

1 Inferring transcriptional regulators through integrative modeling of 2 public chromatin accessibility and ChIP-seq data

3 Qian Qin^{1,2,*}, Jingyu Fan^{1,*}, Rongbin Zheng¹, Changxin Wan¹, Shenglin Mei¹, Qiu Wu¹,

4 Hanfei Sun¹, Jing Zhang^{3,4,+}, Myles Brown^{5,6}, Clifford A. Meyer^{5,7,+}, X. Shirley Liu^{1,5,7,+}

5 ¹Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary
6 Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China

7 ² Children's hospital of Fudan University, Center of Molecular Medicine, Shanghai 201102, China

8 ³ School of Life Science and Technology, Tongji University, Shanghai 200065, China

9 ⁴ Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology,

10 Tongji University, Shanghai 200065, China

11 ⁵ Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215,
12 USA

13 ⁶ Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
14 Massachusetts 02215, USA

15 ⁷ Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public
16 Health, Boston, Massachusetts 02215, USA

17

18 * These authors contributed equally to this work and can interchangeably be ordered as co-first author.

19 + Corresponding authors: cliff_meyer@ds.dfcf.harvard.edu, xsliu@ds.dfcf.harvard.edu,

20 zhangjing@tongji.edu.cn.

21 **Abstract**

22 We developed Lisa (<http://lisa.cistrome.org>) to predict the transcriptional regulators (TRs) of
23 differentially expressed or co-expressed gene sets. Based on the input gene sets, Lisa first uses
24 compendia of public histone mark ChIP-seq and chromatin accessibility profiles to construct a
25 chromatin model related to the regulation of these genes. Then using TR ChIP-seq peaks or
26 imputed TR binding sites, Lisa probes the chromatin models using *in silico* deletion to find the
27 most relevant TRs. Applied to gene sets derived from targeted TF perturbation experiments, Lisa
28 boosted the performance of imputed TR cistromes, and outperformed alternative methods in
29 identifying the perturbed TRs.

30

31 **Keywords**

32 Transcription factors, gene regulation, chromatin accessibility, DNase-seq, H3K27ac ChIP-seq,
33 differential gene expression, gene set analysis

34

35 **List of abbreviations**

36 TF: transcription factor

37 CR: chromatin regulator

38 TR: transcriptional regulator
39 RP: regulatory potential
40 ISD: in silico deletion
41 ROC: receiver operator characteristic
42 AUC: area under curve
43 ChIP-seq: chromatin immunoprecipitation followed by DNA sequencing
44 DNase-seq: DNase I digestion followed by DNA sequencing
45 H3K27ac: histone H3 lysine 27 acetylation
46 AR: Androgen Receptor
47 ER: Estrogen Receptor
48 GR: Glucocorticoid Receptor
49

50 **Introduction**

51 Transcriptional regulators (TRs), which include transcription factors (TFs) and chromatin
52 regulators (CRs), play essential roles in controlling normal biological processes and are frequently
53 implicated in disease¹⁻⁴. The genomic landscape of TF binding sites and histone modifications
54 collectively shape the transcriptional regulatory environments of genes⁵⁻⁸. ChIP-seq has been
55 widely used to map the genome-wide set of cis-elements bound by trans-acting factors such as
56 TFs and CRs, which we henceforth refer to as “cistromes”⁹. There are approximately 1,500
57 transcription factors in human and mouse^{10,11}, regulating a wide variety of biological processes in
58 constitutive or cell-type-specific manners, and tens of thousands of ChIP-seq and DNase-seq
59 experiments have been performed in human and mouse. We previously developed the Cistrome
60 Data Browser (DB)¹², a collection of uniformly processed TF ChIP-seq (~11,000) and chromatin
61 profiles (~12,000 histone mark ChIP-seq and DNase-seq) in human and mouse.

62
63 The question we address in this paper is how to effectively use these data to infer the TRs that
64 regulate a query gene set derived from differential or correlated gene expression analyses in
65 human or mouse. TR ChIP-seq data, when available, is the most accurate available data type
66 representing TR binding. ChIP-seq data availability, in terms of covered TRs and cell types, even
67 with large contributions from projects such as ENCODE¹³, is still sparse due to the limited
68 availability of specific antibodies. Although advances have been made in TR cistrome mapping
69 with the introduction of technologies such as CETCh-seq¹⁴ and CUT & RUN¹⁵, the difficulties in
70 acquiring TR ChIP-seq data for new factors limit the TR by cell type coverage of high quality TR
71 ChIP-seq data. Chromatin accessibility data, including DNase-seq^{16,17} and ATAC-seq¹⁸, is

72 available for hundreds of cell types and provides maps of the regions in which TRs are likely to
73 be bound in the represented cell types. The H3K27ac histone modification, associated with active
74 enhancers and promoters of actively transcribed genes, has been widely profiled using ChIP-seq
75 in many cell types^{5,19}. When TF ChIP-seq data is not available, TF binding motifs, used in
76 combination with chromatin accessibility data or H3K27ac ChIP-seq data might be used to infer
77 TF binding sites^{7,20,21}. Machine learning approaches that transfer models learnt from TF ChIP-seq
78 peaks, motifs and DNase-seq data between cell types are promising ways of imputing TF
79 cistromes, although imputation of TF binding sites on a large scale remains to be implemented²²⁻
80 ²⁷. Computationally imputed TF binding data is expected to represent TF binding sites less
81 accurately than TF ChIP-seq experimental data, so we sought to develop a TR prediction method
82 that could use imputed TF cistromes effectively, along with ChIP-seq derived ones.

83

84 We previously developed MARGE to characterize the regulatory association between H3K27ac
85 ChIP-seq and differential gene expression in terms of a regulatory potential (RP) model²⁸. The
86 RP model provides a summary statistic of the cis-regulatory influence of the many cis-regulatory
87 elements that might influence a gene's transcription rate. MARGE builds a classifier based on
88 H3K27ac ChIP-seq RPs from the Cistrome DB to discriminate the genes in a query differentially
89 expressed gene set from a set of background genes. One of the functions of MARGE is to predict
90 the cis-regulatory elements (*i.e.* genomic intervals) that regulate a gene set. BART²⁹ extends
91 MARGE, to predict the TRs that regulate the query gene set through an analysis of the predicted
92 cis-regulatory elements. Here we describe Lisa (the second descendent of MARGE), a more
93 accurate method of integrating H3K27ac ChIP-seq and DNase-seq with TR ChIP-seq or imputed
94 TR binding sites to predict the TRs that regulate a query gene set. Unlike BART, Lisa does not
95 carry out an enrichment analysis of the cis-regulatory elements predicted by MARGE. Instead,
96 Lisa analyses the relationship between TR binding and the gene set using RP models and RP
97 model perturbations. We assessed the performance of Lisa and other TR identification methods,
98 BART²⁹, i-CisTarget³⁰ and Enrichr³¹ using differentially expressed gene sets derived from
99 experiments in which the activities of specific TFs were perturbed by knockdown, knockout, over-
100 expression, stimulation or inhibition.

101

102 **Results and Discussion**

103

104 **Regulatory TR prediction based on Cistrome DB ChIP-seq peaks**

105 High quality TR ChIP-seq data, when available, accurately characterizes genome-wide TR
106 binding sites, which can be used to infer the regulated genes in particular cell types. Estimating
107 the effect of TR binding on gene expression is not trivial because: (1) there is no accurate map
108 linking enhancers to the genes they regulate³², (2) multiple enhancers can regulate the same
109 gene³³ and a single enhancer can regulate multiple genes³⁴ and (3) not all TR binding sites are
110 functional enhancers¹⁹. A model is therefore needed to quantify the likelihood of a gene being
111 regulated by a TR cistrome. The “peak-RP” model^{35,36} is based on TR ChIP-seq peaks, serving
112 as a proxy for TR binding sites, without the use of DNase-seq or H3K27ac ChIP-seq data. In the
113 peak-RP model (Fig. 1a) the effect a TR binding site has on the expression of a gene is assumed
114 to decay exponentially with the genomic distance between the TR binding site and the TSS, and
115 the contribution of multiple binding sites is assumed to be additive³⁶. Accounting for the number
116 of TR binding sites and for the distances of these sites from the TSS has been shown to be more
117 accurate than alternative TR target assignment methods³⁷. While it is possible that enhancers
118 could modulate each other in non-additive ways³², data on these types of behavior are too scarce
119 to incorporate in a TR prediction model.

120

121 We use the peak-RP model to identify TFs that are likely regulators of a target gene set by
122 searching for Cistrome DB¹² cistromes that produce higher peak-RPs for the query gene set than
123 for a set of background genes (Supp. Fig. 1, Supp. Table 1). Statistical significance is calculated
124 using the one-sided Wilcoxon rank-sum test statistic comparing the peak-RPs for the query gene
125 set with the background. The TRs with the most significant p-values are considered to be the
126 candidate regulators. Lisa uses TR ChIP-seq within the peak-RP model, along with the chromatin
127 landscape models described below to infer the TRs of a gene set.

128

129 **Regulatory TR prediction using a chromatin landscape model**

130 While TR ChIP-seq data provides accurate information about TR cistromes in specific cell types,
131 the Cistrome DB TR by cell type coverage is skewed towards a few TRs, such as CTCF, which
132 are represented in many cell types, and towards cell types such as K562 (Supp. Fig. 1b-c), in
133 which many TRs have been characterized (Supp. Fig. 1d). H3K27ac ChIP-seq¹⁹ and DNase-seq¹⁶,
134 available in a large number and variety of cell types, can be used to infer cell type specific
135 regulatory regions. These types of data could enhance the use of TR ChIP-seq data as well as
136 imputed TF binding data, which may not accurately represent TF binding sites in different cell
137 contexts.

138

139 To boost the performance of TF ChIP-seq or imputed TF binding data in the identification of
140 regulatory TRs, we developed Lisa chromatin landscape models, which use H3K27ac ChIP-seq
141 and DNase-seq chromatin profiles (Fig. 1b, Supp. Table 2, and Methods) to model the regulatory
142 importance of different genomic loci. As differential gene expression experiments are not always
143 carried out in parallel with chromatin profiling experiments, Lisa does not require the
144 corresponding user-generated chromatin profiles, but instead uses the DNase-seq and H3K27ac
145 ChIP-seq data that is available in the Cistrome DB to help identify cis-regulatory elements
146 controlling a differential expression gene set. To this end, Lisa models chromatin landscapes
147 through chromatin RPs (chrom-RPs, Fig. 1b), which are defined in a similar way to the peak-RP
148 with one small difference: genome-wide read signals instead of peak calls are used in the
149 calculation of the chrom-RP²⁸. Changes in H3K27ac ChIP-seq and DNase-seq associated with
150 cell state perturbations are often a matter of degree rather than switch-like, therefore we base the
151 chrom-RP on reads rather than peaks. The chrom-RP is pre-calculated for each gene (Fig. 1c-1)
152 and for each H3K27ac ChIP-seq / DNase-seq profile in the Cistrome DB (Supp. Fig. 1a, Supp.
153 Table 2). These chrom-RPs quantify the cis-regulatory activities that influence each gene under
154 cell-type specific conditions.

155

156 Given the query gene set, Lisa identifies a small number of Cistrome DB DNase-seq and H3K27ac
157 ChIP-seq samples that are informative about the regulation of these genes. Lisa does this by
158 using the pre-calculated H3K27ac / DNase-seq chrom-RPs to discriminate between the query
159 gene set and a background gene set. Using L1-regularized logistic regression, Lisa assigns a
160 weight to each selected sample so the weighted sum of chrom-RPs on the genes best separates
161 the query and the background gene sets (Fig. 1c-2). This step is carried out separately for
162 H3K27ac ChIP-seq and DNase-seq, yielding a chrom-RP model based on H3K27ac ChIP-seq
163 and another model based on DNase-seq.

164

165 Next, by a process of *in silico* deletion (ISD), Lisa evaluates the effect deleting each TR cistrome
166 has on the chromatin landscape model (Fig. 1c-3). ISD of a TR cistrome involves setting DNase-
167 seq or H3K27ac ChIP-seq chromatin signal to zero in the 1kb intervals containing the peaks in
168 that cistrome and evaluating the effect on the predictions made by the chromatin landscape
169 models. The difference of the model scores before ISD and after ISD quantifies the impact that
170 the deleted TR cistrome is predicted to have on the query and background gene sets. Lisa does
171 not make a prediction of cis-regulatory elements, the approach taken by MARGE and BART.
172 Instead, Lisa probes the effects of deleting putative regulatory TR cistromes on the chrom-RP

173 model. Whereas the chrom-RP integrates data over 200kb intervals, the scale of individual cis-
174 regulatory elements is of the order of 1kb. The ISD approach mitigates the difficulties in
175 transferring information contained in the chrom-RP model from the chrom-RP (200kb) scale to
176 the cis-regulatory element (1kb) scale.

177

178 Finally, to prioritize the candidate TRs, Lisa compares the predicted effects on the query and
179 background gene sets using the one-sided Wilcoxon rank-sum test (Fig. 1c-4). A one-sided test
180 is used because Lisa assumes that the *in silico* deletion of a true regulatory factor will decrease,
181 not increase, the model's ability to discriminate between query and background gene sets. To
182 utilize the power of predictions based on H3K27ac-ChIP-seq and DNase-seq ISD models, and
183 TF ChIP-seq peak-only models (Fig. 1c-5), results are combined using the Cauchy combination
184 test³⁸ (Fig. 1c-6). Whereas MARGE²⁸ predicts cis-regulatory elements (but does not analyze TRs),
185 and BART²⁹ carries out an enrichment analysis of predicted cis-elements to discover TRs, Lisa
186 uses the chromatin landscape model in a different way. In combination with ChIP-seq-derived or
187 computationally imputed TR binding, Lisa probes the effects of TRs on the chromatin RP models
188 of query and background gene sets.

189

190 **Demonstration of chromatin landscape models in a GATA6 knock-down study**

191 We demonstrate Lisa chromatin landscapes and *in silico* deletion using a query gene set defined
192 as the down-regulated genes in a GATA6 knock-down experiment in the KATO-III stomach cancer
193 cell line³⁹ (Fig. 2). Lisa identifies DNase-seq and H3K27ac ChIP-seq chromatin landscape models
194 (Fig. 2a, Fig. 1c-2), which include several gastro-intestinal samples (Supp. Fig. 2b,d) whose
195 chrom-RPs can discriminate between the query and background gene sets (Supp. Fig. 2a,
196 DNase-seq ROC AUC=0.816, Supp. Fig. 2c, H3K27ac ROC AUC=0.821). *In silico* deletion (Fig.
197 1c-3) of GATA6 binding sites produces larger DNase-seq and H3K27ac ΔRPs (DNase ΔRP: 1.05,
198 H3K27ac ΔRPs: 0.25) for an example down-regulated gene, *LINC01133*⁴⁰, than for a background
199 gene, *ZC3H12A* (DNase ΔRP: 0.06, H3K27ac ΔRP: 0.01) (Fig. 2b). *In silico* deletion of CTCF
200 binding sites, in contrast, has a smaller effect on the chromatin landscapes surrounding
201 *LINC01133* (DNase ΔRP: 0.02, H3K27ac ΔRP: 0.01), resulting in ΔRPs that are more similar to
202 the ΔRPs for *ZC3H12A* (Fig. 2b) (DNase ΔRP: 0.004, H3K27ac ΔRP: 0.001). Statistical analysis
203 is carried out comparing all the query gene ΔRPs with all the background gene ΔRPs (Fig 1c-4),
204 producing significant p-values for GATA4 (DNase p-val < 10⁻¹⁰, H3K27ac p-val < 10⁻⁵) and GATA6
205 (DNase p-val < 10⁻¹³, H3K27ac p-val < 10⁻⁷). After this analysis is conducted for all TR ChIP-seq

206 samples in the Cistrome DB and the results are combined and compared, GATA6 and GATA4
207 ChIP-seq from intestinal and gastric tissues have the most significant p-values Fig. 2c,d).

208

209 **Lisa identification of regulatory TF ChIP-seq sample clusters**

210 To investigate whether a TF ChIP-seq cistrome derived from one cell type can be informative
211 about other cell types, we first clustered all the human TR cistromes in the Cistrome DB based
212 on the pairwise Pearson correlation of peak-RP scores as a heatmap (Fig. 3). We then applied
213 Lisa to differentially expressed gene sets defined by perturbations of individual TFs and examined
214 the TR cistromes predicted to be the key regulators of these gene sets. In the analysis of up-
215 regulated genes on Androgen Receptor (AR) activation in the LNCaP prostate cancer cell line,
216 Lisa identified a tight cluster of significant cistromes for AR and its known collaborator FOXA1
217 (Fig. 3a). All samples in this cluster were derived from prostate cancer cell lines. In the analysis
218 of the GATA6 knock-down in the gastric cancer cell line (KATO-III), Lisa found the GATA6 and
219 FOXA2 cistromes in stomach and colon samples to be the most significant. FOXA2 is an important
220 pioneer TF which has been reported to collaborate with GATA6 in gut development to regulate
221 Wnt6⁴¹ and Wnt7b⁴² (Fig. 3b). The identification of GATA6 cistromes in colon cancer cell lines, in
222 addition to gastric cancer cell lines, shows that cistromes derived from cell types that are of related
223 lineages can be used to inform the identification of the relevant regulators, even if the cell types
224 are not the same. In the third example involving Glucocorticoid Receptor (GR) activation in the
225 lung cancer cell line A549, Lisa correctly identified GR in A549 as a likely regulator, and also
226 identified GR in a different cell type HeLa (Fig. 3c). AR, a member of the same nuclear receptor
227 family as GR, is also implicated by Lisa even though the AR cistrome samples do not cluster with
228 GR cistrome samples and have less statistical significance.

229

230 We carried out an analysis of the effects of removing ChIP-seq and DNase-seq data on Lisa's
231 accuracy. In particular, we tested Lisa's performance on three up-regulated gene sets: (1) GR
232 activated genes in breast cancer (MCF7), (2) GR activated genes in lung cancer (A549), and (3)
233 Estrogen Receptor (ER) activated genes in MCF7 (Supp. Table 3). In these analyses we assessed
234 the effect of removing all relevant cell line specific (MCF7 or A549), H3K27ac ChIP-seq and
235 DNase-seq data, or cell line specific TR ChIP-seq data (ER or GR). We also removed cell line
236 specific TR ChIP-seq data together with H3K27ac ChIP-seq and DNase-seq data. We repeated
237 the same analysis removing similar data, on the basis of tissue (breast and lung) instead of on
238 the basis of cell line (MCF7 and A549). When MCF7 ER ChIP-seq are excluded, an ER sample
239 from another breast cancer cell line (H3396) predicts the importance of ER (rank 6) as a regulator

240 of the estrogen activated gene set. When all ER breast ChIP-seq samples are excluded, Lisa can
241 still identify ER (rank 18) from ER ChIP-seq in the VCaP prostate cancer cell line. For the GR
242 activated gene set in MCF7, when GR ChIP-seq data is unavailable in MCF7, Lisa can identify
243 GR as a key regulator (rank 2) using GR ChIP-seq from lung (A549). For the GR activated gene
244 set in lung, Lisa identified GR as the key regulator (rank 1) using GR ChIP-seq data from breast
245 (MDA-MB-231). Together, these observations indicate that although TRs often bind in cell type
246 dependent ways, ChIP-seq derived TR cistromes can be informative about the gene sets that TRs
247 regulate in some other cell types.

248

249 **Lisa identification of TF associated cofactors in addition to TFs**

250 To illustrate Lisa's capacity to find cofactors that interact with the regulatory TFs, we examined
251 the Lisa analyses of four differentially expressed gene sets derived from experiments involving
252 the activation of GR⁴³ and the knock-down/out of BCL6⁴⁴, MYC⁴⁵, and SOX2⁴⁶. Lisa analysis of
253 GR activation in lung cancer ranked GR itself as the most significant TR for the up-regulated gene
254 sets (Fig. 4a), and highly ranked pioneer TFs FOSL2 and CEBPB, which were down-regulated
255 after GR activation (Fig. 3c). BCL6, a predominantly repressive TF, is a driver of diffuse large B-
256 cell lymphoma (DLBCL)⁴⁷. Lisa analysis of the up-regulated genes in a BCL6 knock-down
257 experiment in a DLBCL cell line ranked BCL6 as the most significant TR for this gene set (Fig.
258 4b). Lisa also identified NCOR1 and NCOR2, which are transcriptional BCL6 corepressors
259 involved of the regulation of germinal center⁴⁸⁻⁵⁰. SPI1, which recruits BCL6⁵¹, and BCOR, another
260 BCL6 corepressor⁵², were ranked among the top TRs for the up-regulated gene set. In a MYC
261 knock-down experiment in medulloblastoma, MYC and its dimerization partner, MAX⁵³, were
262 among the top predicted regulators of the down-regulated genes (Fig. 4c). The histone
263 methyltransferase, KDM2B, known to physically interact with MYC and to augment MYC-
264 regulated transcription⁵⁴, was also detected among the top regulators. In the SOX2 knock-out
265 experiment², NANOG, SOX2 and POU5F1, the key regulators of pluripotency, were the top
266 predicted regulators of the down-regulated genes (Fig. 4d). Lisa also discovered a similar set of
267 TRs for the gene set derived from a POU5F1 knockdown experiment in embryonic stem cells
268 (Supp. Fig. 3,4a). In addition, β -catenin (CTNNB1), which interacts with SOX2 and is oncogenic
269 in SOX2⁺ cells⁵⁵, also ranked high for the down-regulated genes. The predicted regulators of the
270 up-regulated genes in this experiment include FOXA1 and EOMES. FOXA1 is involved in early
271 embryonic development⁵⁶, and has been observed to repress NANOG directly⁵⁷. FOXA1 has
272 been shown through co-immunoprecipitation to physically interact with SOX2⁵⁸. SOX2, known to
273 bind to an enhancer regulating EOMES in human ESCs, when knocked down triggers EOMES

274 expression and induces endoderm and trophectoderm differentiation⁵⁹. Thus, in many cases, the
275 known interactors are highly ranked along with the target activator or repressor. This suggests
276 that even though the available TF ChIP-seq data in different cell types are sparse (Supp. Fig. 1d),
277 Lisa can provide insights on possible regulatory TFs since transcriptional machinery tends to be
278 organized in modules of interacting factors⁶⁰ (Supp. Fig. 4d).

279

280 **Systematic evaluation of regulator prediction**

281 To systematically evaluate Lisa, we compiled a benchmark panel of 122 differentially expressed
282 gene sets from 61 studies involving the knock-down, knock-out, activation or over-expression of
283 27 unique human target TFs. In addition, we compiled 112 differentially expressed gene sets
284 derived from 56 studies with 25 unique TF perturbations in mouse (Supp. Table 4, see “galleries”
285 at <http://lisa.cistrome.org>). The full Lisa model was separately applied to the up-regulated and
286 down-regulated gene sets in each experiment. We also carried out analyses of these gene sets
287 using subcomponents of Lisa: the peak-RP method, as well as H3K27ac ChIP-seq and DNase-
288 seq assisted ISD analyses. The putative regulatory cistromes were defined using either ChIP-seq
289 peaks or from TF motif occurrence in the inferred chromatin models. The results allowed us to
290 compare the effectiveness of DNase-seq and H3K27ac ChIP-seq in scenarios where the TF
291 cistromes are well estimated (by ChIP-seq) or less well estimated (by motif). We measured the
292 performance based on their ranking of the perturbed target TF (Fig. 5, Supp. Fig. 5).

293

294 We compared the performance of methods that use TF ChIP-seq data and TF motifs, on up- and
295 down- regulated gene sets, and on over-expression / activation and knock-down / knock-out
296 samples (Fig. 5a). In over-expression studies, the prediction performance of all methods tended
297 to be better for the up-regulated gene sets, than for the down-regulated ones. The reverse is
298 evident in the knock-out and knock-down studies for which the prediction performances are better
299 for the down-regulated gene sets (Fig. 5b,c). This suggests that most of the TFs included in the
300 study have a predominant activating role in the regulation of their target genes, under the
301 conditions of the gene expression experiments, allowing these TFs to be more readily identified
302 with the corresponding direction of primary gene expression response. Similar performance
303 patterns were observed in the mouse benchmark datasets (Supp. Fig. 5). The performances of
304 Lisa using ISD of TR ChIP-seq peak from chromatin landscapes were similar to the TR ChIP-seq
305 peak-RP method, but outperformed motif-based methods by large margins.

306

307 To determine whether differences between up- and down-regulated gene sets could be explained
308 by direct or indirect modes of TR recruitment, we studied two experiments involving ER and GR
309 activation in greater detail. We defined “direct” ER and GR binding sites as ER/GR ChIP-seq
310 peaks on genomic intervals containing the cognate DNA sequence elements, and “indirect” ER
311 and GR binding sites as ER/GR ChIP-seq peaks without the sequence elements. Comparing
312 direct and indirect binding sites in the respective ER and GR activation experiments (Supp. Fig.
313 6) we found that the up-regulated gene sets were more significantly associated with the direct
314 binding sites (ER p-value: 1.5×10^{-15} , GR p-value: 1.5×10^{-18}) than with the indirect ones (ER p-
315 value: 3.8×10^{-4} , GR p-value: 1.4×10^{-12}). The down-regulated gene sets were more significantly
316 associated with the indirect binding sites (ER p-value: 1.5×10^{-15} , GR p-value: 1.5×10^{-11}) than with
317 the direct ones (ER p-value: 4.6×10^{-2} , GR p-value: 3.0×10^{-3}).

318

319 In some cases, the perturbation of a TR may trigger stress, immune or cell cycle checkpoint
320 responses that are not directly related to the initial perturbation. In the Lisa analysis of up-
321 regulated genes after 24 hours of estradiol stimulation (GSE26834), for example, E2F4 is the top
322 ranked TR, followed by ER. Estrogen is known to stimulate proliferation of breast cancer cells via
323 a pathway involving E2F4, a key regulator of the G1/S cell cycle checkpoint⁶¹. In this case, Lisa
324 might be correctly detecting a secondary response to the primary TR perturbation.

325

326 **Comparison of Lisa with published methods**

327 We next compared Lisa with other approaches, including BART²⁹, iCisTarget³⁰ and Enrichr³¹,
328 which can use either TR ChIP-seq data or motifs. We also included a baseline method that ranks
329 TRs by comparing query and background gene sets based on the TR binding site number within
330 5kb centered on the TSS. Lisa outperformed BART, iCisTarget and Enrichr in terms of the
331 percentage of the target TR identified within the top 10 across all the experiments, either using
332 TF binding sites from ChIP-seq data or motif hits (Fig. 6a,b). Lisa uses a model based on
333 chromatin data to give more weight to loci that are more likely to influence the expression of the
334 query gene set. In this way Lisa improves the performance of TR inference with noisy cistrome
335 profiles such as those imputed from DNA sequence motifs. In addition to being more accurate
336 than other methods in terms of TR prediction, the Lisa web server (lisa.cistrome.org) has several
337 unique features which allow investigators to explore relevant ChIP-seq data in ways that are not
338 available in other applications.

339

340 **Lisa Web Site and Gallery of Lisa’s Benchmark Data**

341 The Lisa web site (lisa.cistrome.org) displays two tables of results for each query gene set. The
342 first summarizes the Lisa analysis based on TR ChIP-seq data, the second displays the Lisa
343 analysis of TF binding sites imputed from DNA binding motifs. The ChIP-seq data table displays
344 up to 5 ChIP-seq samples for each TR. Users can sort results by p-value and inspect metadata
345 and quality control statistics for each of the ChIP-seq samples to understand whether the
346 predictive samples may be derived from particular cell types or experimental conditions. Lisa
347 provides quality control metrics, metadata, publication and read data repository links for the ChIP-
348 seq data of putative regulatory TRs. Through Lisa, the ChIP-seq signal tracks can be viewed on
349 the WashU Epigenome Browser⁶². Although the motif imputation-based analysis tends to be less
350 accurate than the ChIP-seq based analysis, motifs can indicate roles for regulatory TRs for which
351 ChIP-seq data is not widely available. Lisa's analysis of all the benchmark gene sets is also
352 viewable on the Lisa web site. Users can explore these analyses to understand the 'typical' results
353 of the analysis. Robust methods combined with visualization and data exploration features make
354 Lisa a valuable tool for analyzing gene regulation in human and mouse.

355

356 **Conclusion**

357 In this study, we describe an approach for using publicly available ChIP-seq and DNase-seq data
358 to identify the regulators of differentially expressed gene sets in human and mouse. On the basis
359 of a series of benchmarks we demonstrate the effectiveness of our method and report recurrent
360 patterns in the TRs predicted by these methods. We find the regulators of the up-regulated genes
361 and the down-regulated ones are often different from each other, therefore in any analysis of
362 differential gene expression, up- and down-regulated gene sets ought to be distinguished. Our
363 results show that many TFs have a preferred directionality of effect, indicative of a predominant
364 repressive or activating function. It is well known that many TFs can recruit both activating and
365 repressive complexes⁶³, so the observed direction may be related to the stoichiometry and affinity
366 of the activating or repressive cofactors. We also observe differences between ChIP-seq based
367 analysis and motif based ones, suggesting differences in TF activity depending on whether a TF
368 interacts directly with DNA or whether it is recruited via another TF⁶⁴. When a TF is recruited by
369 another TF it is likely that the enhancer has been already established by other TFs and protein
370 complexes. Thus, the co-binding enhancer information of multiple TFs allows Lisa to identify both
371 the DNA bound TFs and their partners which might not directly bind DNA.

372

373 Lisa's accuracy in predicting the regulatory TRs of a gene set depends on the perturbation used
374 in the production of the differential gene expression data, the quality of the gene expression data,

375 the availability and quality of the DNase-seq, H3K27ac and TR ChIP-seq data sets, the degree to
376 which binding is dependent on a DNA sequence motif, as well as the validity of the model
377 assumptions. Although we evaluate Lisa using differential gene expression data associated with
378 a TR perturbation, the perturbed TR might not be the main regulator of the gene set. For example,
379 perturbation of a TR may trigger a stress response⁶⁵, or secondary transcriptional effects that are
380 not directly related to the primary TR⁶⁶.

381

382 The modelling approach used in Lisa facilitates the prediction of regulatory TRs using available
383 ChIP-seq and DNase-seq data. DNase-seq and H3K27ac ChIP-seq are available in a broad
384 variety of cell types and these data are informative about cis-regulatory events mediated by many
385 TRs. Although H3K27ac is considered to be a histone modification associated with gene
386 activation Lisa can still identify TRs, such as BCL6 and EZH2, with predominantly repressive
387 functions. Although Lisa uses the correlation between H3K27ac or chromatin accessibility and
388 gene expression to predict regulatory TRs we do not assume that H3K27ac or chromatin
389 accessibility cause the transcriptional changes. Other genomics data types that are predictive of
390 general cis-regulatory activity, when available in quantity, variety and quality, might improve Lisa's
391 performance. More importantly, high quality TR specific binding data, generated by ChIP-seq or
392 alternative technologies, like CETCh-seq¹⁴ or CUT & RUN¹⁵, will be needed to improve Lisa's
393 accuracy in predicting TRs that are not yet well represented in Cistrome DB. TR imputation
394 methods might fill in some gaps in TR binding data, however, families of TRs such as homeobox
395 and forkhead factors, which have similar DNA binding motifs can be hard to discriminate based
396 on DNA sequence analysis.

397

398 Although Lisa aims to identify the regulators of any differentially expressed gene set in human or
399 mouse, no matter the contrast, in practice, the query gene sets should be derived from biologically
400 meaningful differential expression or co-regulation analyses. In this study, we based the methods
401 evaluation on data from available TR perturbation experiments, which are biased towards well
402 studied systems. For this reason, the reliability of methods based on TR ChIP-seq data may be
403 overestimated relative to imputation-based methods because the available TR ChIP-seq data
404 tends to be derived from similar cell types and for the same factors used in the gene perturbation
405 experiments. When the relevant cell type specific TR ChIP-seq data is available the performance
406 of the peak RP-method and ISD methods are similar, but when TR ChIP-seq data is not available,
407 methods based on imputed TR cistromes are obligatory. The value of imputed cistromes relative
408 to ChIP-seq derived ones will depend on the quantity, variety and quality of available ChIP-seq

409 data, the accuracy of the imputed cistromes, the degree of commonality of the genes that are
410 regulated by the same TR in different cell types, and the number of TRs recognizing similar DNA
411 sequence elements. Lisa provides invaluable information about the regulation of gene sets
412 derived from both bulk and single cell expression profiles⁶⁷, and will become more accurate over
413 time with greater coverage of TF ChIP-seq augmented by computationally imputed TF cistromes.

414 **Methods**

415 **Preprocessing of chromatin profiles**

416 Using the BigWig format signal tracks of human and mouse H3K27ac ChIP-seq and DNase-seq
417 from Cistrome DB, we precomputed the chromatin profile regulatory potential (chrom-RP) of each
418 RefSeq gene and also summarized the signal in 1kb windows genome-wide. The chrom-RP for
419 gene k in sample j is defined as $R_{jk} = \sum_{i \in [t_k - L, t_k + L]} w_i s_{ji}$ (as defined in the MARGE algorithm²⁸).
420 L is set to 100kb, and w_i is a weight representing the regulatory influence of a locus at position i
421 on the TSS of gene k at genomic position t_k , $w_i = 2e^{-\mu d} / (1 + e^{-\mu d})$, where $d = |i - t_k|/L$, and i
422 stands for i^{th} nucleotide position within the $[-L, L]$ genomic interval centered on the TSS at t_k . s_{ji}
423 is the signal of chromatin profile j at position i . μ is the parameter to determine the decay rate of
424 the weight, which is defined as $\mu = -\ln L / 3\Delta$. For DNase-seq and H3K27ac ChIP-seq, the decay
425 distance Δ is set to 10kb. The genome-wide read counts on 1kb windows were calculated using
426 the UCSC utility bigWigAverageOverBed⁶⁸. The chrom-RP matrix for chromatin profiles was
427 normalized across RefSeq genes within one chromatin profile by $R'_{jk} = \log(R_{jk} + 1) -$
428 $\frac{1}{k} \sum_1^k (\log(R_{jk} + 1))$.

429

430 **Preprocessing of cistromes**

431 Using all human and mouse transcription regulator (TR) ChIP-seq cistromes peak BED files from
432 the Cistrome Data Browser (v.1). We precomputed the TR binding sites based on ChIP-seq and
433 motif hits based on position weight matrices then transferred as binary values at a 100bp
434 resolution genome-wide. The DNA sequence scores were derived from Cistrome motifs, a
435 redundant collection of 1,061 PWMs from TRANSFAC⁶⁹, JASPAR⁷⁰ and Cistrome DB ChIP-seq
436 that includes 675 unique TFs in human and mouse. The peak based regulatory potential (peak-
437 RP) of a TR cistrome is defined in the same way as the chrom-RP except s_i represents the
438 presence ($s_{ji} = 1$) or absence ($s_{ji} = 0$) of a peak summit within the upstream and downstream
439 100kb centered on TSS. The genome-wide motif scores were scanned at 100bp window size with

440 the library (<https://github.com/qinqian/seqpos2>)⁷¹, and the motif hits are defined by thresholding
441 at 99th percentiles then mapped to the 1kb windows. The genome-wide 1kb windows in which
442 the TR peak summits are located were determined using Bedtools⁷². All of the peak-RPs, TR
443 binding and motif hit data were deposited into hdf5 format files.

444

445 **Lisa framework**

446 **Chromatin landscape model**

447 Lisa selects 3000 background genes by proportionally sampling from non-query genes with a
448 range of different TAD and promoter activities based on compendia of Cistrome DB H3K4me3
449 and H3K27ac ChIP-seq signals. There is no gene ontology enrichment in the background gene
450 set. Lisa then uses L1 regularized logistic regression to select an optimum sample set for
451 H3K27ac ChIP-seq or DNase-seq samples based on R'_{jk} . The L1 penalty parameter is determined
452 by binary search to constrain the number of selected chromatin profiles to be small but sufficient
453 to capture the information (different sample sizes were explored, and ten was used in all the
454 benchmark cases²⁸). Lisa trains a final logistic regression model to predict the target gene set,
455 and obtains a weight α_j for each candidate chromatin profile j , from which the weighted sum of
456 chrom-RP is the model regulatory potential (model-RP).

457

458 ***In silico* deletion (ISD) method**

459 The rationale for the ISD method is that the peaks of the true regulatory TFs should align with the
460 high chromatin accessibility signals from the corresponding tissue or cell type. Therefore, the
461 computational deletion of the chromatin signals on the peaks of regulatory cistromes would result
462 in a more substantial effect on the model-RP for query genes than for background genes. The
463 regulatory potentials are recalculated after erasing the signal in all 1kb windows containing at
464 least one peak from a putative regulatory cistrome i , $\tilde{R}_{ijk} = R_{jk} - \sum_{m \in M_{ik}} l w_m s_{jm}$ (where M_{ik} is
465 the set of 1kb windows containing at least one peak in cistrome i for gene k , l is the window size,
466 which is set to 1kb for this study, w_m is the exponential decay weight with the distance between
467 the m th window center and TSS, the weight function is the same as chrom-RP, s_{jm} is j th average
468 chromatin profile signal on the m th window). These RPs are then normalized using the same
469 normalization factors from the original RPs $\tilde{R}'_{ijk} = \log(\tilde{R}_{ijk} + 1) - \frac{1}{K} \sum_1^K (\log(R_{jk} + 1))$.

470

471 After deletion, the model RPs are recalculated using the weights from the logistic regression
472 model from chromatin profile feature selection without refitting and subtracted from the non-

473 deletion model-RP, producing a Δ RP value for each gene, defined as the linear combination of
474 differences in regulatory potentials: $\Delta R'_{ik} = \sum_j \alpha_j (R'_{jk} - \tilde{R}'_{ijk})$.

475

476 **Combined statistics method for TR ranking**

477 The peak-RPs or Δ RP of the query gene set are compared with that of the background gene set
478 through the one-sided Wilcoxon rank-sum test. For ChIP-seq-based methods, peak-RP, DNase-
479 seq and H3K27ac chom-RP are combined to get a robust prediction of the TRs. For motif-based
480 methods, DNase-seq and H3K27ac Δ RP are combined to get the final inference of TRs. Both
481 combination of statistics follows the Cauchy combination test³⁸, in which the combined statistics
482 for each TR is $t_j = \sum_{i=1}^d w_i \tan \{(0.5 - p_i)\pi\}$, j represents one TR, i represents i th method within
483 ChIP-seq-based or motif-based methods, p_i is the corresponding p-value, w_i is set to $1/d$ where
484 d is 3 for ChIP-seq-based method or 2 for the motif-based method. The combined p-value for a
485 TR j is computed as $p_j = 1/2 - (\arctan(t_j))/\pi$.

486

487 **Baseline method**

488 The baseline method, which is “peaks in promoter” for ChIP-seq based method or “hits in promoter”
489 for the motif-based method, is implemented by counting the number of TF ChIP-seq binding
490 summits or motif hits within the genomic interval from 5kb upstream to 5kb downstream of the
491 TSS. The peaks or motif counts in the promoter of target gene set are compared with that of the
492 background gene set using the one-sided Wilcoxon rank-sum test.

493

494 **Comparison of “direct” and “indirect” binding sites**

495 For up- and down-regulated gene sets from the same experiment, the peaks of the target TR
496 ChIP-seq samples with the most significant p-values are defined as “direct” or “indirect” binding
497 sites based on the target TR motif scores. Peak-RPs of “direct” or “indirect” binding sites are
498 calculated and normalized to percentiles. Statistical significance between query and background
499 gene sets was calculated by the one-sided Wilcoxon rank sum test.

500

501 **Comparison of Lisa with published methods**

502 All up- and down-regulated gene sets in Lisa’s benchmark dataset were also used to test other
503 published methods. BART and ICistargets were manually run through the online websites with
504 the default settings. Enrichr was run using the API. When comparing the motif-based methods,
505 PWMs from species other than human or mouse were removed since they are not included in
506 LISA framework.

507 BART: <http://bartweb.org/>

508 ICistargets: <https://gbimed.kuleuven.be/apps/lcb/i-cisTarget/?ref=labworm>

509 Enrichr: <http://amp.pharm.mssm.edu/Enrichr/>

510

511 **Lisa pipeline**

512 The Lisa pipeline is implemented with Snakemake⁷³. Lisa contains an interface to process FASTQ
513 format files to BigWig format files, and to generates hdf5 files containing the chrom-RP matrices
514 and 1kb resolution data required by the Lisa model module.

515

516 **Lisa online application**

517 We have implemented the online version of Lisa (<http://lisa.cistrome.org>) using the Flask Python
518 web development framework, along with process control software Celery to queue numerous
519 queries. The analysis result of the target gene set is closely linked to the Cistrome DB. The
520 scatterplot comparing TR ranking results from a pair of query gene sets such as up- and down-
521 regulated gene sets is implemented in Plot.ly.

522 **Funding**

523 This work was supported by grants from the NIH (U24 HG009446 to XLS, U24 CA237617 to XSL
524 and CAM), National Natural Science Foundation of China (31801110 to S.M.) and the Shanghai
525 Sailing Program (18YF1402500 to QQ).

526 **References**

- 527 1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. *Cell* **144**, 646–
528 674 (2011).
- 529 2. Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic
530 and Adult Fibroblast Cultures by Defined Factors. *Cell* **126**, 663–676 (2006).
- 531 3. Thurman, R. E. *et al.* The accessible chromatin landscape of the human genome. *Nature*
532 **489**, 75–82 (2012).
- 533 4. Gerstein, M. B. *et al.* Architecture of the human regulatory network derived from ENCODE
534 data. *Nature* **488**, 91–100 (2012).
- 535 5. Creyghton, M. P. *et al.* Histone H3K27ac separates active from poised enhancers and
536 predicts developmental state. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 21931–6 (2010).
- 537 6. Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime cis-

538 regulatory elements required for macrophage and B cell identities. *Mol. Cell* **38**, 576–89
539 (2010).

540 7. He, H. H. *et al.* Nucleosome dynamics define transcriptional enhancers. *Nat. Genet.* **42**,
541 343–7 (2010).

542 8. Mikkelsen, T. S. *et al.* Genome-wide maps of chromatin state in pluripotent and lineage-
543 committed cells. *Nature* **448**, 553–60 (2007).

544 9. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. *Genome-wide mapping of in vivo*
545 *protein-DNA interactions*. *Science (New York, N.Y.)* **316**, (2007).

546 10. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **172**, 650–665 (2018).

547 11. Fulton, D. L. *et al.* TFCat: the curated catalog of mouse and human transcription factors.
548 *Genome Biol.* **10**, R29 (2009).

549 12. Mei, S. *et al.* Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility
550 data in human and mouse. *Nucleic Acids Res.* **45**, D658–D662 (2017).

551 13. ENCODE. An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**,
552 57–74 (2012).

553 14. Savic, D. *et al.* CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins.
554 *Genome Res.* **25**, 1581–1589 (2015).

555 15. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution
556 mapping of DNA binding sites. *eLife* (2017). doi:10.7554/eLife.21856

557 16. Hesselberth, J. R. *et al.* Global mapping of protein-DNA interactions in vivo by digital
558 genomic footprinting. *6*, 283–289 (2009).

559 17. Boyle, A. P. *et al.* High-resolution genome-wide in vivo footprinting of diverse transcription
560 factors in human cells. *Genome Res.* **21**, 456–64 (2011).

561 18. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition
562 of native chromatin for fast and sensitive epigenomic profiling of open chromatin , DNA-
563 binding proteins and nucleosome position. *Nat. Methods* 1–8 (2013).
564 doi:10.1038/nmeth.2688

565 19. Rada-Iglesias, A. *et al.* A unique chromatin signature uncovers early developmental
566 enhancers in humans. *Nature* **470**, 279–83 (2011).

567 20. Meyer, C. A., He, H. H., Brown, M. & Liu, X. S. BINOCh: Binding inference from nucleosome
568 occupancy changes. *Bioinformatics* **27**, 1867–1868 (2011).

569 21. He, H. H. *et al.* Differential DNase I hypersensitivity reveals factor-dependent chromatin
570 dynamics. *Genome Res.* **22**, 1015–25 (2012).

571 22. Keilwagen, J., Posch, S. & Grau, J. Accurate prediction of cell type-specific transcription

572 factor binding. *Genome Biol.* **20**, 1–17 (2019).

573 23. Schreiber, J., Bilmes, J. & Noble, W. S. Completing the ENCODE3 compendium yields
574 accurate imputations across a variety of assays and human biosamples. 1–20 (2019).

575 24. Qin, Q. & Feng, J. Imputation for transcription factor binding predictions based on deep
576 learning. *PLOS Comput. Biol.* **13**, e1005403 (2017).

577 25. Li, H., Quang, D. & Guan, Y. Anchor : trans-cell type prediction of transcription factor binding
578 sites. 281–292 (2019). doi:10.1101/gr.237156.118.29

579 26. Karimzadeh, M. & Hoffman, M. M. Virtual ChIP-seq : predicting transcription factor binding
580 by learning from the transcriptome. (2018).

581 27. Quang, D. & Xie, X. FactorNet : a deep learning framework for predicting cell type specific
582 transcription factor binding from nucleotide-resolution sequential data. 1–27 (2017).

583 28. Wang, S. *et al.* Modeling cis-regulation with a compendium of genome-wide histone
584 H3K27ac profiles. *Genome Res.* **26**, 1417–1429 (2016).

585 29. Wang, Z. *et al.* BART: a transcription factor prediction tool with query gene sets or
586 epigenetic profiles. *Bioinformatics* 0–2 (2018). doi:10.1093/bioinformatics/bty194

587 30. Imrichova, H., Hulselmans, G., Atak, Z. K., Potier, D. & Aerts, S. I-cisTarget 2015 update:
588 Generalized cis-regulatory enrichment analysis in human, mouse and fly. *Nucleic Acids
589 Res.* **43**, W57–W64 (2015).

590 31. Kuleshov, M. V *et al.* Enrichr: a comprehensive gene set enrichment analysis web server
591 2016 update. *Nucleic Acids Res.* **44**, W90-7 (2016).

592 32. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-Changing Landscapes: Transcriptional
593 Enhancers in Development and Evolution. *Cell* **167**, 1170–1187 (2016).

594 33. Osterwalder, M. *et al.* Enhancer redundancy provides phenotypic robustness in
595 mammalian development. *Nature* (2018). doi:10.1038/nature25461

596 34. Fukaya, T., Lim, B. & Levine, M. Enhancer Control of Transcriptional Bursting. *Cell* **166**,
597 358–368 (2016).

598 35. Ouyang, Z., Zhou, Q. & Hung, W. ChIP-Seq of transcription factors predicts absolute and
599 differential gene expression in embryonic stem cells. (2009).

600 36. Wang, S. *et al.* Target analysis by integration of transcriptome and ChIP-seq data with
601 BETA. *Nat. Protoc.* **8**, 2502–2515 (2013).

602 37. Sikora-Wohlfeld, W., Ackermann, M., Christodoulou, E. G., Singaravelu, K. & Beyer, A.
603 Assessing computational methods for transcription factor target gene identification based
604 on ChIP-seq data. *PLoS Comput. Biol.* **9**, e1003342 (2013).

605 38. Liu, Y. & Xie, J. Cauchy combination test: a powerful test with analytic p-value calculation

606 under arbitrary dependency structures. (2018).

607 39. Chia, N. Y. *et al.* Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4
608 and GATA6 cooperatively promotes gastric cancer development. *Gut* (2015).
609 doi:10.1136/gutjnl-2013-306596

610 40. Yang, X. Z. *et al.* LINC01133 as ceRNA inhibits gastric cancer progression by sponging
611 miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. *Mol. Cancer*
612 (2018). doi:10.1186/s12943-018-0874-1

613 41. Hwang, J. T. K. & Kelly, G. M. GATA6 and FOXA2 Regulate Wnt6 Expression During
614 Extraembryonic Endoderm Formation. *Stem Cells Dev.* **21**, 3220–3232 (2012).

615 42. Weidenfeld, J., Shu, W., Zhang, L., Millar, S. E. & Morrissey, E. E. The WNT7b promoter is
616 regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. *J. Biol. Chem.* **277**, 21061–
617 21070 (2002).

618 43. Muzikar, K. A., Nickols, N. G. & Dervan, P. B. Repression of DNA-binding dependent
619 glucocorticoid receptor-mediated gene expression. **2009**, (2009).

620 44. Alvarez, M. J. *et al.* Functional characterization of somatic mutations in cancer using
621 network-based inference of protein activity. *Nat. Genet.* (2016). doi:10.1038/ng.3593

622 45. Fiaschetti, G. *et al.* Bone morphogenetic protein-7 is a MYC target with prosurvival
623 functions in childhood medulloblastoma. *Oncogene* (2011). doi:10.1038/onc.2011.10

624 46. Vencken, S. F. *et al.* An integrated analysis of the SOX2 microRNA response program in
625 human pluripotent and nullipotent stem cell lines. *BMC Genomics* (2014).
626 doi:10.1186/1471-2164-15-711

627 47. Ci, W. *et al.* The BCL6 transcriptional program features repression of multiple oncogenes
628 in primary B cells and is deregulated in DLBCL. *Blood* (2009). doi:10.1182/blood-2008-12-
629 193037

630 48. Parekh, S. *et al.* BCL6 programs lymphoma cells for survival and differentiation through
631 distinct biochemical mechanisms. *Blood* **110**, 2067–2074 (2007).

632 49. Huynh, K. D. & Bardwell, V. J. The BCL-6 POZ domain and other POZ domains interact
633 with the co-repressors N-CoR and SMRT. *Oncogene* **17**, 2473–2484 (1998).

634 50. Cui, J. *et al.* FBI-1 functions as a novel AR co-repressor in prostate cancer cells. *Cell. Mol.*
635 *Life Sci.* (2011). doi:10.1007/s00018-010-0511-7

636 51. Wei, F., Zaprazna, K., Wang, J. & Atchison, M. L. PU.1 Can Recruit BCL6 to DNA To
637 Repress Gene Expression in Germinal Center B Cells. *Mol. Cell. Biol.* **29**, 4612–4622
638 (2009).

639 52. Huynh, K. D., Fischle, W., Verdin, E. & Bardwell, V. J. BCoR, a novel corepressor involved

in BCL-6 repression. *Genes Dev.* (2000). doi:10.1111/j.1754-7121.1984.tb00653.x

53. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad Network and the Transcriptional Control of Cell Behavior. *Annu. Rev. Cell Dev. Biol.* (2000). doi:10.1146/annurev.cellbio.16.1.653

54. Tzatsos, A. *et al.* KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. *J. Clin. Invest.* (2013). doi:10.1172/JCI64535

55. Andoniadou, C. L. *et al.* Sox2+stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. *Cell Stem Cell* **13**, 433–445 (2013).

56. Friedman, J. R. & Kaestner, K. H. The Foxa family of transcription factors in development and metabolism. *Cellular and Molecular Life Sciences* (2006). doi:10.1007/s00018-006-6095-6

57. Chen, T. *et al.* Foxa1 contributes to the repression of Nanog expression by recruiting Grg3 during the differentiation of pluripotent P19 embryonal carcinoma cells. **6**, (2014).

58. Hagey, D. W. *et al.* SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs. *PLoS Genet.* (2018). doi:10.1371/journal.pgen.1007224

59. Teo, A. K. K. *et al.* Pluripotency factors regulate definitive endoderm specification through eomesodermin. *Genes Dev.* (2011). doi:10.1101/gad.607311

60. Segal, E. *et al.* Module networks: identify regulatory modules and their condition-specific regulators from gene expression data. *Nat. Genet.* **34**, 166–176 (2003).

61. Carroll, J. S., Prall, O. W. J., Musgrove, E. A. & Sutherland, R. L. A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence. *J. Biol. Chem.* **275**, 38221–38229 (2000).

62. Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU Epigenome Browser update 2019. *Nucleic Acids Res.* (2019). doi:10.1093/nar/gkz348

63. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor Dynamics and Sufficiency in Estrogen Receptor–Regulated Transcription. *Cell* **103**, 843–852 (2000).

64. Vockley, C. M. *et al.* Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome. *Cell* **166**, 1269-1281.e19 (2016).

65. Crow, M., Lim, N., Ballouz, S., Pavlidis, P. & Gillis, J. Predictability of human differential gene expression. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 6491–6500 (2019).

66. Muhar, M. *et al.* SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. *Science* (80-). **360**, 800–805 (2018).

674 67. Aibar, S. *et al.* SCENIC : single-cell regulatory network inference and clustering. **14**, (2017).

675 68. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed:

676 enabling browsing of large distributed datasets. *Bioinformatics* **26**, (2010).

677 69. Matys, V. *et al.* TRANSFAC®: Transcriptional regulation, from patterns to profiles. *Nucleic*

678 *Acids Res.* **31**, 374–378 (2003).

679 70. Mathelier, A. *et al.* JASPAR 2016 : a major expansion and update of the open-access

680 database of transcription factor binding. **44**, 110–115 (2016).

681 71. Liu, T. *et al.* Cistrome: an integrative platform for transcriptional regulation studies. *Genome*

682 *Biol.* **12**, R83 (2011).

683 72. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic

684 features. *Bioinformatics* **26**, 841–842 (2010).

685 73. Köster, J. & Rahmann, S. Snakemake--a scalable bioinformatics workflow engine.

686 *Bioinformatics* **28**, 2520–2 (2012).

687

688 **Figures**

689 **Fig. 1.** Illustration of the Lisa framework. **(a)** The peak-RP score models the effect of TR binding

690 sites on the regulation of a gene. TR binding sites are binary values and peaks nearer to the

691 gene's TSS have a greater influence than ones further away. **(b)** The chrom-RP score summarizes

692 the effect of the DNase-seq or H3K27ac chromatin environment on a gene. The chrom-RP score

693 is based on a continuous rather than binary signal quantification. **(c)** Overview of the Lisa

694 framework. **(1)** H3K27ac ChIP-seq or DNase-seq data from the Cistrome DB is summarized using

695 the chrom-RP score for each gene. **(2)** H3K27ac ChIP-seq or DNase-seq samples that can

696 discriminate between the query gene set and the background gene set are selected and the

697 regression parameters define a chrom-RP model. **(3)** Each TR cistrome from the Cistrome DB is

698 evaluated as a putative regulator of the query gene set through *in silico* deletion, which involves

699 the elimination of H3K27ac ChIP-seq or DNase-seq signal at the binding sites of the putative

700 regulator. **(4)** The chrom-RP model, based on *in silico* deletion signal, is compared to the model

701 without deletion for each gene in the query and background gene sets. A p-value is calculated

702 using the Wilcoxon rank test comparison of the query and background ΔRPs. **(5)** The peak-RP

703 based on TR ChIP-seq peaks is calculated for the putative regulatory cistrome and the statistical

704 significance of peak-RP distributions from the query and background gene sets is calculated. **(6)**

705 p-values from the H3K27ac ChIP-seq, DNase-seq and peak-RP analysis are combined using the

706 Cauchy combination test. TR cistromes are ranked based on the combined p-value.

707 **Fig. 2.** A down-regulated gene set from a GATA6 knock-down experiment in gastric cancer KATO-
708 III cells is used as a case study to demonstrate the Lisa framework. **(a)** Heatmap of regulatory
709 potentials used to discriminate down-regulated genes from non-regulated background genes. **(b)**
710 *In silico* deletion analysis using GATA6 and CTCF cistromes to probe chromatin landscape
711 models near an illustrative down-regulated gene, LINC01133 and a background gene ZC3H12A.
712 Only the H3K27ac ChIP-seq and DNase-seq chromatin profiles with the largest positive
713 coefficients are shown, although other samples contribute to the respective H3K27ac ChIP-seq
714 and DNase-seq chromatin models. **(c)** Comparison of Δ RPs indicates GATA6 and GATA4
715 cistromes have a large impact on the chromatin landscapes near down-regulated genes, and are
716 therefore likely to be regulators of the query gene set. CTCF does not influence the chromatin
717 landscape of the down-regulated genes and is not likely to regulate the query gene set. **(d)** The
718 rank statistics for the Lisa analysis of the down-regulated gene set in the GATA6 knockdown
719 experiment were combined to get overall TR ranks. The top 8 and bottom 8 TRs for all TR ChIP-
720 seq samples are shown.

721 **Fig. 3.** Lisa predicts key transcriptional regulators and assigns significance to each Cistrome DB
722 cistrome. The large heatmap shows the hierarchical clustering of 8,471 human Cistrome DB
723 ChIP-seq cistromes based on peak-RP, with color representing Pearson correlation coefficients
724 between peak-RPs. The three bars to the left of the heatmap display Lisa significance scores for
725 differentially expressed genes sets derived from GR activation in the A549 cell line (up-regulated),
726 GATA6 knock-down in gastric cancer (down-regulated) and AR activation in the LNCaP cell line
727 (up-regulated). Small heatmaps show details of the global heatmap relevant to **(a)** AR activation,
728 **(b)** GATA6 knock-down, and **(c)** GR activation gene sets. In each case the most significant
729 cistromes are derived from the same cell type or lineage.

730

731 **Fig. 4.** Lisa can accurately identify key transcriptional regulators and coregulators using Cistrome
732 DB cistromes. Lisa analyses of up- and down-regulated gene sets from **(a)** GR over-expression,
733 **(b)** BCL6 knock-down, **(c)** MYC knock-down and **(d)** SOX2 knock-out experiments. The scatter
734 plots show negative \log_{10} Lisa p-values of 1316 unique transcriptional regulators for up- and down-
735 regulated gene sets. Colors indicates \log_2 fold changes of the TF gene expression between
736 treatment and control conditions in the gene expression experiment. Dots outlined with a circle
737 denote transcriptional regulators that physically interact with the TF perturbed in the experiment,

738 which is marked with a cross.

739

740 **Fig. 5.** Systematic evaluation of regulator prediction performance for human using Cistrome DB
741 ChIP-seq and DNA motif derived cistromes. (a) Heatmap showing Lisa performance in the
742 analysis of human TF perturbation experiments. Each column represents a TF activation/over-
743 expression or knock-down/out experiment with similar experiment types grouped together. Rows
744 represent methods based on cistromes from TR ChIP-seq data or imputed from motifs. The upper
745 left red triangles represent the rank of the target TFs based on the analysis of the up-regulated
746 gene sets; the lower right blue triangles represent analysis of down-regulated gene sets. The
747 heatmap includes non-redundant human experiments for the same TF. See Supplementary Fig.
748 5 for the complete list of human and mouse experiments. (b) Boxplot showing the target TF
749 rankings comparing Lisa ChIP-seq based methods and the baseline model based on TF peak
750 counts in gene promoter regions to analyze up- and down-regulated gene sets in over-
751 expression/activation (OE) and knock-down/out experiments (KD/KO). (c) Boxplot showing target
752 TF rankings using Lisa motif-based methods and the baseline model based on motif hits in
753 promoter regions.

754

755 **Fig. 6.** Lisa performance surpasses published models. Lisa performance is compared with
756 alternative published methods for (a) up-regulated genes in over-expression/activation
757 experiments and (b) down-regulated genes in knock-down/out experiments.

758

759 **Supplementary Fig. 1.** Catalog of chromatin and cistrome profiles integrated in the Lisa
760 framework. (a) Stacked bar plot showing the Cistrome DB (version 1) chromatin profile sample
761 numbers in major cell types for human and mouse. Histogram showing the numbers of cell lines
762 in which TFs in the Cistrome DB are represented by ChIP-seq samples for (b) human, and (c)
763 mouse. (d) Heatmap displaying the ChIP-seq sample number for each of the TR - cell line
764 combinations. The color represents the sample number.

765

766 **Supplementary Fig. 2.** Lisa chromatin landscape model evaluation for the down-regulated gene
767 set from a GATA6 knock-down experiment in gastric cancer. (a) ROC curve for the performance
768 of the classifier in discriminating the target gene set from a background gene set based on DNase-
769 seq. (b) DNase-seq samples selected from the Cistrome DB and the associated logistic
770 regression coefficients. (c) ROC curve for the performance of the classifier in discriminating the
771 target gene set from a background gene set based on H3K27ac ChIP-seq. (d) H3K27ac ChIP-

772 seq samples selected from the Cistrome DB and the associated logistic regression coefficients.

773

774 **Supplementary Fig. 3.** Lisa predicts key transcriptional regulators and assigns significance to
775 Cistrome DB cistromes. The large heatmap shows the hierarchical clustering of 8,471
776 transcriptional regulators based on peak-RP derived from Cistrome DB ChIP-seq cistromes, with
777 color representing Pearson correlation coefficients between peak-RPs. The two bars on the left
778 represent Lisa significance scores from SOX2 and POU5F1 perturbation experiments. A detail
779 heatmap showing the clusters of samples enriched around the significant TFs include SOX2,
780 POU5F1, NANOG, CTNNB1 and SMAD3.

781

782 **Supplementary Fig. 4.** Additional cases showing that Lisa can accurately infer TRs and
783 coregulators using Cistrome DB cistromes. Lisa analysis for up- and down-regulated gene sets
784 from (a) POU5F1 knock-down, (b) KLF5 knock-down, (c) NFE2L2 knock-down. The scatter plots
785 show negative \log_{10} Lisa p-values of 1316 unique transcriptional regulators for up- and down-
786 regulated gene sets. Color indicates \log_2 fold change of the TF gene expression between
787 treatment and control conditions in the gene expression experiment. Dots outlined with a circle
788 denote transcriptional regulators that physically interact with the target TF, which is marked with
789 a cross. (d) Radar plot of cofactors discovered along with the target TFs grouped by TF
790 perturbation. The top ranked TFs are at the perimeter and the lowest ranked are at the center.
791 The blue and red curves represent the ranks of interactors in the Lisa analysis for down- and up-
792 regulated gene sets, respectively.

793

794 **Supplementary Fig. 5.** Systematic application of Lisa to large-scale transcriptional regulator
795 perturbation study reveals novel recurring regulatory patterns for both human and mouse. (a-b)
796 Heatmap showing that Lisa is capable of predicting most of the TF perturbation benchmark gene
797 sets based on cistrome profiles for (a) human and (b) mouse. Each column represents a TF
798 activation/over-expression or knock-down/out experiment with similar experiment types grouped
799 together. Rows represent Lisa methods based on cistromes from TR ChIP-seq data or imputed
800 from motifs. The upper left red triangles represent the rank of the target TFs based on the analysis
801 of the up-regulated gene sets; the lower right blue triangles represent analysis of down-regulated
802 gene sets. The heatmap contains all of the gene sets used in the evaluation. (c-d) the ROC AUC
803 metrics for the Lisa chromatin model for predicting the target gene set from TF perturbation
804 benchmark datasets in (c) human and (d) mouse. (e) Boxplots showing mouse benchmark
805 dataset performance of Lisa ChIP-seq based models and the baseline model based on TF peak

806 counts in gene promoter regions. **(f)** Boxplots showing mouse benchmark datasets performance
807 of Lisa motif-based methods and the baseline model based on motif hits in promoter regions.

808

809 **Supplementary Fig. 6.** Comparison of direct and indirect binding sites in ER and GR activation
810 experiments. Direct binding sites are defined as ChIP-seq peaks with the cognate TR motif and
811 the indirect binding sites are defined as the peaks without the motif. Peak-RPs calculated based
812 on direct and indirect peaks are compared between query and background gene sets.

813

814 **Supplementary Table 1:** Cistrome profile annotation table including TR ChIP-seq and TF motifs

815 **Supplementary Table 2:** DNase-seq and H3K27ac sample annotation table for mouse and
816 human

817 **Supplementary Table 3:** Analysis of Lisa predictions of GR and ER regulated genes using data
818 which does not match the specific cell type. The cell line and cell type of the highest ranked Lisa
819 predicted target TR sample are shown in parentheses in each case.

820 **Supplementary Table 4:** TF perturbation DNA microarray meta table for benchmarking the peak-
821 RP and Lisa methods

Figures

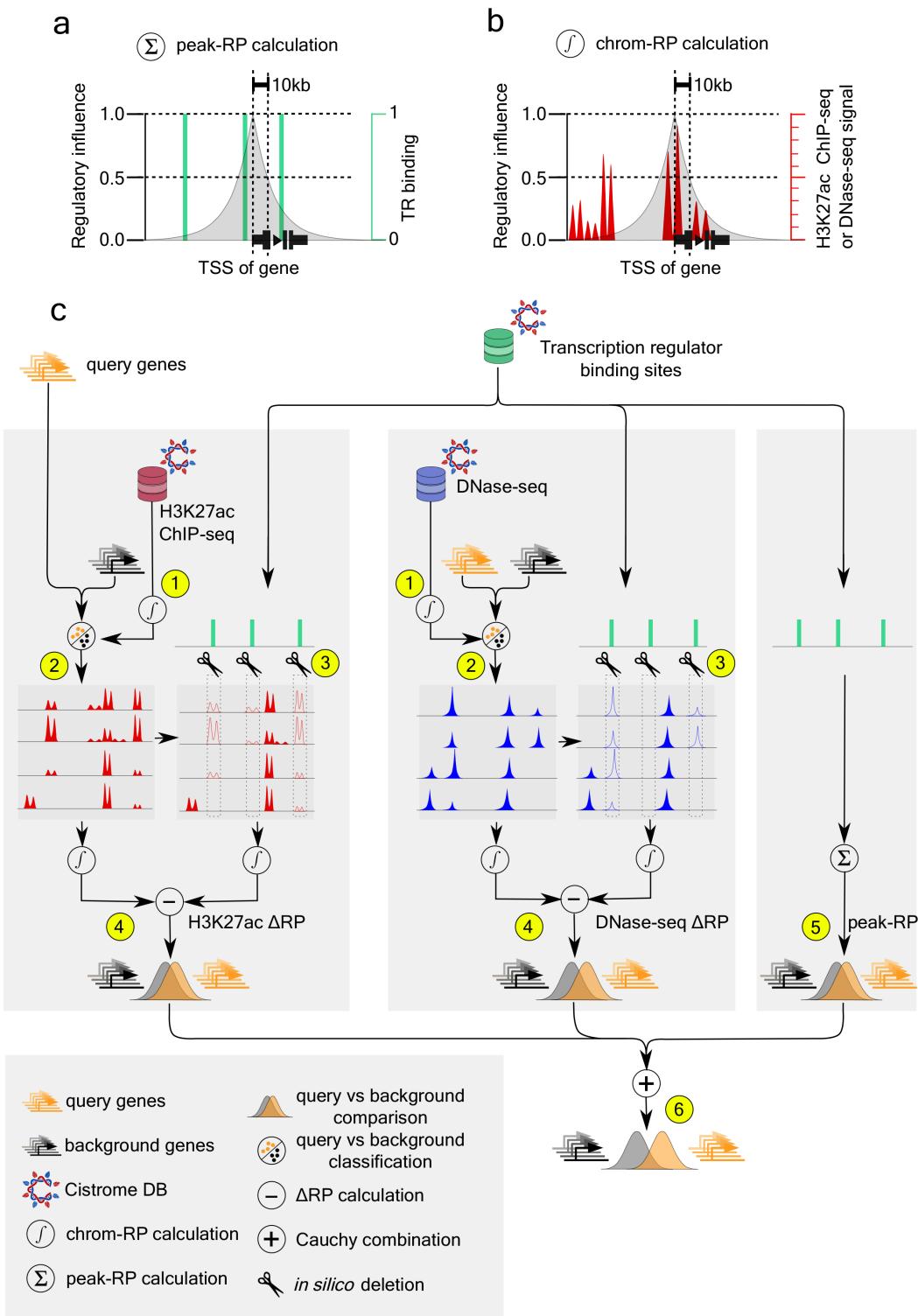


Fig. 1. Illustration of the Lisa framework. (a) The peak-RP score models the effect of TR binding sites on the regulation of a gene. TR binding sites are binary values and peaks nearer to the gene's TSS have a greater influence than ones further away. (b) The chrom-RP score summarizes the effect of the DNase-seq or H3K27ac chromatin environment on a gene. The chrom-RP score is based on a continuous rather than binary signal quantification. (c) Overview of the Lisa framework. (1) H3K27ac ChIP-seq or DNase-seq data from the Cistrome DB is summarized using the chrom-RP score for each gene. (2) H3K27ac ChIP-seq or DNase-seq samples that can discriminate between the query gene set and the background gene set are selected and the regression parameters define a chrom-RP model. (3) Each TR cistrome from the Cistrome DB is evaluated as a putative regulator of the query gene set through *in silico* deletion, which involves the elimination of H3K27ac ChIP-seq or DNase-seq signal at the binding sites of the putative regulator. (4) The chrom-RP model, based on *in silico* deletion signal, is compared to the model without deletion for each gene in the query and background gene sets. A p-value is calculated using the Wilcoxon rank test comparison of the query and background Δ RP. (5) The peak-RP based on TR ChIP-seq peaks is calculated for the putative regulatory cistrome and the statistical significance of peak-RP distributions from the query and background gene sets is calculated. (6) p-values from the H3K27ac ChIP-seq, DNase-seq and peak-RP analysis are combined using the Cauchy combination test. TR cistromes are ranked based on the combined p-value.

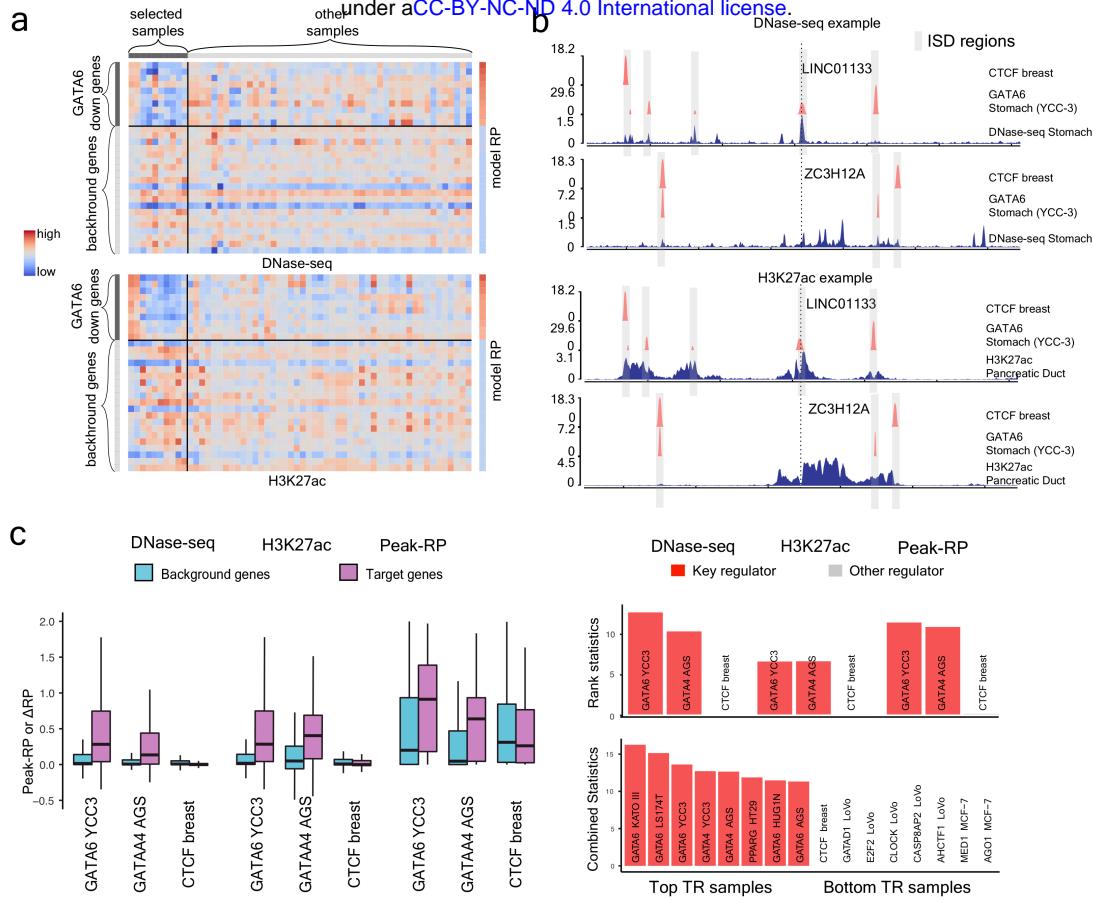


Fig. 2. A down-regulated gene set from a GATA6 knock-down experiment in gastric cancer KATO-III cells is used as a case study to demonstrate the Lisa framework. **(a)** Heatmap of regulatory potentials used to discriminate down-regulated genes from non-regulated background genes. **(b)** *In silico* deletion analysis using GATA6 and CTCF cistromes to probe chromatin landscape models near an illustrative down-regulated gene, LINC01133 and a background gene ZC3H12A. Only the H3K27ac ChIP-seq and DNase-seq chromatin profiles with the largest positive coefficients are shown, although other samples contribute to the respective H3K27ac ChIP-seq and DNase-seq chromatin models. **(c)** Comparison of Δ RPs indicates GATA6 and GATA4 cistromes have a large impact on the chromatin landscapes near down-regulated genes, and are therefore likely to be regulators of the query gene set. CTCF does not influence the chromatin landscape of the down-regulated genes and is not likely to regulate the query gene set. **(d)** The rank statistics for the Lisa analysis of the down-regulated gene set in the GATA6 knockdown experiment were combined to get overall TR ranks. The top 8 and bottom 8 TRs for all TR ChIP-seq samples were shown.

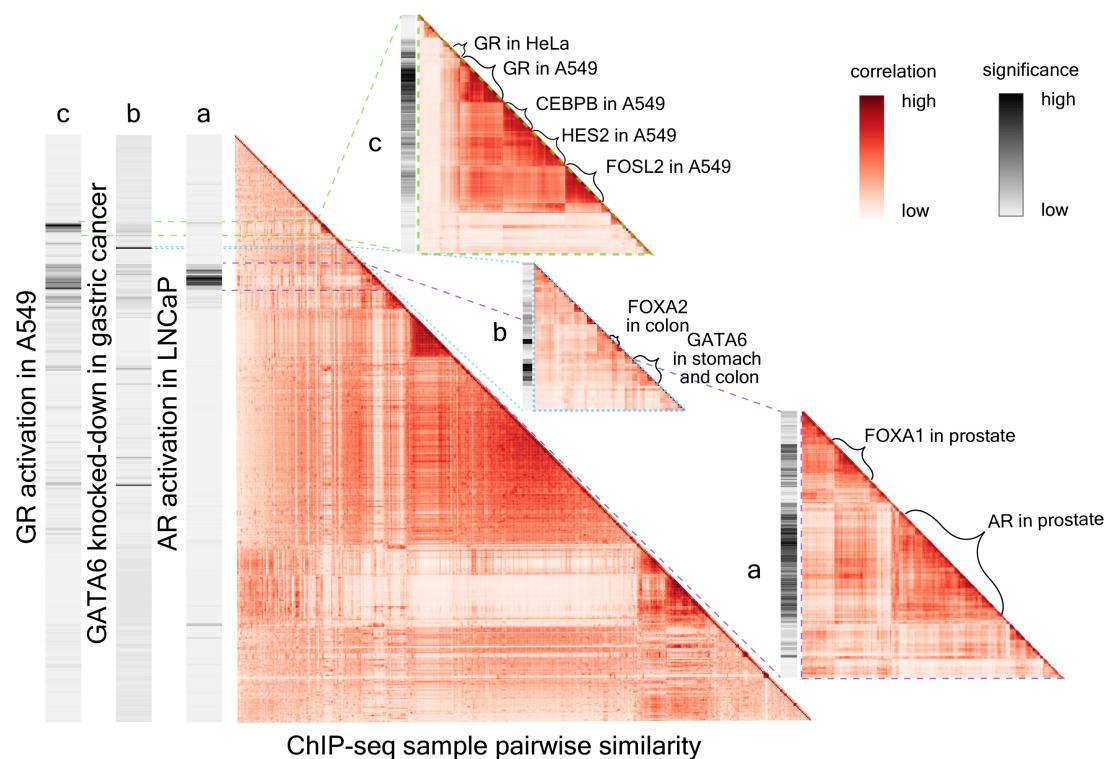


Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to each Cistrome DB cistrome. The large heatmap shows the hierarchical clustering of 8,471 human Cistrome DB ChIP-seq cistromes based on peak-RP, with color representing Pearson correlation coefficients between peak-RPs. The three bars to the left of the heatmap display Lisa significance scores for differentially expressed genes sets derived from GR activation in the A549 cell line (up-regulated), GATA6 knock-down in gastric cancer (down-regulated) and AR activation in the LNCaP cell line (up-regulated). Small heatmaps show details of the global heatmap relevant to (a) AR activation, (b) GATA6 knock-down, and (c) GR activation gene sets. In each case the most significant cistromes are derived from the same cell type or lineage.

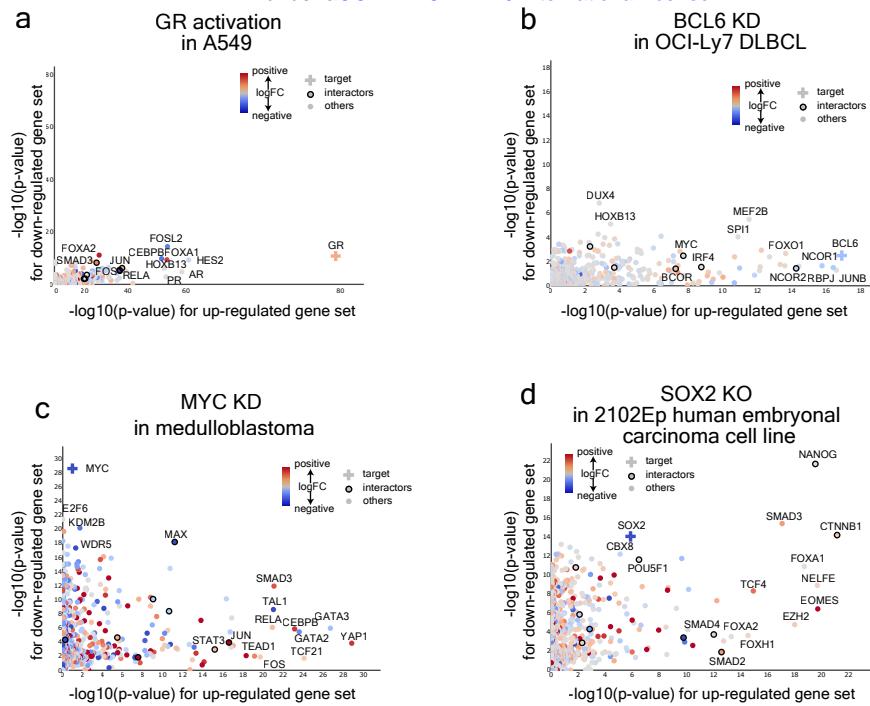


Fig. 4. Lisa can accurately identify key transcriptional regulators and coregulators using Cistrome DB cistromes. Lisa analyses of up- and down-regulated gene sets from (a) GR over-expression, (b) BCL6 knock-down, (c) MYC knock-down and (d) SOX2 knock-out experiments. The scatter plots show negative log₁₀ Lisa p-values of 1316 unique transcriptional regulators for up- and down-regulated gene sets. Colors indicates log₂ fold changes of the TF gene expression between treatment and control conditions in the gene expression experiment. Dots outlined with a circle denote transcriptional regulators that physically interact with the TF perturbed in the experiment, which is marked with a cross.

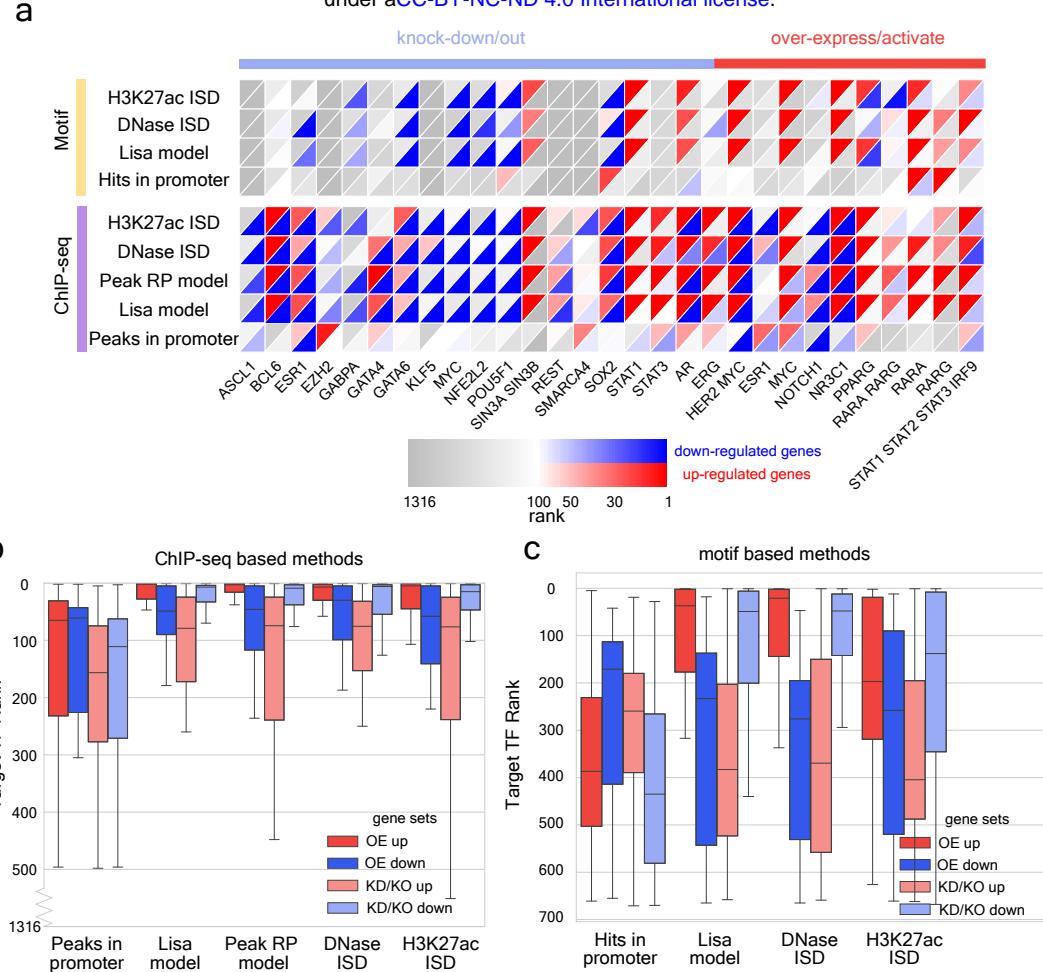


Fig. 5. Systematic evaluation of regulator prediction performance for human using Cistrome DB ChIP-seq and DNA motif derived cistromes. **(a)** Heatmap showing Lisa performance in the analysis of human TF perturbation experiments. Each column represents a TF activation/over-expression or knock-down/out experiment with similar experiment types grouped together. Rows represent methods based on cistromes from TR ChIP-seq data or imputed from motifs. The upper left red triangles represent the rank of the target TFs based on the analysis of the up-regulated gene sets; the lower right blue triangles represent analysis of down-regulated gene sets. The heatmap includes non-redundant human experiments for the same TF. See Supplementary Fig. 5 for the complete list of human and mouse experiments. **(b)** Boxplot showing the target TF rankings comparing Lisa ChIP-seq based methods and the baseline model based on TF peak counts in gene promoter regions to analyze up- and down-regulated gene sets in over-expression/activation (OE) and knock-down/out experiments (KD/KO). **(c)** Boxplot showing target TF rankings using Lisa motif-based methods and the baseline model based on motif hits in promoter regions.

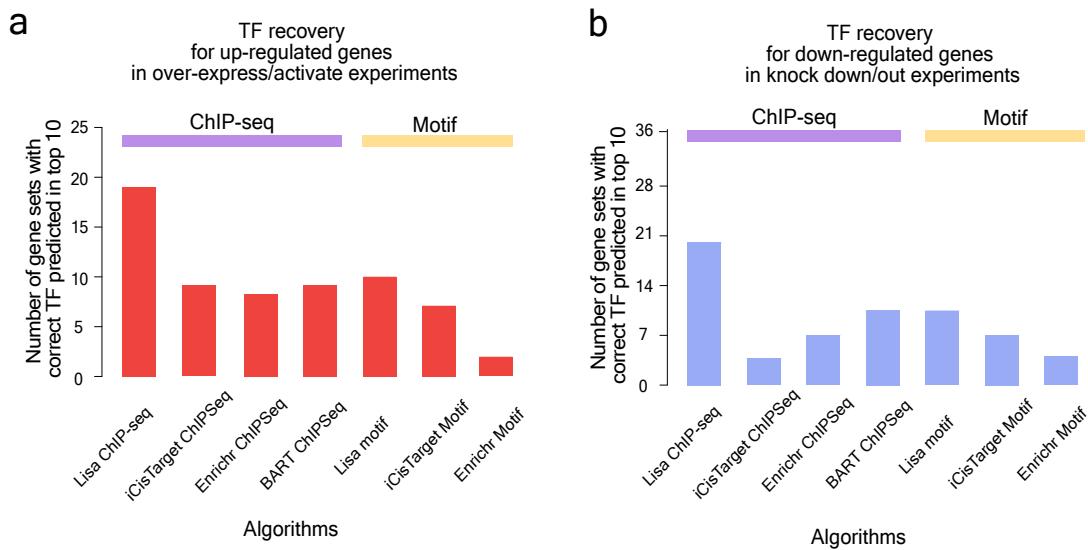
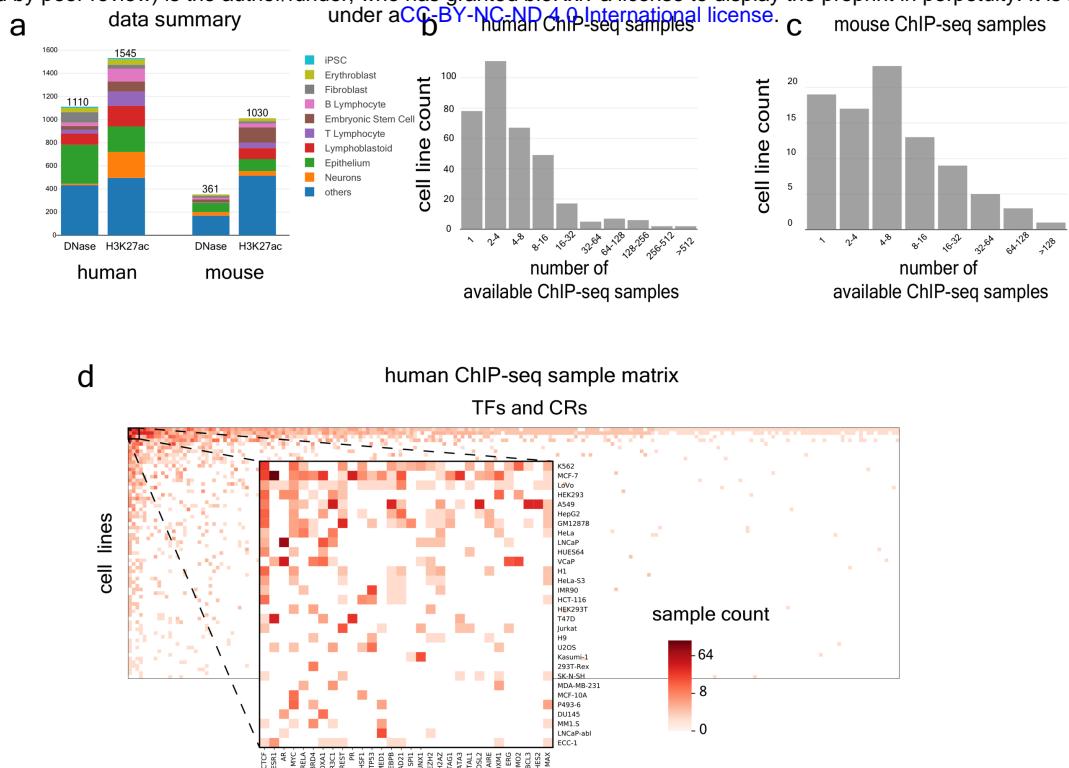
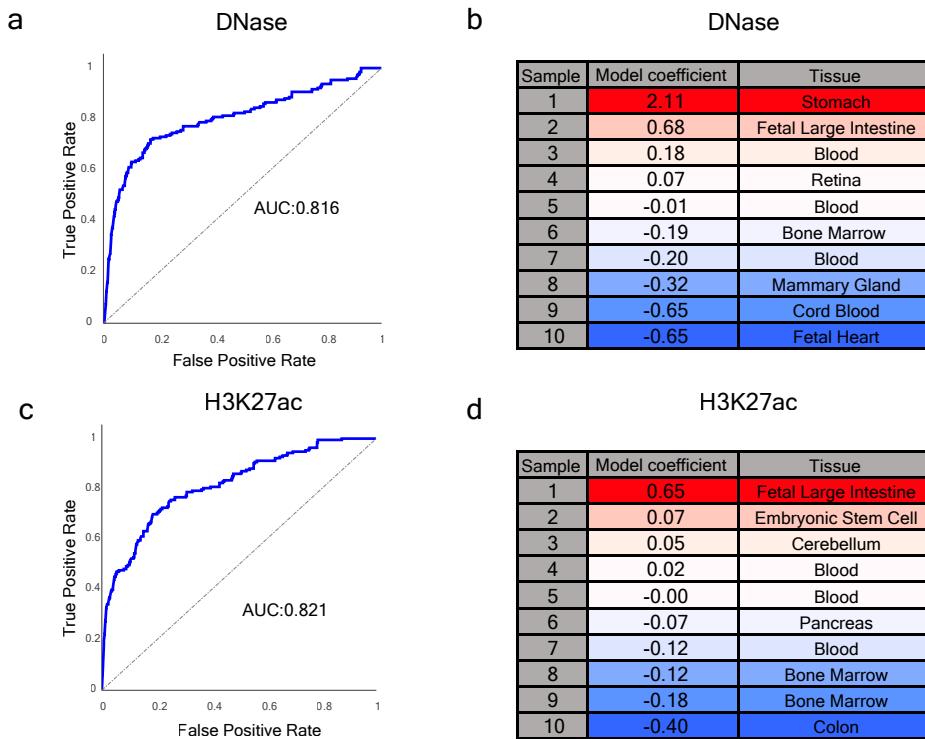


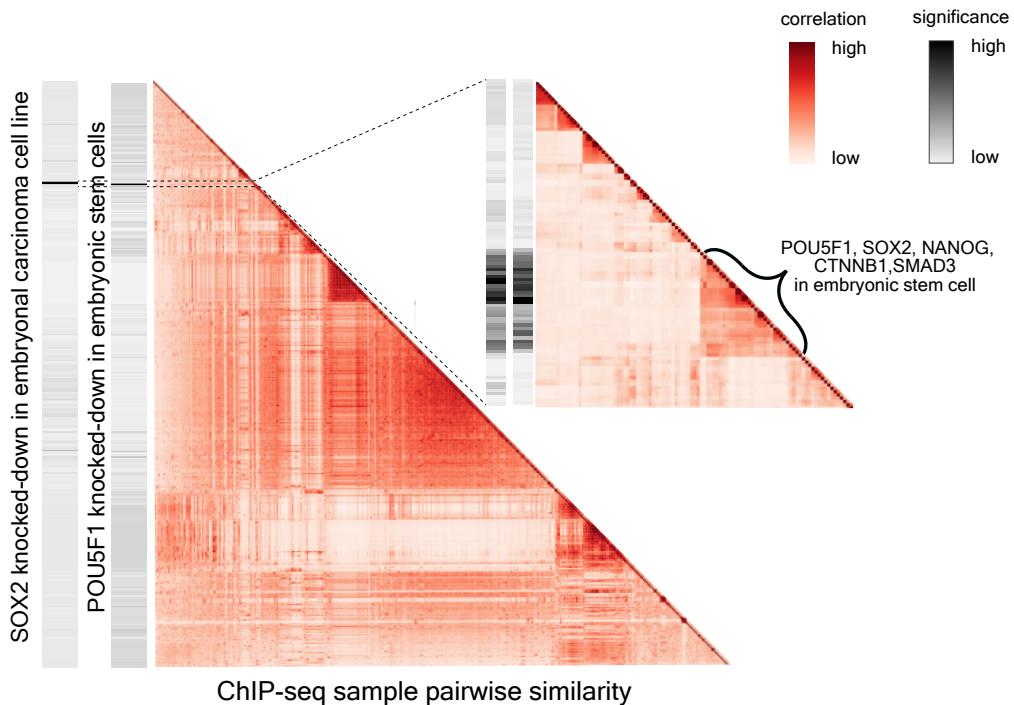
Fig. 6. Lisa performance surpasses published models. Lisa performance is compared with alternative published methods for (a) up-regulated genes in over-expression/activation experiments and (b) down-regulated genes in knock-down/out experiments.



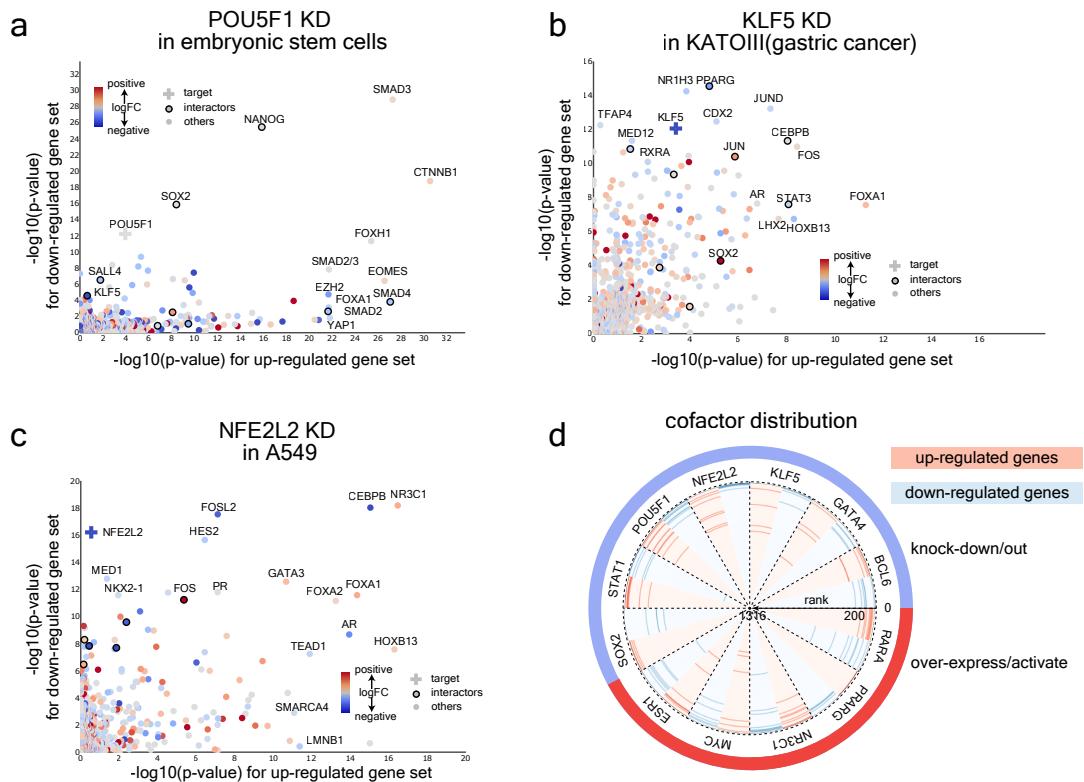
Supplementary Fig. 1. Catalog of chromatin and cistrome profiles integrated in the Lisa framework. **(a)** Stacked bar plot showing the Cistrome DB (version 1) chromatin profile sample numbers in major cell types for human and mouse. Histogram showing the numbers of cell lines in which TFs in the Cistrome DB are represented by ChIP-seq samples for **(b)** human, and **(c)** mouse. **(d)** Heatmap displaying the ChIP-seq sample number for each of the TR - cell line combinations. The color represents the sample number.



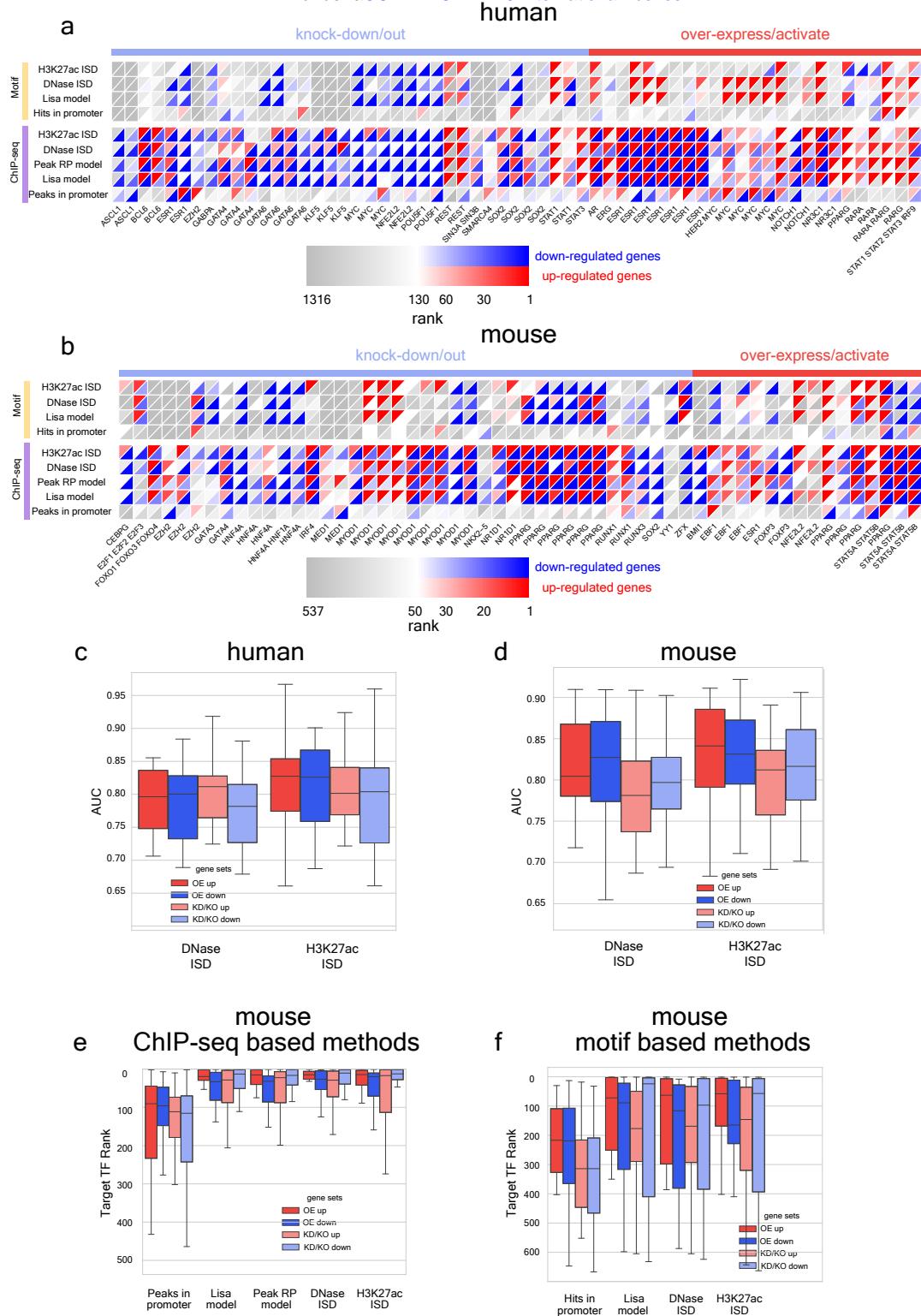
Supplementary Fig. 2. Lisa chromatin landscape model evaluation for the down-regulated gene set from a GATA6 knock-down experiment in gastric cancer. **(a)** ROC curve for the performance of the classifier in discriminating the target gene set from a background gene set based on DNase-seq. **(b)** DNase-seq samples selected from the Cistrome DB and the associated logistic regression coefficients. **(c)** ROC curve for the performance of the classifier in discriminating the target gene set from a background gene set based on H3K27ac ChIP-seq. **(d)** H3K27ac ChIP-seq samples selected from the Cistrome DB and the associated logistic regression coefficients.



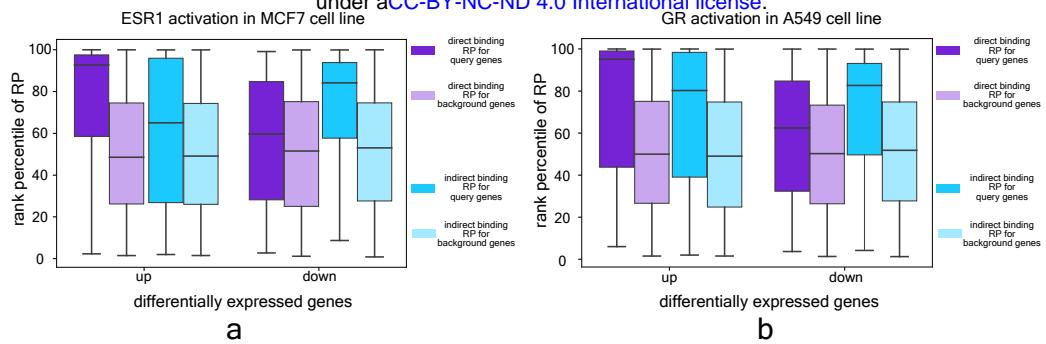
Supplementary Fig. 3. Lisa predicts key transcriptional regulators and assigns significance to Cistrome DB cistromes. The large heatmap shows the hierarchical clustering of 8,471 transcriptional regulators based on peak-RP derived from Cistrome DB ChIP-seq cistromes, with color representing Pearson correlation coefficients between peak-RPs. The two bars on the left represent Lisa significance scores from SOX2 and POU5F1 perturbation experiments. A detail heatmap showing the clusters of samples enriched around the significant TFs include SOX2, POU5F1, NANOG, CTNNB1 and SMAD3.



Supplementary Fig. 4. Additional cases showing that Lisa can accurately infer TRs and coregulators using Cistrome DB cistromes. Lisa analysis for up- and down-regulated gene sets from (a) POU5F1 knock-down, (b) KLF5 knock-down, (c) NFE2L2 knock-down. The scatter plots show negative \log_{10} Lisa p-values of 1316 unique transcriptional regulators for up- and down-regulated gene sets. Color indicates \log_2 fold change of the TF gene expression between treatment and control conditions in the gene expression experiment. Dots outlined with a circle denote transcriptional regulators that physically interact with the target TF, which is marked with a cross. (d) Radar plot of cofactors discovered along with the target TFs grouped by TF perturbation. The top ranked TFs are at the perimeter and the lowest ranked are at the center. The blue and red curves represent the ranks of interactors in the Lisa analysis for down- and up-regulated gene sets, respectively.



Supplementary Fig. 5. Systematic application of Lisa to large-scale transcriptional regulator perturbation study reveals novel recurring regulatory patterns for both human and mouse. (a-b) Heatmap showing that Lisa is capable of predicting most of the TF perturbation benchmark gene sets based on cistrome profiles for (a) human and (b) mouse. Each column represents a TF activation/over-expression or knock-down/out experiment with similar experiment types grouped together. Rows represent Lisa methods based on cistromes from TR ChIP-seq data or imputed from motifs. The upper left red triangles represent the rank of the target TFs based on the analysis of the up-regulated gene sets; the lower right blue triangles represent analysis of down-regulated gene sets. The heatmap contains all of the gene sets used in the evaluation. (c-d) the ROC AUC metrics for the Lisa chromatin model for predicting the target gene set from TF perturbation benchmark datasets in (c) human and (d) mouse. (e) Boxplots showing mouse benchmark dataset performance of Lisa ChIP-seq based models and the baseline model based on TF peak counts in gene promoter regions. (f) Boxplots showing mouse benchmark datasets performance of Lisa motif-based methods and the baseline model based on motif hits in promoter regions.



Supplementary Fig. 6. Comparison of direct and indirect binding sites in ER and GR activation experiments. Direct binding sites are defined as ChIP-seq peaks with the cognate TR motif and the indirect binding sites are defined as the peaks without the motif. Peak-RPs calculated based on direct and indirect peaks are compared between query and background gene sets.