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Abstract

We developed Lisa (http://lisa.cistrome.org) to predict the transcriptional regulators (TRs) of
differentially expressed or co-expressed gene sets. Based on the input gene sets, Lisa first uses
compendia of public histone mark ChIP-seq and chromatin accessibility profiles to construct a
chromatin model related to the regulation of these genes. Then using TR ChlIP-seq peaks or
imputed TR binding sites, Lisa probes the chromatin models using in silico deletion to find the
most relevant TRs. Applied to gene sets derived from targeted TF perturbation experiments, Lisa
boosted the performance of imputed TR cistromes, and outperformed alternative methods in

identifying the perturbed TRs.
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TR: transcriptional regulator

RP: regulatory potential

ISD: in silico deletion

ROC: receiver operator characteristic

AUC: area under curve

ChIP-seq: chromatin immunoprecipitation followed by DNA sequencing
DNase-seq: DNase | digestion followed by DNA sequencing
H3K27ac: histone H3 lysine 27 acetylation

AR: Androgen Receptor

ER: Estrogen Receptor

GR: Glucocorticoid Receptor

Introduction
Transcriptional regulators (TRs), which include transcription factors (TFs) and chromatin

regulators (CRs), play essential roles in controlling normal biological processes and are frequently
implicated in disease'. The genomic landscape of TF binding sites and histone modifications
collectively shape the transcriptional regulatory environments of genes®®. ChiP-seq has been
widely used to map the genome-wide set of cis-elements bound by trans-acting factors such as

»9

TFs and CRs, which we henceforth refer to as “cistromes™. There are approximately 1,500

transcription factors in human and mouse'®""

, regulating a wide variety of biological processes in
constitutive or cell-type-specific manners, and tens of thousands of ChIP-seq and DNase-seq
experiments have been performed in human and mouse. We previously developed the Cistrome
Data Browser (DB)', a collection of uniformly processed TF ChlIP-seq (~11,000) and chromatin

profiles (~12,000 histone mark ChlP-seq and DNase-seq) in human and mouse.

The question we address in this paper is how to effectively use these data to infer the TRs that
regulate a query gene set derived from differential or correlated gene expression analyses in
human or mouse. TR ChlP-seq data, when available, is the most accurate available data type
representing TR binding. ChIP-seq data availability, in terms of covered TRs and cell types, even
with large contributions from projects such as ENCODE", is still sparse due to the limited
availability of specific antibodies. Although advances have been made in TR cistrome mapping
with the introduction of technologies such as CETCh-seq' and CUT & RUN", the difficulties in
acquiring TR ChIP-seq data for new factors limit the TR by cell type coverage of high quality TR
ChlP-seq data. Chromatin accessibility data, including DNase-seq'®' and ATAC-seq'®, is
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72  available for hundreds of cell types and provides maps of the regions in which TRs are likely to
73  be bound in the represented cell types. The H3K27ac histone modification, associated with active
74  enhancers and promoters of actively transcribed genes, has been widely profiled using ChlP-seq
75 in many cell types®'. When TF ChIP-seq data is not available, TF binding motifs, used in
76  combination with chromatin accessibility data or H3K27ac ChlP-seq data might be used to infer
77  TF binding sites”?2'. Machine learning approaches that transfer models learnt from TF ChIP-seq
78  peaks, motifs and DNase-seq data between cell types are promising ways of imputing TF
79  cistromes, although imputation of TF binding sites on a large scale remains to be implemented®*
80 2. Computationally imputed TF binding data is expected to represent TF binding sites less
81  accurately than TF ChlP-seq experimental data, so we sought to develop a TR prediction method
82  that could use imputed TF cistromes effectively, along with ChIP-seq derived ones.
83
84  We previously developed MARGE to characterize the regulatory association between H3K27ac
85 ChIP-seq and differential gene expression in terms of a regulatory potential (RP) model®. The
86 RP model provides a summary statistic of the cis-regulatory influence of the many cis-regulatory
87 elements that might influence a gene’s transcription rate. MARGE builds a classifier based on
88 H3K27ac ChlIP-seq RPs from the Cistrome DB to discriminate the genes in a query differentially
89  expressed gene set from a set of background genes. One of the functions of MARGE s to predict
90 the cis-regulatory elements (i.e. genomic intervals) that regulate a gene set. BART?® extends
91 MARGE, to predict the TRs that regulate the query gene set through an analysis of the predicted
92  cis-regulatory elements. Here we describe Lisa (the second descendent of MARGE), a more
93  accurate method of integrating H3K27ac ChIP-seq and DNase-seq with TR ChlIP-seq or imputed
94 TR binding sites to predict the TRs that regulate a query gene set. Unlike BART, Lisa does not
95  carry out an enrichment analysis of the cis-regulatory elements predicted by MARGE. Instead,
96 Lisa analyses the relationship between TR binding and the gene set using RP models and RP
97  model perturbations. We assessed the performance of Lisa and other TR identification methods,
98 BART?, i-CisTarget®® and Enrichr*’ using differentially expressed gene sets derived from
99  experiments in which the activities of specific TFs were perturbed by knockdown, knockout, over-

100  expression, stimulation or inhibition.

101

102  Results and Discussion

103
104 Regulatory TR prediction based on Cistrome DB ChlIP-seq peaks
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105 High quality TR ChIP-seq data, when available, accurately characterizes genome-wide TR
106  binding sites, which can be used to infer the regulated genes in particular cell types. Estimating
107  the effect of TR binding on gene expression is not trivial because: (1) there is no accurate map
108 linking enhancers to the genes they regulate®, (2) multiple enhancers can regulate the same
109 gene*® and a single enhancer can regulate multiple genes® and (3) not all TR binding sites are
110 functional enhancers'®. A model is therefore needed to quantify the likelihood of a gene being
111  regulated by a TR cistrome. The “peak-RP” model***® is based on TR ChIP-seq peaks, serving
112  as a proxy for TR binding sites, without the use of DNase-seq or H3K27ac ChlP-seq data. In the
113  peak-RP model (Fig. 1a) the effect a TR binding site has on the expression of a gene is assumed
114  to decay exponentially with the genomic distance between the TR binding site and the TSS, and
115 the contribution of multiple binding sites is assumed to be additive®. Accounting for the number
116  of TR binding sites and for the distances of these sites from the TSS has been shown to be more
117  accurate than alternative TR target assignment methods®’. While it is possible that enhancers
118  could modulate each other in non-additive ways®, data on these types of behavior are too scarce
119 toincorporate in a TR prediction model.

120

121  We use the peak-RP model to identify TFs that are likely regulators of a target gene set by
122 searching for Cistrome DB'? cistromes that produce higher peak-RPs for the query gene set than
123  for a set of background genes (Supp. Fig. 1, Supp. Table 1). Statistical significance is calculated
124  using the one-sided Wilcoxon rank-sum test statistic comparing the peak-RPs for the query gene
125  set with the background. The TRs with the most significant p-values are considered to be the
126  candidate regulators. Lisa uses TR ChIP-seq within the peak-RP model, along with the chromatin
127  landscape models described below to infer the TRs of a gene set.

128

129 Regulatory TR prediction using a chromatin landscape model

130  While TR ChlP-seq data provides accurate information about TR cistromes in specific cell types,
131 the Cistrome DB TR by cell type coverage is skewed towards a few TRs, such as CTCF, which
132  are represented in many cell types, and towards cell types such as K562 (Supp. Fig. 1b-c), in
133 which many TRs have been characterized (Supp. Fig. 1d). H3K27ac ChlP-seq'® and DNase-seq'®,
134 available in a large number and variety of cell types, can be used to infer cell type specific
135 regulatory regions. These types of data could enhance the use of TR ChIP-seq data as well as
136 imputed TF binding data, which may not accurately represent TF binding sites in different cell
137  contexts.

138
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139 To boost the performance of TF ChlIP-seq or imputed TF binding data in the identification of
140 regulatory TRs, we developed Lisa chromatin landscape models, which use H3K27ac ChlP-seq
141  and DNase-seq chromatin profiles (Fig. 1b, Supp. Table 2, and Methods) to model the regulatory
142  importance of different genomic loci. As differential gene expression experiments are not always
143  carried out in parallel with chromatin profiling experiments, Lisa does not require the
144  corresponding user-generated chromatin profiles, but instead uses the DNase-seq and H3K27ac
145 ChIP-seq data that is available in the Cistrome DB to help identify cis-regulatory elements
146  controlling a differential expression gene set. To this end, Lisa models chromatin landscapes
147  through chromatin RPs (chrom-RPs, Fig. 1b), which are defined in a similar way to the peak-RP
148  with one small difference: genome-wide read signals instead of peak calls are used in the
149  calculation of the chrom-RP?®. Changes in H3K27ac ChIP-seq and DNase-seq associated with
150 cell state perturbations are often a matter of degree rather than switch-like, therefore we base the
151  chrom-RP on reads rather than peaks. The chrom-RP is pre-calculated for each gene (Fig. 1c-1)
152  and for each H3K27ac ChlP-seq / DNase-seq profile in the Cistrome DB (Supp. Fig. 1a, Supp.
153  Table 2). These chrom-RPs quantify the cis-regulatory activities that influence each gene under
154  cell-type specific conditions.

155

156  Given the query gene set, Lisa identifies a small number of Cistrome DB DNase-seq and H3K27ac
157  ChIP-seq samples that are informative about the regulation of these genes. Lisa does this by
158  using the pre-calculated H3K27ac / DNase-seq chrom-RPs to discriminate between the query
159 gene set and a background gene set. Using L1-regularized logistic regression, Lisa assigns a
160  weight to each selected sample so the weighted sum of chrom-RPs on the genes best separates
161 the query and the background gene sets (Fig. 1c-2). This step is carried out separately for
162 H3K27ac ChlP-seq and DNase-seq, yielding a chrom-RP model based on H3K27ac ChIP-seq
163  and another model based on DNase-seq.

164

165 Next, by a process of in silico deletion (ISD), Lisa evaluates the effect deleting each TR cistrome
166  has on the chromatin landscape model (Fig. 1¢-3). ISD of a TR cistrome involves setting DNase-
167 seq or H3K27ac ChlIP-seq chromatin signal to zero in the 1kb intervals containing the peaks in
168 that cistrome and evaluating the effect on the predictions made by the chromatin landscape
169 models. The difference of the model scores before ISD and after ISD quantifies the impact that
170 the deleted TR cistrome is predicted to have on the query and background gene sets. Lisa does
171  not make a prediction of cis-regulatory elements, the approach taken by MARGE and BART.

172  Instead, Lisa probes the effects of deleting putative regulatory TR cistromes on the chrom-RP
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173  model. Whereas the chrom-RP integrates data over 200kb intervals, the scale of individual cis-
174  regulatory elements is of the order of 1kb. The ISD approach mitigates the difficulties in
175 transferring information contained in the chrom-RP model from the chrom-RP (200kb) scale to
176  the cis-regulatory element (1kb) scale.

177

178  Finally, to prioritize the candidate TRs, Lisa compares the predicted effects on the query and
179  background gene sets using the one-sided Wilcoxon rank-sum test (Fig. 1c-4). A one-sided test
180 is used because Lisa assumes that the in silico deletion of a true regulatory factor will decrease,
181 not increase, the model’s ability to discriminate between query and background gene sets. To
182  utilize the power of predictions based on H3K27ac-ChlP-seq and DNase-seq ISD models, and
183  TF ChlIP-seq peak-only models (Fig. 1c-5), results are combined using the Cauchy combination
184  test®® (Fig. 1c-6). Whereas MARGE? predicts cis-regulatory elements (but does not analyze TRs),
185 and BART? carries out an enrichment analysis of predicted cis-elements to discover TRs, Lisa
186  uses the chromatin landscape model in a different way. In combination with ChlP-seq-derived or
187  computationally imputed TR binding, Lisa probes the effects of TRs on the chromatin RP models
188  of query and background gene sets.

189

190 Demonstration of chromatin landscape models in a GATA6 knock-down study

191 We demonstrate Lisa chromatin landscapes and in silico deletion using a query gene set defined
192  asthe down-regulated genes in a GATAG knock-down experiment in the KATO-IIl stomach cancer
193  cellline® (Fig. 2). Lisa identifies DNase-seq and H3K27ac ChlP-seq chromatin landscape models
194  (Fig. 2a, Fig. 1c-2), which include several gastro-intestinal samples (Supp. Fig. 2b,d) whose
195 chrom-RPs can discriminate between the query and background gene sets (Supp. Fig. 2a,
196 DNase-seq ROC AUC=0.816, Supp. Fig. 2c, H3K27ac ROC AUC=0.821). In silico deletion (Fig.
197  1c-3) of GATAG binding sites produces larger DNase-seq and H3K27ac ARPs (DNase ARP: 1.05,
198 H3K27ac ARPs: 0.25) for an example down-regulated gene, LINC01133%, than for a background
199 gene, ZC3H12A (DNase ARP: 0.06, H3K27ac ARP: 0.01) (Fig. 2b). In silico deletion of CTCF
200 binding sites, in contrast, has a smaller effect on the chromatin landscapes surrounding
201 LINCO1133 (DNase ARP: 0.02, H3K27ac ARP: 0.01), resulting in ARPs that are more similar to
202  the ARPs for ZC3H12A (Fig. 2b) (DNase ARP: 0.004, H3K27ac ARP: 0.001). Statistical analysis
203 s carried out comparing all the query gene ARPs with all the background gene ARPs (Fig 1c-4),
204  producing significant p-values for GATA4 (DNase p-val < 10™'°, H3K27ac p-val < 10°°) and GATA6
205 (DNase p-val < 10" H3K27ac p-val < 107). After this analysis is conducted for all TR ChIP-seq
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206 samples in the Cistrome DB and the results are combined and compared, GATA6 and GATA4
207  ChIP-seq from intestinal and gastric tissues have the most significant p-values Fig. 2c,d).

208

209 Lisa identification of regulatory TF ChiP-seq sample clusters

210 To investigate whether a TF ChIP-seq cistrome derived from one cell type can be informative
211  about other cell types, we first clustered all the human TR cistromes in the Cistrome DB based
212  on the pairwise Pearson correlation of peak-RP scores as a heatmap (Fig. 3). We then applied
213  Lisato differentially expressed gene sets defined by perturbations of individual TFs and examined
214 the TR cistromes predicted to be the key regulators of these gene sets. In the analysis of up-
215 regulated genes on Androgen Receptor (AR) activation in the LNCaP prostate cancer cell line,
216 Lisa identified a tight cluster of significant cistromes for AR and its known collaborator FOXA1
217  (Fig. 3a). All samples in this cluster were derived from prostate cancer cell lines. In the analysis
218  of the GATA6 knock-down in the gastric cancer cell line (KATO-III), Lisa found the GATA6 and
219 FOXAZ2 cistromes in stomach and colon samples to be the most significant. FOXA2 is an important
220 pioneer TF which has been reported to collaborate with GATA6 in gut development to regulate
221  Wnt6*" and Wnt7b*? (Fig. 3b). The identification of GATAG cistromes in colon cancer cell lines, in
222  addition to gastric cancer cell lines, shows that cistromes derived from cell types that are of related
223 lineages can be used to inform the identification of the relevant regulators, even if the cell types
224  are not the same. In the third example involving Glucocorticoid Receptor (GR) activation in the
225 lung cancer cell line A549, Lisa correctly identified GR in A549 as a likely regulator, and also
226 identified GR in a different cell type HelLa (Fig. 3c). AR, a member of the same nuclear receptor
227  family as GR, is also implicated by Lisa even though the AR cistrome samples do not cluster with
228  GR cistrome samples and have less statistical significance.

229

230  We carried out an analysis of the effects of removing ChlP-seq and DNase-seq data on Lisa’s
231  accuracy. In particular, we tested Lisa’s performance on three up-regulated gene sets: (1) GR
232  activated genes in breast cancer (MCF7), (2) GR activated genes in lung cancer (A549), and (3)
233  Estrogen Receptor (ER) activated genes in MCF7 (Supp. Table 3). In these analyses we assessed
234  the effect of removing all relevant cell line specific (MCF7 or A549), H3K27ac ChIP-seq and
235 DNase-seq data, or cell line specific TR ChlP-seq data (ER or GR). We also removed cell line
236  specific TR ChIP-seq data together with H3K27ac ChlP-seq and DNase-seq data. We repeated
237  the same analysis removing similar data, on the basis of tissue (breast and lung) instead of on
238  the basis of cell line (MCF7 and A549). When MCF7 ER ChIP-seq are excluded, an ER sample

239  from another breast cancer cell line (H3396) predicts the importance of ER (rank 6) as a regulator
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240  of the estrogen activated gene set. When all ER breast ChIP-seq samples are excluded, Lisa can
241  still identify ER (rank 18) from ER ChIP-seq in the VCaP prostate cancer cell line. For the GR
242  activated gene set in MCF7, when GR ChIP-seq data is unavailable in MCF7, Lisa can identify
243  GR as a key regulator (rank 2) using GR ChlIP-seq from lung (A549). For the GR activated gene
244  setin lung, Lisa identified GR as the key regulator (rank 1) using GR ChlP-seq data from breast
245  (MDA-MB-231). Together, these observations indicate that although TRs often bind in cell type
246  dependent ways, ChlP-seq derived TR cistromes can be informative about the gene sets that TRs
247  regulate in some other cell types.

248

249 Lisa identification of TF associated cofactors in addition to TFs

250 To illustrate Lisa’s capacity to find cofactors that interact with the regulatory TFs, we examined
251 the Lisa analyses of four differentially expressed gene sets derived from experiments involving
252  the activation of GR* and the knock-down/out of BCL6*, MYC*®, and SOX2*. Lisa analysis of
253  GR activation in lung cancer ranked GR itself as the most significant TR for the up-regulated gene
254  sets (Fig. 4a), and highly ranked pioneer TFs FOSL2 and CEBPB, which were down-regulated
255  after GR activation (Fig. 3c). BCL6, a predominantly repressive TF, is a driver of diffuse large B-
256  cell lymphoma (DLBCL)*. Lisa analysis of the up-regulated genes in a BCL6 knock-down
257  experiment in a DLBCL cell line ranked BCL6 as the most significant TR for this gene set (Fig.
258  4b). Lisa also identified NCOR1 and NCOR2, which are transcriptional BCL6 corepressors
259  involved of the regulation of germinal center*®*°. SP11, which recruits BCL6°', and BCOR, another
260 BCLG6 corepressor®?, were ranked among the top TRs for the up-regulated gene set. In a MYC
261  knock-down experiment in medulloblastoma, MYC and its dimerization partner, MAX®®, were
262 among the top predicted regulators of the down-regulated genes (Fig. 4c). The histone
263  methyltransferase, KDM2B, known to physically interact with MYC and to augment MYC-
264  regulated transcription®, was also detected among the top regulators. In the SOX2 knock-out
265  experiment?, NANOG, SOX2 and POUS5F1, the key regulators of pluripotency, were the top
266  predicted regulators of the down-regulated genes (Fig. 4d). Lisa also discovered a similar set of
267  TRs for the gene set derived from a POU5F1 knockdown experiment in embryonic stem cells
268  (Supp. Fig. 3,4a). In addition, B-catenin (CTNNB1), which interacts with SOX2 and is oncogenic
269  in SOX2* cells®, also ranked high for the down-regulated genes. The predicted regulators of the
270  up-regulated genes in this experiment include FOXA1 and EOMES. FOXA1 is involved in early
271  embryonic development®, and has been observed to repress NANOG directly®’. FOXA1 has
272  been shown through co-immunoprecipitation to physically interact with SOX2°. SOX2, known to

273  bind to an enhancer regulating EOMES in human ESCs, when knocked down triggers EOMES
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274  expression and induces endoderm and trophectoderm differentiation®®. Thus, in many cases, the
275  known interactors are highly ranked along with the target activator or repressor. This suggests
276  that even though the available TF ChlP-seq data in different cell types are sparse (Supp. Fig. 1d),
277  Lisa can provide insights on possible regulatory TFs since transcriptional machinery tends to be
278  organized in modules of interacting factors®® (Supp. Fig. 4d).

279

280 Systematic evaluation of regulator prediction

281  To systematically evaluate Lisa, we compiled a benchmark panel of 122 differentially expressed
282  gene sets from 61 studies involving the knock-down, knock-out, activation or over-expression of
283 27 unique human target TFs. In addition, we compiled 112 differentially expressed gene sets
284  derived from 56 studies with 25 unique TF perturbations in mouse (Supp. Table 4, see “galleries”
285  at http://lisa.cistrome.org). The full Lisa model was separately applied to the up-regulated and
286  down-regulated gene sets in each experiment. We also carried out analyses of these gene sets
287  using subcomponents of Lisa: the peak-RP method, as well as H3K27ac ChlP-seq and DNase-
288  seqassisted ISD analyses. The putative regulatory cistromes were defined using either ChiP-seq
289  peaks or from TF motif occurrence in the inferred chromatin models. The results allowed us to
290 compare the effectiveness of DNase-seq and H3K27ac ChlP-seq in scenarios where the TF
291 cistromes are well estimated (by ChlP-seq) or less well estimated (by motif). We measured the
292  performance based on their ranking of the perturbed target TF (Fig. 5, Supp. Fig. 5).

293

294  We compared the performance of methods that use TF ChlP-seq data and TF motifs, on up- and
295  down- regulated gene sets, and on over-expression / activation and knock-down / knock-out
296 samples (Fig. 5a). In over-expression studies, the prediction performance of all methods tended
297  to be better for the up-regulated gene sets, than for the down-regulated ones. The reverse is
298 evidentin the knock-out and knock-down studies for which the prediction performances are better
299 for the down-regulated gene sets (Fig. 5b,c). This suggests that most of the TFs included in the
300 study have a predominant activating role in the regulation of their target genes, under the
301 conditions of the gene expression experiments, allowing these TFs to be more readily identified
302  with the corresponding direction of primary gene expression response. Similar performance
303 patterns were observed in the mouse benchmark datasets (Supp. Fig. 5). The performances of
304 Lisa using ISD of TR ChlP-seq peak from chromatin landscapes were similar to the TR ChIP-seq
305 peak-RP method, but outperformed motif-based methods by large margins.

306
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307  To determine whether differences between up- and down-regulated gene sets could be explained
308 by direct or indirect modes of TR recruitment, we studied two experiments involving ER and GR
309 activation in greater detail. We defined “direct” ER and GR binding sites as ER/GR ChIP-seq
310 peaks on genomic intervals containing the cognate DNA sequence elements, and “indirect” ER
311 and GR binding sites as ER/GR ChIP-seq peaks without the sequence elements. Comparing
312 direct and indirect binding sites in the respective ER and GR activation experiments (Supp. Fig.
313 6) we found that the up-regulated gene sets were more significantly associated with the direct
314  binding sites (ER p-value: 1.5x10™"° , GR p-value: 1.5x107'®) than with the indirect ones (ER p-
315 value: 3.8x10*, GR p-value: 1.4x10"2). The down-regulated gene sets were more significantly
316  associated with the indirect binding sites (ER p-value: 1.5x10™"°, GR p-value: 1.5x10"") than with
317 the direct ones (ER p-value: 4.6x102, GR p-value: 3.0x107).

318

319 In some cases, the perturbation of a TR may trigger stress, immune or cell cycle checkpoint
320 responses that are not directly related to the initial perturbation. In the Lisa analysis of up-
321 regulated genes after 24 hours of estradiol stimulation (GSE26834), for example, E2F4 is the top
322 ranked TR, followed by ER. Estrogen is known to stimulate proliferation of breast cancer cells via
323  a pathway involving E2F4, a key regulator of the G1/S cell cycle checkpoint®'. In this case, Lisa
324  might be correctly detecting a secondary response to the primary TR perturbation.

325

326  Comparison of Lisa with published methods

3 and Enrichr®',

327  We next compared Lisa with other approaches, including BART?®, iCisTarge
328  which can use either TR ChIP-seq data or motifs. We also included a baseline method that ranks
329 TRs by comparing query and background gene sets based on the TR binding site number within
330 5kb centered on the TSS. Lisa outperformed BART, iCisTarget and Enrichr in terms of the
331 percentage of the target TR identified within the top 10 across all the experiments, either using
332 TF binding sites from ChlIP-seq data or motif hits (Fig. 6a,b). Lisa uses a model based on
333 chromatin data to give more weight to loci that are more likely to influence the expression of the
334  query gene set. In this way Lisa improves the performance of TR inference with noisy cistrome
335  profiles such as those imputed from DNA sequence motifs. In addition to being more accurate
336 than other methods in terms of TR prediction, the Lisa web server (lisa.cistrome.org) has several
337  unique features which allow investigators to explore relevant ChiP-seq data in ways that are not
338 available in other applications.

339

340 Lisa Web Site and Gallery of Lisa’s Benchmark Data
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341 The Lisa web site (lisa.cistrome.org) displays two tables of results for each query gene set. The
342 first summarizes the Lisa analysis based on TR ChIP-seq data, the second displays the Lisa
343  analysis of TF binding sites imputed from DNA binding motifs. The ChlP-seq data table displays
344  up to 5 ChIP-seq samples for each TR. Users can sort results by p-value and inspect metadata
345 and quality control statistics for each of the ChlP-seq samples to understand whether the
346  predictive samples may be derived from particular cell types or experimental conditions. Lisa
347  provides quality control metrics, metadata, publication and read data repository links for the ChlP-
348  seq data of putative regulatory TRs. Through Lisa, the ChIP-seq signal tracks can be viewed on
349  the WashU Epigenome Browser®. Although the motif imputation-based analysis tends to be less
350 accurate than the ChIP-seq based analysis, motifs can indicate roles for regulatory TRs for which
351 ChlP-seq data is not widely available. Lisa’s analysis of all the benchmark gene sets is also
352  viewable on the Lisa web site. Users can explore these analyses to understand the ‘typical’ results
353  of the analysis. Robust methods combined with visualization and data exploration features make
354 Lisa a valuable tool for analyzing gene regulation in human and mouse.

355

356 Conclusion

357 In this study, we describe an approach for using publicly available ChlP-seq and DNase-seq data
358 toidentify the regulators of differentially expressed gene sets in human and mouse. On the basis
359  of a series of benchmarks we demonstrate the effectiveness of our method and report recurrent
360 patterns in the TRs predicted by these methods. We find the regulators of the up-regulated genes
361 and the down-regulated ones are often different from each other, therefore in any analysis of
362 differential gene expression, up- and down-regulated gene sets ought to be distinguished. Our
363 results show that many TFs have a preferred directionality of effect, indicative of a predominant
364  repressive or activating function. It is well known that many TFs can recruit both activating and
365 repressive complexes®®, so the observed direction may be related to the stoichiometry and affinity
366  of the activating or repressive cofactors. We also observe differences between ChlP-seq based
367 analysis and motif based ones, suggesting differences in TF activity depending on whether a TF
368 interacts directly with DNA or whether it is recruited via another TF®*. When a TF is recruited by
369 another TF it is likely that the enhancer has been already established by other TFs and protein
370  complexes. Thus, the co-binding enhancer information of multiple TFs allows Lisa to identify both
371 the DNA bound TFs and their partners which might not directly bind DNA.

372

373  Lisa’s accuracy in predicting the regulatory TRs of a gene set depends on the perturbation used

374 inthe production of the differential gene expression data, the quality of the gene expression data,
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375  the availability and quality of the DNase-seq, H3K27ac and TR ChIP-seq data sets, the degree to
376  which binding is dependent on a DNA sequence motif, as well as the validity of the model
377  assumptions. Although we evaluate Lisa using differential gene expression data associated with
378 a TR perturbation, the perturbed TR might not be the main regulator of the gene set. For example,
379  perturbation of a TR may trigger a stress response®, or secondary transcriptional effects that are
380 not directly related to the primary TR®.

381

382  The modelling approach used in Lisa facilitates the prediction of regulatory TRs using available
383 ChIP-seq and DNase-seq data. DNase-seq and H3K27ac ChlIP-seq are available in a broad
384  variety of cell types and these data are informative about cis-regulatory events mediated by many
385 TRs. Although H3K27ac is considered to be a histone modification associated with gene
386  activation Lisa can still identify TRs, such as BCL6 and EZH2, with predominantly repressive
387  functions. Although Lisa uses the correlation between H3K27ac or chromatin accessibility and
388 gene expression to predict regulatory TRs we do not assume that H3K27ac or chromatin
389  accessibility cause the transcriptional changes. Other genomics data types that are predictive of
390 general cis-regulatory activity, when available in quantity, variety and quality, might improve Lisa’s
391 performance. More importantly, high quality TR specific binding data, generated by ChIP-seq or
392  alternative technologies, like CETCh-seq™ or CUT & RUN'®, will be needed to improve Lisa’s
393 accuracy in predicting TRs that are not yet well represented in Cistrome DB. TR imputation
394  methods might fill in some gaps in TR binding data, however, families of TRs such as homeobox
395 and forkhead factors, which have similar DNA binding motifs can be hard to discriminate based
396 on DNA sequence analysis.

397

398 Although Lisa aims to identify the regulators of any differentially expressed gene set in human or
399  mouse, no matter the contrast, in practice, the query gene sets should be derived from biologically
400 meaningful differential expression or co-regulation analyses. In this study, we based the methods
401 evaluation on data from available TR perturbation experiments, which are biased towards well
402  studied systems. For this reason, the reliability of methods based on TR ChIP-seq data may be
403  overestimated relative to imputation-based methods because the available TR ChlIP-seq data
404 tends to be derived from similar cell types and for the same factors used in the gene perturbation
405  experiments. When the relevant cell type specific TR ChlP-seq data is available the performance
406  of the peak RP-method and ISD methods are similar, but when TR ChIP-seq data is not available,
407  methods based on imputed TR cistromes are obligatory. The value of imputed cistromes relative

408 to ChiIP-seq derived ones will depend on the quantity, variety and quality of available ChIP-seq
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409 data, the accuracy of the imputed cistromes, the degree of commonality of the genes that are
410 regulated by the same TR in different cell types, and the number of TRs recognizing similar DNA
411 sequence elements. Lisa provides invaluable information about the regulation of gene sets
412  derived from both bulk and single cell expression profiles®’, and will become more accurate over

413 time with greater coverage of TF ChlP-seq augmented by computationally imputed TF cistromes.

414 Methods

415  Preprocessing of chromatin profiles

416  Using the BigWig format signal tracks of human and mouse H3K27ac ChIP-seq and DNase-seq
417  from Cistrome DB, we precomputed the chromatin profile regulatory potential (chrom-RP) of each
418 RefSeq gene and also summarized the signal in 1kb windows genome-wide. The chrom-RP for
419  gene k in sample j is defined as R = Yiee, L, t,+1) WiSj; (@s defined in the MARGE algorithm?®).
420 L is setto 100kb, and w; is a weight representing the regulatory influence of a locus at position i
421 onthe TSS of gene k at genomic position t;,, w; = 2e #4/1 + e #4 whered = |i — t;|/L, and i
422  stands for i" nucleotide position within the [-L,L] genomic interval centered on the TSS at t,. Sji
423 s the signal of chromatin profile j at position i. i is the parameter to determine the decay rate of
424  the weight, which is defined as u = —In L/3A. For DNase-seq and H3K27ac ChlP-seq, the decay

425  distance A is set to 10kb. The genome-wide read counts on 1kb windows were calculated using
426  the UCSC utility bigwWigAverageOverBed®. The chrom-RP matrix for chromatin profiles was
427 normalized across RefSeq genes within one chromatin profile by Rj, = log(Rjk + 1) -
428 - ¥¥(log(Ry + 1)).

429

430 Preprocessing of cistromes

431  Using all human and mouse transcription regulator (TR) ChIP-seq cistromes peak BED files from
432  the Cistrome Data Browser (v.1). We precomputed the TR binding sites based on ChIP-seq and
433  motif hits based on position weight matrices then transferred as binary values at a 100bp
434  resolution genome-wide. The DNA sequence scores were derived from Cistrome motifs, a
435  redundant collection of 1,061 PWMs from TRANSFAC®®, JASPAR'® and Cistrome DB ChlIP-seq
436 thatincludes 675 unique TFs in human and mouse. The peak based regulatory potential (peak-
437 RP) of a TR cistrome is defined in the same way as the chrom-RP except s; represents the
438  presence (sj; = 1) or absence (sj;; = 0) of a peak summit within the upstream and downstream

439  100kb centered on TSS. The genome-wide motif scores were scanned at 100bp window size with
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440 the library (https://github.com/gingian/seqpos2)’’, and the motif hits are defined by thresholding
441  at 99th percentiles then mapped to the 1kb windows. The genome-wide 1kb windows in which
442  the TR peak summits are located were determined using Bedtools’®. All of the peak-RPs, TR
443  binding and motif hit data were deposited into hdf5 format files.

444

445 Lisa framework

446 Chromatin landscape model

447  Lisa selects 3000 background genes by proportionally sampling from non-query genes with a
448 range of different TAD and promoter activities based on compendia of Cistrome DB H3K4me3
449  and H3K27ac ChlP-seq signals. There is no gene ontology enrichment in the background gene
450 set. Lisa then uses L1 regularized logistic regression to select an optimum sample set for

451 H3K27ac ChlP-seq or DNase-seq samples based on R}fk. The L1 penalty parameter is determined
452 by binary search to constrain the number of selected chromatin profiles to be small but sufficient
453  to capture the information (different sample sizes were explored, and ten was used in all the
454  benchmark cases®®). Lisa trains a final logistic regression model to predict the target gene set,
455  and obtains a weight a; for each candidate chromatin profile j, from which the weighted sum of
456  chrom-RP is the model regulatory potential (model-RP).

457

458 In silico deletion (ISD) method

459  The rationale for the ISD method is that the peaks of the true regulatory TFs should align with the
460  high chromatin accessibility signals from the corresponding tissue or cell type. Therefore, the
461 computational deletion of the chromatin signals on the peaks of regulatory cistromes would result
462 in a more substantial effect on the model-RP for query genes than for background genes. The
463  regulatory potentials are recalculated after erasing the signal in all 1kb windows containing at

464  least one peak from a putative regulatory cistrome i, R;;x = Rjx — Ymemy, L WmSim (Where My, is
465  the set of 1kb windows containing at least one peak in cistrome i for gene k, [ is the window size,
466  which is set to 1kb for this study, w,, is the exponential decay weight with the distance between
467  the mth window center and TSS, the weight function is the same as chrom-RP, s;,, is jth average
468  chromatin profile signal on the mth window). These RPs are then normalized using the same
469  normalization factors from the original RPs R{;, = log(R;j + 1) — %Z’f(log(Rjk +1)).

470

471  After deletion, the model RPs are recalculated using the weights from the logistic regression

472  model from chromatin profile feature selection without refitting and subtracted from the non-


https://doi.org/10.1101/846139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846139; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

473  deletion model-RP, producing a ARP value for each gene, defined as the linear combination of
474  differences in regulatory potentials: AR, = ¥; (R} — Rjjy.)-

475

476  Combined statistics method for TR ranking

477  The peak-RPs or ARPs of the query gene set are compared with that of the background gene set
478  through the one-sided Wilcoxon rank-sum test. For ChlP-seq-based methods, peak-RP, DNase-
479  seq and H3K27ac chom-RP are combined to get a robust prediction of the TRs. For motif-based
480 methods, DNase-seq and H3K27ac ARPs are combined to get the final inference of TRs. Both
481  combination of statistics follows the Cauchy combination test®®, in which the combined statistics
482 foreach TRist; = >4 w;itan {(0.5 — p;)m}, j represents one TR, i represents ith method within
483  ChlP-seqg-based or motif-based methods, p; is the corresponding p-value, w; is set to 1/d where
484  dis 3 for ChIP-seg-based method or 2 for the motif-based method. The combined p-value for a
485 TR is computed as p; = 1/2 — (arctan(t;))/m.

486

487 Baseline method

488  The baseline method, which is “peaks in promoter” for ChlP-seq based method or “hits in promoter”
489  for the motif-based method, is implemented by counting the number of TF ChlIP-seq binding
490 summits or motif hits within the genomic interval from 5kb upstream to 5kb downstream of the
491  TSS. The peaks or motif counts in the promoter of target gene set are compared with that of the
492  background gene set using the one-sided Wilcoxon rank-sum test.

493

494  Comparison of “direct” and “indirect” binding sites

495  For up- and down-regulated gene sets from the same experiment, the peaks of the target TR
496  ChlP-seq samples with the most significant p-values are defined as “direct” or “indirect” binding
497  sites based on the target TR motif scores. Peak-RPs of “direct” or "indirect’ binding sites are
498 calculated and normalized to percentiles. Statistical significance between query and background
499  gene sets was calculated by the one-sided Wilcoxon rank sum test.

500

501 Comparison of Lisa with published methods

502  All up- and down-regulated gene sets in Lisa’s benchmark dataset were also used to test other
503 published methods. BART and ICistargets were manually run through the online websites with
504 the default settings. Enrichr was run using the API. When comparing the motif-based methods,
505 PWNMs from species other than human or mouse were removed since they are not included in
506 LISA framework.
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507 BART: http://bartweb.org/
508 ICistargets: https://gbiomed.kuleuven.be/apps/icb/i-cisTarget/?ref=labworm

509  Enrichr: http://amp.pharm.mssm.edu/Enrichr/

510

511 Lisa pipeline

512  The Lisa pipeline is implemented with Snakemake’®. Lisa contains an interface to process FASTQ
513 format files to BigWig format files, and to generates hdf5 files containing the chrom-RP matrices
514 and 1kb resolution data required by the Lisa model module.

515

516 Lisa online application

517  We have implemented the online version of Lisa (http:/lisa.cistrome.org) using the Flask Python

518 web development framework, along with process control software Celery to queue numerous
519 queries. The analysis result of the target gene set is closely linked to the Cistrome DB. The
520  scatterplot comparing TR ranking results from a pair of query gene sets such as up- and down-

521 regulated gene sets is implemented in Plot.ly.
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688 Figures

689  Fig. 1. lllustration of the Lisa framework. (a) The peak-RP score models the effect of TR binding
690 sites on the regulation of a gene. TR binding sites are binary values and peaks nearer to the
691 gene’s TSS have a greater influence than ones further away. (b) The chrom-RP score summarizes
692 the effect of the DNase-seq or H3K27ac chromatin environment on a gene. The chrom-RP score
693 is based on a continuous rather than binary signal quantification. (c¢) Overview of the Lisa
694  framework. (1) H3K27ac ChIP-seq or DNase-seq data from the Cistrome DB is summarized using
695 the chrom-RP score for each gene. (2) H3K27ac ChIP-seq or DNase-seq samples that can
696  discriminate between the query gene set and the background gene set are selected and the
697  regression parameters define a chrom-RP model. (3) Each TR cistrome from the Cistrome DB is
698 evaluated as a putative regulator of the query gene set through in silico deletion, which involves
699 the elimination of H3K27ac ChlIP-seq or DNase-seq signal at the binding sites of the putative
700  regulator. (4) The chrom-RP model, based on in silico deletion signal, is compared to the model
701  without deletion for each gene in the query and background gene sets. A p-value is calculated
702  using the Wilcoxon rank test comparison of the query and background ARPs. (5) The peak-RP
703  based on TR ChIP-seq peaks is calculated for the putative regulatory cistrome and the statistical
704  significance of peak-RP distributions from the query and background gene sets is calculated. (6)

705  p-values from the H3K27ac ChIP-seq, DNase-seq and peak-RP analysis are combined using the
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706  Cauchy combination test. TR cistromes are ranked based on the combined p-value.

707  Fig. 2. Adown-regulated gene set from a GATA6 knock-down experiment in gastric cancer KATO-
708 lll cells is used as a case study to demonstrate the Lisa framework. (a) Heatmap of regulatory
709  potentials used to discriminate down-regulated genes from non-regulated background genes. (b)
710  In silico deletion analysis using GATA6 and CTCF cistromes to probe chromatin landscape
711  models near an illustrative down-regulated gene, LINC01133 and a background gene ZC3H12A.
712  Only the H3K27ac ChIP-seq and DNase-seq chromatin profiles with the largest positive
713  coefficients are shown, although other samples contribute to the respective H3K27ac ChlP-seq
714  and DNase-seq chromatin models. (c) Comparison of ARPs indicates GATA6 and GATA4
715  cistromes have a large impact on the chromatin landscapes near down-regulated genes, and are
716  therefore likely to be regulators of the query gene set. CTCF does not influence the chromatin
717  landscape of the down-regulated genes and is not likely to regulate the query gene set. (d) The
718  rank statistics for the Lisa analysis of the down-regulated gene set in the GATA6 knockdown
719  experiment were combined to get overall TR ranks. The top 8 and bottom 8 TRs for all TR ChlIP-

720  seq samples are shown.

721  Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to each Cistrome DB
722  cistrome. The large heatmap shows the hierarchical clustering of 8,471 human Cistrome DB
723  ChlIP-seq cistromes based on peak-RP, with color representing Pearson correlation coefficients
724  between peak-RPs. The three bars to the left of the heatmap display Lisa significance scores for
725  differentially expressed genes sets derived from GR activation in the A549 cell line (up-regulated),
726  GATAG6 knock-down in gastric cancer (down-regulated) and AR activation in the LNCaP cell line
727  (up-regulated). Small heatmaps show details of the global heatmap relevant to (a) AR activation,
728 (b) GATA6 knock-down, and (c¢) GR activation gene sets. In each case the most significant
729  cistromes are derived from the same cell type or lineage.

730

731  Fig. 4. Lisa can accurately identify key transcriptional regulators and coregulators using Cistrome
732 DB cistromes. Lisa analyses of up- and down-regulated gene sets from (a) GR over-expression,
733  (b) BCL6 knock-down, (¢) MYC knock-down and (d) SOX2 knock-out experiments. The scatter
734  plots show negative log+o Lisa p-values of 1316 unique transcriptional regulators for up- and down-
735  regulated gene sets. Colors indicates log. fold changes of the TF gene expression between
736  treatment and control conditions in the gene expression experiment. Dots outlined with a circle

737  denote transcriptional regulators that physically interact with the TF perturbed in the experiment,
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738  which is marked with a cross.

739

740  Fig. 5. Systematic evaluation of regulator prediction performance for human using Cistrome DB
741  ChIP-seq and DNA motif derived cistromes. (a) Heatmap showing Lisa performance in the
742  analysis of human TF perturbation experiments. Each column represents a TF activation/over-
743  expression or knock-down/out experiment with similar experiment types grouped together. Rows
744  represent methods based on cistromes from TR ChIP-seq data or imputed from motifs. The upper
745  left red triangles represent the rank of the target TFs based on the analysis of the up-regulated
746  gene sets; the lower right blue triangles represent analysis of down-regulated gene sets. The
747  heatmap includes non-redundant human experiments for the same TF. See Supplementary Fig.
748 5 for the complete list of human and mouse experiments. (b) Boxplot showing the target TF
749  rankings comparing Lisa ChlP-seq based methods and the baseline model based on TF peak
750  counts in gene promoter regions to analyze up- and down-regulated gene sets in over-
751  expression/activation (OE) and knock-down/out experiments (KD/KO). (c) Boxplot showing target
752  TF rankings using Lisa motif-based methods and the baseline model based on motif hits in
753  promoter regions.

754

755  Fig. 6. Lisa performance surpasses published models. Lisa performance is compared with
756  alternative published methods for (a) up-regulated genes in over-expression/activation
757  experiments and (b) down-regulated genes in knock-down/out experiments.

758

759  Supplementary Fig. 1. Catalog of chromatin and cistrome profiles integrated in the Lisa
760  framework. (a) Stacked bar plot showing the Cistrome DB (version 1) chromatin profile sample
761  numbers in major cell types for human and mouse. Histogram showing the numbers of cell lines
762  in which TFs in the Cistrome DB are represented by ChIP-seq samples for (b) human, and (c)
763  mouse. (d) Heatmap displaying the ChlP-seq sample number for each of the TR - cell line
764  combinations. The color represents the sample number.

765

766  Supplementary Fig. 2. Lisa chromatin landscape model evaluation for the down-regulated gene
767  set from a GATA6 knock-down experiment in gastric cancer. (a) ROC curve for the performance
768  of the classifier in discriminating the target gene set from a background gene set based on DNase-
769 seq. (b) DNase-seq samples selected from the Cistrome DB and the associated logistic
770  regression coefficients. (¢) ROC curve for the performance of the classifier in discriminating the
771  target gene set from a background gene set based on H3K27ac ChIP-seq. (d) H3K27ac ChIP-
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772  seq samples selected from the Cistrome DB and the associated logistic regression coefficients.
773

774  Supplementary Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to
775 Cistrome DB cistromes. The large heatmap shows the hierarchical clustering of 8,471
776  transcriptional regulators based on peak-RP derived from Cistrome DB ChlP-seq cistromes, with
777  color representing Pearson correlation coefficients between peak-RPs. The two bars on the left
778  represent Lisa significance scores from SOX2 and POUS5SF1 perturbation experiments. A detail
779  heatmap showing the clusters of samples enriched around the significant TFs include SOX2,
780  POUS5F1, NANOG, CTNNB1 and SMADS.

781

782  Supplementary Fig. 4. Additional cases showing that Lisa can accurately infer TRs and
783  coregulators using Cistrome DB cistromes. Lisa analysis for up- and down-regulated gene sets
784  from (a) POU5F1 knock-down, (b) KLF5 knock-down, (¢) NFE2L2 knock-down. The scatter plots
785  show negative logo Lisa p-values of 1316 unique transcriptional regulators for up- and down-
786  regulated gene sets. Color indicates log. fold change of the TF gene expression between
787  treatment and control conditions in the gene expression experiment. Dots outlined with a circle
788  denote transcriptional regulators that physically interact with the target TF, which is marked with
789 a cross. (d) Radar plot of cofactors discovered along with the target TFs grouped by TF
790  perturbation. The top ranked TFs are at the perimeter and the lowest ranked are at the center.
791  The blue and red curves represent the ranks of interactors in the Lisa analysis for down- and up-
792  regulated gene sets, respectively.

793

794  Supplementary Fig. 5. Systematic application of Lisa to large-scale transcriptional regulator
795  perturbation study reveals novel recurring regulatory patterns for both human and mouse. (a-b)
796  Heatmap showing that Lisa is capable of predicting most of the TF perturbation benchmark gene
797  sets based on cistrome profiles for (a) human and (b) mouse. Each column represents a TF
798  activation/over-expression or knock-down/out experiment with similar experiment types grouped
799  together. Rows represent Lisa methods based on cistromes from TR ChIP-seq data or imputed
800 from motifs. The upper left red triangles represent the rank of the target TFs based on the analysis
801 of the up-regulated gene sets; the lower right blue triangles represent analysis of down-regulated
802  gene sets. The heatmap contains all of the gene sets used in the evaluation. (c-d) the ROC AUC
803  metrics for the Lisa chromatin model for predicting the target gene set from TF perturbation
804  benchmark datasets in (¢) human and (d) mouse. (e) Boxplots showing mouse benchmark

805  dataset performance of Lisa ChlP-seq based models and the baseline model based on TF peak
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806  counts in gene promoter regions. (f) Boxplots showing mouse benchmark datasets performance
807  of Lisa motif-based methods and the baseline model based on motif hits in promoter regions.
808

809  Supplementary Fig. 6. Comparison of direct and indirect binding sites in ER and GR activation
810 experiments. Direct binding sites are defined as ChIP-seq peaks with the cognate TR motif and
811 the indirect binding sites are defined as the peaks without the motif. Peak-RPs calculated based
812 ondirect and indirect peaks are compared between query and background gene sets.

813

814  Supplementary Table 1: Cistrome profile annotation table including TR ChlP-seq and TF motifs
815 Supplementary Table 2: DNase-seq and H3K27ac sample annotation table for mouse and
816 human

817  Supplementary Table 3: Analysis of Lisa predictions of GR and ER regulated genes using data
818  which does not match the specific cell type. The cell line and cell type of the highest ranked Lisa
819  predicted target TR sample are shown in parentheses in each case.

820  Supplementary Table 4: TF perturbation DNA microarray meta table for benchmarking the peak-
821 RP and Lisa methods


https://doi.org/10.1101/846139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/846139; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Figures
a b
@ peak-RP calculation @ chrom-RP calculation
9 H10kb g H10kb =B
& 1.0—p--r-yp-eee- i-4 1 & 1.0— - =)
2 o 3 o
£ £ 58
= = S o $
S £ o o9
s < s K
=] = =] N Z
[=)] (o)) X N
3] D o -
o F 0 o 0. e o
TSS of gene TSS of gene
C L3
g Transcription regulator
query genes l binding sites
( A a
‘5{3‘?' ‘eﬁ.
DNase-seq
H3K27ac
ChlP-seq
Y

Y Y
2
@ H3K27ac ARP @ DNase-seq ARP @ peak-RP
(\ {1\ \
uery genes o query vs background
uen’ g A comparison @
background genes query vs background /N
% g g classification E// 4\\ A\
:ﬁ: Cistrome DB @ ARP calculation

@ chrom-RP calculation @ Cauchy combination

@ peak-RP calculation & in silico deletion


https://doi.org/10.1101/846139
http://creativecommons.org/licenses/by-nc-nd/4.0/

ot cortied by pest review) & tho auihoriUnGer. who has Granted DioRxiy 4 cense o dispiay the proprt in perpetLity. 11 made AVATAbIe.
Fig. 1. lllustration of the Lis¥'rahteéwadtk: @ ThE PRI §Eore models the effect of
TR binding sites on the regulation of a gene. TR binding sites are binary values and
peaks nearer to the gene’s TSS have a greater influence than ones further away. (b)
The chrom-RP score summarizes the effect of the DNase-seq or H3K27ac chromatin
environment on a gene. The chrom-RP score is based on a continuous rather than
binary signal quantification. (¢) Overview of the Lisa framework. (1) H3K27ac ChlP-
seq or DNase-seq data from the Cistrome DB is summarized using the chrom-RP
score for each gene. (2) H3K27ac ChlIP-seq or DNase-seq samples that can
discriminate between the query gene set and the background gene set are selected
and the regression parameters define a chrom-RP model. (3) Each TR cistrome from
the Cistrome DB is evaluated as a putative regulator of the query gene set through in
silico deletion, which involves the elimination of H3K27ac ChlP-seq or DNase-seq
signal at the binding sites of the putative regulator. (4) The chrom-RP model, based on
in silico deletion signal, is compared to the model without deletion for each gene in the
query and background gene sets. A p-value is calculated using the Wilcoxon rank test
comparison of the query and background ARPs. (5) The peak-RP based on TR ChIP-
seq peaks is calculated for the putative regulatory cistrome and the statistical
significance of peak-RP distributions from the query and background gene sets is
calculated. (6) p-values from the H3K27ac ChIP-seq, DNase-seq and peak-RP
analysis are combined using the Cauchy combination test. TR cistromes are ranked

based on the combined p-value.
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Fig. 2. A down-regulated gene set from a GATA6 knock-down experiment in gastric
cancer KATO-III cells is used as a case study to demonstrate the Lisa framework. (a)
Heatmap of regulatory potentials used to discriminate down-regulated genes from non-
regulated background genes. (b) /n silico deletion analysis using GATA6 and CTCF
cistromes to probe chromatin landscape models near an illustrative down-regulated
gene, LINC01133 and a background gene ZC3H12A. Only the H3K27ac ChlIP-seq and
DNase-seq chromatin profiles with the largest positive coefficients are shown, although
other samples contribute to the respective H3K27ac ChIP-seq and DNase-seq
chromatin models. (¢) Comparison of ARPs indicates GATA6 and GATA4 cistromes
have a large impact on the chromatin landscapes near down-regulated genes, and are
therefore likely to be regulators of the query gene set. CTCF does not influence the
chromatin landscape of the down-regulated genes and is not likely to regulate the
query gene set. (d) The rank statistics for the Lisa analysis of the down-regulated gene
set in the GATA6 knockdown experiment were combined to get overall TR ranks. The

top 8 and bottom 8 TRs for all TR ChIP-seq samples were shown.
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Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to each
Cistrome DB cistrome. The large heatmap shows the hierarchical clustering of 8,471
human Cistrome DB ChIP-seq cistromes based on peak-RP, with color representing
Pearson correlation coefficients between peak-RPs. The three bars to the left of the
heatmap display Lisa significance scores for differentially expressed genes sets
derived from GR activation in the A549 cell line (up-regulated), GATA6 knock-down in
gastric cancer (down-regulated) and AR activation in the LNCaP cell line (up-
regulated). Small heatmaps show details of the global heatmap relevant to (a) AR
activation, (b) GATA6 knock-down, and (c¢) GR activation gene sets. In each case the

most significant cistromes are derived from the same cell type or lineage.
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Fig. 4. Lisa can accurately identify key transcriptional regulators and coregulators
using Cistrome DB cistromes. Lisa analyses of up- and down-regulated gene sets from
(a) GR over-expression, (b) BCL6 knock-down, (¢) MYC knock-down and (d) SOX2
knock-out experiments. The scatter plots show negative logo Lisa p-values of 1316
unique transcriptional regulators for up- and down-regulated gene sets. Colors
indicates log. fold changes of the TF gene expression between treatment and control
conditions in the gene expression experiment. Dots outlined with a circle denote
transcriptional regulators that physically interact with the TF perturbed in the

experiment, which is marked with a cross.
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Fig. 5. Systematic evaluation of regulator prediction performance for human using
Cistrome DB ChIP-seq and DNA motif derived cistromes. (a) Heatmap showing Lisa
performance in the analysis of human TF perturbation experiments. Each column
represents a TF activation/over-expression or knock-down/out experiment with similar
experiment types grouped together. Rows represent methods based on cistromes from
TR ChIP-seq data or imputed from motifs. The upper left red triangles represent the
rank of the target TFs based on the analysis of the up-regulated gene sets; the lower
right blue triangles represent analysis of down-regulated gene sets. The heatmap
includes non-redundant human experiments for the same TF. See Supplementary Fig.
5 for the complete list of human and mouse experiments. (b) Boxplot showing the
target TF rankings comparing Lisa ChIP-seq based methods and the baseline model
based on TF peak counts in gene promoter regions to analyze up- and down-regulated
gene sets in over-expression/activation (OE) and knock-down/out experiments
(KD/KO). (c) Boxplot showing target TF rankings using Lisa motif-based methods

and the baseline model based on motif hits in promoter regions.
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Fig. 6. Lisa performance surpasses published models. Lisa performance is compared
with alternative published methods for (a) up-regulated genes in over-
expression/activation experiments and (b) down-regulated genes in knock-down/out

experiments.
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Supplementary Fig. 1. Catalog of chromatin and cistrome profiles integrated in the
Lisa framework. (a) Stacked bar plot showing the Cistrome DB (version 1) chromatin
profile sample numbers in major cell types for human and mouse. Histogram showing
the numbers of cell lines in which TFs in the Cistrome DB are represented by ChlIP-
seq samples for (b) human, and (¢) mouse. (d) Heatmap displaying the ChIP-seq
sample number for each of the TR - cell line combinations. The color represents the

sample number.
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Supplementary Fig. 2. Lisa chromatin landscape model evaluation for the down-
regulated gene set from a GATA6 knock-down experiment in gastric cancer. (a) ROC
curve for the performance of the classifier in discriminating the target gene set from a
background gene set based on DNase-seq. (b) DNase-seq samples selected from the
Cistrome DB and the associated logistic regression coefficients. (¢) ROC curve for the
performance of the classifier in discriminating the target gene set from a background
gene set based on H3K27ac ChIP-seq. (d) H3K27ac ChlP-seq samples selected from

the Cistrome DB and the associated logistic regression coefficients.
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Supplementary Fig. 3. Lisa predicts key transcriptional regulators and assigns

significance to Cistrome DB cistromes. The large heatmap shows the hierarchical

clustering of 8,471 transcriptional regulators based on peak-RP derived from Cistrome

DB ChlIP-seq cistromes, with color representing Pearson correlation coefficients

between peak-RPs. The two bars on the left represent Lisa significance scores from

SOX2 and POUS5SF1 perturbation experiments. A detail heatmap showing the clusters
of samples enriched around the significant TFs include SOX2, POU5F1, NANOG,
CTNNB1 and SMADS.
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Supplementary Fig. 4. Additional cases showing that Lisa can accurately infer TRs
and coregulators using Cistrome DB cistromes. Lisa analysis for up- and down-
regulated gene sets from (a) POU5F1 knock-down, (b) KLF5 knock-down, (¢) NFE2L2
knock-down. The scatter plots show negative logi Lisa p-values of 1316 unique
transcriptional regulators for up- and down-regulated gene sets. Color indicates log:
fold change of the TF gene expression between treatment and control conditions in
the gene expression experiment. Dots outlined with a circle denote transcriptional
regulators that physically interact with the target TF, which is marked with a cross. (d)
Radar plot of cofactors discovered along with the target TFs grouped by TF
perturbation. The top ranked TFs are at the perimeter and the lowest ranked are at the
center. The blue and red curves represent the ranks of interactors in the Lisa analysis

for down- and up-regulated gene sets, respectively.
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Supplementary Fig. 5. SY&tefti& aplCatibhGalq8d 6" arge-scale transcriptional
regulator perturbation study reveals novel recurring regulatory patterns for both human
and mouse. (a-b) Heatmap showing that Lisa is capable of predicting most of the TF
perturbation benchmark gene sets based on cistrome profiles for (a) human and (b)
mouse. Each column represents a TF activation/over-expression or knock-down/out
experiment with similar experiment types grouped together. Rows represent Lisa
methods based on cistromes from TR ChIP-seq data or imputed from motifs. The
upper left red triangles represent the rank of the target TFs based on the analysis of
the up-regulated gene sets; the lower right blue triangles represent analysis of down-
regulated gene sets. The heatmap contains all of the gene sets used in the evaluation.
(c-d) the ROC AUC metrics for the Lisa chromatin model for predicting the target gene
set from TF perturbation benchmark datasets in (¢) human and (d) mouse. (e) Boxplots
showing mouse benchmark dataset performance of Lisa ChlP-seq based models and
the baseline model based on TF peak counts in gene promoter regions. (f) Boxplots
showing mouse benchmark datasets performance of Lisa motif-based methods and

the baseline model based on motif hits in promoter regions.
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Supplementary Fig. 6. Comparison of direct and indirect binding sites in ER and GR
activation experiments. Direct binding sites are defined as ChlP-seq peaks with the
cognate TR motif and the indirect binding sites are defined as the peaks without the
motif. Peak-RPs calculated based on direct and indirect peaks are compared between
query and background gene sets.
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