRS-PCA approach produces a
score that is not overfit, which can be used to assess predictive performance of the PRS
using measures such as R? or area under the receiver operating characteristic curve (AUC).
Here, we assess the statistical properties of the proposed method in the context of
P+T PRS analysis. We begin by constructing PRSs using the P+T approach across a range of
p-value thresholds. We then compare the performance of the PRS-PCA approach with the
Opt-perm approach and a priori selection of the p-value threshold tuning parameter. Using
simulations and analysis of the Mayo Clinic Bipolar Disorder (BD) Biobank data, we show
that the PRS-PCA approach maintains correct type I error and outperforms the other PRS
strategies in most scenarios.
Methods
Polygenic risk scores

Let G;; denote the number of copies of the reference allele for the jt" SNP for the it"
individual, possibly estimated via imputation. Let Bj be the estimated effect for the j* SNP.
The PRS for the i*" individual is then Z§=1 Gij ﬁ’j over a set of ] markers. Using GWAS

summary statistics from a prior analysis of a trait of interest and LD structure estimated
either from a reference panel or the target data, the set of ] markers to include in the sum
and their estimated effects are usually chosen using a P+T strategy3. Briefly, P+T “prunes”
the genome to obtain approximately independent SNPs and only uses SNPs below a certain
p-value threshold to estimate the PRS. This approach can be optimized over different p-

value thresholds, clump sizes, and LD measures to determine approximate independence.
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99  However, by searching for the best tuning parameter setting, the PRS can be overfit to the
100 target data and the test of association of the PRS with a trait can have inflated type-I error.
101  This can be corrected by using permutations to generate empirical p-values for association
102  with the optimized PRS.
103  PRS-PCA approach
104 Instead of using the target data to choose the best PRS, we propose using an unsupervised
105 approach to construct a single PRS from the set of PRSs computed over a range of tuning
106  parameter values (e.g. over a range of p-value thresholds). We first standardize each of the
107  original K PRSs (corresponding to K different P+T settings) to have mean 0 and standard
108  deviation 1, and construct a matrix [ PRS;, PRS,, ..., PRSy] containing the K standardized
109  PRSs. We then perform PCA on this matrix to obtain K independent PRS-PCs, which are
110  weighted summations of the columns of the matrix. Just like a typical PRS, each PRS-PC is a
111  weighted summation of the SNPs; however, the weights of the SNPs are different than in a
112 standard PRS constructed using P+T. Specifically,

J
PRSPCA = ) Giy @+ €
j=1

113 where w; = (Bjx Yk-11)/SD(PRS}), ;. is the PCA loading for the k** PRS, f3;;, is the
114  estimated effect of the j** SNP under setting k which for P+T is either 0 or the effect
115  estimate from the source GWAS, and where SD(PRS,,) and C account for standard
116 deviation and mean, respectively, of the PRSs that are standardized before performing PCA.
117  We keep only the first PRS-PC from the PCA which explains the greatest variation of the
118 PRSs computed under different settings, and use it to test for association with the

119  phenotype.
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120  Simulations

121 To estimate empirical type I error and power of the previous and newly proposed
122  methods under different scenarios, we simulated data with or without genotype-phenotype
123  associations. We generated genotypes by sampling without replacement from the Mayo
124  Clinic Bipolar Disorder Biobank sample, followed by generating phenotypes conditional on
125  (or independent of) the genotypes. The Mayo Clinic Bipolar Disorder Biobank collection,
126  genotyping, and genetic data quality control has been described in previous

127  publications!?12 and is summarized in the supplement.

128 We explored the performance of the methods using samples sizes of N = 500 and
129 1500 with a balanced case-control design. Using GCTA13, we simulated the liability of a trait
130  with realistic effect sizes across the genome by randomly choosing the effect size of each
131  SNP from a normal distribution with mean equal to log(OR) and standard deviation SE of
132 the corresponding SNP in the summary statistics from the Psychiatric Genomics

133  Consortium (PGC) Schizophrenia (SZ) GWAS'* which we previously showed was associated
134  with psychosis during mania in bipolar disorder!!. To avoid assigning “causal” effects to
135 SNPsin LD, we first clumped the summary statistics using PLINKv1.90 (--clump-kb 250 --
136  clump-p=1 --clump-r2=0.1) to obtain 93 802 approximately independent SNPs.

137  Additionally, we varied the level of polygenicity of the trait by choosing SNPs with absolute
138  value of the log(OR) greater than 0.01 (high; 71694 SNPs), 0.07 (medium; 1493 SNPs), and
139  0.15 (low; 31 SNPs), respectively, in the PGC-SZ GWAS. We varied the heritability of the
140  liability to be 0, 0.2, 0.4, 0.6, or 0.8. The final simulated liability was then dichotomized at

141 the median to create a balance of cases and controls.
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142 We used PRSice23 to perform pruning and thresholding to compute PRSs in the
143  simulated datasets using the PGC-SZ summary statistics. The simulated datasets were then
144  analyzed using PRS-PCA as well as Opt-perm, and a priori selection of a p-value threshold
145  (py = 5x1078,0.05, or 1). To explore the effect of the number of p-value thresholds
146  searched on the performance of PRS-PCA and optimization, we computed PRSs at either K
147 =5(p; = 5x107%,107%,107%,0.01,1), 11
148  (pr = 5x107%,1077,107%,107°,107%,0.001,0.01,0.05,0.1,0.5. 1), or 106 (p; =
149  5x107%,1077,107%,107°,107%0.001,0.01,0.02,0.03, ..., 0.99, 1) different p-value
150  thresholds. It should be noted that the default search implemented in PRSice2 searches
151  multiple hundreds of p-value thresholds over an even grid from 5x1078 to 1. We chose a
152  smaller grid to reduce computational expense in our simulations. 15000 and 1000
153  replicates were used to estimate empirical type I error (heritability = 0) and power
154  (heritability > 0), respectively, for each scenario.
155  Application to Mayo Clinic Bipolar Biobank Data
156  To compare the performances of the PRS approaches, we used publicly available GWAS
157 summary statistics to calculate PRSs for a variety of traits for subjects in the Mayo Bipolar
158  Biobank dataset, including: SZ14, BD15, major depressive disorder (MDD)16, attention deficit
159  and hyperactivity disorder (ADHD)17, anxiety disorders8, post-traumatic stress disorder
160  (PTSD)19, obsessive compulsive disorder (OCD)?29, anorexia nervosa (AN)2!, insomnia?2, and
161  educational attainment (EA)?3. We used PRSice23 to compute the PRSs at 11 p-value
162  thresholds (pr = 5x107%,1077,107%,1075,107*,0.001,0.01, 0.05,0.1,0.5, or 1) with fixed
163  pruning parameters (--clump-r2 0.1 and --clump-kb 250). We used the various PRS

164  approaches to test for association of each PRS with the history of psychosis during mania in
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165  BD cases. We recently demonstrated that psychosis during mania is associated with
166  polygenic risk of schizophrenia'l. No large GWAS exists for this phenotype, thus, PRS
167  approaches can be quite useful here to elucidate potential differences in genetic
168  background between bipolar cases with and without psychosis, and the genetic overlap of
169  this phenotype with other psychiatric traits in addition to SZ. We used logistic regression to
170  test for association of each PRS with psychosis status after controlling for the first four
171  principal components of the genotype data to adjust for population stratification. 100,000
172  permutations were used to calculated p-values for the Opt-perm method. We estimated the
173  proportion of variation of the binary phenotype explained by each PRS using Nagelkerke’s
174  RZ2 For the Opt-perm approach, we followed the standard approach of reporting the
175  Nagelkerke’s R2 estimate for best p-value threshold, which is a biased overestimate of the
176  true R2.
177
178 Results
179  Typelerror
180  Table 1 shows the empirical type I error for each method, corresponding to setting the
181  heritability of the liability equal to zero. A total of 15000 simulations were performed for
182  each scenario (row) in Table 1. The PRSs with a priori p-value threshold and the PRS-PCA
183  approach maintain correct type I error in all scenarios. As expected, optimization of p-value
184  threshold without correction for multiple testing results in inflated type I error, which
185  worsens as the number of thresholds searched increases. Permutations correct the type I

186  error.
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187 Table 1. Empirical Type I error for each method with sample size N and number of parameters searched K. PCA = first PC of
188 search, Opt = Select best parameter, Opt-perm = Permutation of Opt

N K p = 5e-8 p =0.05 p=1 PCA Opt Opt-perm
500 11 0.049 0.048 0.049 0.049 0.187 0.050
500 106 0.047 0.052 0.046 0.045 0.208 0.048

1500 11 0.050 0.049 0.047 0.050 0.189 0.050
1500 106 0.051 0.049 0.051 0.053 0.204 0.051

189

190  Investigation of the PRS-PCA approach

191  Figure 1 shows a comparison of SNP weights between the PRS-PCA score computed using
192  either K= 11 or 106 thresholds, and the PRSs with specific p-value thresholds (p; =5e-8,
193  0.05, or 1). Using p-value thresholds less than 1 sets some of the SNP weights equal to zero
194  and thus excludes those SNPs from the PRS. Similar to choosing a p-value threshold of 1,
195  the PRS-PCA approach assigns weight to all SNPs after pruning. However, SNPs with larger
196  p-values are down-weighted in the PRS-PCA approach. When K is large (e.g. K= 106), SNPs
197  with larger p-values are down-weighted less heavily and the PRS-PCA weights are almost
198 proportional to weights for the PRS with p-value threshold of 1.

199  Power

200  We assessed the power to detect association using the various PRS approaches for a trait
201  with high, medium, or low polygenicity using 1000 simulations for a given sample size and
202  heritability. Empirical power for these methods is shown in Figure 1. All methods had more
203  power using a sample size of 1500, but the relative performance of the methods remained
204  unchanged between sample sizes. The PRS-PCA approach had competitive power in all
205  scenarios with K =5 or 11 and nearly achieved the same power as the PRS constructed
206  with fixed threshold matching the simulation setting (pr = 5e-8 and 1 for low and high

207  polygenicity, respectively). PRS-PCA performed substantially worse when using many p-
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208  value thresholds (K=106) because SNP weights mimic the PRS constructed with all SNPs.
209  PRS=PCA with this choice of K performs only marginally better than PRS including all SNPs.
210  The Opt-Perm approach performed similarly regardless of the number of threshold

211  searched, and had similar or less power than PRS-PCA approaches with K=5or 11.

212 llustration of Approach: Application to Mayo Clinic Bipolar Biobank Data

213  Figure 3 displays the proportion of PRS variation explained by each PRS-PC as well as the
214  PCAloadings of the fixed-threshold PRSs in the first PRS-PC, for both K= 5 and 11. For the
215  psychiatric traits considered, the first PRS-PC explained between 40% and 74% of the

216  variation in PRSs computed at different p-value thresholds regardless of K. Table 2 shows
217  the results for the PRS analyses. The PRS-PCA method with K = 11 showed that the PRSs for
218 EA, BD, and SZ were higher in cases with psychosis than those without. With K = 5, the best
219  threshold was left out of the search for the PRS-PCA approach and thus it lost power. The
220  Opt-Perm method (with K = 11) provided weaker evidence of association with the BD-PRS,
221  butstronger evidence of a PTSD PRS association than the PRS-PCA method.

222
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223

224 Table 2. Comparison of PRS approaches testing for association of each PRS with presence of psychosis among cases of bipolar
225 disorder (N = 645). The traits are sorted by the PCA approach (K = 11) p-value. Prediction performance measured by
226 Nagelkerke’s R2. *Nagelkerke’s R? for the Opt-Perm approach is estimated from the best performing p-value threshold

227 searched.
P\sl Prop. PCA(K=5  PCA (K= 11) Opt-Perm
ariance 2 2 2yx
PRS explained p-value (R%) p-value (R%) p-value (R")
EA 73% 0.001 (2.3%) 0.001 (2.2%) 0.006 (2.2%)
BD 49% 0.013 (1.1%) 0.020 (1.0%) 0.132 (1.0%)
Sz 65% 0.141 (0.3%) 0.045 (0.7%) 0.013 (1.8%)
PTSD 52% 0.623 (0%) 0.115 (0.4%) 0.041 (1.4%)
Anxiety 46% 0.459 (0%) 0.270 (0.1%) 0.829 (0.2%)
AN 50% 0.732 (0%) 0.551 (0%) 0.075 (1.1%)
OoCD 52% 0.674 (0%) 0.584 (0%) 0.888 (0.1%)
ADHD 49% 0.806 (0%) 0.671 (0%) 0.664 (0.3%)
MDD 50% 0.890 (0%) 0.718 (0%) 0.438 (0.5%)
Insomnia 48% 0.618 (0%) 0.884 (0%) 0.350 (0.6%)
228
229  Discussion
230 In this paper, we proposed a method of PRS analysis that uses PCA to concentrate the

231 maximum variation in a set of PRSs in a single PC, and then tests for association of the

232 phenotype with only the first PC. This method avoids optimizing the parameters to

233  construct the PRS, which inflates the probability of a type I error if unaccounted for, and is
234  computationally faster than using permutations to correct for the inflation. Through

235  simulations, we showed that the PRS-PCA approach with K=5 or 11 can be as or more
236  powerful than the Opt-Perm approach (with p-value computed using permutations). When
237  alarge grid search of p-value thresholds was used, the PRS-PCA approach mimicked the
238  weights of the PRS including all SNPs and thus lost power in less polygenic models. In the
239  BD data application, the PRS-PCA and Opt-Perm approaches obtained similar results. In
240  addition to being computationally faster than the Opt-Perm approach, because PRS-PCA

241  tests a single PRS rather than selecting the most predictive PRS in a particular dataset, the
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242  PRS-PCA approach produces an unbiased estimate of PRS performance (e.g. area under the
243  curve or proportion of variation explained). While the performance of the PRS-PCA
244  approach depends on the tuning parameter grid search used, our results suggest an even
245  search over the negative log-ten p-value space performs well. Our search with K=111is a
246  very typical choice in the field, and similar searches have been used previously?. This
247  choice performed well in the simulations and, unlike the PRS-PCA approach with only K =
248 5, was able to reproduce the finding of Markota et al.11.
249 Both the PRS-PCA (K = 11) and the Opt-Perm approaches reproduced our previous
250  finding that the PRS for SZ is higher in cases with a history of manic psychosis (N = 336)
251  than those without a history of psychosis (N = 309)11. Both methods also showed cases
252 with manic psychosis had higher genetic load for educational attainment. While psychosis
253  inthe context of bipolar disorder has been less studied, prior studies have shown small
254  positive genetic correlation of educational attainment with SZ and the PRS for EA has been
255  found to be higher in cases of SZ2%. Finally, only the PRS-PCA approach found evidence that
256  the PRS for BD was higher in cases with manic psychosis. This could reflect that a higher
257  geneticload for BD can cause more severe symptoms of BD. This could also occur if the
258  casesin the PGC study of BD had higher prevalence of psychosis and thus the training data
259  better reflects cases with psychosis rather than without.
260 The PRS-PCA approach was designed to control type I error while maintaining good
261  power. This approach is most suited to hypothesis testing with many PRSs because it
262  prevents overfitting each PRS to the outcome and does not require choosing one p-value
263  threshold for all PRSs8225 which can reduce power. In this paper, we explored how the

264  PRS-PCA approach can improve PRS analyses that implement P+T. Future investigation is
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265 needed to test if the same PCA approach can be used to avoid optimizing over different sets
266  of tuning parameters with non-P+T PRS approaches*-¢, such as lassosum#, LDpred5, or PRS-
267  CS°. Furthermore, there is no uniformly most powerful method to construct PRSs and PRSs
268  constructed under different methods could easily be combined using the PCA approach.
269  This will be investigated in the future.
270 In this paper, we propose a new powerful method of testing for association of PRSs
271  with a phenotype, which avoids the multiple testing inherent in the popular optimization
272  approach. In studies that aim to test for association of PRSs with more than one phenotype
273  such as a PRS PheWASS, the PRS-PCA approach would substantially reduce the multiple
274  testing that would occur with the optimization approach. With the growing use of PRSs, the
275  PRS-PCA approach gives researchers an unbiased and powerful approach to dissect
276  polygenic risk of phenotypes.
277
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366 Legends

367  Figure 1. Comparison of SNP weights for SZ-PRS between PRS-PCA (y-axis) and PRS with
368  p-value threshold of genome-wide significant (left) or 1 (right). Points are shaded based on
369  p-value from SCZ GWAS (Dark blue: p < 5e-8; White: p=1)

370

371  Figure 2. Empirical power of each method given a trait with high (left; |log(OR)| > 0.01),
372  medium (center; |log(OR)| > 0.07), or low (right; [log(OR)| > 0.15) polygenicity with

373  sample size of N = 500 (top) or 1500 (bottom). K = PRS-PCA using K PRSs, GWS = genome-
374  wide significant p-value threshold (5e-8).

375

376  Figure 3. Boxplots summarizing the proportion of variation in PRSs explained by each PC
377  (top) and the loadings in the first PC (bottom) of PRSs at each threshold, for the PRSs

378 analyzed in Table 2.
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