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Abstract. N6-methyladenine is widely found in both prokaryotes and eukary-

otes. It is responsible for many biological processes including prokaryotic de-

fense system and human diseases. So, it is important to know its correct location

in genome which may play a significant role in different biological functions.

Few computational tools exist to serve this purpose but they are computation-

ally expensive and still there is scope to improve accuracy. An informative fea-

ture extraction pipeline from genome sequences is the heart of these tools as

well as for many other bioinformatics tools. But it becomes reasonably expen-

sive for sequential approaches when the size of data is large. Hence, a scalable

parallel approach is highly desirable. In this paper, we have developed a new

tool, called FastFeatGen, emphasizing both developing a parallel feature ex-

traction technique and improving accuracy using machine learning methods. We

have implemented our feature extraction approach using shared memory par-

allelism which achieves around 10× speed over the sequential one. Then we

have employed an exploratory feature selection technique which helps to find

more relevant features that can be fed to machine learning methods. We have

employed Extra-Tree Classifier (ETC) in FastFeatGen and performed experi-

ments on rice and mouse genomes. Our experimental results achieve accuracy of

85.57% and 96.64%, respectively, which are better or competitive to current state-

of-the-art methods. Our shared memory based tool can also serve queries much

faster than sequential technique. All source codes and datasets are available at

https://github.com/khaled-rahman/FastFeatGen.

Keywords: genome sequence · shared memory · parallel feature extraction · pre-

diction model.

1 Introduction

N6-methyladenine (6mA) is very common in prokaryotes whose primary functions lie

in the host defence system [20]. It is an abundant modification in mRNA which has

also been found in many multicellular eukaryotes such as Caenorhabditis elegans [13]

and Drosophila melanogaster [32], and hence it has been proposed as a new epigenetic

marker in eukaryotes [20]. Some studies have revealed that 6mA can control the acuity

of infection and replication of RNA viruses like HIV and Zika virus [16, 17]. A recent

study demonstrates that 6mA modification can be heavily present in human genome and
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depletion of 6mA may lead to tumorigenesis [30]. Identification of 6mA in the genome

will be helpful to characterize many biological functions and drug discovery.

Several experimental approaches exist to identify 6mA in genome. As described in

[20], an antibody against N6-methyladenine can identify N6-adenine methylation in eu-

karyotic mRNAs which can further be used to identify N6-methyladenine in DNA [11].

This technique is ambiguous due to the fact that other adenine-based modifications can

be recognized. Liquid chromatograpy coupled with tandem mass spectrometry gives

another comprehensive approach to identify 6mA [10]. Some restriction enzymes are

sensitive to DNA methylation to differentiate between methylated nucleotides and un-

methylated nucleotides which can be used to identify 6mA [25]. Single Molecule Real

Time (SMRT) sequencing can determine kinetics of nucleotides during synthesis [9]. It

has been applied to map 6mA and 5mC at the same time in Escherichia coli [7]. Notice-

ably, it can not differentiate between 6mA and 1mA, though this technique is very ex-

pensive. There are other experimental methods in the literature which have been found

effective, e.g., liquid chromatography coupled with tandem mass spectrometry [13], and

capillary electrophoresis alongside laser-induced fluorescence (CE & LIF) [14].

Most of the existing experimental methods are time consuming and expensive as

mentioned above. Since the distribution of 6mA sites in the genome is not random and

can follow some patterns, computational methods may be efficient and cost-effective.

There are few such methods (6mA-Pred [4] and iDNA6mA-PseKNC [8]) which help to

identify 6mA sites using supervised machine learning approaches. But, these methods

adopt a sequential approach to extract features from DNA sequences which often slow

down the process. Recently, convolutional neural networks (CNN) model has been ap-

plied to this problem [29]. However, comparison is not fair or ambiguous as jackknife

testing is performed in 6mA-Pred whereas Tahir et al. use 20% samples of the dataset.

Hence, we exclude this method from comparison due to inconsistency. There is still a

need for a robust and precise tool that can facilitate faster and efficient identification of

6mA sites.

Various tools exist that extract features from DNA/protein sequences for prediction

purposes, e.g., some tools extract features from genomic sequences to predict on-target

activity in CRISPR/Cas9 technology [6, 22] whereas other tools extract features from

protein sequences to make efficient predictions [5, 21, 23, 24]. But, almost all authors

use a sequential approach [2, 18, 19] for feature extraction. With the advent of multi-

core processors [1, 26], a single machine can have two or more processing units which

can lead to a significant speed-up of a properly written program. In this paper, we intro-

duce such a parallelization technique in FastFeatGen (Faster Feature extraction from

Genome sequences) to extract features from DNA sequences which can also be ap-

plied to RNA/protein sequences as well with small modification. So, feature extraction

techniques from large scale datasets will be significantly accelerated by our tool.

Over the years, a plethora of supervised machine learning based methods have been

applied to solve several bioinformatics problems [15, 28]. However, to the best of our

knowledge, Chen et al. [4] were the first to tackle identification of 6mA sites in rice

genome using Support Vector Machine (SVM). In this paper, we advance this concept

with faster feature extraction and selection techniques and several supervised learn-

ing methods to achieve better performance. We also apply widely used neural network
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models to this problem in both supervised and unsupervised ways. Our extensive ex-

perimental results show that unsupervised CNN model is unable to surpass supervised

models. This is likely due to the small size of the datasets, and, more interestingly,

Extra-Tree Classifier (ETC) proposed by [12] performs very well despite its small set

of features. We summarized our contributions as follows:

– We have introduced faster approaches for feature extraction techniques from genome

sequences (Section 2.2).
– We have applied a lucid feature selection technique to select important and relevant

features (Section 2.4).
– We have performed an extensive set of experiments using both supervised and un-

supervised machine learning methods to find a robust model (Section 2.3).
– We have compared our results with other state-of-the-art methods to show effec-

tiveness and efficiency of our model (Section 3).
– We have also analyzed the processing time of new query sequences (Section 3.5).

2 Methods

The workflow of our tool is shown in Fig. 1. At first, features are extracted from input

genome sequences (datasets). Then, relevant features are selected using the appropriate

technique. After that, selected features are fed to supervised machine learning methods

to build the predictor. At this stage, several parameters are tuned until the model is

optimized. Many existing methods follow Chou’s 5-step rules (see [5]), and our tool is

analogous to it. We describe each of these steps below.

2.1 Datasets

We have obtained two balanced datasets, Dataset1 and Dataset2 from [33] and [31],

respectively. Dataset1 contains 880 positive samples (6mA sites) and 880 negative sam-

ples (non-6mA sites). Positive samples are from the rice genome, which are available

at NCBI Gene Expression Omnibus1 with the accession number GSE103145. Dataset2

contains 1934 positive samples and 1934 negative samples. Positive samples are cu-

rated from Mus musculus genome which are available in MethSMRT database [31].

Each sequence of both datasets is 41-bp long and nucleotide “A” is present at the cen-

ter. More details about these datasets and negative samples generations can be found

in [4] and [8].

We represent a 41-bp sequence by S = s1s2s3 . . .s41, where si represents a nucleic

acid in sequence S and 1 ≤ i ≤ 41. Thus a dataset is represented by D = S1S2S3 . . .S|D|,

where |D| is the size of dataset containing both positive and negative samples. For both

datasets, S1 . . .S|D|/2 are positive samples and S|D/2|+1 . . .S|D| are negative samples.

2.2 Feature engineering

Features are the heart of supervised machine learning methods. We manually extract

different types of information from given datasets and feed that information along with

their corresponding true class to machine learning algorithms for training and testing

purposes. In this paper, we generate four types of features which are discussed below.

1 https://www. ncbi.nlm.nih.gov/geo/
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Input Sequences

Feature Extraction

Feature Selection

ML-methods

Optimized ? Tune Parameters

Output Model

yes

no

Fig. 1: Flowchart for FastFeatGen. Input Sequences - dataset containing DNA se-

quences, Feature Extraction - extract features from DNA sequences, Feature Selection -

select relevant features using feature importance score, ML-methods - apply supervised

machine learning methods on selected features, Optimized - check whether model is

better or not, Tune Parameters - tune several parameters in ML-methods like learning

rate, kernel function, etc., Output Model - produce optimized model for prediction.

Nucleic acids composition (NAC) This is also known as position independent fea-

tures or k-mers or n-grams. Each sequence may have certain short length patterns (also

known as motifs) of NACs which are consistent over the whole dataset and so they may

contribute to the learning model. In this technique, normalized frequency of a compo-

sition of nucleic acids is considered in corresponding sequence and finally a feature

vector is constructed for the whole dataset. Length of a composition of nucleic acids is

determined by order. For example, if order is 2, then all compositions of two nucleic

acids is considered to extract features and a single feature vector is constructed for each

composition. We normalize the frequency dividing by length of the sequence. We can

define it mathematically as following:

NAC(K,S j) =
1

LS j
− k

LS j
−k

∑
i=1

I(K,si . . .si+k)

where K is a k-mer, S is a sequence, LS j
represents the length of S j which is jth sequence

of the whole dataset, and I(.) is an identity function which returns 1 when K is same as

si . . .si+k; otherwise, it returns 0.
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Position specific features (PSF) Position of a motif in a genome sequence may carry

important information which can be found consistent over the whole dataset. Undoubt-

edly, this position specific information can contribute to the learning model. In this type

of features, a binary feature vector is constructed by checking the presence of a k-mer

in certain position over the whole sequence. We can also define it mathematically as

following:

PSF(K,S j, p) = I(K,sp . . .sp+k)

where, p is the starting position of k-mer and all other variables carry same meaning as

NAC.

Di-gapped nucleotides (DGN) Sometimes a gap between relative position of two

amino acids in a protein sequence carry important information which may also con-

tribute to supervised learning methods. We are motivated by this technique and use it to

extract features from genome sequences as well. We construct a feature vector for each

composition of two gapped nucleotides by normalizing its frequency in a sequence. We

can formally define DGN as the following:

DGN(N1,N2,S j,g) =
1

LS j
−g

LS j
−g

∑
i=1

I(si = N1,si+g = N2)

where, g is the gap length, N1 and N2 are two nucleotides. I(.) is an identity function

which returns 1 if ith symbol of sequence S j is N1 and (i+ g)th symbol of S j is N2;

otherwise, it returns 0.

Bayesian posterior probability (BPP) In this technique, we first calculate the normal-

ized frequency of each 2-mer for each position over the whole dataset. As we consider

2-mer, there are 40 different positions in a 41-bp sequence and we can have a total of 16

2-mers from all possible combinations of nucleotides. We construct a 40 × 16 matrix

for the positive and negative samples separately. Then we extract BPP features in the

following way: for each sequence we create a vector of size 80 where first 40 entries

represent the posterior probabilities of position specific 2-mer in positive samples and

last 40 entries represent the posterior probabilities in negative samples. More details of

this approach can be found in [27].

Parallelization in feature extraction We parallelize all the above feature extraction

techniques in shared memory parallelism, which is accomplished through Single In-

struction Multiple Data (SIMD) computing combined with multithreading. In this ap-

proach, instead of one sequence at a time, we pass nt sequences at a time to extract

features using nt cores. Figure 2 shows a schematic diagram of our approach. A sequen-

tial feature extraction algorithm process one sequence at a time whereas FastFeatGen

can process c sequences at a time using c available cores in a computing machine. It

basically distributes all genome sequences to available cores and keeps it processing in

parallel which results in faster running time.
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Fig. 2: A schematic diagram of parallel feature extraction where each thread constructs

a specific feature using all input sequences.

2.3 Machine learning algorithms

In this tool, we use several supervised machine learning algorithms either to select

informative features or to train the model. For all these approaches, we incorporate the

popular sklearn python package in our tool unless otherwise mentioned explicitly. We

provide short description for each of these models below.

Support vector machine (SVM) In computational genomics and proteomics, SVM is

widely used for classification purpose. At first, the input dataset is transformed to high-

dimensional feature space and then a kernel function maps the feature space to another

dimension so that a boundary (also called margin) can separate the positive/negative

classes. It creates a hyper-plane between positive and negative datasets so that margin

between nearest positive samples and nearest negative samples is maximized. Nearest

samples are often called support vectors and we can precisely state that the larger dis-

tances from hyper-plane equates to greater confidence levels in the predicted values.

For SVM, we applied linear kernel function for feature selection and radial basis kernel

function for classification purposes.

Random forest (RF) RF is a popular ensemble method that is widely used for feature

selection as well as for classification. Decision tree is the building block of RF which

constructs rule sets over the feature space of training dataset, put class labels in the

leaves of the tree, and branches denote conjunction of different rules that result in a

corresponding class label. RF generally consists of a strategy to average a number of

decision trees on various subsets of the dataset at training time to reduce variance and

over-fitting. We allow maximum depth of RF trees to 500 in our model and use default

values for other parameters.

Extra tree classifier (ETC) ETC is another ensemble method which is similar to RF

with few differences [12]. In ETC, each tree is trained using whole training samples

instead of a subset and randomization is used while top-down splitting of a tree node

i.e., a random split node is selected rather than selecting a locally optimal split node

based on information gain or gini impurity. This random cut-point is selected from a

uniform distribution. A final split node is selected from all randomly generated splits
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which achieves the maximum score. For the classification task, a prediction is made

by aggregated scores of each tree by majority voting. Here, we also allow maximum

depth of ETC trees to 500 to avoid possible over-fitting and default values for other

parameters.

Neural networks (NN) NN is one of the most popular feed-forward methods being ap-

plied in different research fields including image processing, speech recognition, bioin-

formatics, etc. It consists of several cascaded layers (outputs of one layer are inputs to

next layer) and each layer has a finite set of nodes (neurons in human brain). Each node

of a layer is connected to all nodes to its next layer which results in a fully connected

network. Each connection (edge) in the network represents a weight whose optimal

value is learned by an iterative optimization algorithm like stochastic gradient descent.

Each node in the network adds up the products of inputs and weights and passes through

the activation function, which determines how much information should proceed further

to influence the predictions.

We use a variation of the NN model called deep convolutional neural networks

(CNN) which is very popular in computer vision. Unlike many conventional supervised

learning processes, CNN does not require manually extracted features. Rather, it can

extract features by itself, which is a large advantage for automating the classification

process. Manually extracted features can also be fed to CNN to build a more diversified

model. For CNN, we use one-hot encoding approach to represent a sequence where ‘A’,

‘C’, ‘G’ and ‘T’ are encoded as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1],

respectively. As a result, each 41-bp sequence is represented by a 41 × 4 matrix.

2.4 Feature selection

All extracted features do not contribute equally to build a better prediction model; in

fact, some features do not contribute at all. We must find such irrelevant features and

discard them from the feature list. We use SVM and RF for selecting and creating an

important list of features that can help to train and optimize the prediction model. We

use linear kernel of SVM and use a cutoff (threshold) value of 0.001 for each feature

to be considered in our important feature list. Similarly, we select important features

using RF based on its importance score. In the literature, RF is suggested to select a

less biased or completely unbiased model [3], and many papers exist which use RF for

feature selection. In our experiment, we discard any feature with zero importance from

the important feature set.

2.5 Performance evaluation

In the literature, cross-validation is a widely used technique to build a model which

reduces selection bias and overfitting problems [3]. We perform 10-fold cross-validation

and jackknife testing (also known as leave-one-out cross-validation) while performing

experiments for training and testing our model. In 10-fold cross-validation, the dataset

is partitioned into 10 equal folds. Among these, 9 are used to train the model whereas

the remaining fold is used for testing purposes. This process is repeated 10 times with

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/846311doi: bioRxiv preprint 

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Md. Khaledur Rahman

a different fold selected for testing each time. In jackknife testing, n− 1 samples are

used to train the model and the remaining sample is used for testing where n is the

number of total samples in the dataset. This process is repeated n times so that each

sample is considered once for testing. We use some notations of confusion matrix to

define performance metrics in the following: we denote the total number of positive

and negative samples by P and N, respectively; T P, T N, FP and FN represent the

number of samples predicted as true positive, true negative, false positive, and false

negative, respectively. We use four performance metrics, namely, Accuracy, Sensitivity,

Specificity and Matthew’s Correlation Coefficient which are denoted by Acc, Sn, Sp

and MCC, respectively. We express these performance metrics as following to compare

our results with other tools.

Acc =
T P+T N

P+N
,Sn =

T P

P
,Sp =

T N

N

MCC =
T P∗T N −FP∗FN

√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

Fig. 3: (a) Running time vs. number of cores. (b) Accuracy for different sets of features

in Dataset1. (c) Accuracy for different sets of features in Dataset2.

3 Results and Discussion

3.1 Experimental setup

We perform all of our experiments in Haswell Compute Node of Cori super computer

located in Berkeley lab which is configured as follows: each node has two sockets and

each socket is populated with 16-core Intel®Xeon™Processor E5-2698 v3 (“Haswell”)

at 2.3 GHz, 32 cores per node, 36.8 Gflops/core and 128 GB DDR4 2.13 GHz mem-

ory. We wrote the coding for our feature extraction technique in C++ and the machine

learning models in Python. Our tool requires at minimum GCC version 4.9, OpenMP

version 4.5, and Python version 3.6.6. We provide source code with proper documenta-

tion, results and other information in our GitHub repository.

3.2 Parallel feature extraction Analysis

We use shared memory parallelism for feature extraction from genome sequences which

is highly scalable. To extract features from both datasets, we set parameters for NAC,
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PSF and DGN as 5, 30, and 28, respectively. We show the results of run time for both

datasets in Fig. 3(a). For different numbers of cores, running times are reported in sec-

onds. We observe that when we increase the number of cores, running time decreases

significantly and our tool extracts features using 32 cores for the above settings within

a fraction of a second. FastFeatGen achieves a speed-up of around 10.3x for both

Dataset1 and Dataset2 using 32 threads. Our tool can be applied to a wide range of

biological sequence analysis problems for feature extraction where each given dataset

contains a large number of DNA/RNA/Protein sequences.

3.3 Feature importance analysis

As discussed in section 2.4, we select important features using linear SVM and RF.

We use RF-based relevant feature selection for ETC and linear SVM-based feature

selection for the SVM model. We show feature sets with accuracy for Dataset1 and

Dataset2 using ETC model in Fig. 3(b) and Fig. 3(c), respectively. For Dataset1, our

top-performing model contains 1237 features, among which 320 are from BPP; the rest

of the features are mostly position specific. For Dataset2, our top-performing model

contains 1326 features, which is higher than the case of Dataset1. 225 features are from

BPP, and the rest of the features are mostly from PSF. For Dataset1, we see that C 26,

A 27, and TA 26 are some of the features with higher importance scores. It indicates

that Thymine in position 26 and Adenine in position 27 carry significant information

for N6-methyladenosine sites in the rice genome. On the other hand, G 21 and G 22 are

two important features for Dataset2, which indicates that Guanine in positions 21 and

22 carry significant information for the mouse genome. We observe that the accuracy

of the ETC model is always higher with its combined list of features rather than its

individual features. So, we use combined list of features for prediction purposes.

3.4 Performance analysis

Models Accuracy Models Accuracy

SVM 93.06 NN 80.96

ETC 84.88 CNN 48.41

Table 1: Comparison among different machine learning models for Dataset1.

Comparison among different learning models To build one efficient model from dif-

ferent machine learning algorithms discussed in section 2.3, we conduct an extensive set

of experiments. We compare SVM, ETC, NN and CNN using 10-fold cross-validation

and observe that SVM and ETC models are competitive (see Tab. 1). SVM performs

better than others because it uses a wide range of features, but its running time is very

slow. On the other hand, ETC performs better than all other methods for a small set of

features which also executes query much faster than others. The performance of NN

method is comparative to SVM and ETC while CNN is the worst performer. As both

datasets are small in size, CNN can not utilize its automatic feature extractions approach

in depth and hence shows worse performance. We select ETC model as a representative

of FastFeatGen for comparison with other state-of-the-art tools.
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Comparison with existing tools We compare our model with 6mA-Pred and PseDNC,

which are considered as the state-of-the-art methods for Dataset1. Following the trend

of 6mA-Pred, we generate all results using jackknife test. From Table 2, we see that

FastFeatGen (with 1237 features) achieves an accuracy of 85.56%, which is better

than other existing tools. It also achieves higher Specificity and MCC which are better

than other tools. Furthermore, FastFeatGen still outperforms existing tools in terms

of Accuracy, Specificity and MCC with only 187 features.

Tools\Metrics Accuracy Sensitivity Specificity MCC

FastFeatGen (1237 features) 85.56 81.47 89.65 0.71

FastFeatGen (187 features) 85.45 81.81 89.09 0.71

6mA-Pred 83.13 82.95 83.3 0.66

PseDNC 64.55 63.52 65.57 0.29

Table 2: Comparison among different tools for Dataset1.

For Dataset2, we compare our method with iDNA6mA-PseKNC, which is the only

tool for the mouse genome. Here, we also perform jackknife testing following the trend

of iDNA6mA-PseKNC. From Table 3, we see that FastFeatGen is better or very com-

petitive in all metrics.

Tools\Metrics Accuracy Sensitivity Specificity MCC

FastFeatGen (101 features) 96.63 93.49 100 0.94

iDNA6mA-PseKNC 96.73 93.28 100 0.93

Table 3: Comparison among different tools for Dataset2.

3.5 Query time analysis

The general purpose of building a machine learning model is to make prediction for

more unknown genome sequences, which is expected to be faster. Most of the sequence

analysis tools or web-servers can not provide such facility, or authors impose restric-

tions on the number of query sequences. FastFeatGen provides a scalable solution

to this problem which has no restrictions. Users can query as many sequences as they

want. We again employ parallel feature extraction technique here and enable parallel

job processing of ETC in sklearn package. In summary, FastFeatGen can serve 200

queries within 0.7 second(s) using 32 threads.

4 Conclusions

In this paper, we have introduced a novel tool called FastFeatGen which uses multi-

core processing for faster extraction of features from genome sequences. Then, it per-

forms lucid feature selection techniques that select high quality features to feed into

machine learning methods. Finally, we build a precise model using extra tree classi-

fier which performs very well using a small set of features. We have shown that our
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tool performs better than state-of-the-art methods on two publicly available datasets.

FastFeatGen achieves an accuracy of 85.56% and 96.63% for rice and mouse genomes,

respectively, which are superior or competitive to current state-of-the-art methods. Our

tool can predict for a wide range of new query sequences within fraction of a second

which is clearly an advantage over web-server based tools.

Our future goal is to improve and apply our faster feature extraction techniques to

other biological problems that involves protein or RNA sequences. We also would like

to include more feature extraction techniques to FastFeatGen.
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