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Abstract 21	
We developed Lisa (http://lisa.cistrome.org) to predict the transcriptional regulators (TRs) of 22	
differentially expressed or co-expressed gene sets. Based on the input gene sets, Lisa first uses 23	
compendia of public histone mark ChIP-seq and chromatin accessibility profiles to construct a 24	
chromatin model related to the regulation of these genes. Then using TR ChIP-seq peaks or 25	
imputed TR binding sites, Lisa probes the chromatin models using in silico deletion to find the 26	
most relevant TRs. Applied to gene sets derived from targeted TF perturbation experiments, Lisa 27	
boosted the performance of imputed TR cistromes, and outperformed alternative methods in 28	
identifying the perturbed TRs.  29	
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TR: transcriptional regulator 38	
RP: regulatory potential 39	
ISD: in silico deletion 40	
ROC: receiver operator characteristic 41	
AUC: area under curve  42	
ChIP-seq: chromatin immunoprecipitation followed by DNA sequencing 43	
DNase-seq: DNase I digestion followed by DNA sequencing 44	
H3K27ac: histone H3 lysine 27 acetylation 45	
AR: Androgen Receptor 46	
ER: Estrogen Receptor 47	
GR: Glucocorticoid Receptor 48	
 49	
Introduction 50	
Transcriptional regulators (TRs), which include transcription factors (TFs) and chromatin 51	
regulators (CRs), play essential roles in controlling normal biological processes and are frequently 52	
implicated in disease1-4. The genomic landscape of TF binding sites and histone modifications 53	
collectively shape the transcriptional regulatory environments of genes5-8. ChIP-seq has been 54	
widely used to map the genome-wide set of cis-elements bound by trans-acting factors such as 55	
TFs and CRs, which we henceforth refer to as “cistromes”9. There are approximately 1,500 56	
transcription factors in human and mouse10,11, regulating a wide variety of biological processes in 57	
constitutive or cell-type-specific manners, and tens of thousands of ChIP-seq and DNase-seq 58	
experiments have been performed in human and mouse. We previously developed the Cistrome 59	
Data Browser (DB)12, a collection of uniformly processed TF ChIP-seq (~11,000) and chromatin 60	
profiles (~12,000 histone mark ChIP-seq and DNase-seq) in human and mouse. 61	
 62	
The question we address in this paper is how to effectively use these data to infer the TRs that 63	
regulate a query gene set derived from differential or correlated gene expression analyses in 64	
human or mouse. TR ChIP-seq data, when available, is the most accurate available data type 65	
representing TR binding. ChIP-seq data availability, in terms of covered TRs and cell types, even 66	
with large contributions from projects such as ENCODE13, is still sparse due to the limited 67	
availability of specific antibodies. Although advances have been made in TR cistrome mapping 68	
with the introduction of technologies such as CETCh-seq14 and CUT & RUN15, the difficulties in 69	
acquiring TR ChIP-seq data for new factors limit the TR by cell type coverage of high quality TR 70	
ChIP-seq data. Chromatin accessibility data, including DNase-seq16,17 and ATAC-seq18, is 71	
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available for hundreds of cell types and provides maps of the regions in which TRs are likely to 72	
be bound in the represented cell types. The H3K27ac histone modification, associated with active 73	
enhancers and promoters of actively transcribed genes, has been widely profiled using ChIP-seq 74	
in many cell types5,19. When TF ChIP-seq data is not available, TF binding motifs, used in 75	
combination with chromatin accessibility data or H3K27ac ChIP-seq data might be used to infer 76	
TF binding sites7,20,21. Machine learning approaches that transfer models learnt from TF ChIP-seq 77	
peaks, motifs and DNase-seq data between cell types are promising ways of imputing TF 78	
cistromes, although imputation of TF binding sites on a large scale remains to be implemented22-79	
27. Computationally imputed TF binding data is expected to represent TF binding sites less 80	
accurately than TF ChIP-seq experimental data, so we sought to develop a TR prediction method 81	
that could use imputed TF cistromes effectively, along with ChIP-seq derived ones. 82	
 83	
We previously developed MARGE to characterize the regulatory association between H3K27ac 84	
ChIP-seq and differential gene expression in terms of a regulatory potential (RP) model28. The 85	
RP model provides a summary statistic of the cis-regulatory influence of the many cis-regulatory 86	
elements that might influence a gene’s transcription rate. MARGE builds a classifier based on 87	
H3K27ac ChIP-seq RPs from the Cistrome DB to discriminate the genes in a query differentially 88	
expressed gene set from a set of background genes.  One of the functions of MARGE is to predict 89	
the cis-regulatory elements (i.e. genomic intervals) that regulate a gene set. BART29 extends 90	
MARGE, to predict the TRs that regulate the query gene set through an analysis of the predicted 91	
cis-regulatory elements. Here we describe Lisa (the second descendent of MARGE), a more 92	
accurate method of integrating H3K27ac ChIP-seq and DNase-seq with TR ChIP-seq or imputed 93	
TR binding sites to predict the TRs that regulate a query gene set. Unlike BART, Lisa does not 94	
carry out an enrichment analysis of the cis-regulatory elements predicted by MARGE. Instead, 95	
Lisa analyses the relationship between TR binding and the gene set using RP models and RP 96	
model perturbations. We assessed the performance of Lisa and other TR identification methods, 97	
BART29, i-CisTarget30 and Enrichr31 using differentially expressed gene sets derived from 98	
experiments in which the activities of specific TFs were perturbed by knockdown, knockout, over-99	
expression, stimulation or inhibition.  100	
 101	
Results and Discussion 102	
 103	
Regulatory TR prediction based on Cistrome DB ChIP-seq peaks 104	
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High quality TR ChIP-seq data, when available, accurately characterizes genome-wide TR 105	
binding sites, which can be used to infer the regulated genes in particular cell types.  Estimating 106	
the effect of TR binding on gene expression is not trivial because: (1) there is no accurate map 107	
linking enhancers to the genes they regulate32, (2) multiple enhancers can regulate the same 108	
gene33 and a single enhancer can regulate multiple genes34 and (3) not all TR binding sites are 109	
functional enhancers19. A model is therefore needed to quantify the likelihood of a gene being 110	
regulated by a TR cistrome.  The “peak-RP” model35,36 is based on TR ChIP-seq peaks, serving 111	
as a proxy for TR binding sites, without the use of DNase-seq or H3K27ac ChIP-seq data. In the 112	
peak-RP model (Fig. 1a) the effect a TR binding site has on the expression of a gene is assumed 113	
to decay exponentially with the genomic distance between the TR binding site and the TSS, and 114	
the contribution of multiple binding sites is assumed to be additive36. Accounting for the number 115	
of TR binding sites and for the distances of these sites from the TSS has been shown to be more 116	
accurate than alternative TR target assignment methods37. While it is possible that enhancers 117	
could modulate each other in non-additive ways32, data on these types of behavior are too scarce 118	
to incorporate in a TR prediction model. 119	
 120	
We use the peak-RP model to identify TFs that are likely regulators of a target gene set by 121	
searching for Cistrome DB12 cistromes  that produce higher peak-RPs for the query gene set than 122	
for a set of background genes (Supp. Fig. 1, Supp. Table 1). Statistical significance is calculated 123	
using the one-sided Wilcoxon rank-sum test statistic comparing the peak-RPs for the query gene 124	
set with the background. The TRs with the most significant p-values are considered to be the 125	
candidate regulators. Lisa uses TR ChIP-seq within the peak-RP model, along with the chromatin 126	
landscape models described below to infer the TRs of a gene set. 127	
 128	
Regulatory TR prediction using a chromatin landscape model  129	
While TR ChIP-seq data provides accurate information about TR cistromes in specific cell types, 130	
the Cistrome DB TR by cell type coverage is skewed towards a few TRs, such as CTCF, which 131	
are represented in many cell types, and towards cell types such as K562 (Supp. Fig. 1b-c), in 132	
which many TRs have been characterized (Supp. Fig. 1d). H3K27ac ChIP-seq19 and DNase-seq16, 133	
available in a large number and variety of cell types, can be used to infer cell type specific 134	
regulatory regions.  These types of data could enhance the use of TR ChIP-seq data as well as 135	
imputed TF binding data, which may not accurately represent TF binding sites in different cell 136	
contexts.  137	
 138	
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To boost the performance of TF ChIP-seq or imputed TF binding data in the identification of 139	
regulatory TRs, we developed Lisa chromatin landscape models, which use H3K27ac ChIP-seq 140	
and DNase-seq chromatin profiles (Fig. 1b, Supp. Table 2,  and Methods) to model the regulatory 141	
importance of different genomic loci. As differential gene expression experiments are not always 142	
carried out in parallel with chromatin profiling experiments, Lisa does not require the 143	
corresponding user-generated chromatin profiles, but instead uses the DNase-seq and H3K27ac 144	
ChIP-seq data that is available in the Cistrome DB to help identify cis-regulatory elements 145	
controlling a differential expression gene set. To this end, Lisa models chromatin landscapes 146	
through chromatin RPs (chrom-RPs, Fig. 1b), which are defined in a similar way to the peak-RP 147	
with one small difference: genome-wide read signals instead of peak calls are used in the 148	
calculation of the chrom-RP28. Changes in H3K27ac ChIP-seq and DNase-seq associated with 149	
cell state perturbations are often a matter of degree rather than switch-like, therefore we base the 150	
chrom-RP on reads rather than peaks. The chrom-RP is pre-calculated for each gene (Fig. 1c-1) 151	
and for each H3K27ac ChIP-seq / DNase-seq profile in the Cistrome DB (Supp. Fig. 1a, Supp. 152	
Table 2). These chrom-RPs quantify the cis-regulatory activities that influence each gene under 153	
cell-type specific conditions.  154	
 155	
Given the query gene set, Lisa identifies a small number of Cistrome DB DNase-seq and H3K27ac 156	
ChIP-seq samples that are informative about the regulation of these genes. Lisa does this by 157	
using the pre-calculated H3K27ac / DNase-seq chrom-RPs to discriminate between the query 158	
gene set and a background gene set. Using L1-regularized logistic regression, Lisa assigns a 159	
weight to each selected sample so the weighted sum of chrom-RPs on the genes best separates 160	
the query and the background gene sets (Fig. 1c-2). This step is carried out separately for 161	
H3K27ac ChIP-seq and DNase-seq, yielding a chrom-RP model based on H3K27ac ChIP-seq 162	
and another model based on DNase-seq.  163	
 164	
Next, by a process of in silico deletion (ISD), Lisa evaluates the effect deleting each TR cistrome 165	
has on the chromatin landscape model (Fig. 1c-3). ISD of a TR cistrome involves setting DNase-166	
seq or H3K27ac ChIP-seq chromatin signal to zero in the 1kb intervals containing the peaks in 167	
that cistrome and evaluating the effect on the predictions made by the chromatin landscape 168	
models. The difference of the model scores before ISD and after ISD quantifies the impact that 169	
the deleted TR cistrome is predicted to have on the query and background gene sets. Lisa does 170	
not make a prediction of cis-regulatory elements, the approach taken by MARGE and BART. 171	
Instead, Lisa probes the effects of deleting putative regulatory TR cistromes on the chrom-RP 172	
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model. Whereas the chrom-RP integrates data over 200kb intervals, the scale of individual cis-173	
regulatory elements is of the order of 1kb. The ISD approach mitigates the difficulties in 174	
transferring information contained in the chrom-RP model from the chrom-RP (200kb) scale to 175	
the cis-regulatory element (1kb) scale.  176	
 177	
Finally, to prioritize the candidate TRs, Lisa compares the predicted effects on the query and 178	
background gene sets using the one-sided Wilcoxon rank-sum test (Fig. 1c-4). A one-sided test 179	
is used because Lisa assumes that the in silico deletion of a true regulatory factor will decrease, 180	
not increase, the model’s ability to discriminate between query and background gene sets. To 181	
utilize the power of predictions based on H3K27ac-ChIP-seq and DNase-seq ISD models, and 182	
TF ChIP-seq peak-only models (Fig. 1c-5), results are combined using the Cauchy combination 183	
test38 (Fig. 1c-6). Whereas MARGE28 predicts cis-regulatory elements (but does not analyze TRs), 184	
and BART29 carries out an enrichment analysis of predicted cis-elements to discover TRs, Lisa 185	
uses the chromatin landscape model in a different way. In combination with ChIP-seq-derived or 186	
computationally imputed TR binding, Lisa probes the effects of TRs on the chromatin RP models 187	
of query and background gene sets. 188	
 189	
Demonstration of chromatin landscape models in a GATA6 knock-down study 190	
We demonstrate Lisa chromatin landscapes and in silico deletion using a query gene set defined 191	
as the down-regulated genes in a GATA6 knock-down experiment in the KATO-III stomach cancer 192	
cell line39 (Fig. 2). Lisa identifies DNase-seq and H3K27ac ChIP-seq chromatin landscape models 193	
(Fig. 2a, Fig. 1c-2), which include several gastro-intestinal samples (Supp. Fig. 2b,d) whose 194	
chrom-RPs can discriminate between the query and background gene sets (Supp. Fig. 2a, 195	
DNase-seq ROC AUC=0.816, Supp. Fig. 2c, H3K27ac ROC AUC=0.821). In silico deletion (Fig. 196	
1c-3) of GATA6 binding sites produces larger DNase-seq and H3K27ac ∆RPs (DNase ∆RP: 1.05, 197	
H3K27ac ∆RPs: 0.25)  for an example down-regulated gene, LINC0113340, than for a background 198	
gene, ZC3H12A (DNase ∆RP: 0.06, H3K27ac ∆RP: 0.01) (Fig. 2b). In silico deletion of CTCF 199	
binding sites, in contrast, has a smaller effect on the chromatin landscapes surrounding 200	
LINC01133 (DNase ∆RP: 0.02, H3K27ac  ∆RP: 0.01), resulting in ∆RPs that are more similar to 201	
the ∆RPs for ZC3H12A (Fig. 2b) (DNase ∆RP: 0.004, H3K27ac ∆RP: 0.001). Statistical analysis 202	
is carried out comparing all the query gene ∆RPs with all the background gene ∆RPs (Fig 1c-4), 203	
producing significant p-values for GATA4 (DNase p-val < 10-10, H3K27ac p-val < 10-5) and GATA6 204	
(DNase p-val < 10-13, H3K27ac p-val < 10-7). After this analysis is conducted for all TR ChIP-seq 205	
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samples in the Cistrome DB and the results are combined and compared, GATA6 and GATA4 206	
ChIP-seq from intestinal and gastric tissues have the most significant p-values Fig. 2c,d).  207	
 208	
Lisa identification of regulatory TF ChIP-seq sample clusters 209	
To investigate whether a TF ChIP-seq cistrome derived from one cell type can be informative 210	
about other cell types, we first clustered all the human TR cistromes in the Cistrome DB based 211	
on the pairwise Pearson correlation of peak-RP scores as a heatmap (Fig. 3). We then applied 212	
Lisa to differentially expressed gene sets defined by perturbations of individual TFs and examined 213	
the TR cistromes predicted to be the key regulators of these gene sets. In the analysis of up-214	
regulated genes on Androgen Receptor (AR) activation in the LNCaP prostate cancer cell line, 215	
Lisa identified a tight cluster of significant cistromes for AR and its known collaborator FOXA1 216	
(Fig. 3a). All samples in this cluster were derived from prostate cancer cell lines. In the analysis 217	
of the GATA6 knock-down in the gastric cancer cell line (KATO-III), Lisa found the GATA6 and 218	
FOXA2 cistromes in stomach and colon samples to be the most significant. FOXA2 is an important 219	
pioneer TF which has been reported to collaborate with GATA6 in gut development to regulate 220	
Wnt641 and Wnt7b42 (Fig. 3b). The identification of GATA6 cistromes in colon cancer cell lines, in 221	
addition to gastric cancer cell lines, shows that cistromes derived from cell types that are of related 222	
lineages can be used to inform the identification of the relevant regulators, even if the cell types 223	
are not the same. In the third example involving Glucocorticoid Receptor (GR) activation in the 224	
lung cancer cell line A549, Lisa correctly identified GR in A549 as a likely regulator, and also 225	
identified GR in a different cell type HeLa (Fig. 3c). AR, a member of the same nuclear receptor 226	
family as GR, is also implicated by Lisa even though the AR cistrome samples do not cluster with 227	
GR cistrome samples and have less statistical significance.  228	
 229	
We carried out an analysis of the effects of removing ChIP-seq and DNase-seq data on Lisa’s 230	
accuracy. In particular, we tested Lisa’s performance on three up-regulated gene sets: (1) GR 231	
activated genes in breast cancer (MCF7), (2) GR activated genes in lung cancer (A549), and (3) 232	
Estrogen Receptor (ER) activated genes in MCF7 (Supp. Table 3). In these analyses we assessed 233	
the effect of removing all relevant cell line specific (MCF7 or A549), H3K27ac ChIP-seq and 234	
DNase-seq data, or cell line specific TR ChIP-seq data (ER or GR). We also removed cell line 235	
specific TR ChIP-seq data together with H3K27ac ChIP-seq and DNase-seq data. We repeated 236	
the same analysis removing similar data, on the basis of tissue (breast and lung) instead of on 237	
the basis of cell line (MCF7 and A549). When MCF7 ER ChIP-seq are excluded, an ER sample 238	
from another breast cancer cell line (H3396) predicts the importance of ER (rank 6) as a regulator 239	
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of the estrogen activated gene set. When all ER breast ChIP-seq samples are excluded, Lisa can 240	
still identify ER (rank 18) from ER ChIP-seq in the VCaP prostate cancer cell line. For the GR 241	
activated gene set in MCF7, when GR ChIP-seq data is unavailable in MCF7, Lisa can identify 242	
GR as a key regulator (rank 2) using GR ChIP-seq from lung (A549). For the GR activated gene 243	
set in lung, Lisa identified GR as the key regulator (rank 1) using GR ChIP-seq data from breast 244	
(MDA-MB-231). Together, these observations indicate that although TRs often bind in cell type 245	
dependent ways, ChIP-seq derived TR cistromes can be informative about the gene sets that TRs 246	
regulate in some other cell types.  247	
	248	
Lisa identification of TF associated cofactors in addition to TFs 249	
To illustrate Lisa’s capacity to find cofactors that interact with the regulatory TFs, we examined 250	
the Lisa analyses of four differentially expressed gene sets derived from experiments involving 251	
the activation of GR43 and the knock-down/out of BCL644, MYC45, and SOX246. Lisa analysis of 252	
GR activation in lung cancer ranked GR itself as the most significant TR for the up-regulated gene 253	
sets (Fig. 4a), and highly ranked pioneer TFs FOSL2 and CEBPB, which were down-regulated 254	
after GR activation (Fig. 3c). BCL6, a predominantly repressive TF, is a driver of diffuse large B-255	
cell lymphoma (DLBCL)47. Lisa analysis of the up-regulated genes in a BCL6 knock-down 256	
experiment in a DLBCL cell line ranked BCL6 as the most significant TR for this gene set (Fig. 257	
4b). Lisa also identified NCOR1 and NCOR2, which are transcriptional BCL6 corepressors 258	
involved of the regulation of germinal center48-50. SPI1, which recruits BCL651, and BCOR, another 259	
BCL6 corepressor52, were ranked among the top TRs for the up-regulated gene set. In a MYC 260	
knock-down experiment in medulloblastoma, MYC and its dimerization partner, MAX53, were 261	
among the top predicted regulators of the down-regulated genes (Fig. 4c). The histone 262	
methyltransferase, KDM2B, known to physically interact with MYC and to augment MYC-263	
regulated transcription54, was also detected among the top regulators. In the SOX2 knock-out 264	
experiment2, NANOG, SOX2 and POU5F1, the key regulators of pluripotency, were the top 265	
predicted regulators of the down-regulated genes (Fig. 4d). Lisa also discovered a similar set of 266	
TRs for the gene set derived from a POU5F1 knockdown experiment in embryonic stem cells 267	
(Supp. Fig. 3,4a). In addition, β-catenin (CTNNB1), which interacts with SOX2 and is oncogenic 268	
in SOX2+ cells55, also ranked high for the down-regulated genes. The predicted regulators of the 269	
up-regulated genes in this experiment include FOXA1 and EOMES. FOXA1 is involved in early 270	
embryonic development56, and has been observed to repress NANOG directly57.  FOXA1 has 271	
been shown through co-immunoprecipitation to physically interact with SOX258. SOX2, known to 272	
bind to an enhancer regulating EOMES in human ESCs, when knocked down triggers EOMES 273	
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expression and induces endoderm and trophectoderm differentiation59.  Thus, in many cases, the 274	
known interactors are highly ranked along with the target activator or repressor. This suggests 275	
that even though the available TF ChIP-seq data in different cell types are sparse (Supp. Fig. 1d), 276	
Lisa can provide insights on possible regulatory TFs since transcriptional machinery tends to be 277	
organized in modules of interacting factors60 (Supp. Fig. 4d). 278	
 279	
Systematic evaluation of regulator prediction  280	
To systematically evaluate Lisa, we compiled a benchmark panel of 122 differentially expressed 281	
gene sets from 61 studies involving the knock-down, knock-out, activation or over-expression of 282	
27 unique human target TFs. In addition, we compiled 112 differentially expressed gene sets 283	
derived from 56 studies with 25 unique TF perturbations in mouse (Supp. Table 4, see “galleries” 284	
at http://lisa.cistrome.org). The full Lisa model was separately applied to the up-regulated and 285	
down-regulated gene sets in each experiment. We also carried out analyses of these gene sets 286	
using subcomponents of Lisa: the peak-RP method, as well as H3K27ac ChIP-seq and DNase-287	
seq assisted ISD analyses. The putative regulatory cistromes were defined using either ChIP-seq 288	
peaks or from TF motif occurrence in the inferred chromatin models. The results allowed us to 289	
compare the effectiveness of DNase-seq and H3K27ac ChIP-seq in scenarios where the TF 290	
cistromes are well estimated (by ChIP-seq) or less well estimated (by motif). We measured the 291	
performance based on their ranking of the perturbed target TF (Fig. 5, Supp. Fig. 5).  292	
 293	
We compared the performance of methods that use TF ChIP-seq data and TF motifs, on up- and 294	
down- regulated gene sets, and on over-expression / activation and knock-down / knock-out 295	
samples (Fig. 5a). In over-expression studies, the prediction performance of all methods tended 296	
to be better for the up-regulated gene sets, than for the down-regulated ones. The reverse is 297	
evident in the knock-out and knock-down studies for which the prediction performances are better 298	
for the down-regulated gene sets (Fig. 5b,c). This suggests that most of the TFs included in the 299	
study have a predominant activating role in the regulation of their target genes, under the 300	
conditions of the gene expression experiments, allowing these TFs to be more readily identified 301	
with the corresponding direction of primary gene expression response. Similar performance 302	
patterns were observed in the mouse benchmark datasets (Supp. Fig. 5). The performances of 303	
Lisa using ISD of TR ChIP-seq peak from chromatin landscapes were similar to the TR ChIP-seq 304	
peak-RP method, but outperformed motif-based methods by large margins.  305	
 306	
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To determine whether differences between up- and down-regulated gene sets could be explained 307	
by direct or indirect modes of TR recruitment, we studied two experiments involving ER and GR 308	
activation in greater detail. We defined “direct” ER and GR binding sites as ER/GR ChIP-seq 309	
peaks on genomic intervals containing the cognate DNA sequence elements, and “indirect” ER 310	
and GR binding sites as ER/GR ChIP-seq peaks without the sequence elements. Comparing 311	
direct and indirect binding sites in the respective ER and GR activation experiments (Supp. Fig. 312	
6) we found that the up-regulated gene sets were more significantly associated with the direct 313	
binding sites (ER p-value: 1.5x10-15 , GR p-value: 1.5x10-18) than with the indirect ones (ER p-314	
value: 3.8x10-4, GR p-value: 1.4x10-12). The down-regulated gene sets were more significantly 315	
associated with the indirect binding sites (ER p-value: 1.5x10-15,  GR p-value: 1.5x10-11) than with 316	
the direct ones (ER p-value: 4.6x10-2, GR p-value: 3.0x10-3).  317	
 318	
In some cases, the perturbation of a TR may trigger stress, immune or cell cycle checkpoint 319	
responses that are not directly related to the initial perturbation. In the Lisa analysis of up-320	
regulated genes after 24 hours of estradiol stimulation (GSE26834), for example, E2F4 is the top 321	
ranked TR, followed by ER. Estrogen is known to stimulate proliferation of breast cancer cells via 322	
a pathway involving E2F4, a key regulator of the G1/S cell cycle checkpoint61. In this case, Lisa 323	
might be correctly detecting a secondary response to the primary TR perturbation. 324	
 325	
Comparison of Lisa with published methods 326	
We next compared Lisa with other approaches, including BART29, iCisTarget30 and Enrichr31, 327	
which can use either TR ChIP-seq data or motifs. We also included a baseline method that ranks 328	
TRs by comparing query and background gene sets based on the TR binding site number within 329	
5kb centered on the TSS. Lisa outperformed BART, iCisTarget and Enrichr in terms of the 330	
percentage of the target TR identified within the top 10 across all the experiments, either using 331	
TF binding sites from ChIP-seq data or motif hits (Fig. 6a,b). Lisa uses a model based on 332	
chromatin data to give more weight to loci that are more likely to influence the expression of the 333	
query gene set. In this way Lisa improves the performance of TR inference with noisy cistrome 334	
profiles such as those imputed from DNA sequence motifs. In addition to being more accurate 335	
than other methods in terms of TR prediction, the Lisa web server (lisa.cistrome.org) has several 336	
unique features which allow investigators to explore relevant ChIP-seq data in ways that are not 337	
available in other applications.  338	
 339	
Lisa Web Site and Gallery of Lisa’s Benchmark Data  340	
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The Lisa web site (lisa.cistrome.org) displays two tables of results for each query gene set. The 341	
first summarizes the Lisa analysis based on TR ChIP-seq data, the second displays the Lisa 342	
analysis of TF binding sites imputed from DNA binding motifs. The ChIP-seq data table displays 343	
up to 5 ChIP-seq samples for each TR. Users can sort results by p-value and inspect metadata 344	
and quality control statistics for each of the ChIP-seq samples to understand whether the 345	
predictive samples may be derived from particular cell types or experimental conditions. Lisa 346	
provides quality control metrics, metadata, publication and read data repository links for the ChIP-347	
seq data of putative regulatory TRs. Through Lisa, the ChIP-seq signal tracks can be viewed on 348	
the WashU Epigenome Browser62. Although the motif imputation-based analysis tends to be less 349	
accurate than the ChIP-seq based analysis, motifs can indicate roles for regulatory TRs for which 350	
ChIP-seq data is not widely available. Lisa’s analysis of all the benchmark gene sets is also 351	
viewable on the Lisa web site. Users can explore these analyses to understand the ‘typical’ results 352	
of the analysis. Robust methods combined with visualization and data exploration features make 353	
Lisa a valuable tool for analyzing gene regulation in human and mouse. 354	
 355	
Conclusion 356	
In this study, we describe an approach for using publicly available ChIP-seq and DNase-seq data 357	
to identify the regulators of differentially expressed gene sets in human and mouse.  On the basis 358	
of a series of benchmarks we demonstrate the effectiveness of our method and report recurrent 359	
patterns in the TRs predicted by these methods. We find the regulators of the up-regulated genes 360	
and the down-regulated ones are often different from each other, therefore in any analysis of 361	
differential gene expression, up- and down-regulated gene sets ought to be distinguished. Our 362	
results show that many TFs have a preferred directionality of effect, indicative of a predominant 363	
repressive or activating function. It is well known that many TFs can recruit both activating and 364	
repressive complexes63, so the observed direction may be related to the stoichiometry and affinity 365	
of the activating or repressive cofactors. We also observe differences between ChIP-seq based 366	
analysis and motif based ones, suggesting differences in TF activity depending on whether a TF 367	
interacts directly with DNA or whether it is recruited via another TF64.  When a TF is recruited by 368	
another TF it is likely that the enhancer has been already established by other TFs and protein 369	
complexes. Thus, the co-binding enhancer information of multiple TFs allows Lisa to identify both 370	
the DNA bound TFs and their partners which might not directly bind DNA.  371	
 372	
Lisa’s accuracy in predicting the regulatory TRs of a gene set depends on the perturbation used 373	
in the production of the differential gene expression data, the quality of the gene expression data, 374	
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the availability and quality of the DNase-seq, H3K27ac and TR ChIP-seq data sets, the degree to 375	
which binding is dependent on a DNA sequence motif, as well as the validity of the model 376	
assumptions. Although we evaluate Lisa using differential gene expression data associated with 377	
a TR perturbation, the perturbed TR might not be the main regulator of the gene set. For example, 378	
perturbation of a TR may trigger a stress response65, or secondary transcriptional effects that are 379	
not directly related to the primary TR66.  380	
 381	
The modelling approach used in Lisa facilitates the prediction of regulatory TRs using available 382	
ChIP-seq and DNase-seq data. DNase-seq and H3K27ac ChIP-seq are available in a broad 383	
variety of cell types and these data are informative about cis-regulatory events mediated by many 384	
TRs. Although H3K27ac is considered to be a histone modification associated with gene 385	
activation Lisa can still identify TRs, such as BCL6 and EZH2, with predominantly repressive 386	
functions. Although Lisa uses the correlation between H3K27ac or chromatin accessibility and 387	
gene expression to predict regulatory TRs we do not assume that H3K27ac or chromatin 388	
accessibility cause the transcriptional changes. Other genomics data types that are predictive of 389	
general cis-regulatory activity, when available in quantity, variety and quality, might improve Lisa’s 390	
performance. More importantly, high quality TR specific binding data, generated by ChIP-seq or 391	
alternative technologies, like CETCh-seq14 or CUT & RUN15, will be needed to improve Lisa’s 392	
accuracy in predicting TRs that are not yet well represented in Cistrome DB. TR imputation 393	
methods might fill in some gaps in TR binding data, however, families of TRs such as homeobox 394	
and forkhead factors, which have similar DNA binding motifs can be hard to discriminate based 395	
on DNA sequence analysis.  396	
 397	
Although Lisa aims to identify the regulators of any differentially expressed gene set in human or 398	
mouse, no matter the contrast, in practice, the query gene sets should be derived from biologically 399	
meaningful differential expression or co-regulation analyses. In this study, we based the methods 400	
evaluation on data from available TR perturbation experiments, which are biased towards well 401	
studied systems. For this reason, the reliability of methods based on TR ChIP-seq data may be 402	
overestimated relative to imputation-based methods because the available TR ChIP-seq data 403	
tends to be derived from similar cell types and for the same factors used in the gene perturbation 404	
experiments. When the relevant cell type specific TR ChIP-seq data is available the performance 405	
of the peak RP-method and ISD methods are similar, but when TR ChIP-seq data is not available, 406	
methods based on imputed TR cistromes are obligatory. The value of imputed cistromes relative 407	
to ChIP-seq derived ones will depend on the quantity, variety and quality of available ChIP-seq 408	
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data, the accuracy of the imputed cistromes, the degree of commonality of the genes that are 409	
regulated by the same TR in different cell types, and the number of TRs recognizing similar DNA 410	
sequence elements. Lisa provides invaluable information about the regulation of gene sets 411	
derived from both bulk and single cell expression profiles67, and will become more accurate over 412	
time with greater coverage of TF ChIP-seq augmented by computationally imputed TF cistromes.  413	

Methods 414	
Preprocessing of chromatin profiles 415	
Using the BigWig format signal tracks of human and mouse H3K27ac ChIP-seq and DNase-seq 416	
from Cistrome DB, we precomputed the chromatin profile regulatory potential (chrom-RP) of each 417	
RefSeq gene and also summarized the signal in 1kb windows genome-wide. The chrom-RP for 418	
gene " in sample # is defined as $%& = ∑ )*+%**∈[./01,	./41]  (as defined in the MARGE algorithm28). 419	
6 is set to 100kb, and )* is a weight representing the regulatory influence of a locus at position 7 420	
on the TSS of gene " at genomic position 8&, 		)* = 	2:0;< 1 + :0;<⁄  , where @ = |7 − 8&| 6⁄ , and i 421	
stands for  7th nucleotide position within the [-L,L] genomic interval centered on the TSS at 8&. +%* 422	
is the signal of chromatin profile # at position 7. C is the parameter to determine the decay rate of 423	
the weight, which is defined as C = − ln 6 3ΔH . For DNase-seq and H3K27ac ChIP-seq, the decay 424	
distance Δ is set to 10kb. The genome-wide read counts on 1kb windows were calculated using 425	
the UCSC utility bigWigAverageOverBed68. The chrom-RP matrix for chromatin profiles was 426	
normalized across RefSeq genes within one chromatin profile by $%&I = logL$%& + 1M −427	
N
& ∑ LlogL$%& + 1MM&

N . 428	
	429	
Preprocessing of cistromes 430	
Using all human and mouse transcription regulator (TR) ChIP-seq cistromes peak BED files from 431	
the Cistrome Data Browser (v.1). We precomputed the TR binding sites based on ChIP-seq and 432	
motif hits based on position weight matrices then transferred as binary values at a 100bp 433	
resolution genome-wide. The DNA sequence scores were derived from Cistrome motifs, a 434	
redundant collection of 1,061 PWMs from TRANSFAC69, JASPAR70 and Cistrome DB ChIP-seq 435	
that includes 675 unique TFs in human and mouse. The peak based regulatory potential (peak-436	
RP) of a TR cistrome is defined in the same way as the chrom-RP except +*  represents the 437	
presence (+%* = 1) or absence (+%* = 0)	of a peak summit within the upstream and downstream 438	
100kb centered on TSS. The genome-wide motif scores were scanned at 100bp window size with 439	
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the library (https://github.com/qinqian/seqpos2)71, and the motif hits are defined by thresholding 440	
at 99th percentiles then mapped to the 1kb windows. The genome-wide 1kb windows in which 441	
the TR peak summits are located were determined using Bedtools72. All of the peak-RPs, TR 442	
binding and motif hit data were deposited into hdf5 format files. 443	
 444	
Lisa framework 445	
Chromatin landscape model 446	
Lisa selects 3000 background genes by proportionally sampling from non-query genes with a 447	
range of different TAD and promoter activities based on compendia of Cistrome DB H3K4me3 448	
and H3K27ac ChIP-seq signals. There is no gene ontology enrichment in the background gene 449	
set. Lisa then uses L1 regularized logistic regression to select an optimum sample set for 450	
H3K27ac ChIP-seq or DNase-seq samples based on $%&I . The L1 penalty parameter is determined 451	
by binary search to constrain the number of selected chromatin profiles to be small but sufficient 452	
to capture the information (different sample sizes were explored, and ten was used in all the 453	
benchmark cases28). Lisa trains a final logistic regression model to predict the target gene set, 454	
and obtains a weight R% for each candidate chromatin profile #, from which the weighted sum of 455	
chrom-RP is the model regulatory potential (model-RP). 456	
 457	
In silico deletion (ISD) method 458	
The rationale for the ISD method is that the peaks of the true regulatory TFs should align with the 459	
high chromatin accessibility signals from the corresponding tissue or cell type. Therefore, the 460	
computational deletion of the chromatin signals on the peaks of regulatory cistromes would result 461	
in a more substantial effect on the model-RP for query genes than for background genes. The 462	
regulatory potentials are recalculated after erasing the signal in all 1kb windows containing at 463	
least one peak from a putative regulatory cistrome 7, $S*%& = $%& − ∑ T	)U+%UU∈VW/  (where X*& is 464	
the set of 1kb windows containing at least one peak in cistrome 7 for gene ", T	is the window size, 465	
which is set to 1kb for this study, )U is the exponential decay weight with the distance between 466	
the Yth window center and TSS, the weight function is the same as chrom-RP, +%U is #th average 467	
chromatin profile signal on the Yth window). These RPs are then normalized using the same 468	
normalization factors from the original RPs $S*%&I = logL$S*%& + 1M −

N
Z ∑ LlogL$%& + 1MMZ

N . 469	
 470	
After deletion, the model RPs are recalculated using the weights from the logistic regression 471	
model from chromatin profile feature selection without refitting and subtracted from the non-472	
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deletion model-RP, producing a ΔRP value for each gene, defined as the linear combination of 473	
differences in regulatory potentials: Δ$*&I = ∑ R%($%&I% − $S*%&I ).  474	
 475	
Combined statistics method for TR ranking 476	
The peak-RPs or ΔRPs of the query gene set are compared with that of the background gene set 477	
through the one-sided Wilcoxon rank-sum test. For ChIP-seq-based methods, peak-RP, DNase-478	
seq and H3K27ac chom-RP are combined to get a robust prediction of the TRs. For motif-based 479	
methods, DNase-seq and H3K27ac ΔRPs are combined to get the final inference of TRs. Both 480	
combination of statistics follows the Cauchy combination test38, in which the combined statistics 481	
for each TR is 8% = ∑ )*tan	{(0.5 − `*)a}<

*cN , # represents one TR,  7 represents 7th method within 482	
ChIP-seq-based or motif-based methods, `* is the corresponding p-value, )* is set to 1/d where 483	
d is 3 for ChIP-seq-based method or 2 for the motif-based method. The combined p-value for a 484	
TR # is computed as `% = 1/2 − (arctan(8%))/a. 485	
 486	
Baseline method 487	
The baseline method, which is “peaks in promoter” for ChIP-seq based method or “hits in promoter” 488	
for the motif-based method, is implemented by counting the number of TF ChIP-seq binding 489	
summits or motif hits within the genomic interval from 5kb upstream to 5kb downstream of the 490	
TSS. The peaks or motif counts in the promoter of target gene set are compared with that of the 491	
background gene set using the one-sided Wilcoxon rank-sum test.  492	
 493	
Comparison of “direct” and “indirect” binding sites  494	
For up- and down-regulated gene sets from the same experiment, the peaks of the target TR 495	
ChIP-seq samples with the most significant p-values are defined as “direct” or ”indirect” binding 496	
sites based on the target TR motif scores. Peak-RPs of “direct” or ”indirect” binding sites are 497	
calculated and normalized to percentiles. Statistical significance between query and background 498	
gene sets was calculated by the one-sided Wilcoxon rank sum test.  499	
 500	
Comparison of Lisa with published methods	501	
All up- and down-regulated gene sets in Lisa’s benchmark dataset were also used to test other 502	
published methods. BART and ICistargets were manually run through the online websites with 503	
the default settings. Enrichr was run using the API. When comparing the motif-based methods, 504	
PWMs from species other than human or mouse were removed since they are not included in 505	
LISA framework.  506	
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BART: http://bartweb.org/ 507	
ICistargets: https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget/?ref=labworm 508	
Enrichr: http://amp.pharm.mssm.edu/Enrichr/ 509	
 510	
Lisa pipeline 511	
The Lisa pipeline is implemented with Snakemake73. Lisa contains an interface to process FASTQ 512	
format files to BigWig format files, and to generates hdf5 files containing the chrom-RP matrices 513	
and 1kb resolution data required by the Lisa model module.  514	
 515	
Lisa online application 516	
We have implemented the online version of Lisa (http://lisa.cistrome.org) using the Flask Python 517	
web development framework, along with process control software Celery to queue numerous 518	
queries. The analysis result of the target gene set is closely linked to the Cistrome DB. The 519	
scatterplot comparing TR ranking results from a pair of query gene sets such as up- and down-520	
regulated gene sets is implemented in Plot.ly.  521	
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Figures 688	

Fig. 1. Illustration of the Lisa framework. (a) The peak-RP score models the effect of TR binding 689	
sites on the regulation of a gene. TR binding sites are binary values and peaks nearer to the 690	
gene’s TSS have a greater influence than ones further away. (b) The chrom-RP score summarizes 691	
the effect of the DNase-seq or H3K27ac chromatin environment on a gene. The chrom-RP score 692	
is based on a continuous rather than binary signal quantification. (c) Overview of the Lisa 693	
framework. (1) H3K27ac ChIP-seq or DNase-seq data from the Cistrome DB is summarized using 694	
the chrom-RP score for each gene. (2) H3K27ac ChIP-seq or DNase-seq samples that can 695	
discriminate between the query gene set and the background gene set are selected and the 696	
regression parameters define a chrom-RP model. (3) Each TR cistrome from the Cistrome DB is 697	
evaluated as a putative regulator of the query gene set through in silico deletion, which involves 698	
the elimination of H3K27ac ChIP-seq or DNase-seq signal at the binding sites of the putative 699	
regulator. (4) The chrom-RP model, based on in silico deletion signal, is compared to the model 700	
without deletion for each gene in the query and background gene sets. A p-value is calculated 701	
using the Wilcoxon rank test comparison of the query and background ΔRPs. (5) The peak-RP 702	
based on TR ChIP-seq peaks is calculated for the putative regulatory cistrome and the statistical 703	
significance of peak-RP distributions from the query and background gene sets is calculated. (6) 704	
p-values from the H3K27ac ChIP-seq, DNase-seq and peak-RP analysis are combined using the 705	
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Cauchy combination test. TR cistromes are ranked based on the combined p-value.   706	

Fig. 2. A down-regulated gene set from a GATA6 knock-down experiment in gastric cancer KATO-707	
III cells is used as a case study to demonstrate the Lisa framework. (a) Heatmap of regulatory 708	
potentials used to discriminate down-regulated genes from non-regulated background genes. (b) 709	
In silico deletion analysis using GATA6 and CTCF cistromes to probe chromatin landscape 710	
models near an illustrative down-regulated gene, LINC01133 and a background gene ZC3H12A. 711	
Only the H3K27ac ChIP-seq and DNase-seq chromatin profiles with the largest positive 712	
coefficients are shown, although other samples contribute to the respective H3K27ac ChIP-seq 713	
and DNase-seq chromatin models. (c) Comparison of ΔRPs indicates GATA6 and GATA4 714	
cistromes have a large impact on the chromatin landscapes near down-regulated genes, and are 715	
therefore likely to be regulators of the query gene set. CTCF does not influence the chromatin 716	
landscape of the down-regulated genes and is not likely to regulate the query gene set. (d) The 717	
rank statistics for the Lisa analysis of the down-regulated gene set in the GATA6 knockdown 718	
experiment were combined to get overall TR ranks. The top 8 and bottom 8 TRs for all TR ChIP-719	
seq samples are shown.  720	

Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to each Cistrome DB 721	
cistrome. The large heatmap shows the hierarchical clustering of 8,471 human Cistrome DB 722	
ChIP-seq cistromes based on peak-RP, with color representing Pearson correlation coefficients 723	
between peak-RPs. The three bars to the left of the heatmap display Lisa significance scores for 724	
differentially expressed genes sets derived from GR activation in the A549 cell line (up-regulated), 725	
GATA6 knock-down in gastric cancer (down-regulated) and AR activation in the LNCaP cell line 726	
(up-regulated). Small heatmaps show details of the global heatmap relevant to (a) AR activation, 727	
(b) GATA6 knock-down, and (c) GR activation gene sets. In each case the most significant 728	
cistromes are derived from the same cell type or lineage. 729	
 730	
Fig. 4. Lisa can accurately identify key transcriptional regulators and coregulators using Cistrome 731	
DB cistromes. Lisa analyses of up- and down-regulated gene sets from (a) GR over-expression, 732	
(b) BCL6 knock-down, (c) MYC knock-down and (d) SOX2 knock-out experiments. The scatter 733	
plots show negative log10 Lisa p-values of 1316 unique transcriptional regulators for up- and down-734	
regulated gene sets. Colors indicates log2 fold changes of the TF gene expression between 735	
treatment and control conditions in the gene expression experiment. Dots outlined with a circle 736	
denote transcriptional regulators that physically interact with the TF perturbed in the experiment, 737	
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which is marked with a cross.  738	
 739	
Fig. 5. Systematic evaluation of regulator prediction performance for human using Cistrome DB 740	
ChIP-seq and DNA motif derived cistromes. (a) Heatmap showing Lisa performance in the 741	
analysis of human TF perturbation experiments. Each column represents a TF activation/over-742	
expression or knock-down/out experiment with similar experiment types grouped together. Rows 743	
represent methods based on cistromes from TR ChIP-seq data or imputed from motifs. The upper 744	
left red triangles represent the rank of the target TFs based on the analysis of the up-regulated 745	
gene sets; the lower right blue triangles represent analysis of down-regulated gene sets. The 746	
heatmap includes non-redundant human experiments for the same TF. See Supplementary Fig. 747	
5 for the complete list of human and mouse experiments. (b) Boxplot showing the target TF 748	
rankings comparing Lisa ChIP-seq based methods and the baseline model based on TF peak 749	
counts in gene promoter regions to analyze up- and down-regulated gene sets in over-750	
expression/activation (OE) and knock-down/out experiments (KD/KO).  (c) Boxplot showing target 751	
TF rankings using Lisa motif-based methods and the baseline model based on motif hits in 752	
promoter regions.  753	
 754	
Fig. 6. Lisa performance surpasses published models. Lisa performance is compared with 755	
alternative published methods for (a) up-regulated genes in over-expression/activation 756	
experiments and (b) down-regulated genes in knock-down/out experiments.  757	
 758	
Supplementary Fig. 1. Catalog of chromatin and cistrome profiles integrated in the Lisa 759	
framework. (a) Stacked bar plot showing the Cistrome DB (version 1) chromatin profile sample 760	
numbers in major cell types for human and mouse. Histogram showing the numbers of cell lines 761	
in which TFs in the Cistrome DB are represented by ChIP-seq samples for (b) human, and (c) 762	
mouse. (d) Heatmap displaying the ChIP-seq sample number for each of the TR - cell line 763	
combinations. The color represents the sample number.  764	
 765	
Supplementary Fig. 2. Lisa chromatin landscape model evaluation for the down-regulated gene 766	
set from a GATA6 knock-down experiment in gastric cancer. (a) ROC curve for the performance 767	
of the classifier in discriminating the target gene set from a background gene set based on DNase-768	
seq. (b) DNase-seq samples selected from the Cistrome DB and the associated logistic 769	
regression coefficients. (c) ROC curve for the performance of the classifier in discriminating the 770	
target gene set from a background gene set based on H3K27ac ChIP-seq. (d) H3K27ac ChIP-771	
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seq samples selected from the Cistrome DB and the associated logistic regression coefficients.  772	
	773	
Supplementary Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to 774	
Cistrome DB cistromes. The large heatmap shows the hierarchical clustering of 8,471 775	
transcriptional regulators based on peak-RP derived from Cistrome DB ChIP-seq cistromes, with 776	
color representing Pearson correlation coefficients between peak-RPs. The two bars on the left 777	
represent Lisa significance scores from SOX2 and POU5F1 perturbation experiments. A detail 778	
heatmap showing the clusters of samples enriched around the significant TFs include SOX2, 779	
POU5F1, NANOG, CTNNB1 and SMAD3.	780	
 781	
Supplementary Fig. 4. Additional cases showing that Lisa can accurately infer TRs and 782	
coregulators using Cistrome DB cistromes. Lisa analysis for up- and down-regulated gene sets 783	
from (a) POU5F1 knock-down, (b) KLF5 knock-down, (c) NFE2L2 knock-down. The scatter plots 784	
show negative log10 Lisa p-values of 1316 unique transcriptional regulators for up- and down-785	
regulated gene sets. Color indicates log2 fold change of the TF gene expression between 786	
treatment and control conditions in the gene expression experiment. Dots outlined with a circle 787	
denote transcriptional regulators that physically interact with the target TF, which is marked with 788	
a cross.	 (d) Radar plot of cofactors discovered along with the target TFs grouped by TF 789	
perturbation. The top ranked TFs are at the perimeter and the lowest ranked are at the center. 790	
The blue and red curves represent the ranks of interactors in the Lisa analysis for down- and up-791	
regulated gene sets, respectively. 792	
 793	
Supplementary Fig. 5. Systematic application of Lisa to large-scale transcriptional regulator 794	
perturbation study reveals novel recurring regulatory patterns for both human and mouse. (a-b) 795	
Heatmap showing that Lisa is capable of predicting most of the TF perturbation benchmark gene 796	
sets based on cistrome profiles for (a) human and (b) mouse. Each column represents a TF 797	
activation/over-expression or knock-down/out experiment with similar experiment types  grouped 798	
together. Rows represent Lisa methods based on cistromes from TR ChIP-seq data or imputed 799	
from motifs. The upper left red triangles represent the rank of the target TFs based on the analysis 800	
of the up-regulated gene sets; the lower right blue triangles represent analysis of down-regulated 801	
gene sets. The heatmap contains all of the gene sets used in the evaluation. (c-d) the ROC AUC 802	
metrics for the Lisa chromatin model for predicting the target gene set from TF perturbation 803	
benchmark datasets in (c) human and (d) mouse. (e) Boxplots showing mouse benchmark 804	
dataset performance of Lisa ChIP-seq based models and the baseline model based on TF peak 805	
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counts in gene promoter regions. (f) Boxplots showing mouse benchmark datasets performance 806	
of Lisa motif-based methods and the baseline model based on motif hits in promoter regions. 807	
 808	
Supplementary Fig. 6. Comparison of direct and indirect binding sites in ER and GR activation 809	
experiments. Direct binding sites are defined as ChIP-seq peaks with the cognate TR motif and 810	
the indirect binding sites are defined as the peaks without the motif. Peak-RPs calculated based 811	
on direct and indirect peaks are compared between query and background gene sets.  812	
 813	
Supplementary Table 1: Cistrome profile annotation table including TR ChIP-seq and TF motifs 814	
Supplementary Table 2: DNase-seq and H3K27ac sample annotation table for mouse and 815	
human 816	
Supplementary Table 3: Analysis of Lisa predictions of GR and ER regulated genes using data 817	
which does not match the specific cell type. The cell line and cell type of the highest ranked Lisa 818	
predicted target TR sample are shown in parentheses in each case. 819	
Supplementary Table 4: TF perturbation DNA microarray meta table for benchmarking the peak-820	
RP and Lisa methods 821	
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Fig. 1. Illustration of the Lisa framework. (a) The peak-RP score models the effect of 

TR binding sites on the regulation of a gene. TR binding sites are binary values and 

peaks nearer to the gene’s TSS have a greater influence than ones further away. (b) 

The chrom-RP score summarizes the effect of the DNase-seq or H3K27ac chromatin 

environment on a gene. The chrom-RP score is based on a continuous rather than 

binary signal quantification. (c) Overview of the Lisa framework. (1) H3K27ac ChIP-

seq or DNase-seq data from the Cistrome DB is summarized using the chrom-RP 

score for each gene. (2) H3K27ac ChIP-seq or DNase-seq samples that can 

discriminate between the query gene set and the background gene set are selected 

and the regression parameters define a chrom-RP model. (3) Each TR cistrome from 

the Cistrome DB is evaluated as a putative regulator of the query gene set through in 

silico deletion, which involves the elimination of H3K27ac ChIP-seq or DNase-seq 

signal at the binding sites of the putative regulator. (4) The chrom-RP model, based on 

in silico deletion signal, is compared to the model without deletion for each gene in the 

query and background gene sets. A p-value is calculated using the Wilcoxon rank test 

comparison of the query and background ΔRPs. (5) The peak-RP based on TR ChIP-

seq peaks is calculated for the putative regulatory cistrome and the statistical 

significance of peak-RP distributions from the query and background gene sets is 

calculated. (6) p-values from the H3K27ac ChIP-seq, DNase-seq and peak-RP 

analysis are combined using the Cauchy combination test. TR cistromes are ranked 

based on the combined p-value. 
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Fig. 2. A down-regulated gene set from a GATA6 knock-down experiment in gastric 

cancer KATO-III cells is used as a case study to demonstrate the Lisa framework. (a) 

Heatmap of regulatory potentials used to discriminate down-regulated genes from non-

regulated background genes. (b) In silico deletion analysis using GATA6 and CTCF 

cistromes to probe chromatin landscape models near an illustrative down-regulated 

gene, LINC01133 and a background gene ZC3H12A. Only the H3K27ac ChIP-seq and 

DNase-seq chromatin profiles with the largest positive coefficients are shown, although 

other samples contribute to the respective H3K27ac ChIP-seq and DNase-seq 

chromatin models. (c) Comparison of ΔRPs indicates GATA6 and GATA4 cistromes 

have a large impact on the chromatin landscapes near down-regulated genes, and are 

therefore likely to be regulators of the query gene set. CTCF does not influence the 

chromatin landscape of the down-regulated genes and is not likely to regulate the 

query gene set. (d) The rank statistics for the Lisa analysis of the down-regulated gene 

set in the GATA6 knockdown experiment were combined to get overall TR ranks. The 

top 8 and bottom 8 TRs for all TR ChIP-seq samples were shown.  
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Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to each 

Cistrome DB cistrome. The large heatmap shows the hierarchical clustering of 8,471 

human Cistrome DB ChIP-seq cistromes based on peak-RP, with color representing 

Pearson correlation coefficients between peak-RPs. The three bars to the left of the 

heatmap display Lisa significance scores for differentially expressed genes sets 

derived from GR activation in the A549 cell line (up-regulated), GATA6 knock-down in 

gastric cancer (down-regulated) and AR activation in the LNCaP cell line (up-

regulated). Small heatmaps show details of the global heatmap relevant to (a) AR 

activation, (b) GATA6 knock-down, and (c) GR activation gene sets. In each case the 

most significant cistromes are derived from the same cell type or lineage. 
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Fig. 4. Lisa can accurately identify key transcriptional regulators and coregulators 

using Cistrome DB cistromes. Lisa analyses of up- and down-regulated gene sets from 

(a) GR over-expression, (b) BCL6 knock-down, (c) MYC knock-down and (d) SOX2 

knock-out experiments. The scatter plots show negative log10 Lisa p-values of 1316 

unique transcriptional regulators for up- and down-regulated gene sets. Colors 

indicates log2 fold changes of the TF gene expression between treatment and control 

conditions in the gene expression experiment. Dots outlined with a circle denote 

transcriptional regulators that physically interact with the TF perturbed in the 

experiment, which is marked with a cross.  
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Fig. 5. Systematic evaluation of regulator prediction performance for human using 

Cistrome DB ChIP-seq and DNA motif derived cistromes. (a) Heatmap showing Lisa 

performance in the analysis of human TF perturbation experiments. Each column 

represents a TF activation/over-expression or knock-down/out experiment with similar 

experiment types grouped together. Rows represent methods based on cistromes from 

TR ChIP-seq data or imputed from motifs. The upper left red triangles represent the 

rank of the target TFs based on the analysis of the up-regulated gene sets; the lower 

right blue triangles represent analysis of down-regulated gene sets. The heatmap 

includes non-redundant human experiments for the same TF. See Supplementary Fig. 

5 for the complete list of human and mouse experiments. (b) Boxplot showing the 

target TF rankings comparing Lisa ChIP-seq based methods and the baseline model 

based on TF peak counts in gene promoter regions to analyze up- and down-regulated 

gene sets in over-expression/activation (OE) and knock-down/out experiments 

(KD/KO).  (c) Boxplot showing target TF rankings using Lisa motif-based methods 

and the baseline model based on motif hits in promoter regions.  
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Fig. 6. Lisa performance surpasses published models. Lisa performance is compared 

with alternative published methods for (a) up-regulated genes in over-

expression/activation experiments and (b) down-regulated genes in knock-down/out 

experiments.  
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Supplementary Fig. 1. Catalog of chromatin and cistrome profiles integrated in the 

Lisa framework. (a) Stacked bar plot showing the Cistrome DB (version 1) chromatin 

profile sample numbers in major cell types for human and mouse. Histogram showing 

the numbers of cell lines in which TFs in the Cistrome DB are represented by ChIP-

seq samples for (b) human, and (c) mouse. (d) Heatmap displaying the ChIP-seq 

sample number for each of the TR - cell line combinations. The color represents the 

sample number. 
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Supplementary Fig. 2. Lisa chromatin landscape model evaluation for the down-

regulated gene set from a GATA6 knock-down experiment in gastric cancer. (a) ROC 

curve for the performance of the classifier in discriminating the target gene set from a 

background gene set based on DNase-seq. (b) DNase-seq samples selected from the 

Cistrome DB and the associated logistic regression coefficients. (c) ROC curve for the 

performance of the classifier in discriminating the target gene set from a background 

gene set based on H3K27ac ChIP-seq. (d) H3K27ac ChIP-seq samples selected from 

the Cistrome DB and the associated logistic regression coefficients.  
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Supplementary Fig. 3. Lisa predicts key transcriptional regulators and assigns 

significance to Cistrome DB cistromes. The large heatmap shows the hierarchical 

clustering of 8,471 transcriptional regulators based on peak-RP derived from Cistrome 

DB ChIP-seq cistromes, with color representing Pearson correlation coefficients 

between peak-RPs. The two bars on the left represent Lisa significance scores from 

SOX2 and POU5F1 perturbation experiments. A detail heatmap showing the clusters 

of samples enriched around the significant TFs include SOX2, POU5F1, NANOG, 

CTNNB1 and SMAD3. 
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Supplementary Fig. 4. Additional cases showing that Lisa can accurately infer TRs 

and coregulators using Cistrome DB cistromes. Lisa analysis for up- and down-

regulated gene sets from (a) POU5F1 knock-down, (b) KLF5 knock-down, (c) NFE2L2 

knock-down. The scatter plots show negative log10 Lisa p-values of 1316 unique 

transcriptional regulators for up- and down-regulated gene sets. Color indicates log2 

fold change of the TF gene expression between treatment and control conditions in 

the gene expression experiment. Dots outlined with a circle denote transcriptional 

regulators that physically interact with the target TF, which is marked with a cross. (d) 

Radar plot of cofactors discovered along with the target TFs grouped by TF 

perturbation. The top ranked TFs are at the perimeter and the lowest ranked are at the 

center. The blue and red curves represent the ranks of interactors in the Lisa analysis 

for down- and up-regulated gene sets, respectively. 
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Supplementary Fig. 5. Systematic application of Lisa to large-scale transcriptional 

regulator perturbation study reveals novel recurring regulatory patterns for both human 

and mouse. (a-b) Heatmap showing that Lisa is capable of predicting most of the TF 

perturbation benchmark gene sets based on cistrome profiles for (a) human and (b) 

mouse. Each column represents a TF activation/over-expression or knock-down/out 

experiment with similar experiment types grouped together. Rows represent Lisa 

methods based on cistromes from TR ChIP-seq data or imputed from motifs. The 

upper left red triangles represent the rank of the target TFs based on the analysis of 

the up-regulated gene sets; the lower right blue triangles represent analysis of down-

regulated gene sets. The heatmap contains all of the gene sets used in the evaluation. 

(c-d) the ROC AUC metrics for the Lisa chromatin model for predicting the target gene 

set from TF perturbation benchmark datasets in (c) human and (d) mouse. (e) Boxplots 

showing mouse benchmark dataset performance of Lisa ChIP-seq based models and 

the baseline model based on TF peak counts in gene promoter regions. (f) Boxplots 

showing mouse benchmark datasets performance of Lisa motif-based methods and 

the baseline model based on motif hits in promoter regions. 
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Supplementary Fig. 6. Comparison of direct and indirect binding sites in ER and GR 

activation experiments. Direct binding sites are defined as ChIP-seq peaks with the 

cognate TR motif and the indirect binding sites are defined as the peaks without the 

motif. Peak-RPs calculated based on direct and indirect peaks are compared between 

query and background gene sets.  
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