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Abstract (250 words) 10 

Polygenic risk scores (PRSs) have become an increasingly popular approach for 11 

demonstrating polygenic influences on complex traits and for establishing common 12 

polygenic signals between different traits. PRSs are typically constructed using pruning and 13 

thresholding (P+T), but the best choice of parameters is uncertain; thus multiple settings 14 

are used and the best is chosen. This optimization can lead to inflated type I error. To 15 

correct this, permutation procedures can be used but they can be computationally 16 

intensive. Alternatively, a single parameter setting can be chosen a priori for the PRS, but 17 

choosing suboptimal settings result in loss of power. We propose computing PRSs under a 18 

range of parameter settings, performing principal component analysis (PCA) on the 19 

resulting set of PRSs, and using the first PRS-PC in association tests. The first PC reweights 20 

the variants included in the PRS with new weights to achieve maximum variation over all 21 

PRS settings used. Using simulations, we compare the performance of the proposed PRS-22 

PCA approach with a permutation test and a priori selection of p-value threshold. We then 23 

apply the approach to the Mayo Clinic Bipolar Disorder Biobank study to test for PRS 24 

association with psychosis using a variety of PRSs constructed from summary statistics 25 

from the largest studies of psychiatric disorders and related traits. The PRS-PCA approach 26 

is simple to implement, outperforms the other strategies in most scenarios, and provides 27 

an unbiased estimate of prediction performance. We therefore recommend it to be used 28 

PRS association studies where multiple phenotypes and/or PRSs are being investigated.  29 
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Introduction 30 

 Polygenic risk scores (PRSs) have become an increasingly popular tool in genetics 31 

research. PRSs leverage summary statistics from previous genome-wide association studies 32 

(GWASs) to predict risk for individuals in a new population. If the individuals’ predicted 33 

risk is associated with their phenotype, this approach provides evidence of polygenetic 34 

effect even when no genome-wide significant variants exist. When a PRS for one trait is 35 

associated with another trait, this approach can be used to establish common polygenic 36 

signals between two different traits1.  37 

 A PRS is a weighted sum of an individual’s alleles, where allele weights are estimated 38 

based on their effects in a GWAS in a different sample2. A simple summation across single 39 

nucleotide polymorphisms (SNPs) while ignoring the linkage disequilibrium (LD) among 40 

them would not be appropriate because trait-associated regions with high LD would be 41 

over-weighted. There are several approaches that account for LD in PRS construction. The 42 

most common approach, the so-called “pruning-and-thresholding” (P+T) method, 43 

constructs the PRS by first removing SNPs in high LD to obtain a set of roughly independent 44 

SNPs (pruning) and then including only SNPs that have a p-value below a certain value 45 

(thresholding)2,3. Other methods use penalization to shrink most of the SNP effects to zero4 46 

or use a Bayesian prior that incorporates the LD structure to place downward bias on all of 47 

the SNP effects5,6.  48 

 Regardless of the method, construction of a PRS requires specification of tuning 49 

parameters, such as the pruning and thresholding parameters in the P+T method. Typically 50 

PRS analysis involves constructing multiple PRSs across a range of the tuning parameters, 51 

followed by selection of the optimal PRS for prediction (i.e. the one that gives the strongest 52 
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evidence for association). This optimization can inflate the probability of a type I error, if 53 

the multiple testing inherent in choosing the best PRS is not accounted for. Inflated type 1 54 

error can be guarded against by using permutations to evaluate significance of the selected 55 

PRS; we refer to this approach as Opt-perm. Here, while the p-value would be corrected for 56 

multiple testing, the optimized PRS may still be over-fit and thus the corresponding R2 57 

value, which measures the proportion of variation in the trait explained by the PRS, would 58 

be inflated. Moreover, it should be noted that permutation procedures can become quite 59 

computationally intensive.  It has also been proposed to use external or internal validation 60 

to choose tuning parameters and avoid permutations. However, external validation 61 

datasets are often not available, especially for rarely-studied phenotypes7, and in smaller 62 

samples, splitting the data into training and validation sets can decrease power. As an 63 

alternative to the optimization approach, one could a priori choose a single tuning 64 

parameter setting (e.g. fixing the p-value threshold and LD pruning level) to construct a 65 

single PRS. This approach was used recently in two different investigations to test for 66 

association of one PRS with many phenotypes8,9. By not optimizing over a set of tuning 67 

parameters for each test of association, this strategy avoids further increasing the multiple 68 

testing and computation time. However, a sub-optimal PRS may be selected, leading to poor 69 

prediction and power to test for association of the PRS with the trait.  70 

 Here, we instead compute PRSs over a range of tuning parameter settings, perform 71 

principal component analysis (PCA) on the set of PRSs, and use only the first PRS-PC for 72 

association testing. The first PC captures the largest amount of variation in the computed 73 

PRSs and thus could have better discrimination of the phenotype we are testing. This 74 

strategy was recently implemented in a study of rare copy number variation and polygenic 75 
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risk of schizophrenia10. This unsupervised approach incorporates all computed scores 76 

across a range of tuning parameters and, importantly, is ignorant of the outcome of interest 77 

and thus maintains correct type I error. Additionally, the PRS-PCA approach produces a 78 

score that is not overfit, which can be used to assess predictive performance of the PRS 79 

using measures such as R2 or area under the receiver operating characteristic curve (AUC).  80 

 Here, we assess the statistical properties of the proposed method in the context of 81 

P+T PRS analysis. We begin by constructing PRSs using the P+T approach across a range of 82 

p-value thresholds. We then compare the performance of the PRS-PCA approach with the 83 

Opt-perm approach and a priori selection of the p-value threshold tuning parameter. Using 84 

simulations and analysis of the Mayo Clinic Bipolar Disorder (BD) Biobank data, we show 85 

that the PRS-PCA approach maintains correct type I error and outperforms the other PRS 86 

strategies in most scenarios. 87 

Methods 88 

Polygenic risk scores 89 

 Let ���  denote the number of copies of the reference allele for the  ��� SNP for the ��� 90 

individual, possibly estimated via imputation. Let ��� be the estimated effect for the  ��� SNP. 91 

The PRS for the ��� individual is then ∑ ���  ����

���  over a set of � markers. Using GWAS 92 

summary statistics from a prior analysis of a trait of interest and LD structure estimated 93 

either from a reference panel or the target data, the set of J markers to include in the sum 94 

and their estimated effects are usually chosen using a P+T strategy3. Briefly, P+T “prunes” 95 

the genome to obtain approximately independent SNPs and only uses SNPs below a certain 96 

p-value threshold to estimate the PRS. This approach can be optimized over different p-97 

value thresholds, clump sizes, and LD measures to determine approximate independence. 98 
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However, by searching for the best tuning parameter setting, the PRS can be overfit to the 99 

target data and the test of association of the PRS with a trait can have inflated type-I error. 100 

This can be corrected by using permutations to generate empirical p-values for association 101 

with the optimized PRS.    102 

PRS-PCA approach 103 

Instead of using the target data to choose the best PRS, we propose using an unsupervised 104 

approach to construct a single PRS from the set of PRSs computed over a range of tuning 105 

parameter values (e.g. over a range of p-value thresholds). We first standardize each of the 106 

original K PRSs (corresponding to K different P+T settings) to have mean 0 and standard 107 

deviation 1, and construct a matrix 	 
���, 
���, … , 
��	� containing the K standardized 108 

PRSs. We then perform PCA on this matrix to obtain K independent PRS-PCs, which are 109 

weighted summations of the columns of the matrix. Just like a typical PRS, each PRS-PC is a 110 

weighted summation of the SNPs; however, the weights of the SNPs are different than in a 111 

standard PRS constructed using P+T. Specifically, 112 


��
�� �  � ���  ��� � �
�

���

 

where ��� � ����
  ∑ �
	

�� �/���
��
�, �
  is the PCA loading for the ��� PRS, ���
  is the 113 

estimated effect of the ��� SNP under setting � which for P+T is either 0 or the effect 114 

estimate from the source GWAS, and where ���
��
� and �  account for standard 115 

deviation and mean, respectively, of the PRSs that are standardized before performing PCA. 116 

We keep only the first PRS-PC from the PCA which explains the greatest variation of the 117 

PRSs computed under different settings, and use it to test for association with the 118 

phenotype.  119 
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Simulations  120 

 To estimate empirical type I error and power of the previous and newly proposed 121 

methods under different scenarios, we simulated data with or without genotype-phenotype 122 

associations. We generated genotypes by sampling without replacement from the Mayo 123 

Clinic Bipolar Disorder Biobank sample, followed by generating phenotypes conditional on 124 

(or independent of) the genotypes. The Mayo Clinic Bipolar Disorder Biobank collection, 125 

genotyping, and genetic data quality control has been described in previous 126 

publications11,12 and is summarized in the supplement.  127 

 We explored the performance of the methods using samples sizes of N = 500 and 128 

1500 with a balanced case-control design. Using GCTA13, we simulated the liability of a trait 129 

with realistic effect sizes across the genome by randomly choosing the effect size of each 130 

SNP from a normal distribution with mean equal to log(�� ) and standard deviation �!  of 131 

the corresponding SNP in the summary statistics from the Psychiatric Genomics 132 

Consortium (PGC) Schizophrenia (SZ) GWAS14 which we previously showed was associated 133 

with psychosis during mania in bipolar disorder11. To avoid assigning “causal” effects to 134 

SNPs in LD, we first clumped the summary statistics using PLINKv1.90 (--clump-kb 250 --135 

clump-p=1 --clump-r2=0.1) to obtain 93 802 approximately independent SNPs. 136 

Additionally, we varied the level of polygenicity of the trait by choosing SNPs with absolute 137 

value of the log(�� ) greater than 0.01 (high; 71694 SNPs), 0.07 (medium; 1493 SNPs), and 138 

0.15 (low; 31 SNPs), respectively, in the PGC-SZ GWAS. We varied the heritability of the 139 

liability to be 0, 0.2, 0.4, 0.6, or 0.8. The final simulated liability was then dichotomized at 140 

the median to create a balance of cases and controls.  141 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847020doi: bioRxiv preprint 

https://doi.org/10.1101/847020
http://creativecommons.org/licenses/by/4.0/


8 

 

 We used PRSice23 to perform pruning and thresholding to compute PRSs in the 142 

simulated datasets using the PGC-SZ summary statistics. The simulated datasets were then 143 

analyzed using PRS-PCA as well as Opt-perm,  and a priori selection of a p-value threshold 144 

("� � 5$10�
, 0.05, or 1). To explore the effect of the number of p-value thresholds 145 

searched on the performance of PRS-PCA and optimization, we computed PRSs at either K 146 

= 5 ("� �  5$10�
, 10��, 10��, 0.01, 1), 11 147 

("� � 5$10�
, 10��, 10��, 10��, 10��, 0.001, 0.01, 0.05, 0.1, 0.5. 1), or 106 ("� �148 

 5$10�
, 10��, 10��, 10��, 10��, 0.001, 0.01, 0.02, 0.03, … , 0.99, 1� different p-value 149 

thresholds. It should be noted that the default search implemented in PRSice2 searches 150 

multiple hundreds of p-value thresholds over an even grid from 5$10�
 to 1. We chose a 151 

smaller grid to reduce computational expense in our simulations. 15000 and 1000 152 

replicates were used to estimate empirical type I error (heritability = 0) and power 153 

(heritability > 0), respectively, for each scenario.    154 

Application to Mayo Clinic Bipolar Biobank Data 155 

To compare the performances of the PRS approaches, we used publicly available GWAS 156 

summary statistics to calculate PRSs for a variety of traits for subjects in the Mayo Bipolar 157 

Biobank dataset, including: SZ14, BD15, major depressive disorder (MDD)16, attention deficit 158 

and hyperactivity disorder (ADHD)17, anxiety disorders18, post-traumatic stress disorder 159 

(PTSD)19, obsessive compulsive disorder (OCD)20, anorexia nervosa (AN)21, insomnia22, and 160 

educational attainment (EA)23. We used PRSice23 to compute the PRSs at 11 p-value 161 

thresholds ("� � 5$10�
, 10��, 10��, 10��, 10��, 0.001, 0.01, 0.05, 0.1, 0.5, or 1) with fixed 162 

pruning parameters (--clump-r2 0.1 and --clump-kb 250). We used the various PRS 163 

approaches to test for association of each PRS with the history of psychosis during mania in 164 
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BD cases. We recently demonstrated that psychosis during mania is associated with 165 

polygenic risk of schizophrenia11. No large GWAS exists for this phenotype, thus, PRS 166 

approaches can be quite useful here to elucidate potential differences in genetic 167 

background between bipolar cases with and without psychosis, and the genetic overlap of 168 

this phenotype with other psychiatric traits in addition to SZ. We used logistic regression to 169 

test for association of each PRS with psychosis status after controlling for the first four 170 

principal components of the genotype data to adjust for population stratification. 100,000 171 

permutations were used to calculated p-values for the Opt-perm method.  We estimated the 172 

proportion of variation of the binary phenotype explained by each PRS using Nagelkerke’s 173 

R2. For the Opt-perm approach, we followed the standard approach of reporting the 174 

Nagelkerke’s R2 estimate for best p-value threshold, which is a biased overestimate of the 175 

true R2. 176 

 177 

Results 178 

Type I error 179 

Table 1 shows the empirical type I error for each method, corresponding to setting the 180 

heritability of the liability equal to zero. A total of 15000 simulations were performed for 181 

each scenario (row) in Table 1. The PRSs with a priori p-value threshold and the PRS-PCA 182 

approach maintain correct type I error in all scenarios. As expected, optimization of p-value 183 

threshold without correction for multiple testing results in inflated type I error, which 184 

worsens as the number of thresholds searched increases. Permutations correct the type I 185 

error.  186 
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Table 1. Empirical Type I error for each method with sample size N and number of parameters searched K. PCA = first PC of 187 
search, Opt = Select best parameter, Opt-perm = Permutation of Opt 188 

N K p = 5e-8 p = 0.05 p = 1 PCA Opt Opt-perm 

500 11 0.049 0.048 0.049 0.049 0.187 0.050 

500 106 0.047 0.052 0.046 0.045 0.208 0.048 

1500 11 0.050 0.049 0.047 0.050 0.189 0.050 

1500 106 0.051 0.049 0.051 0.053 0.204 0.051 
 189 

Investigation of the PRS-PCA approach 190 

Figure 1 shows a comparison of SNP weights between the PRS-PCA score computed using 191 

either K = 11 or 106 thresholds, and the PRSs with specific p-value thresholds ("� �5e-8, 192 

0.05, or 1). Using p-value thresholds less than 1 sets some of the SNP weights equal to zero 193 

and thus excludes those SNPs from the PRS. Similar to choosing a p-value threshold of 1, 194 

the PRS-PCA approach assigns weight to all SNPs after pruning. However, SNPs with larger 195 

p-values are down-weighted in the PRS-PCA approach. When K is large (e.g. K = 106), SNPs 196 

with larger p-values are down-weighted less heavily and the PRS-PCA weights are almost 197 

proportional to weights for the PRS with p-value threshold of 1.   198 

Power 199 

We assessed the power to detect association using the various PRS approaches for a trait 200 

with high, medium, or low polygenicity using 1000 simulations for a given sample size and 201 

heritability. Empirical power for these methods is shown in Figure 1. All methods had more 202 

power using a sample size of 1500, but the relative performance of the methods remained 203 

unchanged between sample sizes. The PRS-PCA approach had competitive power in all 204 

scenarios with K = 5 or 11 and nearly achieved the same power as the PRS constructed 205 

with fixed threshold matching the simulation setting ("� � 5e-8 and 1 for low and high 206 

polygenicity, respectively).  PRS-PCA performed substantially worse when using many p-207 
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value thresholds (K=106) because SNP weights mimic the PRS constructed with all SNPs. 208 

PRS=PCA with this choice of K performs only marginally better than PRS including all SNPs. 209 

The Opt-Perm approach performed similarly regardless of the number of threshold 210 

searched, and had similar or less power than PRS-PCA approaches with K = 5 or 11.         211 

Illustration of Approach: Application to Mayo Clinic Bipolar Biobank Data  212 

Figure 3 displays the proportion of PRS variation explained by each PRS-PC as well as the 213 

PCA loadings of the fixed-threshold PRSs in the first PRS-PC, for both K = 5 and 11. For the 214 

psychiatric traits considered, the first PRS-PC explained between 40% and 74% of the 215 

variation in PRSs computed at different p-value thresholds regardless of K. Table 2 shows 216 

the results for the PRS analyses. The PRS-PCA method with K = 11 showed that the PRSs for 217 

EA, BD, and SZ were higher in cases with psychosis than those without. With K = 5, the best 218 

threshold was left out of the search for the PRS-PCA approach and thus it lost power. The 219 

Opt-Perm method (with K = 11) provided weaker evidence of association with the BD-PRS, 220 

but stronger evidence of a PTSD PRS association than the PRS-PCA method.  221 

  222 
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  223 

Table 2. Comparison of PRS approaches testing for association of each PRS with presence of psychosis among cases of bipolar 224 
disorder (N = 645). The traits are sorted by the PCA approach (K = 11) p-value. Prediction performance measured by 225 
Nagelkerke’s R2. *Nagelkerke’s R2 for the Opt-Perm approach is estimated from the best performing p-value threshold 226 
searched.     227 

PRS 

PC1 Prop. 
Variance 

explained 

PCA (K = 5) 
p-value (R2) 

PCA (K = 11) 
p-value (R2) 

Opt-Perm 
p-value (R2)* 

EA 73% 0.001 (2.3%) 0.001 (2.2%) 0.006 (2.2%) 
BD 49% 0.013 (1.1%) 0.020 (1.0%) 0.132 (1.0%) 
SZ 65% 0.141 (0.3%) 0.045 (0.7%) 0.013 (1.8%) 
PTSD 52% 0.623 (0%) 0.115 (0.4%) 0.041 (1.4%) 
Anxiety 46% 0.459 (0%) 0.270 (0.1%) 0.829 (0.2%) 
AN 50% 0.732 (0%) 0.551 (0%) 0.075 (1.1%) 
OCD 52% 0.674 (0%) 0.584 (0%) 0.888 (0.1%) 
ADHD 49% 0.806 (0%) 0.671 (0%) 0.664 (0.3%) 
MDD 50% 0.890 (0%) 0.718 (0%) 0.438 (0.5%) 
Insomnia 48% 0.618 (0%) 0.884 (0%) 0.350 (0.6%) 
 228 

Discussion 229 

 In this paper, we proposed a method of PRS analysis that uses PCA to concentrate the 230 

maximum variation in a set of PRSs in a single PC, and then tests for association of the 231 

phenotype with only the first PC. This method avoids optimizing the parameters to 232 

construct the PRS, which inflates the probability of a type I error if unaccounted for, and is 233 

computationally faster than using permutations to correct for the inflation. Through 234 

simulations, we showed that the PRS-PCA approach with K = 5 or 11 can be as or more 235 

powerful than the Opt-Perm approach (with p-value computed using permutations). When 236 

a large grid search of p-value thresholds was used, the PRS-PCA approach mimicked the 237 

weights of the PRS including all SNPs and thus lost power in less polygenic models. In the 238 

BD data application, the PRS-PCA and Opt-Perm approaches obtained similar results. In 239 

addition to being computationally faster than the Opt-Perm approach, because PRS-PCA 240 

tests a single PRS rather than selecting the most predictive PRS in a particular dataset, the 241 
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PRS-PCA approach produces an unbiased estimate of PRS performance (e.g. area under the 242 

curve or proportion of variation explained). While the performance of the PRS-PCA 243 

approach depends on the tuning parameter grid search used, our results suggest an even 244 

search over the negative log-ten p-value space performs well. Our search with K = 11 is a 245 

very typical choice in the field, and similar searches have been used previously10. This 246 

choice performed well in the simulations and, unlike the PRS-PCA approach with only K = 247 

5, was able to reproduce the finding of Markota et al.11.   248 

 Both the PRS-PCA (K = 11) and the Opt-Perm approaches reproduced our previous 249 

finding that the PRS for SZ is higher in cases with a history of manic psychosis (N = 336) 250 

than those without a history of psychosis (N = 309)11. Both methods also showed cases 251 

with manic psychosis had higher genetic load for educational attainment. While psychosis 252 

in the context of bipolar disorder has been less studied, prior studies have shown small 253 

positive genetic correlation of educational attainment with SZ and the PRS for EA has been 254 

found to be higher in cases of SZ24. Finally, only the PRS-PCA approach found evidence that 255 

the PRS for BD was higher in cases with manic psychosis. This could reflect that a higher 256 

genetic load for BD can cause more severe symptoms of BD. This could also occur if the 257 

cases in the PGC study of BD had higher prevalence of psychosis and thus the training data 258 

better reflects cases with psychosis rather than without.  259 

 The PRS-PCA approach was designed to control type I error while maintaining good 260 

power. This approach is most suited to hypothesis testing with many PRSs because it 261 

prevents overfitting each PRS to the outcome and does not require choosing one p-value 262 

threshold for all PRSs8,9,25, which can reduce power. In this paper, we explored how the 263 

PRS-PCA approach can improve PRS analyses that implement P+T. Future investigation is 264 
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needed to test if the same PCA approach can be used to avoid optimizing over different sets 265 

of tuning parameters with non-P+T PRS approaches4–6, such as lassosum4, LDpred5, or PRS-266 

CS6. Furthermore, there is no uniformly most powerful method to construct PRSs and PRSs 267 

constructed under different methods could easily be combined using the PCA approach. 268 

This will be investigated in the future. 269 

 In this paper, we propose a new powerful method of testing for association of PRSs 270 

with a phenotype, which avoids the multiple testing inherent in the popular optimization 271 

approach. In studies that aim to test for association of PRSs with more than one phenotype 272 

such as a PRS PheWAS8, the PRS-PCA approach would substantially reduce the multiple 273 

testing that would occur with the optimization approach. With the growing use of PRSs, the 274 

PRS-PCA approach gives researchers an unbiased and powerful approach to dissect 275 

polygenic risk of phenotypes.   276 
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Legends 366 

Figure 1. Comparison of SNP weights for SZ-PRS between PRS-PCA (y-axis) and PRS with 367 

p-value threshold of genome-wide significant (left) or 1 (right). Points are shaded based on 368 

p-value from SCZ GWAS (Dark blue: p < 5e-8; White: p = 1) 369 

 370 

Figure 2. Empirical power of each method given a trait with high (left; |log(OR)| > 0.01), 371 

medium (center; |log(OR)| > 0.07), or low (right; |log(OR)| > 0.15) polygenicity with 372 

sample size of N = 500 (top) or 1500 (bottom). K = PRS-PCA using K PRSs, GWS = genome-373 

wide significant p-value threshold (5e-8).  374 

 375 

Figure 3. Boxplots summarizing the proportion of variation in PRSs explained by each PC 376 

(top) and the loadings in the first PC (bottom) of PRSs at each threshold, for the PRSs 377 

analyzed in Table 2.  378 
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