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Abstract

Working memory is essential for intelligent behavior as it serves to guide behavior of
humans and nonhuman primates when task-relevant stimuli are no longer present to the
senses. Moreover, complex tasks often require that multiple working memory
representations can be flexibly and independently maintained, prioritized, and updated
according to changing task demands. Thus far, neural network models of working
memory have been unable to offer an integrative account of how such control
mechanisms are implemented in the brain and how they can be acquired in a
biologically plausible manner. Here, we present WorkMATe, a neural network
architecture that models cognitive control over working memory content and learns the
appropriate control operations needed to solve complex working memory tasks. Key
components of the model include a gated memory circuit that is controlled by internal
actions, encoding sensory information through untrained connections, and a neural
circuit that matches sensory inputs to memory content. The network is trained by
means of a biologically plausible reinforcement learning rule that relies on attentional
feedback and reward prediction errors to guide synaptic updates. We demonstrate that
the model successfully acquires policies to solve classical working memory tasks, such as
delayed match-to-sample and delayed pro-saccade/antisaccade tasks. In addition, the
model solves much more complex tasks including the hierarchical 12-AX task or the
ABAB ordered recognition task, which both demand an agent to independently store
and updated multiple items separately in memory. Furthermore, the control strategies
that the model acquires for these tasks subsequently generalize to new task contexts
with novel stimuli. As such, WorkMATe provides a new solution for the neural
implementation of flexible memory control.

Author Summary

Working Memory, the ability to briefly store sensory information and use it to guide
behavior, is a cornerstone of intelligent behavior. Existing neural network models of
Working Memory typically focus on how information is stored and maintained in the
brain, but do not address how memory content is controlled: how the brain can

November 13, 2019

1/30


https://doi.org/10.1101/846675
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846675; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

selectively store only stimuli that are relevant for a task, or how different stimuli can be
maintained in parallel, and subsequently replaced or updated independently according
to task demands. The models that do implement control mechanisms are typically not
trained in a biologically plausible manner, and do not explain how the brain learns such
control. Here, we present WorkMATe, a neural network architecture that implements
flexible cognitive control and learns to apply these control mechanisms using a
biologically plausible reinforcement learning method. We demonstrate that the model
acquires control policies to solve a range of both simple and more complex tasks.
Moreover, the acquired control policies generalize to new situations, as with human
cognition. This way, WorkMATe provides new insights into the neural organization of
Working Memory beyond mere storage and retrieval.

Introduction

Complex behavior requires flexible memory mechanisms for dealing with information
that is no longer present to the senses, but that is still relevant to current task goals.
For example, when on the highway, before we decide it is safe to change lanes, we
sequentially accumulate evidence in memory from various mirrors and the road ahead of
us. Importantly, such complex behavior requires memory operations beyond mere
storage: Not every object that we observe on the highway needs to be memorized, while
often it is a specific combination of information (e.g. multiple cars and signs) which
determines whether it is safe to switch lanes. As any novice driver has experienced,
learning to properly apply these operations of selecting, maintaining, and managing the
correct information in memory can take quite some effort. Yet, after sufficient practice,
we learn to apply these skills and abstract the essence across multiple environments,
regardless of the specifics of the road or cars around us. This example illustrates the
core functions that define Working Memory (WM), and that — in the words of [1] —
make WM work. First, Working Memory is flexible in that control processes determine
what information is stored, when it is updated, and how it is applied during task
performance. Second, the rules that govern these control operations for a given task
setting are trainable and can be acquired with practice. Third, after training, these
rules then generalize to the same task setting with different stimuli. It is this
combination of flexibility, trainability, and generalizability that makes WM a
cornerstone of cognition, not only in humans, but also in nonhuman primates [2—4].

Here we present a neural network model of WM that integrates these core components.

Before we describe the WorkMATe model, we will briefly explain how it extends
previous models that either focused on the generic storage of arbitrary sensory stimuli
in memory or on the learning of content-specific memory operations.

Models of storage and matching

A number of previous neural network models explain how the brain can temporarily
maintain information [5-9] and how different items can be maintained

separately [10-13]. Given their emphasis on storage, one of the most commonly modeled
WM tasks is the delayed match-to-sample task, in which the observer responds
according to whether an observed stimulus matches a memorized stimulus.

Delayed matching tasks do not require an agent to act on the specific content of
information in memory. Rather, the agent produces a response based on the presence or
absence of sufficient similarity between two successively presented stimuli — which in
principle could be anything. Experimental work has revealed that both human and
nonhuman primates can almost effortlessly determine such matches, even for stimuli
that have never been seen before [2,3,14,15], and studies have demonstrated neurons in
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frontal as well as parietal cortices whose activity depends on the match between sensory
input and memory content [16-18]. Taken together,these findings suggest that the
computations governing matching tasks — determining the similarity or degree of match
— is relatively independent of stimulus content.

Most models for matching, recognition, and recall tasks implement a
content-independent computation of a match signal. [19] have demonstrated that a
relatively simple, self-organizing neural network can learn to detect co-activation
neuronal pools representing similar information with non-overlapping codes, allowing for

a match signal between sensory and memory information to emerge upon presentation.

Match signals also emerge in models of associative memory that assume one-shot
Hebbian learning of arbitrary information in the hippocampus. In these models, the
ease of subsequent context-driven retrieval provides an index of stimulus-memory
similarity, which is used to simulate recall probabilities and response times [20-24]. [25]
have shown that repetition suppression in the inferotemporal cortex after a repeated
presentation of a stimulus predicts recognition performance for arbitrary stimuli in the
macaque (see also [26,27]). The same idea is prevalent in models of visual search, where
a match signal is computed between an item in memory and stimuli present in the
to-be-searched scene, which is subsequently used to optimally guide attention [28-30].

In these models, match signals are automatically computed as an emergent
consequence of the interaction between perception and memory, adding to the utility of
WM without the need for training on specific stimulus content first. In contrast, more
complex tasks call for additional WM operations, decisions, and motor actions
depending on specific content. In the lane changing example, an empty rear view mirror
may indicate that overtaking is safe, unless the side mirror says otherwise. Generic
match models typically do not explain how memory content is controlled, how control
policies can be acquired through training, and how memory content in combination with
sensory information leads to action selection. Such trainable, flexible, action-oriented
models of WM will be discussed next.

Models of memory operations

A rather different class of models has focused on how WM can be trained to solve tasks
in which multiple different stimuli map onto different responses — that is, how the
cognitive system learns which of a number of available actions, including memory
operations, is appropriate given particular (combinations of) stimuli. Training neural
network models to solve tasks means that as the network processes examples, weights
are updated to establish a desirable mapping between an input and output stream. In a
reinforcement learning setting, a desired, optimal mapping yields a policy that
maximizes reward and minimizes punishment. For multilayer neural networks, this
becomes a problem of ‘structural credit assignment’, where the learning algorithm needs
to determine to what extent a connection weight contributed to the outcome. For
memory tasks, there is an additional ‘temporal credit assignment’ problem, as the
outcome of certain actions — e.g., storing an item into memory — will only later in the
trial lead to success or failure. An ongoing issue in deep learning is how these credit
assignment problems might be solved in a biologically plausible manner [31-35].

One biologically plausible solution to temporal and structural credit assignment in
WM tasks is provided by the AuGMEnT algorithm [36-38], which in turn is based on
the AGREL model for perceptual learning [39-41]. These models demonstrate that
attentional feedback can play a critical role in solving credit assignment [42]. The
architecture used by AuGMENT is a multilayer neural network with a recurrent memory
layer to maintain information. The output of the neural network is the expected reward
value associated with each action. Upon selection of an action, the attentional feedback
mechanism ‘tags’ synapses that contributed to this action. When an action does not
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yield the expected reward, a Reward Prediction Error (RPE) signal is broadcast across
the network, which drives weight changes in tagged synapses. Through these
mechanisms, AuGMEnNT implements a rudimentary but trainable WM architecture.
This architecture can learn to solve a variety of memory tasks where sequences of
stimuli need to be integrated over time to yield a correct response [36,37]. However, at
the same time, AuGMENT lacks the operations that define the flexibility of primate
WDM: its store accumulates relevant information, but does not allow, for example, items
to be separately updated, selectively forgotten, or only to be encoded under certain
conditions.

A highly popular neural network architecture that does incorporate such flexible
control mechanisms is the Long- Short-Term Memory (LSTM) architecture [43]. This
architecture introduces a gated memory store, implemented through gating units that
open or close dependent on activity in the rest of the network. These gates allows an
agent to control which information is allowed entry into memory, how new information
is integrated, and which information is read out at any given time. LSTM networks and
similar architectures are now commonplace in modern deep learning systems, which is a
testament to their power [44-50]. However, while LSTM architectures allow for flexible
control over memory content, they were not developed with biological plausibility in
mind: typical implementations rely on rather implausible learning rules from a
biological perspective [43,49]. LSTMs can be trained using reinforcement learning
methods [51,52], but the complexity of the recurrent architecture renders training
implausibly inefficient when compared to animal learning (requiring millions of trials to
learn a relatively straightforward T-maze task).

One of the best established biologically inspired models of flexible WM control so far,
is the Prefrontal Cortex-Basal Ganglia Working Memory model (PBWM [1,53, 54]).
PBWM allows for flexible memory control in a manner inspired by LSTM, but was
designed with a strong focus on biologically plausibility. PBWM only gates the entry of
sensory stimuli into its WM store in an all-or-none fashion. Specifically, the basal
ganglia determine whether items are allowed to enter WM, on the basis of selecting
internal gating actions. The model can learn complex hierarchical tasks (such as 12-AX,
described below), which require selective updating and maintenance of relevant items in
WM while preventing the storage of distractor stimuli. However, as noted by [55], the
exact functionality of PBWM is somewhat obscured by the fact that it is a rather
complex model with a highly interwoven architecture of neural subsystems and several
parallel learning algorithms, both supervised and unsupervised [56-58]. [55]
demonstrated that a much simpler reinforcement learning architecture, that distills only
PBWNMs gating mechanism, could learn the same type of tasks. Thus, these trainable,
action-oriented models (AuGMEnT, LSTM and PBWM) illustrate how neural networks
can learn tasks that go beyond mere storage and matching. In both LSTM and PBWM,
memory control is flexible: items can be encoded, maintained and updated separately,
and there are mechanisms that prevent interference from task-irrelevant stimuli.
Notably, and in stark contrast with more storage-oriented models, these models solve
tasks by constructing memory representations tailored to the task at hand: sensory
information is encoded in a manner that makes them fit to solve the task, and that link
them to relevant actions. In a more conceptual wording: these networks store
task-relevant content, rather than generic copies of sensory stimuli. They provide control
operations to update specific content and learn to apply them based on reinforcement.
Yet, these models do not easily cope with arbitrary stimuli that the agent has never
observed before. For this, the models lack the generic storage approach that
matching-oriented models utilize, and it remains untested whether generalized matching
signals can be integrated in this type of model.
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WorkMATe: generalizable, flexible, trainable WM

As laid out above, existing neural network models of flexible memory vary according to
their focus of functionality (storage vs. action). Here, we present WorkMATe (Working
Memory through Attentional Tagging) a neural network architecture that integrates the
core components of these models to arrive at a biologically plausible model of WM that
is trainable, flexible and generalizable. The model utilizes a new, gated memory circuit
inspired by both PBWM and LSTM, to maintain multiple items separately in WM. We
include a straightforward neuronal circuit for a generic matching process that compares
the memory content to incoming new stimuli. Last but not least, these structures are
embedded in a multilayer neural network that is trained using the simple and
biologically plausible reinforcement learning rule of AuGMEnNT. We demonstrate how
the resulting neural network architecture solves complex, hierarchical tasks with
multiple stimuli that have different roles depending on context, and that it can rapidly
generalize an acquired task policy to novel stimuli that it has never encountered before.

Materials and methods

We will first describe the architecture of WorkMATe and how it compares the memory
representations to sensory stimuli, as well as how its biologically plausible learning rule
resolves the credit assignment problem by combining reinforcement learning with an
attentional feedback mechanism. We will then illustrate the virtues of WorkMATe in
four general versions of popular WM tasks. First, we model a basic delayed
match-to-sample task with changing stimulus sets to illustrate how the model
generalizes to novel stimuli. Second, we illustrate hierarchical problem solving with the
classic “memory juggling” 12-AX task, where the agent is presented with a stream of
symbols and must learn the rule. Third, the challenges of both these tasks are combined
by training it on a sequential recognition task introduced by [2,3], where an agent has
to store multiple, sequentially presented items, and match them to subsequent test
stimuli, in the same order. Here again we assess both flexibility and generalization to
new stimuli. Finally, we turn to the delayed pro-saccade/anti-saccade task [59-63],
because it allows for a direct comparison between the present architecture and the
previous ‘gateless” AuGMEnT model [36].

We present a model architecture (Fig. 1A) that achieves good performance in these
four memory tasks. The parameter values and other network specifics were kept the
same in all simulations. An overview of these parameters is given in supporting table S1
Table. The details of these computations will be described here, followed by a discussion
of our simulations. Code used to implement the architecture and run the simulations is
available from an online repository, accessible via
https://osf.io/jrkdq/?view_only=e2251230b9bf415a9da837ecba3a7d64.

Input representations and Feed-forward sweep

The model is a neural network that receives input = at every time step t. Input is
composed of sensory representations xs and a representation of time x,. Sensory
representations are, in all simulations, defined binary patterns with activity levels [1, 0]
that uniquely identify each stimulus. The time representation is inspired by ‘time cells’
as identified in multiple cortical and sub-cortical areas [4,23,64,65]. These cells encode
time by their delayed response profiles, each peaking at different times relative to the
onset of a trial. In our model units, activity profiles are defined as symmetrically
increasing and decreasing activity around each unit’s unique peak time, at the levels
[0.125,0.25,0.5,1.0]. An example sequence of inputs from Time- and Sensory units is
depicted in Fig. 2C.
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Fig 1. A The network architecture used in all simulations: a standard multilayer

network, complemented by a gated store composed of two independent memory blocks.

The input layer and memory store both project to the hidden layer, which in turn
projects to two output modules. There, activity encodes Q-values that drive action
selection. B Memory unit within a block, with a ‘closed’ gate: the memory content is
maintained via self-recurrent connections. Additionally, a match value is computed
between sensory and memory information, by comparing a projection of the sensory
information (m}) to memory content (m;). The comparison is performed by two units
which respond to positive and negative disparities between the two values. Their output
is summed across memory units, yielding one match value for each block. The closed
gate inhibits the connection between m/ — m; so that the original memory is
maintained. Only when a gating action is selected, the recurrent projection is inhibited
and m} — m; is opened so that memory content is updated. Fig. 2 illustrates network
activity in a task context, and supporting table S1 Table lists the number of units in
each layer.

The network projects the input representation = to two different layers. One is a
regular hidden layer i in which units are activated via the projection weight matrix
W= The other layer, activated through projection W5? is the memory store S, which
is composed of two equally sized memory blocks m; and ms. During the initial
feedforward sweep of activity, the projection W%z = S’ = {m/, mj} serves to
compute the match value between the projected sensory representation m, and the
contents of each memory block m,. These match values are denoted as T, , Tm,. As
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noted above, there are a number of hypotheses on how this match value might be
computed [19, 20,24, 25]. Here, we refrained from a specific modeling effort and instead
computed the sum of absolute differences between the two representations, which is a
common match metric [66-68] :

Here, n refers to the number of nodes in a block. This computation could be readily
implemented by a set of accessory units that are activated by input projections and
memory units, and respond to disparities between memory- and sensory information
(Fig. 1B). The summed activation in these units is a measure of dissimilarity, and one
minus this value is used as a match signal.

The current activity of the memory circuit S* = {S, z,,}, which reflects the memory
content as well as the match values, is projected to the hidden layer h. This regular
hidden layer integrates information from the input layer and memory stores, via:

h=f(he) = fW'. 2+ WhS. 5% 1 by) (2)

where b is a bias input vector, and f is a standard sigmoid transfer function.
The hidden layer h projects to the output layer g through the weights Wa":

q = {Qinta qext} = th. h + bq (3)

these output values g will, after training, approximate the Q-values of each of the
possible response options. The Q-value is the sum of the expected immediate and
temporally discounted future rewards for the remainder of the trial that the agent can
acquire by selecting that action. The output layer q is divided into two modules: one for
external and one for internal actions. External actions reflect the motor response
options of the agent, which in our simulations reflect either holding or releasing a lever,
or fixating left, right, or in the center of the screen. The internal actions determine
memory gating. Based on the action selected in this layer, the currently presented
stimulus is either memorized in block 1, in block 2, or it is ignored. On most time steps,
the agent will selects internal and external actions associated with the units with the
highest activation {argmax(qint), argmax(gext)}. On rare exploration time steps,
(determined by exploration rate €), the agent will select a random action, determined by
a Boltzmann controller operating over the g-values within each module.

Storage and Gating

The memory layer S in WorkMATe is functionally similar to that used in PBWM.
Separate memory representations are maintained via self-recurrent projections in the
memory store. This is a strong abstraction of the neurophysiological mechanisms of
WM maintenance in the primate brain, as there is no consensus in the literature as to
whether items in WM are functionally organized into slots [69, 70], continuous
resources [71-73], hierarchically organized feature bundles [74], or through interactions
with long-term memory representations [75]. Here, we remain largely agnostic regarding
the precise representation, but choose a mechanism where items in memory can be
maintained separately, can be updated separately, and can be selectively ignored to
prevent interference [1]. We will show that this approach allows us to investigate how
complex cognitive control over the content of WM can be acquired via reinforcement
learning.

After feedforward processing is completed and the Q-values in the output layer have
been computed, the agent selects a gating action from {g1, g2, gy}, in order to either
gate the current sensory representation into block mq,mo or to prevent the stimulus
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from entering the memory store altogether. Note that unlike in PBWM, a memory
representation m; is not a direct copy of sensory information. Rather, it is a compressed
representation of the input representation, encoded via the weights W*°®. This allows
for generalization of learned task rules to novel stimuli.

Importantly, unlike the other, trained projections in the model, W5* remains fixed
throughout each model run at the connection strengths it obtains through random
initialization. As a result, memory representations of a stimulus are not tuned to the
task at hand, and will differ dependent on whether they are encoded in block 1 or block
2. Previous work [76-78] has demonstrated that utrained random projections can be
used for memory encoding in a useful manner, as long as dissociable memory
representations can be formed. This is not to say that memory encoding in the brain is
necessarily random and untrained, but we will use this architecture to illustrate that
without additional tuning, the model can successfully encode stimuli in a generic
manner, an will explore whether learned policies generalize to novel stimulus sets.

Learning

Learning in the model follows the AuGMEnT-algorithm [36], which was in turn derived
from the AGREL learning rule [39]. At every time step, the model predicts the Q-value
of each of its possible actions. These values are represented in the motor- and the
gating-module in the network’s output layer. Based on these values, the gating module
selects an internal action and the motor module an external action, in parallel. The sum
of the two Q-values associated with the selected actions, gint(t) + gext(t), reflect the
total Q-value @y, i.e. the network’s estimate of the sum of discounted rewards predicted
for the remainder of the trial. Note that there is no a priori constraint on how these two
values are weighted, though in all the tasks simulated here we found the Q-values in
internal and external action modules to converge to comparable values, with each
module accounting for approximately half of the total Q-value associated with the
selected pair of actions.

The selected actions form a binary vector z, which is 1 for the units reflecting the
selected actions, and 0 otherwise. AuGMEnT/AGREL states that once actions have
been selected, an attentional feedback signal originates from these units which passes
through the system through attentional feedback connection. This recurrent signal is
used to ‘tag’ synapses that contributed to the selected actions. These synaptic tags
correspond to eligibility traces in traditional SARSA()) reinforcement learning. The
value of these tags gradually decays at each time step with a rate a = 1 — Ay, where ~y
is a temporal discounting factor. (discussed below). The update of a tag depends on the
contributions of a synapse to a selected action. Formally, this means that in each plastic
connection in the weight matrices W5 Wh= Whs" ek each Tag,; between
presynaptic unit ¢ and postsynaptic unit j is updated according to:

for the connections h — q :

ATag;?Zh = —aTag?ih + hi- 24 (4)
and for the connections x — h and S — h :

ATaglt = —aTag)f + - o' (h;) w) ()
ATagl® = —aTag!? + S- o' (h;) w} (6)
with:

W = Zwkj-zk (7)
k
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Here, the term h; refers to the output of hidden unit j, and ¢’ is the derivative of
the sigmoid transfer function. The term w} indicates the amount of recurrent feedback
from the action vector z onto the hidden layer nodes. This feedback is determined by
the weight between the hidden nodes and the selected actions where z; = 1 if action k is
selected, and z; = 0 for all non-selected actions j Feedback connections are updated via
the same learning rule as the feedforward connections. Therefore, the feedforward and
feedback connections remain or become reciprocal, which has been observed in
neurophysiology [79].

Synaptic connections are updated when the synaptic tags interact with a global
reward-prediction error (RPE) signal. This signal, §(¢) is modeled after striatal

dopamine, and reflects the signed difference between the expected and obtained reward.

This is expressed in the SARSA temporal difference rule:
§6(t) =r(t) +yQ() —Q(t — 1) (8)

That is, the model values the previous actions on the basis of the obtained reward r(t)
plus the amount of expected future reward Q(¢) multiplied by a temporal discounting
factor v € [0, 1], and contrasts this valuation with the previously expected value
Q(t —1). The RPE then triggers a global, neuromodulatory signal that spreads
uniformly throughout the network, and interacts with the synaptic tags to modify
weights. That is:

AW (t) = B3(t)Tag(1) (9)

where [ is the learning rate. Note that the two forces that determine weight updates are
the RPE and the synaptic tags. The RPE signal assures that once the model accurately
predicts rewards, the resulting §(¢) = 0 and the weights remain unchanged, which allows
the model to converge on an on-policy solution. The synaptic tags, on the other hand,
solve the credit assignment problem by means of attention gated feedback: units in the
hidden layer whose activity had a larger influence on the Q-value of chosen actions
receive stronger feedback and form stronger tags, whereas units that did not contribute
to the selected action will not have weight updates. Previous work has established the
relation between the AuGMENT learning rule and error-backpropagation [36] .

In all simulations, the model was trained using the same, general principles that are
in line with typical animal learning. Changes in the environment, and the reward that
was delivered, depended on the external actions of the agent, whereas internal actions
that pertain to WM updates were never directly rewarded. Trials were aborted without
reward delivery whenever the model selected an incorrect motor response. Reward could
be obtained twice in a trial. First, all tasks required the agent to perform a ‘default
action’ throughout the trial (such as maintaining gaze at a central fixation point or
holding a response lever) until a memory-informed decision had to be made. We
encouraged the initial selection of this action by offering a small ‘shaping’ reward
(r = 0.2) for selecting this action at the first time step. At the end of a trial, if the
correct decision was made in response to a critical stimulus, a large reward (r = 1.5)
was delivered. In our model assessments, trials were only considered ‘correct’ when both
rewards were obtained.

Although not all inputs and computations were strictly necessary or useful in every
task, the network architecture, parameter values and the representation of inputs were
kept constant across simulations; Across tasks, we modified only the external action
module to represent the valid motor responses for the different tasks.

November 13, 2019

9/30

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319


https://doi.org/10.1101/846675
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846675; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

Results

Task 1: Delayed Match to Sample

Arguably one of the most straightforward WM tasks is the Delayed Match-to-Sample
(DMS) task, where an agent is presented with one stimulus, and has to determine
whether a second stimulus, presented after a delay without a stimulus, is the same or
not. Here, we show that random, untrained encoding projections can be used to solve
this task and that the solution generalizes to stimuli that the agent has not observed
before. We trained the agent on a simple DMS task, where it was sequentially presented
with a fixation cross, a probe stimulus, another fixation cross, and a test stimulus that
would either match the probe or not (Fig. 2A,B). Stimuli consisted of unique binary
patterns of six values (See Fig. 2B for two example stimuli). One additional seventh
input was used to signal the presence of the fixation dot. The agent had to withhold a
response until the test stimulus appeared and it then had to make one of two choices to
indicate whether the test stimulus matched the probe (we used a ‘leftwards/rightwards’
saccade for ‘match/mismatch’). We modeled a total of 750 networks with randomly
initialized weights. During initial training, the probe- and test-stimuli were chosen from
a set of three unique stimuli (Set 1). Once performance had converged ( j 85% correct
trials), the stimulus set was replaced by a set of three novel stimuli (Set 2) This process
was repeated until performance had converged for six sets of stimuli.

In these and all other simulations, we will report convergence rates based on all
trials including those with exploratory actions.

Fig. 2 illustrates how the network solves an illustrative trial where probe and test do
not match. The three types of inputs provided to the network during the trial are
depicted in Fig. 2C, with time input, sensory input, and match input depicted from left
to right. Activity of each time cell unit peaks around a unique time point, together
conveying a drifting representation of time. The sensory input cells represent the stimuli
presented to the agent. We have depicted three curves to summarize the activity
corresponding to the fixation dot, probe and test stimulus, but we note that in
mismatch trials, the two representations still usually have partially overlapping input
units. The activity in the match nodes conveys the result of comparing the content of
each memory block to currently presented stimulus: “Match 17 and “Match 2” for the
comparison with the content in ‘memory block 1’ and ‘memory block 2’ respectively.
The example agent learned to store the probe stimulus in ‘block 2’ and to correctly
maintain the probe item throughout the trial, so that match signal from this block
could be used for the final match- versus mismatch decision. The example trial is a
mismatch, but the right panel of Fig. 2C also illustrates the activity of the match node
on a trial in which the test matched this probe (dashed line and cross).

Output layer activity on this example trial is depicted in Fig. 2D. Activity in this
layer approximates the value associated with the different gating- and motor actions,
which influence the RPE and thereby drive learning. The total estimated Q-value, i.e.
the sum Q-values of selected actions in the two modules is plotted in the left panel.
They reasonably approximate the real Q-values, which sufficed for an adequate policy —
they would become even more accurate after further training. The other two panels of
Fig. 2D show the Q-values for all possible actions at each time step, separately per
module. Note that the individual Q-values in these modules do not allow for
straightforward interpretation, as they are free to vary as long as their sum provides a
good Q-value estimate. In practice, however, we found that the two modules evenly
contributed to the Q-value estimate.

To examine whether the policy acquired by the agents generalized to novel stimuli,
we assessed the number of trials that an agent required to converge after each switch to
a new set. The results in Fig. 3 illustrate that agents were able to generalize across
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Fig 2. Neural Network performance on an illustrative ‘mismatch’ trial, after training.
A: Model architecture (as in Fig. 1). Colors in the input- and output layers correspond
to the graphs in C and D. B: Example mismatch trial. After fixation, a probe stimulus
(a 6-bit pattern) is presented which must be maintained in memory. After a delay, the
test stimulus is presented. The agent must hold fixation, and then indicate whether the
test matches the probe stimulus (leftwards saccade) or not (rightwards saccade) C:
From left to right: Time units z, (6 out of 10 inputs shown), sensory units z,, and
match values z,, at different time steps during the trial (F-P-D-T as in B, see main
text for details). D: After training, the agent estimates the Q-value of its selected
action set (left) from the Q-values in the motor- and gating module (middle and right).
E: Motor- and gating policy, i.e. vector z at each time point determined through
winner-take-all selection over the g-values in D. The colored squares indicate the chosen
internal and external actions at each time step. Colors correspond to those in D.
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stimulus sets. Convergence on the first set was relatively slow (Fig. 3A): the median
number of trials needed for convergence was = 12,700 trials, with 95% of the agents
converging within 4,379 — 46,724 trials. Already after the first switch, convergence
occurred much faster, after a median of 1,066 trials (95% within 212 — 5,288, trials).
With each subsequent switch, the agents displayed further generalization, and the
median trials needed for convergence on set 6 was only 343.5 trials (95% within 90 —
1,994 trials. We note that 85 trials is the absolute minimum number of trials before any
agent could reach our criterion of 85% accuracy).

We next assessed performance in the first 100 to 500 trials with each new set, to
explore how fast the agents learned the task with novel stimuli (Fig. 3). Initial
performance on Set 1 (after 100 trials) was near chance level, which was approximately
1% correct in this task (four consecutively correctly selected actions chosen from three
response options). Performance gradually increased, reaching 18.5% accuracy within the
first 500 trials. Following the first switch (to Set 2), performance did not drop back to
chance: rather, agents immediately performed 55.8% correct on the first 100 trials, and
were 66.3% correct after 500 trials. On each subsequent set switch, immediate
performance with never-before seen stimuli kept increasing, with performance at 70.3%
for the final set. On the final two sets, criterion performance (85%) was acquired within
500 trials. These results suggest that agents were indeed able to generalize the acquired

policy to novel contexts, although each set switch still required some additional learning.

We suspected that one important reason why the model failed to immediately
generalize on new sets, might have been that agents broke fixation for novel stimuli.
Note that a completely novel input pattern makes use of connections that have not been
used before in the task, which could due to their random initialization trigger erroneous
saccades. To account for such errors, we also assessed the accuracy of agents on the first
trial in which they encountered a novel probe and maintained fixation until the test
stimulus. We observed an average accuracy of 87.1% across agents on their first
encounter with a novel stimulus from Set 2. This accuracy score also increased for
subsequent sets, with an average accuracy of ~ 92.6% correct for the first encounters
with stimuli from Set 5 and 6. Thus, the model learned the matching task in a manner
that allows almost immediate generalization to new stimulus sets: the vast majority
errors in later sets were caused by fixation breaks.

Task 2: 12-AX

We next examined the performance of WorkMATe on the 12-AX task, a task that was
used to illustrate the ability of PBWM to flexibly update WM content. The 12-AX task
is a hierarchical task with two contexts: ‘1’ and ‘2’. In the task, letters and numbers are
sequentially presented, and each require a ‘go’ or a ‘no-go’ response. Whenever a ‘1’ has
been presented as the last digit, the ‘1’-context applies. In this context, an ‘A’ followed
by an ‘X’ should elicit a go response to the ‘X’, whereas every other stimulus requires a
no-go response. When a ‘2’ is presented, the second context applies: now only a ‘B’
immediately followed by a Y’ should elicit a go response. Agents must separately
maintain and update both the context (‘1’ or ‘2’) and the most recently presented
stimulus, in order to make the correct go response to the imperative stimuli ‘X’ or ‘Y’.
Human participants can do this hierarchical task after verbal instruction, but to
acquire the rules that determine the correct response solely through trial and error
learning poses a challenge. PBWM learned this task using a complex combination of
reinforcement learning, supervised learning, and unsupervised learning
techniques [56, 58, 80], but [55] showed that agents can also learn this task using a
simpler SARSA(X) reinforcement learning scheme. To our knowledge, no data have
been published on humans or other primates learning a task of this complexity through
reinforcement learning alone.
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Fig 3. Performance and training on the Delayed Match to Sample task with novel
stimuli. A: Convergence rates across 750 agents (left: performance on first 6000 trials
with each new stimulus set; right: convergence on all sets, with log time scale). On the
first set, convergence is relatively slow, but on subsequent sets, agents learn much faster.
The convergence rates keep increasing with each new set. B: Performance with new
stimuli immediately after a switch increases with each switch, indicating that the agents
generalize the task to new stimulus sets. C: Accuracy for the first encounter with a
novel test stimulus, i.e. on the first trial in which the model maintained fixation until
the test stimulus was presented. Note that accuracy is 87.1% on Set 2, after the first
stimulus switch. The agents then further generalize the rule across contexts, because
accuracy is 90% or higher for all subsequent set switches.

Here, we used a trial-based version of the task, where on every trial a sequence of
symbols with unpredictable length is presented, which ends with an ‘X’ or a ‘Y’. During
this sequence, the agent had to respond as outlined above. Given the complexity of the
task, we trained the agents through ‘curriculum learning’ [50,81,82], a training scheme
in which trials were organized into ‘levels’, which gradually increased in difficulty. Once
an agent showed sufficient performance on a level, training for the next levels
commenced. Example sequences at different difficulty levels are shown in Fig. 4A. Key
to curriculum learning is that trial types from previous, easier levels are also presented
in order to prevent unlearning of the simpler cases. In our curriculum, 50% of the trials
were always of the highest difficulty level, and the other 50% simpler cases drawn from
one of the previous levels with equal probability for all previous levels. The difficulty
was increased when performance on the last 100 trials was over 85% correct.

This trial-based curriculum not only facilitated training, but it also had another
benefit over previous approaches to train 12-AX [1,55,83]. In previous implementations,
the imperative X/Y stimulus always occurred at one of a few critical moments after the
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Fig 4. Training on trial-based 12AX. A: The curriculum used to train the agent, with
example trial sequences to illustrate the difficulty levels. As soon as the agent performs
correct on 85% of the trials, a higher difficulty level is introduced and presented on 50%
of the trials (critical trials), with the other 50% sampled from the lower levels. B:
Policy on an example trial (cf. Fig. 2E), acquired by an illustrative model agent
converging on the highest difficulty level. The agent correctly updates memory content
on each stimulus, but is only rewarded on the basis of its final motor action in response
to the target symbol (X/Y). This agent stored the task context (1/2) in the memory
block 1, and stored the last seen stimulus, target or distractor, in block 2. C:
Cumulative Histogram from 500 agents depicting the number of trials needed for
convergence on each difficulty level. Training on higher difficulty levels does not start
until lower levels have been learned. The graph on the right depicts convergence rates
considering only the trials drawn from the highest difficulty.

context rule, whereas here we intermixed sequences of very different lengths. Without
this variation, we found that models could meet the convergence criterion on the basis
of timing alone, without fully acquiring the task rules. In the current curriculum
learning scheme, the agents truly solved the task, applying the appropriate storage
policies to all difficulty levels and trial lengths.

All 500 agents converged and were able to accurately perform the task at the highest
difficulty level. The policy acquired by one of these agents is depicted in Fig. 4B, which
illustrates an example trial at the highest difficulty. Throughout the sequence, the agent
selected the ‘hold’ action, while it updated each last-presented stimulus, encoding these
into block 2. However, stimuli denoting the rule context (1/2) were encoded into
memory slot 1, and only updated when the context changed. Once presented with the
imperative stimulus (“Y’, in this case), this gating policy allowed the agent to use the
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memory of the current context (‘2”) and the previous stimuli ("B’) to decide to yield a
correct ‘go’ response.

Convergence rates for this task are depicted in Fig. 4C. Despite the complexity of
this task, all agents reached criterion performance, within a median of ~62,000 trials
(95% range 11,566, — 180,988 ). A large proportion of these trials were repetitions of
easier levels, and the number of critical (final level) trials before convergence was lower,
with a median of 242,000 trials (95% 8,700 — 121,208 ). Thus, the model was able to
acquire the rules of complex, hierarchical task which requires flexible gating of items
into and out of WM, based only on relatively sparse rewards that were given only at the
end of correctly performed trials.

Task 3: ABAB ordered recognition

In a series of elegant studies, Miller and colleagues [2,3,15,84], reported data from
macaques trained in tasks in which multiple visual stimuli needed to be maintained in
WM. For example, in the ‘ordered recognition task’, the monkey was trained to
remember two sequentially presented visual stimuli (A and B), and to report whether
the stimuli were later presented again, in the same order. On match trials the same
objects were repeated (ABAB), and the monkey responded after a match to both
objects, i.e on the fourth stimulus in the sequence. There were mismatch trials in which
the first or the second stimulus was replaced by a third stimulus C (ABAC or ABCB) as
well as mismatch trials with the same stimuli (A and B), but in reverse order (ABBA).
In case of a mismatch, the monkey waited until the A and B were shown in the correct
order as the fifth and sixth stimuli (e.g. ABACAB), and thus responded to the sixth
stimulus. In each recording session, three novel visual stimuli were used to form the
sequences, where each of these stimuli could take on the ‘role’ of A, B or C on any trial.

This ordered recognition task requires selective updating and read-out of memories
in a way that shares features with the 12-AX and DMS tasks from the previous sections.
As in the 12-AX task, two stimuli need to be maintained and updated separately, and
the task goes beyond simply memorizing two items: the order of stimuli also needs to be
stored and determines the correct action sequence. As with the DMS task, monkeys
reached reasonable accuracies, even though novel stimuli were presented in each session,
implying that they could generalize their policy to new stimulus sets.

We tested WorkMATe on this ordered recognition task. We trained 750 model
agents, randomly selecting stimuli from the same set as we had used for the DMS
simulation described above. Half of the trials were ‘match’ sequences, and the other half
consisted of the three possible mismatch sequences, in equal proportion. Criterion
performance was defined as an accuracy of at least 85% on the last 100 trials, with an
added requirement of at least 75% accuracy on the last 100 trials in each of the four
conditions. In the ‘static’ training regime, we kept the three selected stimuli identical
for an agent throughout a training run. In the ‘dynamic’ regime, the three stimuli were
replaced by three new randomly selected stimuli after 3,000 trials. This meant that each
of the three stimuli took on the role of A, B or C approximately 1,000 times before they
were replaced by a new set.

The convergence rates for the static regime are plotted as solid lines in Fig. 5A. The
agents learned the full task after a median number of 2106,000 trials (95% of the agents
between 25,880 — 856,868 trials). Under the static regime, we found that learning the
overall task was primarily hindered by the condition ‘Mismatch 1’ (ABCB).
Convergence on this condition typically took much longer (median: 86,390) than on the
other conditions (medians: 3,128, 24,076, 28,858 trials for ‘Match’, ‘Swap’, and
‘Mismatch 2’ respectively). The increase in complexity under the dynamic regime
caused a total training time that was five to six times longer (Fig. 5A, dashed lines)
than in the static regime, with convergence after a median of ~641,000 Trials (95% of
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Fig 5. The ABAB ordered recognition task. A: Convergence of 500 agents on the full
task (black traces) and on different conditions separately (colored traces) under two
training regimes: static (same stimuli used throughout training) or dynamic (new
stimulus sets after each 3,000 trials). In both regimes the task is typically learned in
approximately 10° trials, but convergence varies across conditions. Note the logarithmic
time axis. B: The ‘memorized mismatch’. C: The ‘memorized storage time’ policy.
Both policies reflect generic, common solutions found amongst converged agents, and
are discussed in the main text. Both are plotted following Fig. 2E .

the models converged within 139,907 — 3,797,200 trials ). Interestingly, compared to the
static regime, initial convergence was comparatively quick on each of the mismatch
conditions, within a median of ~13,000 trials (75% correct). The reason for this is that
many agents initially learned to withhold their response until the end of the trial, but
did not learn to store or update the appropriate stimuli in WM. Even though all
mismatch conditions initially converged rather quickly, we noticed that during training,
increases in ‘Match’ condition performance were often paired with decreases in
performance on the ‘Mismatch 1’ condition.

We qualitatively investigated the policies of converged agents to explore why the
‘Mismatch 1’ posed such a challenge for the model. Note that on trials from the other
conditions (‘Match’, ‘Swap’, and ‘Mismatch 2, which together make up 83.3% of all
trials) the correct response can be determined based on relatively simple inferences: The
agent merely has to learn to encode the second stimulus (B), and maintain it for two
time steps, and utilize its time cell input to identify the fourth and sixth stimulus
presentation. Then, if the stimulus at ¢t = 4 matches the stimulus that was encoded at
t = 2 a Go-response is needed, otherwise it is to be held until ¢ = 6. The ‘Mismatch 1’
condition, however, demands complex memory management. The agent must store both
the initially presented A and B, detect the mismatch at t = 3, and somehow convey this
mismatch in a manner that prevents responses to the matching stimulus (B) at ¢t = 4.
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However, in the present architecture, WorkMATe has no way to encode this mismatch,
so the agent is not capable of such meta-cognition.

Nevertheless, agents typically found a solution that fell into one of two classes: In
both solutions, the first two stimuli (A/B) were separately encoded in the two memory
blocks. The first solution, which we call the ‘memorized mismatch’ strategy (Fig. 5B),
essentially followed the following rule: If the stimulus at ¢t = 3 does not match either
stimulus in memory — and the trial must therefore be of the ‘Mismatch 1’ condition —
the agent replaced the ‘B’-stimulus in memory with the ‘new’ stimulus C. As a result,
stimulus ‘B’ at ¢ = 4 no longer matched any stimulus in memory, which led the agent to
withhold a response. A second solution, the ‘memorized storage time’ strategy, made
use of the temporal information encorporated in the memory representation of the
stimulus. In this strategy, the key step was that if the stimulus at ¢ = 3 did not match
the ‘A’, the initial A-stimulus was overwritten in memory. At ¢ = 4, the correct decision
could then be made by only responding if stimulus matched the ‘B’ in memory, and if
the other memory block contained temporal information from the first time step.

To conclude, these simulations demonstrate that WorkMATe can acquire complex
control over WM content, in order to appropriately solve complex hierarchical tasks
with dynamically switching stimulus contexts — again, solely on the basis of
reinforcement signals.

Task 4: Pro-/Anti-saccade Task

To compare WorkMATe to its ‘gateless’ predecessor AuGMENT [36], we simulated
agents learning the delayed pro-/ antisaccade task, a classic task in both human and
non-human primate memory research, and on which AuGMEnT was also trained and
evaluated. The task (Fig. 6A) requires an agent to maintain fixation at a central
fixation point. The agent should encode the location of a peripheral probe and
memorize it during a delay. Trials with a black fixation point are pro-saccade trials and
when the fixation point disappears, the agent makes a saccadic eye movement to the
remembered location of the probe. On anti-saccade trials, the fixation point is white
and now the agent has to make an eye movement in a direction opposite to the
remembered cue location, after the memory delay.

We trained 500 instances of our network and all learned the task (; 85% correct)
within 100,000 trials (Fig. 6B, solid line ). The median number of trials was ~ 15,000
(95% 6,835 — 56,155 trials). This convergence rate is faster than that of monkeys, who
typically learn such a task only after several months of daily training with ~ 1,000 trials
per session. However, training took approximately three to four times longer than with
the original AuGMEnNT architecture. There are several differences between AuGMEnT
and WorkMATe that could account for this. For example, the parameters governing
Q-learning were not optimized for WorkMATe, but adopted from AuGMEnT to
facilitate comparison. The most critical difference between models, however, is that the
gated memory store which is the core of the WorkMATe model, was overly flexible for
this task. The gateless AuGMENT architecture encoded all relevant stimuli into its
memory so that an accumulation of relevant information was available at the ‘go’ signal.
The WorkMATe architecture first had to acquire an appropriate gating policy (Fig. 6C),
to make sure that the correct decision can be made based the fixation color and probe
location on the ‘go’ display when no information is available anymore. Notably, the
gating policy can be the same for all conditions: if cue and probe are separately
available in memory, a correct decision can be made.

To examine if the added complexity of learning a gating policy could account for the
difference in learning speeds between WorkMATe and AuGMEnT, we trained a new set
of ‘gateless’ agents on this task. These agents were identical to WorkMATe, except that
the gating actions were, from the start, predefined to match those depicted in Fig. 6C.
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Fig 6. A: Illustration of the four conditions in the prosaccade/antisaccade task. The
agent has to memorize the location of the probe, and make a pro- or anti-saccade after a
delay, dependent on the trial type indicated by the cue (white or black fixation point).
The agent thus has to integrate the information throughout the trial, and make an
“exclusive or” decision upon presentation of the go-signal. Of note, the gating policy in
this trial, depicted in C, is applicable in each of the four conditions in this task. B:
Convergence rates for 2 x 500 simulated agents of two different types. The solid line
depicts convergence with WorkMATe. The dotted line depicts performance with a
modified version of the model, where the gating policy is not learned, but correctly
predefined and fixed beforehand. C: Policy (cf. Fig. 2E) of an example agent after
convergence, during an antisaccade trial with a ‘left’ probe. This gating policy applies
to all trial conditions.

With this setup, the complexity was comparable to that of the AuGMEnT architecture.

Indeed, convergence rates for these gateless agents (median number of trials ~ 5,000;
95% 2,076 — 20,334 trials ) were very similar to those for AuGMEnT, and were
approximately three times faster than those with gated WorkMATe (Fig. 6B).

These simulations highlight the strengths and weaknesses of ‘gateless’ and ‘gated’
memory architectures. Simpler, gateless models that project all stimuli to memory
suffice for tasks like pro-/antisaccade task. These tasks do not require selective
updating of memory representations, nor do they contain distractor stimuli that
interfere with the memory representation. On the other hand, gating is essential for
tasks in which access to WM needs to be controlled in a ‘rule-based’ fashion. In both
the ABAB ordered recognition task and the 12-AX task, a stimulus’ access to memory
is contingent on other items that are presented in the history of the trial. We envisage
that both types of WM, gated and ungated, might exist in the brain, so that the
advantages of both strategies can be exploited when useful.

Model Stability

Our simulations demonstrate that the WorkMATe model is able to learn accurate
performance across a range of popular WM tasks. Across these simulations, we have
kept the model architecture and parameters constant, including the learning parameters

November 13, 2019

18/30

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587


https://doi.org/10.1101/846675
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846675; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

(B, which scales the synaptic weight updates, and the SARSA learning parameter A,
which determines the decay of synaptic tags, through the relation a =1 — Ay. Our
choice of values for these parameters was mainly motivated by consistency with the
original AuGMEnT model. In order to explore to what extent WorkMATe’s
performance remains stable across variability in these parameters, we ran a grid-search
exploration of the parameter space for different values of A and .

For this grid search we used versions of the tasks defined for the simulations above.
For the DMS task, we used only three stimulus sets. For ABAB ordered recognition
task we only ran the ‘Static’ learning regime (solid lines in Fig. 5A). For 12-AX, we
again used curriculum learning, and count only the ‘critical’ trials at the highest
difficulty level (cf. Fig. 4C). The pro-/antisaccade task was ran as-is (solid line in
Fig. 6B). We assessed all combinations of § = [0.05,0.10,0.15...1.0] and
A =10.1,0.2,0.3...0.9], and for each parameter combination, we ran 100 model instances.
The simulations were ran on the Peregrine High Performance cluster of the University of
Groningen. Per task, each model instance was allotted the same amount of wall clock
time. Assuming comparable performance across all cores this implies a similar
maximum number of iterations (trials) held for these tasks. The maximum number of
iterations in each task was = 1,870,000 in the Delayed Match to Sample task,
=~ 1,700,000 critical trials in the 12-AX task, ~ 790, 000 trials for ABAB ordered
recognition, and = 500,000 in the Pro- / Antisaccade task. The number of iterations
reported in Fig. 7 are the median number of iterations computed across all runs in
which convergence was reached. In general, we found that model runs with a high 5 had
relatively low convergence rates, an effect that was particularly pronounced for the
ABAB task. To yield better insight into model stability for this task, we ran additional
simulations where we varied 8 at a more fine-grained scale 8 = [0.025, 0.05,0.075...1.0].

The results are depicted in Fig. 7. Across all tasks, a similar pattern was found:
performance was rather robust across a range of values for A\, and more sensitive the
precise value of 5. Parameter A\ determines the decay rate of the synaptic tags in the
neural network that are formed once an action is selected. Notably, variations in this
parameter impacted performance most the Pro-/ Antisaccade task and 12-AX. These
were tasks where reward delivery could be furthest removed from the actions that led to
a possible reward. For example, during 12-AX, committing the context rule ‘1’ to
memory is necessary, but might only lead to reward much later.

With regards to 3, the results suggest that too high learning rates are detrimental
for WorkMATe. Too high values for the learning rate are generally harmful for
convergence in neural networks, and for WorkMATe this might have been extra
detrimental due to the all-or-none gating policy in the model. Gradual weight changes
could therefore lead to sudden changes in the gating policy, altering the model’s state
space. Large learning rates can therefore prevent convergence by rendering previously
learned state-action pairings irrelevant. Although these sudden changes also occur with
lower 3 values, they are less frequent so that the models can adapt. Of note, the
influence of 8 and A on learning was similar to that observed with previous
models [36,55]. We conclude that there are large regions of the parameter space with
successful and consistent performance in all four tasks. Within these regions the
performance of WorkMATe is robust and stable.

Discussion

We have presented WorkMATe, a neural network model that learns to flexible control
its WM content in a biologically plausible fashion by means of reinforcement. The
model solves relatively basic WM tasks like delayed match to sample and delayed Pro- /
Antisaccade tasks, but also more complex tasks such as the hierarchical 12-AX task and

November 13, 2019

19/30

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637


https://doi.org/10.1101/846675
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846675; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

DMS
Convergence rate Convergence rate
e f—
[ [
0 25 50 75 190 0 25 50 75 190
0.75 Iterations 0.75 Iterations
e \
- .
0 5 10 15 0 5 10 15
x10° x10°
r<0.50 &0.50
0.25 0.25
0.00: 0.00:
0.0 0.2 04 0.6 0.0 0.2 0.4 0.6
B B
ABAB Pro-/ Antisaccade
Convergence rate Convergence rate
e f—
o o
0 25 50 75 1&0 0 25 50 75 1"90
0.75 Iterations 0.75 Iterations
] .
] . ]
02 50 75 0 15 30 45
x10* x10
&0.50 <0.50
0.25 @ 0.25
0.00 0.00
0.0 0.1 0.2 B 0.3 0.4 0.5 0.0 0.2 B 0.4 0.6

Fig 7. Model stability across the four different tasks. Each tile represents a parameter
combination. The blue shading of the tiles indicates the convergence rate, and the color
of the dots the median number of iterations for convergence. Note that the color axis
for iterations is different for each task, and the x-axis is different for the ABAB ordered
recognition task (bottom left). The green outline indicates the single parameter
combination that was used in all simulations in the preceding sections. It can be seen
that model performance is largely independent of values for A, and that lower S values
were generally associated with faster convergence.

the ABAB ordered recognition task. Furthermore, we show that the agent can learn
gating policies that are largely independent of the stimulus content, and applies these
policies successfully to solve tasks with stimuli that were not encountered before. Thus,
WorkMATe exhibits a number of crucial properties of WM: trainability, flexibility, and
generalizability.

The terms ‘working memory’ and ‘short-term memory’ have often been used
interchangeably in the cognitive sciences, even though the term ‘working memory’ was
popularized to place additional emphasis on the capability of the brain to flexibly
regulate and update memory content given task demands [85]. Many previous models of
WM (e.g. [7,9,13]) focus on storage of items and their retrieval. In the present work,
the focus was on learning to use and update memory content according to possibly
complex task requirements. WorkMATe models acquire gating- and updating policies
that implement a type of ‘symbolic’ memory control: In many of our simulations, the
acquired gating policy can be interpretated as a set of production rules that are
applicable to all conditions of the task, independent from the precise identity of the
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stimuli. Previous studies have noted that the gap between traditional artificial neural
network architectures and symbolic systems is one of the great challenges to be
overcome by artificial intelligence [86]. Previous neural network models that attempt to
implement a similar approach to memory control have relied on predetermined,
hand-coded sequences of memory operations hard-coded into the model ( [87-89], but
see [50]). Here we show, for the first time, that such control over WM can be acquired
in a neural system by means of biologically plausible reinforcement learning.

These strengths of WorkMATe originate from the combination of design features of
previous neural network models of WM. We sought to overcome problems faced by
action-oriented models such as PBWM, LSTM and AuGMEnT by combining the
AuGMENT learning rule with a memory circuit inspired by more generic memory
models. WorkMATe can store arbitrary representations, and has the built-in capacity to
compute the degree of match between the representations in memory and incoming
sensory information. The generality of the model follows from our finding that it is
unnecessary to first learn specific memory representations, and that instead a fixed,
random projection for encoding suffices. The properties of such an encoding scheme
have been explored before [76,77], indicating that this is a functionally rich approach
that can be applied to a range of memory tasks. Our simulations with the
pro-/antisaccade task demonstrate that such random feedforward encoding suffices for
at least some tasks where the relevant features are given as feedforward inputs to the
model. It seems likely however, that it will be insufficient for other tasks, in which the
memoranda require specific and non-linear combinations of inputs. Recently, [78]
proposed a working memory storage architecture that was defined by two separate
layers of neurons: a structured, sensory layer with separate pools for separate items,
which projected to a shared ‘unstructured’ layer via random recurrent connections, with

their only constraint being that excitation and inhibition were balanced for each neuron.

The resulting architecture could also store arbitrary representations, and gave rise to
capacity limits and forgetting dynamics that are also observed in humans. Future work
might explore how WorkMATe might also benefit from a more sophisticated memory
maintenance architecture, be it a multi-layer subsystem or one with recurrent
connections to the sensory inputs, while still allowing for the generic, built-in matching
computations. Indeed, it is this matching process that endows WorkMATe with the
flexibility of dealing with stimuli that were not previously encountered by the model.

WorkMATe makes several simplifying assumptions that touch on contended topics in
WM research, and therefore require further discussion. First, all our simulations made
use of two, independently maintained memory blocks to store content, which proved
sufficient for these tasks. There is an ongoing debate regarding the storage capacity
limits of WM, and to what extent these speak to the functional organization of items in
memory. Two opposing views are slot-based models [69], which state that storage is
limited by a discrete number of ‘slots’ in memory, and resource-based models which
propose that there is no limit on the number of items that can be stored, but the total
fidelity is limited by a certain amount of ‘resources’ [71,72,90]. Our memory circuit
most closely aligns with the slot-based view, but it is conceivable that similar results
might have been obtained with a resource-based implementation. However, an approach
with independent memory blocks allows for independent matching, gating and updating
of memoranda, for which resource-based architectures would require additional
assumptions (See [68] for one potential approach). Furthermore, while two blocks
sufficed for the tasks simulated here, it is conceivable that other tasks performed by
humans might require more blocks, because the capacity limit of WM in humans is
larger than two items [70,91,92]. Our focus, however, was not on slot-based
architectures or the exact limitations, but on learning to flexibly control multiple
representations.
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A second simplifying assumption that we have made here is that matches between
sensory- and memory representations are computed automatically and in parallel.
Whether multiple memory objects can be ‘matched’ at once by a single percept is a
topic of debate in cognitive psychology [93-97]. The tasks that we have chosen to focus
on here take place at relatively slow speeds, which would allow for serial comparisons,
but previous research has shown that at high speeds, matching multiple memory targets
comes at a cost [98]. A serial comparison circuit might introduce additional control
operations to determine which representation should be prioritized for matching. Here,
we refrained from simulating such additional operations. Related to this, some models
such as LSTM can also gate WM output, in addition to the input. These might come
into play in task-switching setups, where multiple goals need to be maintained but only
one should drive behavior [99-104], and in sequential visual search tasks where multiple
items may be held in WM but only one drives attentional selection [95,105-110].
Recordings in Macaque PFC suggest that sequential search tasks, which require such
‘prioritization’, of one memory item over another are characterized by elevated cortical
representation of the prioritized stimulus in preparation of search [2,3,15]. Future
extensions of WorkMATe might investigate tasks that could benefit from such output
gating operations, and whether they can be learned through plasticity rules related to
those studied here.

Interestingly, not every task benefited from a gated memory. Notably, training on
the pro-/antisaccade task actually took 3-4 times longer with the gated model than with
a model without these gates. This is important, as it shows that for certain tasks, it
may indeed be beneficial to merely accumulate relevant information into memory and
learn a policy that relies on these accumulated representations. These types of memory
tasks are actually more akin to perceptual decision-making tasks, which require an
agent to aggregate information until a threshold is reached that triggers a
decision [111,112], rather than to flexibly store, update and maintain memory
representations. This qualitative dissociation between different types of tasks might
warrant a model that is comprised of separate routes to a decision: one relying on the
automatic integration of relevant information, and one describing a more controlled
process that stores and updates information as variables to be used in a task [113].
Intriguingly, recent work by [114] used a very different approach to WM modeling but
arrived at a similar conclusion. They trained networks with recurrent pools of units
using a supervised stochastic gradient descent algorithm, in order to solve different
working memory tasks. Their findings indicated that functionally very different types of
circuits were used to solve different working memory tasks, dependent on the degree of
dynamic control and updating that the task demanded. Our simulations similarly
suggest a dissociation between tasks that rely on the simple integration of relevant
information whereas others may benefit from, or even demand additional levels of
control. We may therefore use models like WorkMATe to predict more precisely which
tasks will rely on flexible, controlled memory, and which tasks can be solved without the
necessity for flexible control structures (the actual ‘work’).

Conclusion

To conclude, we have presented a neural network model of primate WM that is able to
learn the correct set of internal and external actions based on a biologically plausible
neuronal plasticity rule. The network can be trained to execute complex hierarchical
memory tasks, and generalize these policies across stimulus sets that were never seen
before. We believe this to be an important step towards unraveling the enigmatic
processes that make WM ‘work’: that is, be used as an active, flexible system with
capabilities beyond the mere short-term storage of information.
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Supporting information

S1 Table Model paramaters. Parameters used in all simulations (unless stated

otherwise).
Symbol Name Value
B Learning rate 0.15
5y Temporal discounting factor 0.9
A Eligibility Trace decay rate 0.8
€ Exploration rate 0.025
Symbol Name Size
x Total input units 17
Ts Sensory input units 7
Ty Time input units 10
h Hidden units 15
S Memory store (Blocks) 2
m; Units per memory block 14
Qint Output g-units (internal actions) 3
Qext Output g-units (external actions) 2 or 3 (Task-dependent)
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