bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

FastFeatGen: Faster parallel feature extraction from
genome sequences and efficient prediction of DNA
NS-methyladenine sites

Md. Khaledur Rahman/0000—0002—8784-5406]

Indiana University Bloomington, Bloomington, IN 47408, USA
morahma@iu.edu

Abstract. N°-methyladenine is widely found in both prokaryotes and eukary-
otes. It is responsible for many biological processes including prokaryotic de-
fense system and human diseases. So, it is important to know its correct location
in genome which may play a significant role in different biological functions.
Few computational tools exist to serve this purpose but they are computation-
ally expensive and still there is scope to improve accuracy. An informative fea-
ture extraction pipeline from genome sequences is the heart of these tools as
well as for many other bioinformatics tools. But it becomes reasonably expen-
sive for sequential approaches when the size of data is large. Hence, a scalable
parallel approach is highly desirable. In this paper, we have developed a new
tool, called FastFeatGen, emphasizing both developing a parallel feature ex-
traction technique and improving accuracy using machine learning methods. We
have implemented our feature extraction approach using shared memory par-
allelism which achieves around 10x speed over the sequential one. Then we
have employed an exploratory feature selection technique which helps to find
more relevant features that can be fed to machine learning methods. We have
employed Extra-Tree Classifier (ETC) in FastFeatGen and performed experi-
ments on rice and mouse genomes. Our experimental results achieve accuracy of
85.57% and 96.64%, respectively, which are better or competitive to current state-
of-the-art methods. Our shared memory based tool can also serve queries much
faster than sequential technique. All source codes and datasets are available at
https://github.com/khaled-rahman/FastFeatGen.

Keywords: genome sequence - shared memory - parallel feature extraction - pre-
diction model.

1 Introduction

N®-methyladenine (6mA) is very common in prokaryotes whose primary functions lie
in the host defence system [20]. It is an abundant modification in mRNA which has
also been found in many multicellular eukaryotes such as Caenorhabditis elegans [13]
and Drosophila melanogaster [32], and hence it has been proposed as a new epigenetic
marker in eukaryotes [20]. Some studies have revealed that 6mA can control the acuity
of infection and replication of RNA viruses like HIV and Zika virus [16, 17]. A recent
study demonstrates that 6mA modification can be heavily present in human genome and

https://github.com/khaled-rahman/FastFeatGen
https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

2 Md. Khaledur Rahman

depletion of 6mA may lead to tumorigenesis [30]. Identification of 6mA in the genome
will be helpful to characterize many biological functions and drug discovery.

Several experimental approaches exist to identify 6mA in genome. As described in
[20], an antibody against N°-methyladenine can identify N®-adenine methylation in eu-
karyotic mRNAs which can further be used to identify N°-methyladenine in DNA [11].
This technique is ambiguous due to the fact that other adenine-based modifications can
be recognized. Liquid chromatograpy coupled with tandem mass spectrometry gives
another comprehensive approach to identify 6mA [10]. Some restriction enzymes are
sensitive to DNA methylation to differentiate between methylated nucleotides and un-
methylated nucleotides which can be used to identify 6mA [25]. Single Molecule Real
Time (SMRT) sequencing can determine kinetics of nucleotides during synthesis [9]. It
has been applied to map 6mA and SmC at the same time in Escherichia coli [7]. Notice-
ably, it can not differentiate between 6mA and 1mA, though this technique is very ex-
pensive. There are other experimental methods in the literature which have been found
effective, e.g., liquid chromatography coupled with tandem mass spectrometry [13], and
capillary electrophoresis alongside laser-induced fluorescence (CE & LIF) [14].

Most of the existing experimental methods are time consuming and expensive as
mentioned above. Since the distribution of 6mA sites in the genome is not random and
can follow some patterns, computational methods may be efficient and cost-effective.
There are few such methods (6mA-Pred [4] and iDNA6mA-PseKNC [8]) which help to
identify 6mA sites using supervised machine learning approaches. But, these methods
adopt a sequential approach to extract features from DNA sequences which often slow
down the process. Recently, convolutional neural networks (CNN) model has been ap-
plied to this problem [29]. However, comparison is not fair or ambiguous as jackknife
testing is performed in 6mA-Pred whereas Tahir et al. use 20% samples of the dataset.
Hence, we exclude this method from comparison due to inconsistency. There is still a
need for a robust and precise tool that can facilitate faster and efficient identification of
6mA sites.

Various tools exist that extract features from DNA/protein sequences for prediction
purposes, e.g., some tools extract features from genomic sequences to predict on-target
activity in CRISPR/Cas9 technology [6, 22] whereas other tools extract features from
protein sequences to make efficient predictions [5,21,23, 24]. But, almost all authors
use a sequential approach [2, 18, 19] for feature extraction. With the advent of multi-
core processors [|,26], a single machine can have two or more processing units which
can lead to a significant speed-up of a properly written program. In this paper, we intro-
duce such a parallelization technique in FastFeatGen (Faster Feature extraction from
Genome sequences) to extract features from DNA sequences which can also be ap-
plied to RNA/protein sequences as well with small modification. So, feature extraction
techniques from large scale datasets will be significantly accelerated by our tool.

Over the years, a plethora of supervised machine learning based methods have been
applied to solve several bioinformatics problems [15, 28]. However, to the best of our
knowledge, Chen et al. [4] were the first to tackle identification of 6mA sites in rice
genome using Support Vector Machine (SVM). In this paper, we advance this concept
with faster feature extraction and selection techniques and several supervised learn-
ing methods to achieve better performance. We also apply widely used neural network

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

FastFeatGen: Faster parallel feature extraction from genome sequences 3

models to this problem in both supervised and unsupervised ways. Our extensive ex-
perimental results show that unsupervised CNN model is unable to surpass supervised
models. This is likely due to the small size of the datasets, and, more interestingly,
Extra-Tree Classifier (ETC) proposed by [12] performs very well despite its small set
of features. We summarized our contributions as follows:

— We have introduced faster approaches for feature extraction techniques from genome
sequences (Section 2.2).

We have applied a lucid feature selection technique to select important and relevant
features (Section 2.4).

We have performed an extensive set of experiments using both supervised and un-
supervised machine learning methods to find a robust model (Section 2.3).

We have compared our results with other state-of-the-art methods to show effec-
tiveness and efficiency of our model (Section 3).

— We have also analyzed the processing time of new query sequences (Section 3.5).

2 Methods

The workflow of our tool is shown in Fig. 1. At first, features are extracted from input
genome sequences (datasets). Then, relevant features are selected using the appropriate
technique. After that, selected features are fed to supervised machine learning methods
to build the predictor. At this stage, several parameters are tuned until the model is
optimized. Many existing methods follow Chou’s 5-step rules (see [5]), and our tool is
analogous to it. We describe each of these steps below.

2.1 Datasets

We have obtained two balanced datasets, Datasetl and Dataset2 from [33] and [31],
respectively. Dataset] contains 880 positive samples (6mA sites) and 880 negative sam-
ples (non-6mA sites). Positive samples are from the rice genome, which are available
at NCBI Gene Expression Omnibus' with the accession number GSE103145. Dataset2
contains 1934 positive samples and 1934 negative samples. Positive samples are cu-
rated from Mus musculus genome which are available in MethSMRT database [31].
Each sequence of both datasets is 41-bp long and nucleotide “A” is present at the cen-
ter. More details about these datasets and negative samples generations can be found
in [4] and [8].

We represent a 41-bp sequence by S = 515253 ...541, Where s; represents a nucleic
acid in sequence S and 1 <i <41. Thus a dataset is represented by D = §15253...5p|,
where |D| is the size of dataset containing both positive and negative samples. For both
datasets, S; ...S|p|/2 are positive samples and S|p 2|41 - .. S|p| are negative samples.

2.2 Feature engineering

Features are the heart of supervised machine learning methods. We manually extract
different types of information from given datasets and feed that information along with
their corresponding true class to machine learning algorithms for training and testing
purposes. In this paper, we generate four types of features which are discussed below.

! https://www. ncbi.nlm.nih.gov/geo/

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

4 Md. Khaledur Rahman

/ Input Sequences /

v

Feature Extraction

¥

Feature Selection

¥
ML-methods

|

Optimized ? Tune Parameters

/ Output Model /

Fig. 1: Flowchart for FastFeatGen. Input Sequences - dataset containing DNA se-
quences, Feature Extraction - extract features from DNA sequences, Feature Selection -
select relevant features using feature importance score, ML-methods - apply supervised
machine learning methods on selected features, Optimized - check whether model is
better or not, Tune Parameters - tune several parameters in ML-methods like learning
rate, kernel function, etc., Output Model - produce optimized model for prediction.

Nucleic acids composition (NAC) This is also known as position independent fea-
tures or k-mers or n-grams. Each sequence may have certain short length patterns (also
known as motifs) of NACs which are consistent over the whole dataset and so they may
contribute to the learning model. In this technique, normalized frequency of a compo-
sition of nucleic acids is considered in corresponding sequence and finally a feature
vector is constructed for the whole dataset. Length of a composition of nucleic acids is
determined by order. For example, if order is 2, then all compositions of two nucleic
acids is considered to extract features and a single feature vector is constructed for each
composition. We normalize the frequency dividing by length of the sequence. We can
define it mathematically as following:

Ls.—k

NAC(K,SJ'): I(K,Sl'...SH,k)

J
Ls;—k =3
where K is a k-mer, S is a sequence, Lg; represents the length of §; which is 7" sequence
of the whole dataset, and I(.) is an identity function which returns 1 when K is same as

Si...Sivk; otherwise, it returns O.

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

FastFeatGen: Faster parallel feature extraction from genome sequences 5

Position specific features (PSF) Position of a motif in a genome sequence may carry
important information which can be found consistent over the whole dataset. Undoubt-
edly, this position specific information can contribute to the learning model. In this type
of features, a binary feature vector is constructed by checking the presence of a k-mer
in certain position over the whole sequence. We can also define it mathematically as
following:

PSF(K,S;,p) =1(K,sp...Sptk)

where, p is the starting position of k-mer and all other variables carry same meaning as
NAC.

Di-gapped nucleotides (DGN) Sometimes a gap between relative position of two
amino acids in a protein sequence carry important information which may also con-
tribute to supervised learning methods. We are motivated by this technique and use it to
extract features from genome sequences as well. We construct a feature vector for each
composition of two gapped nucleotides by normalizing its frequency in a sequence. We
can formally define DGN as the following:

Lg;—8

1
I(s;i =Ni,Si1e =N
LSj s 1:21 (sz 15Si+g 2)

DGN(Ny,N,,S,8) =

where, g is the gap length, Nj and N, are two nucleotides. I(.) is an identity function
which returns 1 if i/ symbol of sequence S jis Ny and (i+ g)"" symbol of S j1s No;
otherwise, it returns 0.

Bayesian posterior probability (BPP) In this technique, we first calculate the normal-
ized frequency of each 2-mer for each position over the whole dataset. As we consider
2-mer, there are 40 different positions in a 41-bp sequence and we can have a total of 16
2-mers from all possible combinations of nucleotides. We construct a 40 x 16 matrix
for the positive and negative samples separately. Then we extract BPP features in the
following way: for each sequence we create a vector of size 80 where first 40 entries
represent the posterior probabilities of position specific 2-mer in positive samples and
last 40 entries represent the posterior probabilities in negative samples. More details of
this approach can be found in [27].

Parallelization in feature extraction We parallelize all the above feature extraction
techniques in shared memory parallelism, which is accomplished through Single In-
struction Multiple Data (SIMD) computing combined with multithreading. In this ap-
proach, instead of one sequence at a time, we pass nt sequences at a time to extract
features using nt cores. Figure 2 shows a schematic diagram of our approach. A sequen-
tial feature extraction algorithm process one sequence at a time whereas FastFeatGen
can process ¢ sequences at a time using ¢ available cores in a computing machine. It
basically distributes all genome sequences to available cores and keeps it processing in
parallel which results in faster running time.

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

6 Md. Khaledur Rahman

.8

S1=AATT ... AAAG

{S1.

Threadl

S2 = GTAT ... AACT
AACG . I'GG
GAGC ... TTTA) . ——
P 5 Cxtracted
\n(‘!(n\ - :
\CCG ...

S7=TCAG ... CGTG
S8 =GCCG ... CTCG

Thread4
.. S8

IS1.

Genome Sequences

Fig.2: A schematic diagram of parallel feature extraction where each thread constructs
a specific feature using all input sequences.

2.3 Machine learning algorithms

In this tool, we use several supervised machine learning algorithms either to select
informative features or to train the model. For all these approaches, we incorporate the
popular sklearn python package in our tool unless otherwise mentioned explicitly. We
provide short description for each of these models below.

Support vector machine (SVM) In computational genomics and proteomics, SVM is
widely used for classification purpose. At first, the input dataset is transformed to high-
dimensional feature space and then a kernel function maps the feature space to another
dimension so that a boundary (also called margin) can separate the positive/negative
classes. It creates a hyper-plane between positive and negative datasets so that margin
between nearest positive samples and nearest negative samples is maximized. Nearest
samples are often called support vectors and we can precisely state that the larger dis-
tances from hyper-plane equates to greater confidence levels in the predicted values.
For SVM, we applied linear kernel function for feature selection and radial basis kernel
function for classification purposes.

Random forest (RF) RF is a popular ensemble method that is widely used for feature
selection as well as for classification. Decision tree is the building block of RF which
constructs rule sets over the feature space of training dataset, put class labels in the
leaves of the tree, and branches denote conjunction of different rules that result in a
corresponding class label. RF generally consists of a strategy to average a number of
decision trees on various subsets of the dataset at training time to reduce variance and
over-fitting. We allow maximum depth of RF trees to 500 in our model and use default
values for other parameters.

Extra tree classifier (ETC) ETC is another ensemble method which is similar to RF
with few differences [12]. In ETC, each tree is trained using whole training samples
instead of a subset and randomization is used while top-down splitting of a tree node
i.e., a random split node is selected rather than selecting a locally optimal split node
based on information gain or gini impurity. This random cut-point is selected from a
uniform distribution. A final split node is selected from all randomly generated splits

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

FastFeatGen: Faster parallel feature extraction from genome sequences 7

which achieves the maximum score. For the classification task, a prediction is made
by aggregated scores of each tree by majority voting. Here, we also allow maximum
depth of ETC trees to 500 to avoid possible over-fitting and default values for other
parameters.

Neural networks (NN) NN is one of the most popular feed-forward methods being ap-
plied in different research fields including image processing, speech recognition, bioin-
formatics, etc. It consists of several cascaded layers (outputs of one layer are inputs to
next layer) and each layer has a finite set of nodes (neurons in human brain). Each node
of a layer is connected to all nodes to its next layer which results in a fully connected
network. Each connection (edge) in the network represents a weight whose optimal
value is learned by an iterative optimization algorithm like stochastic gradient descent.
Each node in the network adds up the products of inputs and weights and passes through
the activation function, which determines how much information should proceed further
to influence the predictions.

We use a variation of the NN model called deep convolutional neural networks
(CNN) which is very popular in computer vision. Unlike many conventional supervised
learning processes, CNN does not require manually extracted features. Rather, it can
extract features by itself, which is a large advantage for automating the classification
process. Manually extracted features can also be fed to CNN to build a more diversified
model. For CNN, we use one-hot encoding approach to represent a sequence where ‘A’,
‘C’, ‘G’ and ‘T’ are encoded as [1, 0, 0, 0], [O, 1, O, O], [0, O, 1, O] and [O, O, O, 1],
respectively. As a result, each 41-bp sequence is represented by a 41 x 4 matrix.

2.4 Feature selection

All extracted features do not contribute equally to build a better prediction model; in
fact, some features do not contribute at all. We must find such irrelevant features and
discard them from the feature list. We use SVM and RF for selecting and creating an
important list of features that can help to train and optimize the prediction model. We
use linear kernel of SVM and use a cutoff (threshold) value of 0.001 for each feature
to be considered in our important feature list. Similarly, we select important features
using RF based on its importance score. In the literature, RF is suggested to select a
less biased or completely unbiased model [3], and many papers exist which use RF for
feature selection. In our experiment, we discard any feature with zero importance from
the important feature set.

2.5 Performance evaluation

In the literature, cross-validation is a widely used technique to build a model which
reduces selection bias and overfitting problems [3]. We perform 10-fold cross-validation
and jackknife testing (also known as leave-one-out cross-validation) while performing
experiments for training and testing our model. In 10-fold cross-validation, the dataset
is partitioned into 10 equal folds. Among these, 9 are used to train the model whereas
the remaining fold is used for testing purposes. This process is repeated 10 times with

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

8 Md. Khaledur Rahman

a different fold selected for testing each time. In jackknife testing, n — 1 samples are
used to train the model and the remaining sample is used for testing where n is the
number of total samples in the dataset. This process is repeated n times so that each
sample is considered once for testing. We use some notations of confusion matrix to
define performance metrics in the following: we denote the total number of positive
and negative samples by P and N, respectively; TP, TN, FP and FN represent the
number of samples predicted as true positive, true negative, false positive, and false
negative, respectively. We use four performance metrics, namely, Accuracy, Sensitivity,
Specificity and Matthew’s Correlation Coefficient which are denoted by Acc, Sn, Sp
and MCC, respectively. We express these performance metrics as following to compare
our results with other tools.

TP+TN TP TN
Acc = ;,Sn =—,Sp=—
P+N P N

TP*TN—FPxFN
\/(TP+FP)(TP+FN)(TN +FP)(TN+FN)

MCC =

. (¢) Feature selection for Dataset2
() Running time vs. Cores
" 0.97
¢ Datasetl + Dataset2 (b)Feature selection for Datasetl
0,965 /"0 e\ e e o 4

137 A
0.96 !
9.1

Accuracy(x 100%)

Run time (sec.)
Accuracy(x 100%)

00— TS g B R EnEEEnEake T 2o eRsRsREREREe

Number of cores Number of features Number of features

Fig. 3: (a) Running time vs. number of cores. (b) Accuracy for different sets of features
in Datasetl. (c) Accuracy for different sets of features in Dataset2.

3 Results and Discussion

3.1 Experimental setup

We perform all of our experiments in Haswell Compute Node of Cori super computer
located in Berkeley lab which is configured as follows: each node has two sockets and
each socket is populated with 16-core Intel®Xeon™Processor E5-2698 v3 (“Haswell”)
at 2.3 GHz, 32 cores per node, 36.8 Gflops/core and 128 GB DDR4 2.13 GHz mem-
ory. We wrote the coding for our feature extraction technique in C++ and the machine
learning models in Python. Our tool requires at minimum GCC version 4.9, OpenMP
version 4.5, and Python version 3.6.6. We provide source code with proper documenta-
tion, results and other information in our GitHub repository.

3.2 Parallel feature extraction Analysis

We use shared memory parallelism for feature extraction from genome sequences which
is highly scalable. To extract features from both datasets, we set parameters for NAC,

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

FastFeatGen: Faster parallel feature extraction from genome sequences 9

PSF and DGN as 5, 30, and 28, respectively. We show the results of run time for both
datasets in Fig. 3(a). For different numbers of cores, running times are reported in sec-
onds. We observe that when we increase the number of cores, running time decreases
significantly and our tool extracts features using 32 cores for the above settings within
a fraction of a second. FastFeatGen achieves a speed-up of around 10.3x for both
Dataset] and Dataset2 using 32 threads. Our tool can be applied to a wide range of
biological sequence analysis problems for feature extraction where each given dataset
contains a large number of DNA/RNA/Protein sequences.

3.3 Feature importance analysis

As discussed in section 2.4, we select important features using linear SVM and RF.
We use RF-based relevant feature selection for ETC and linear SVM-based feature
selection for the SVM model. We show feature sets with accuracy for Datasetl and
Dataset2 using ETC model in Fig. 3(b) and Fig. 3(c), respectively. For Datasetl, our
top-performing model contains 1237 features, among which 320 are from BPP; the rest
of the features are mostly position specific. For Dataset2, our top-performing model
contains 1326 features, which is higher than the case of Dataset1. 225 features are from
BPP, and the rest of the features are mostly from PSF. For Dataset1, we see that C_26,
A_27, and TA_26 are some of the features with higher importance scores. It indicates
that Thymine in position 26 and Adenine in position 27 carry significant information
for N%-methyladenosine sites in the rice genome. On the other hand, G_21 and G_22 are
two important features for Dataset2, which indicates that Guanine in positions 21 and
22 carry significant information for the mouse genome. We observe that the accuracy
of the ETC model is always higher with its combined list of features rather than its
individual features. So, we use combined list of features for prediction purposes.

3.4 Performance analysis

Models|Accuracy|Models|Accuracy
SVM | 93.06 NN 80.96
ETC 84.88 CNN | 4841

Table 1: Comparison among different machine learning models for Dataset]1.

Comparison among different learning models To build one efficient model from dif-
ferent machine learning algorithms discussed in section 2.3, we conduct an extensive set
of experiments. We compare SVM, ETC, NN and CNN using 10-fold cross-validation
and observe that SVM and ETC models are competitive (see Tab. 1). SVM performs
better than others because it uses a wide range of features, but its running time is very
slow. On the other hand, ETC performs better than all other methods for a small set of
features which also executes query much faster than others. The performance of NN
method is comparative to SVM and ETC while CNN is the worst performer. As both
datasets are small in size, CNN can not utilize its automatic feature extractions approach
in depth and hence shows worse performance. We select ETC model as a representative
of FastFeatGen for comparison with other state-of-the-art tools.

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

10 Md. Khaledur Rahman

Comparison with existing tools We compare our model with 6mA-Pred and PseDNC,
which are considered as the state-of-the-art methods for Dataset1. Following the trend
of 6mA-Pred, we generate all results using jackknife test. From Table 2, we see that
FastFeatGen (with 1237 features) achieves an accuracy of 85.56%, which is better
than other existing tools. It also achieves higher Specificity and MCC which are better
than other tools. Furthermore, FastFeatGen still outperforms existing tools in terms
of Accuracy, Specificity and MCC with only 187 features.

Tools\Metrics Accuracy|Sensitivity Specificity MCC
FastFeatGen (1237 features)| 85.56 81.47 89.65 | 0.71
FastFeatGen (187 features) | 85.45 81.81 89.09 0.71
6mA-Pred 83.13 82.95 83.3 0.66
PseDNC 64.55 63.52 65.57 |0.29
Table 2: Comparison among different tools for Datasetl.

For Dataset2, we compare our method with iDNA6mA-PseKNC, which is the only
tool for the mouse genome. Here, we also perform jackknife testing following the trend
of iDNA6mA-PseKNC. From Table 3, we see that FastFeatGen is better or very com-
petitive in all metrics.

Tools\Metrics Accuracy |Sensitivity|Specificity MCC
FastFeatGen (101 features)| 96.63 93.49 100 0.94
iDNA6mA-PseKNC 96.73 93.28 100 0.93

Table 3: Comparison among different tools for Dataset2.

3.5 Query time analysis

The general purpose of building a machine learning model is to make prediction for
more unknown genome sequences, which is expected to be faster. Most of the sequence
analysis tools or web-servers can not provide such facility, or authors impose restric-
tions on the number of query sequences. FastFeatGen provides a scalable solution
to this problem which has no restrictions. Users can query as many sequences as they
want. We again employ parallel feature extraction technique here and enable parallel
job processing of ETC in sklearn package. In summary, FastFeatGen can serve 200
queries within 0.7 second(s) using 32 threads.

4 Conclusions

In this paper, we have introduced a novel tool called FastFeatGen which uses multi-
core processing for faster extraction of features from genome sequences. Then, it per-
forms lucid feature selection techniques that select high quality features to feed into
machine learning methods. Finally, we build a precise model using extra tree classi-
fier which performs very well using a small set of features. We have shown that our

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

FastFeatGen: Faster parallel feature extraction from genome sequences 11

tool performs better than state-of-the-art methods on two publicly available datasets.
FastFeatGen achieves an accuracy of 85.56% and 96.63% for rice and mouse genomes,
respectively, which are superior or competitive to current state-of-the-art methods. Our
tool can predict for a wide range of new query sequences within fraction of a second
which is clearly an advantage over web-server based tools.

Our future goal is to improve and apply our faster feature extraction techniques to
other biological problems that involves protein or RNA sequences. We also would like
to include more feature extraction techniques to FastFeatGen.

References

1. G. Blake, R. G. Dreslinski, and T. Mudge. A survey of multicore processors. IEEE Signal
Processing Magazine, 26(6):26-37, 2009.

2. D.-S. Cao, Q.-S. Xu, and Y.-Z. Liang. propy: a tool to generate various modes of chous
pseaac. Bioinformatics, 29(7):960-962, 2013.

3. G. C. Cawley and N. L. Talbot. On over-fitting in model selection and subsequent selection
bias in performance evaluation. Journal of Machine Learning Research, 11(Jul):2079-2107,
2010.

4. W. Chen, H. Lv, F. Nie, and H. Lin. i6ma-pred: Identifying dna n6-methyladenine sites in
the rice genome. Bioinformatics, 2019.

5. K.-C. Chou. Some remarks on protein attribute prediction and pseudo amino acid composi-
tion. Journal of theoretical biology, 273(1):236-247, 2011.

6. J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg, K. F. Donovan, I. Smith,
Z. Tothova, C. Wilen, R. Orchard, et al. Optimized sgrna design to maximize activity and
minimize off-target effects of crispr-cas9. Nature biotechnology, 34(2):184, 2016.

7. G.Fang, D. Munera, D. I. Friedman, A. Mandlik, M. C. Chao, O. Banerjee, Z. Feng, B. Losic,
M. C. Mahajan, O. J. Jabado, et al. Genome-wide mapping of methylated adenine residues
in pathogenic escherichia coli using single-molecule real-time sequencing. Nature biotech-
nology, 30(12):1232, 2012.

8. P. Feng, H. Yang, H. Ding, H. Lin, W. Chen, and K.-C. Chou. idnabma-pseknc: Identifying
dna n6-methyladenosine sites by incorporating nucleotide physicochemical properties into
pseknc. Genomics, 111(1):96-102, 2019.

9. B. A.Flusberg, D. R. Webster, J. H. Lee, K. J. Travers, E. C. Olivares, T. A. Clark, J. Korlach,
and S. W. Turner. Direct detection of dna methylation during single-molecule, real-time
sequencing. Nature methods, 7(6):461, 2010.

10. S. Frelon, T. Douki, J.-L. Ravanat, J.-P. Pouget, C. Tornabene, and J. Cadet. High-
performance liquid chromatography- tandem mass spectrometry measurement of radiation-
induced base damage to isolated and cellular dna. Chemical research in toxicology,
13(10):1002-1010, 2000.

11. Y. Fu, G.-Z. Luo, K. Chen, X. Deng, M. Yu, D. Han, Z. Hao, J. Liu, X. Lu, L. C. Doré, et al.
N6-methyldeoxyadenosine marks active transcription start sites in chlamydomonas. Cell,
161(4):879-892, 2015.

12. P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine learning,
63(1):3-42, 2006.

13. E. L. Greer, M. A. Blanco, L. Gu, E. Sendinc, J. Liu, D. Aristizabal-Corrales, C.-H. Hsu,
L. Aravind, C. He, and Y. Shi. Dna methylation on n6-adenine in c. elegans. Cell,
161(4):868-878, 2015.

14. A. M. Krais, M. G. Cornelius, and H. H. Schmeiser. Genomic n6-methyladenine determina-
tion by mekc with lif. Electrophoresis, 31(21):3548-3551, 2010.

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846311; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

12 Md. Khaledur Rahman

15. P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano, R. Ar-
mananzas, G. Santafé, A. Pérez, et al. Machine learning in bioinformatics. Briefings in
bioinformatics, 7(1):86-112, 2006.

16. G. Lichinchi, S. Gao, Y. Saletore, G. M. Gonzalez, V. Bansal, Y. Wang, C. E. Mason, and
T. M. Rana. Dynamics of the human and viral m 6 a rna methylomes during hiv-1 infection
of t cells. Nature microbiology, 1(4):16011, 2016.

17. G. Lichinchi, B. S. Zhao, Y. Wu, Z. Lu, Y. Qin, C. He, and T. M. Rana. Dynamics of human
and viral rna methylation during zika virus infection. Cell host & microbe, 20(5):666-673,
2016.

18. B. Liu. Bioseg-analysis: a platform for dna, rna and protein sequence analysis based on
machine learning approaches. Briefings in bioinformatics, 2017.

19. B. Liu, F. Liu, L. Fang, X. Wang, and K.-C. Chou. repdna: a python package to generate
various modes of feature vectors for dna sequences by incorporating user-defined physico-
chemical properties and sequence-order effects. Bioinformatics, 31(8):1307-1309, 2014.

20. G.-Z. Luo, M. A. Blanco, E. L. Greer, C. He, and Y. Shi. Dna n6-methyladenine: a new
epigenetic mark in eukaryotes? Nature reviews Molecular cell biology, 16(12):705, 2015.

21. B.Manavalan and J. Lee. Svmqa: support—vector-machine-based protein single-model qual-
ity assessment. Bioinformatics, 33(16):2496-2503, 2017.

22. M. K. Rahman and M. S. Rahman. Crisprpred: A flexible and efficient tool for sgrnas on-
target activity prediction in crispr/cas9 systems. PloS one, 12(8):e0181943, 2017.

23. M. S. Rahman, M. K. Rahman, M. Kaykobad, and M. S. Rahman. isgpt: An optimized model
to identify sub-golgi protein types using svm and random forest based feature selection.
Artificial intelligence in medicine, 84:90-100, 2018.

24. M. S. Rahman, M. K. Rahman, S. Saha, M. Kaykobad, and M. S. Rahman. Antigenic: An
improved prediction model of protective antigens. Artificial intelligence in medicine, 94:28—
41, 2019.

25. R. J. Roberts and D. Macelis. Rebaserestriction enzymes and methylases. Nucleic acids
research, 29(1):268-269, 2001.

26. B. Schauer. Multicore processors—a necessity. ProQuest discovery guides, pages 1-14, 2008.

27. J. Shao, D. Xu, S.-N. Tsai, Y. Wang, and S.-M. Ngai. Computational identification of protein
methylation sites through bi-profile bayes feature extraction. PloS one, 4(3):e4920, 2009.

28. N. Stephenson, E. Shane, J. Chase, J. Rowland, D. Ries, N. Justice, J. Zhang, L. Chan, and
R. Cao. Survey of machine learning techniques in drug discovery. Current drug metabolism,
2019.

29. M. Tahir, H. Tayara, and K. T. Chong. idna6ma (5-step rule): Identification of dna n6-
methyladenine sites in the rice genome by intelligent computational model via chou’s 5-step
rule. Chemometrics and Intelligent Laboratory Systems, 2019.

30. C.-L. Xiao, S. Zhu, M. He, D. Chen, Q. Zhang, Y. Chen, G. Yu, J. Liu, S.-Q. Xie, F. Luo, et al.
N6-methyladenine dna modification in the human genome. Molecular cell, 71(2):306-318,
2018.

31. P. Ye, Y. Luan, K. Chen, Y. Liu, C. Xiao, and Z. Xie. Methsmrt: an integrative database
for dna n6-methyladenine and n4-methylcytosine generated by single-molecular real-time
sequencing. Nucleic acids research, page gkw950, 2016.

32. G.Zhang, H. Huang, D. Liu, Y. Cheng, X. Liu, W. Zhang, R. Yin, D. Zhang, P. Zhang, J. Liu,
et al. N6-methyladenine dna modification in drosophila. Cell, 161(4):893-906, 2015.

33. C. Zhou, C. Wang, H. Liu, Q. Zhou, Q. Liu, Y. Guo, T. Peng, J. Song, J. Zhang, L. Chen,
et al. Identification and analysis of adenine n 6-methylation sites in the rice genome. Nature
plants, 4(8):554, 2018.

https://doi.org/10.1101/846311
http://creativecommons.org/licenses/by-nc-nd/4.0/

	FastFeatGen: Faster parallel feature extraction from genome sequences and efficient prediction of DNA N6-methyladenine sites

