

1 **Molecular epidemiology of cefotaxime-resistant *Escherichia coli* from dairy farms in**
2 **South West England identifies a dominant plasmid encoding CTX-M-32**

3

4 Jacqueline FINDLAY¹, Hannah SCHUBERT², Katy MORLEY², Oliver MOUNSEY¹, Virginia
5 C. GOULD^{1,2}, Emma F. PUDDY^{1,2}, Nerissa NEWBOLD^{1,2}, Kristen K. REYHER², Tristen A.
6 COGAN², Matthew B. AVISON^{1*}

7

8 ¹School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of
9 Bristol, University Walk, Bristol, UK.

10 ²Bristol Veterinary School, University of Bristol, Langford, UK.

11

12

13 *To whom correspondence should be addressed: bimba@bris.ac.uk.

14

15

16 Running heading: Cefotaxime-resistant *E. coli* from dairy farms

17 **Abstract**

18 **Objectives:** The objective of this study was to identify the mechanisms of cefotaxime
19 resistance (CTX-R) in 1226 *Escherichia coli* from 4581 environmental samples collected on
20 53 dairy farms over a 2-year period in South West England and to characterise a *bla*_{CTX-M-32}-
21 producing plasmid, pMOO-32, found to be widely distributed.

22 **Methods:** CTX-R isolates were identified using MIC breakpoint agar plates. β -lactamase
23 genes of interest (GOIs) were detected by PCR. WGS was performed and analysed using
24 the Center for Genomic Epidemiology platform. A plasmid-specific multiplex PCR was
25 designed to indicate the presence of plasmid pMOO-32.

26 **Results:** Amongst 1226 CTX-R isolates, PCR identified *bla*_{CTX-M} group 1 (549 isolates),
27 *bla*_{CTX-M} group 9 (100 isolates), *bla*_{CMY} (12 isolates), *bla*_{DHA} (1 isolate) and no GOI (566
28 isolates). WGS analysis of 184 representative isolates identified *bla*_{CTX-M} (131 isolates;
29 encoding CTX-M-1, -14, -15, -32 and the novel variant, CTX-M-214), *bla*_{CMY-2} (6 isolates),
30 *bla*_{DHA-1} (one isolate) and presumed AmpC-hyperproduction in 46 isolates that were PCR
31 negative for GOIs. A highly conserved plasmid was identified in 73 isolates, representing 27
32 *E. coli* STs. This ~220 kb IncHI2 plasmid carrying *bla*_{CTX-M-32} was designated pMOO-32, was
33 found to be stable in cattle and human transconjugant *E. coli* even in the absence of
34 selective pressure, and was found by multiplex PCR to be present on 26/53 study farms.

35 **Conclusions:** β -lactamases capable of conferring resistance to third generation
36 cephalosporins were evident on 47/53 farms within this study. This was largely because of
37 the widespread dissemination of an IncHI2 plasmid carrying *bla*_{CTX-M-32}.

38

39

40

41

42 Introduction

43 Third generation cephalosporin (3GC)-resistant *Escherichia coli* have been increasingly
44 reported in both animal and human populations, and are considered pathogens of major
45 concern for humans.^{1, 2} 3GCs, such as cefotaxime and ceftazidime, have been listed by the
46 World Health Organisation (WHO) as “highest-priority critically important antimicrobials” (HP-
47 CIAs) because of their importance for human health.³ Resistance to 3GCs in *E. coli* can be
48 caused by a number of mechanisms but is primarily attributed to the acquisition of ESBLs
49 and/or plasmid-mediated AmpCs (pAmpCs).⁴ Plasmids encoding ESBLs frequently harbour
50 additional resistance genes and so can present a significant therapeutic challenge.⁵ In
51 recent years the promotion and implementation of the ‘One Health’ approach in antimicrobial
52 resistance by the WHO has emphasised the importance of surveillance in both animal and
53 human populations and has highlighted gaps in this knowledge.⁶ In humans it has been well
54 established in numerous global studies that certain *E. coli* lineages (e.g. *bla*_{CTX-M}-encoding
55 ST131) play a major role in the dissemination of ESBL genes, however such a depth of
56 information does not exist for isolates from animal populations.² Human-associated
57 pandemic lineages have been reported in animal populations albeit to a much lesser extent
58 than in human populations.⁷

59 In humans, *bla*_{CTX-M} variants are the globally dominant ESBL type with particular variants
60 exhibiting geographical associations (e.g. *bla*_{CTX-M-15} in Europe and North America and
61 *bla*_{CTX-M-14} in Asia).² Transmission of ESBLs is largely as a result of horizontal gene transfer,
62 with conjugative IncF plasmids in particular being reported as the dominant vehicles for
63 *bla*_{CTX-M} genes.^{8, 9} Previous studies using typing methodologies including WGS have
64 suggested transmission of both strains and ESBL plasmids across animal and human
65 populations.^{10, 11} Epidemic plasmids have been reported across different host populations
66 and in multiple countries.¹² For example, one particular epidemic plasmid type – pCT,
67 encoding *bla*_{CTX-M-14} – was identified in cattle and human *E. coli* isolates in England and
68 found to exist in human isolates from several countries across 3 continents.¹²

69 Antimicrobial use in food animals may provide selective pressure for resistance
70 genes/plasmids which could theoretically be spread to humans.¹³ However, recent reports
71 suggest that such transmission is very limited, at least in the UK.¹⁴ In dairy farming,
72 antibiotics are used both therapeutically in the treatment of common infections such as
73 mastitis, and preventatively e.g. in so-called dry cow therapy, an antibacterial preparation
74 inserted into a cow's udder between lactations to prevent against mastitis.¹⁵ A survey of
75 dairy farms in England and Wales in 2012 revealed that the fourth generation cephalosporin
76 (4GC) cefquinome (another HP-CIA) was the most used dry cow therapy treatment¹⁶; in
77 2017, however, only 5.3% of total dry cow therapy active ingredients were HP-CIAs. Indeed,
78 there has been a significant decline in the use of HP-CIAs on dairy farms in the UK.¹⁷

79 Given a history of 3GC/4GC usage on the dairy farms involved, this study sought to
80 determine the prevalence and mechanisms of 3GC resistance – using cefotaxime resistance
81 (CTX-R) as an indicator – in *E. coli* isolates from 53 dairy farms located in South West
82 England. Furthermore, the study aimed to characterise the mechanisms of resistance in a
83 subset of isolates using WGS.

84

85 **Materials and Methods**

86 **Bacterial isolates, identification and susceptibility testing**

87 Details of farm sample collection and microbiological analysis has recently been reported.¹⁸
88 In brief, samples of faecally contaminated sites were collected using sterile overshoes on 53
89 dairy farms located in South West England between January 2017 and December 2018.
90 Samples were plated onto TBX agar (Sigma-Aldrich, Poole, UK) containing 16 mg/L
91 cephalexin. Up to 5 *E. coli* colonies per cephalexin plate were re-plated onto TBX agar
92 containing 2 mg/L cefotaxime (CTX) in order to confirm resistance. Disc susceptibility testing
93 was performed and interpreted according to EUCAST guidelines.¹⁹

94

95 **Screening for β-lactamase genes by PCR**

96 Two multiplex PCRs were performed to screen for β-lactamase genes. The first was to
97 detect *bla*_{CTX-M} groups as previously described²⁰ and the second was to detect the following
98 additional β-lactamase genes (*bla*_{C_M}, *bla*_{D_HA}, *bla*_{SHV}, *bla*_{TEM}, *bla*_{O_XA-1}).²¹

99 **Transconjugations**

100 Transconjugations were performed using rifampicin-resistant (Rif-R) *E. coli* DH5α with both
101 human and cattle *E. coli* isolates as the recipients (**Table 1**). Briefly, 1 mL each of overnight
102 broth cultures of donor and recipient cells were mixed in a 3:1 ratio before centrifugation and
103 resuspension in 50 µL of PBS. Five microlitre aliquots were spotted onto LB agar (Oxoid,
104 Basingstoke, UK) plates and incubated at 37°C for 6 h. Growth was collected and
105 resuspended in 100 µL of PBS before being plated on MacConkey agar (Oxoid) plates
106 containing either 32 mg/L rifampicin (for Rif-R *E. coli* DH5α) or 0.5 mg/L ciprofloxacin (for
107 strains HC4 and HG), and 2 mg/L cefotaxime. Transconjugant colonies were screened by
108 PCR.

109 **Whole genome sequencing and analyses**

110 One-hundred and eighty-four representative isolates were selected for WGS based on
111 resistance phenotype, β-lactamase gene carriage and farm of isolation. WGS was
112 performed by MicrobesNG (<https://microbesng.uk/>) on a HiSeq 2500 instrument (Illumina,
113 San Diego, CA, USA) using 2x250 bp paired end reads. Reads were trimmed using
114 Trimmomatic²² and assembled into contigs using SPAdes 3.13.0²³ (<https://cab.spbu.ru/software/spades/>). Resistance genes, plasmid replicon types and
115 sequence types (according to the Achtman scheme²⁴) were assigned using the ResFinder,²⁵
116 PlasmidFinder,²⁶ and MLST 2.0 on the Center for Genomic Epidemiology
117 (<http://www.genomicepidemiology.org/>) platform. Enhanced genome sequencing (combining
118 Illumina and MinION reads) was performed on one transconjugant, also by MicrobesNG, and
119 reads were assembled using Unicycler.²⁷ Contigs were annotated using Prokka 1.2.²⁸

121 Reads and assembled contigs were aligned to reference sequences obtained from GenBank
122 progressive Mauve alignment software ²⁹ and CLC Genomics Workbench 12 (Qiagen,
123 Manchester, UK). pMOO-32 was visualised using the CGView server ³⁰
124 (http://stothard.afns.ualberta.ca/cgview_server/).

125 **pMOO-32 PCR**

126 A multiplex PCR, targeting five size-distinguishable regions of pMOO-32, was designed to
127 indicate the presence of pMOO-32-like plasmids (**Table 2**).

128 **Plasmid stability assay**

129 Three representative pMOO-32 PCR-positive isolates, obtained from different farms in the
130 study, and their transconjugant counterparts were subjected to 10 days of serial passaging
131 on non-selective LB agar. After 10 days, colonies were screened for the presence of pMOO-
132 32 by PCR.

133 **Fitness cost assay**

134 Fitness costs were assessed by a growth curve assay using M9 minimal medium (Sigma-
135 Aldrich). Rif-R *E. coli* DH5α and the pMOO-32 transconjugant strain were grown with
136 shaking at 37°C and OD₆₀₀ measurements were taken at hourly intervals. Assays were
137 performed on three biological replicates.

138

139 **Results and Discussion**

140 **Detection of CTX-R genes of interest (GOIs) by PCR**

141 We have previously reported our collection of 4581 samples from faecally contaminated
142 sites from 53 dairy farms between January 2017 and December 2018. Of these, 4145
143 samples were positive for detectable levels of *E. coli* and 384 samples were positive for
144 growth of CTX-R *E. coli*.¹⁸ From these, 1226 colonies were taken forward for PCR testing for
145 possible cephalosporinase genes of interest (GOIs): *bla*_{CTX-M} (groups 1, 2, 8, 9 and 25),

146 *bla*_{CMY}, *bla*_{DHA}, and *bla*_{SHV}. Over half (648/1226; 52.7%) of all CTX-R isolates tested were
147 found to harbour *bla*_{CTX-M} genes. Of these, 547/648 (84.4%) were of group 1, 99/648 (15.3%)
148 were of group 9, and in one case, both gene groups, were identified. Twelve isolates
149 harboured a *bla*_{CMY} gene – one alongside *bla*_{CTX-M} group 1 – and one isolate was *bla*_{DHA-1}-
150 positive. The remaining 566/1226 (46.2%) isolates were PCR-negative for all GOIs.

151 **Identification of acquired CTX-R genes by WGS**

152 One hundred and thirty-eight representative isolates, positive for at least one GOI and
153 chosen to give coverage of all positive farms, were subjected to WGS (**Table 3**). *bla*_{CTX-M-32}
154 was the most common GOI allele identified and was found in 79 isolates and 27 *E. coli* STs
155 from 25 farms. CTX-M-32 is a group 1 enzyme first described in a human clinical *E. coli*
156 isolate in 2004.³¹ A number of other GOIs were identified: *bla*_{CTX-M-14} (18 isolates, in 6 STs
157 and from 9 farms), *bla*_{CTX-M-1} (16 isolates, 8 STs from 6 farms), *bla*_{CTX-M-15} (16 isolates, 5 STs
158 from 10 farms), *bla*_{CMY-2} (6 isolates, 3 STs from 3 farms) and *bla*_{CTX-M-214} (3 isolates, 2 STs
159 from 3 farms) plus one isolate harbouring both *bla*_{CTX-M-1} and *bla*_{CTX-M-14}. CTX-M-214
160 (GenBank Accession No. MH121688) is a novel CTX-M-9 variant, first identified in this
161 study, which differs from CTX-M-9 by a single amino acid, A112T. In all three isolates
162 encoding *bla*_{CTX-M-214}, the gene was identified on a contig which also encoded an Incl-ST26
163 plasmid replicon as well as *aadA2*, *sul1*, *dfrA16* in all three isolates, and additionally, *tetA*
164 was found in one isolate.

165 In 46 isolates (from 33 farms) subjected to WGS that lacked any GOIs, AmpC hyper-
166 production was presumed to be the CTX-R mechanism because all carried the same *ampC*
167 promoter/attenuator mutation, previously reported to cause AmpC hyper-production^{21, 32}
168 Detailed analysis of these isolates is reported elsewhere.³³ Considering that all CTX-R *E.*
169 *coli* that tested negative for GOIs by PCR are likely AmpC-hyperproducers, this would mean
170 that AmpC-hyperproduction was the mechanism responsible in almost half (566/1226;
171 46.2%) of CTX-R isolates in this study, representing 186 samples and 38 farms.

172

173 **Identification and characterisation of pMOO-32**

174 Following observations of the high prevalence of *bla*_{CTX-M-32}, a search for common plasmid
175 replicon types was conducted which revealed an IncHI2-ST2 replicon in almost all the
176 sequenced *bla*_{CTX-M-32}-positive isolates. It was therefore hypothesised that there was a
177 dominant plasmid type occurring across the study. To test this hypothesis, transconjugations
178 were attempted into *E. coli* DH5 α using *bla*_{CTX-M-32}-positive farm isolate DK (**Table 4**). One
179 successful transconjugant was sent for WGS employing both long and short read
180 methodologies to sequence the plasmid to closure. pMOO-32 is a 226,022-bp conjugative
181 plasmid belonging to the ST2-IncHI2 incompatibility group, harbouring *repHI2* and *repHI2A*
182 replication genes. It contains 245 putative ORFs and has a GC content of 45.5% (**Figure 1**).
183 pMOO-32 encodes the following antimicrobial resistance genes: *bla*_{CTX-M-32}, *strA*, *strB*,
184 *aph(6)-Ic*, *aph(3')-Ia* and *tetB* as well as genes encoding resistance to the heavy metal
185 compound, tellurite (*terABCDEFWXYZ*) and a HipAB type II toxin-antitoxin system along
186 with a second partial system (*higB* toxin gene). *bla*_{CTX-M-32} is encoded downstream of an
187 IS*Ecp1* element within which there is an IS*Kpn26* insertion encoded in the opposite
188 orientation (**Figure 2**). This same genetic environment was also observed in 4 *bla*_{CTX-M-32}-
189 positive but IncHI2 plasmid-negative ST10 isolates collected from 2 farms. There were 2
190 additional IncHI2 plasmid-negative ST765 isolates, both from the same farm, that encoded
191 *bla*_{CTX-M-32} where the immediate genetic environment differed by a truncation in IS*Ecp1*.

192 Transconjugation attempts using the pMOO-32-positive farm *E. coli* isolate DK as donor into
193 a cefotaxime-susceptible (CTX-S) cattle ST88 *E. coli* (isolated from one of the study farms)
194 as well as into a CTX-S human urinary ST1193 *E. coli* isolate were both successful (**Table**
195 **4**). ST1193 is a recently described fluoroquinolone-resistant global clone, often implicated as
196 a cause of human infections,³⁴ whilst ST88 was selected as a particularly prevalent ST in
197 cattle isolates from both this and previous studies.³⁵ Antimicrobial disc testing showed that
198 the pMOO-32-carrying donor was, as expected from the genotype, resistant to ampicillin

199 (AMP), CTX, cefepime (FEP), aztreonam (AZT), streptomycin (STR), neomycin (NEO) and
200 tetracycline (TET). The cattle ST88 and human ST1193 transconjugants were, additional to
201 their starting wild-type resistance profile, resistant to CTX, FEP and AZT. These results
202 (**Table 4**) are indicative of the functionality of the *bla*_{CTX-M-32} gene harboured by pMOO-32.

203 **Epidemiology of pMOO-32-like plasmids**

204 The complete nucleotide sequence of pMOO-32 was submitted to GenBank under the
205 accession number MK169211. Subsequently a multiplex PCR was designed, based on the
206 pMOO-32 sequence, to screen all group 1 *bla*_{CTX-M}-positive isolates for the presence of
207 pMOO-32-like plasmids. 26/53 (49.1%) farms within this study, all located within a 40 km
208 radius of each other, tested positive for the presence of pMOO-32-like plasmids using this
209 test. WGS performed on 73 isolates from 24 of these farms identified the pMOO-32-like
210 plasmids in 27 STs, suggesting that its dominance is largely a result of horizontal rather than
211 clonal transmission. Ten farms harboured pMOO-32-like plasmids in isolates of more than
212 one ST. The most frequently identified STs were ST69 and ST10, found in 18 isolates from 7
213 farms, and 6 isolates from 4 farms, respectively. Using the closed sequence of pMOO-32 as
214 a reference, sequencing reads from all 73 isolates were mapped; this indicated that the
215 plasmids exhibited 94-100% identity to the reference sequence. The differences between the
216 reference plasmid, pMOO-32 and the 73 isolates could be attributed to a loss or gain of
217 mobile genetic elements, but no rearrangements were observed to the plasmid backbone or
218 changes to resistance gene content.

219 The presence of pMOO-32-like plasmids in 27 STs indicates that plasmid-mediated
220 transmission plays a significant role in the dissemination of *bla*_{CTX-M-32} in the farms in this
221 study. The origins and geographical reach of pMOO-32 remain to be established, however it
222 was shown that none of the 10 farms located in a geographically separated sub-region of
223 this study area were found to harbour this plasmid, or *bla*_{CTX-M-32}, suggesting the plasmid
224 may be specific to a particular geographic area; further investigations would be necessary to
225 prove this.

226 The high-level prevalence and stability of pMOO-32-like plasmids could be a consequence
227 of the HipAB-type II toxin-antitoxin system, making it likely that this plasmid can persist in the
228 absence of antimicrobial selection pressure. Growth curve assays indicated a 12-40%
229 fitness cost (reduction in OD₆₀₀) of pMOO-32 carriage in *E. coli* DH5α at the start and end of
230 the exponential growth phase in M9 minimal medium (data not shown). However, despite
231 this cost in growth terms, pMOO-32 was stably maintained over 10 days of passaging in the
232 absence of antibiotic pressure in the farm isolates, their respective transconjugants, as well
233 as the human and cattle transconjugants tested. The ability of pMOO-32 to readily transfer
234 into the human isolates and be maintained despite the lack of antibiotic pressure indicates
235 the zoonotic potential of this plasmid. Despite this, a recent study looking into CTX-R urinary
236 *E. coli* from primary care in the same geographical region did not identify any *bla*_{CTX-M-32}
237 genes or pMOO-32-like plasmids.²¹

238 **Dominance of CTX-M-32**

239 In this study *bla*_{CTX-M-32} was clearly shown to be the dominant mechanism of CTX resistance
240 due to the very high prevalence of pMOO-32-like plasmids across 26 farms. A previous
241 study where *bla*_{CTX-M-32} was first described found that it confers increased hydrolytic activity
242 towards the 3GC ceftazidime compared with *bla*_{CTX-M-1}, from which it differs by a single
243 amino acid substitution - Asp240-Gly.³¹ It could be hypothesised therefore that CTX-M-32
244 gives some advantage in an environment of 3/4GC use on dairy farms over other CTX-M
245 variants, but this requires further investigation.

246 **Conclusions**

247 *E. coli* harbouring acquired β-lactamases capable of conferring resistance to 3GCs were
248 evident in most farms within this study. The carriage of *bla*_{CTX-M} genes was the dominant
249 acquired mechanism of CTX-R identified; *bla*_{CMY} carriage was evident, but to a much lesser
250 extent. The prevalence of *bla*_{CTX-M} genes, and particularly the *bla*_{CTX-M-32} allele, could be
251 largely attributed to the dissemination of a single plasmid type, pMOO-32. pMOO-32 is

252 capable of conjugating and remaining stable in both animal-associated and human clinical *E.*
253 *coli* isolates, so the possibility exists that pMOO-32-like plasmids will disseminate further,
254 perhaps into other animal populations and even into humans.

255

256 **Acknowledgements**

257 Genome sequencing was provided by MicrobesNG (<http://www.microbesng.uk>), which is
258 supported by the BBSRC (grant number BB/L024209/1).

259

260 **Funding**

261 This work was funded by grant NE/N01961X/1 to M.B.A., K.K.R. and T.A.C. from the
262 Antimicrobial Resistance Cross Council Initiative supported by the seven United Kingdom
263 research councils.

264

265 **Transparency declaration**

266 The authors declare no conflict of interests. Farming and veterinary businesses who
267 contributed data and permitted access for sample collection were not involved in the design
268 of this study or in data analysis and were not involved in drafting the manuscript for
269 publication.

270

271

272

273

274

275 **References**

- 276 1. Department of Health. ESBLs – A threat to human and animal health? Report by the Joint
277 Working Group of DARC and ARHAI. 2012.
278 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/215180/dh_132534.pdf.
- 280 2. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M beta-lactamases: temporal
281 and geographical shifts in genotype. *The Journal of antimicrobial chemotherapy* 2017; **72**: 2145-55.
- 282 3. World Health Organisation. Critically important antimicrobials for human medicine: Ranking
283 of medically important antimicrobials for risk management of antimicrobial resistance due to non-
284 human use. 5th Revision 2016.
285 <http://apps.who.int/iris/bitstream/handle/10665/255027/9789241512220-eng.pdf;jsessionid=7E5054076A3F8ED22FA8C41A51687950?sequence=1>.
- 287 4. Carattoli A. Resistance plasmid families in Enterobacteriaceae. *Antimicrobial agents and
288 chemotherapy* 2009; **53**: 2227-38.
- 289 5. Gupta K, Bhadelia N. Management of urinary tract infections from multidrug-resistant
290 organisms. *Infectious disease clinics of North America* 2014; **28**: 49-59.
- 291 6. World Health Organisation. Antimicrobial Resistance. A manual for developing nations
292 action plans. Version 1; February 2016.
293 http://apps.who.int/iris/bitstream/handle/10665/204470/9789241549530_eng.pdf;jsessionid=3B5EA17EC2A21038D896E2937CA7FAA9?sequence=1.
- 295 7. Platell JL, Johnson JR, Cobbold RN et al. Multidrug-resistant extraintestinal pathogenic
296 Escherichia coli of sequence type ST131 in animals and foods. *Veterinary microbiology* 2011; **153**: 99-
297 108.
- 298 8. Marcade G, Deschamps C, Boyd A et al. Replicon typing of plasmids in Escherichia coli
299 producing extended-spectrum beta-lactamases. *The Journal of antimicrobial chemotherapy* 2009;
300 **63**: 67-71.
- 301 9. Lee MY, Ko KS, Kang CI et al. High prevalence of CTX-M-15-producing Klebsiella pneumoniae
302 isolates in Asian countries: diverse clones and clonal dissemination. *International journal of
303 antimicrobial agents* 2011; **38**: 160-3.
- 304 10. de Been M, Lanza VF, de Toro M et al. Dissemination of cephalosporin resistance genes
305 between Escherichia coli strains from farm animals and humans by specific plasmid lineages. *PLoS
306 genetics* 2014; **10**: e1004776.
- 307 11. Lazarus B, Paterson DL, Mollinger JL et al. Do human extraintestinal Escherichia coli
308 infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A
309 systematic review. *Clinical infectious diseases : an official publication of the Infectious Diseases
310 Society of America* 2015; **60**: 439-52.
- 311 12. Cottell JL, Webber MA, Coldham NG et al. Complete sequence and molecular epidemiology
312 of IncK epidemic plasmid encoding blaCTX-M-14. *Emerging infectious diseases* 2011; **17**: 645-52.
- 313 13. Robinson TP, Wertheim HF, Kakkar M et al. Animal production and antimicrobial resistance
314 in the clinic. *Lancet (London, England)* 2016; **387**: e1-3.
- 315 14. Ludden C, Raven KE, Jamrozy D et al. One Health Genomic Surveillance of Escherichia coli
316 Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus
317 Livestock. *mBio* 2019; **10**.
- 318 15. Higham LE, Deakin A, Tivey E et al. A survey of dairy cow farmers in the United Kingdom:
319 knowledge, attitudes and practices surrounding antimicrobial use and resistance. *The Veterinary
320 record* 2018; **183**: 746.
- 321 16. Brunton LA, Duncan D, Coldham NG et al. A survey of antimicrobial usage on dairy farms and
322 waste milk feeding practices in England and Wales. *The Veterinary record* 2012; **171**: 296.
- 323 17. Directorate VM. UK Veterinary Antibiotic Resistance and Sales Surveillance Report UK-VARSS
324 2017.

325 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/750811/_1473963-v1-UK-VARSS_2017_Report_FINAL.pdf. 2017.

326 18. Schubert H FJ, Morley K, Puddy EF et al. Evidence for reduced CTX-M carriage in cattle-
327 associated *Escherichia coli* at low temperatures and on publicly accessible farmland: implications for
328 surveillance and potential for farm-to-human transmission. *BioRxiv* 2019; doi:
329 <https://doi.org/10.1101/778407>.

330 19. EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 8.1.
331 http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf.

332 20. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding
333 CTX-M extended-spectrum (beta)-lactamases. *The Journal of antimicrobial chemotherapy* 2006; **57**:
334 154-5.

335 21. Findlay J, Gould VC, North P et al. Characterisation of cefotaxime-resistant urinary
336 *Escherichia coli* from primary care in South-West England 2017-2018 *Journal of Antimicrobial
337 Chemotherapy* 2019; pii: dkz397. doi: 10.1093/jac/dkz397.

338 22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
339 *Bioinformatics (Oxford, England)* 2014; **30**: 2114-20.

340 23. Bankevich A, Nurk S, Antipov D et al. SPAdes: a new genome assembly algorithm and its
341 applications to single-cell sequencing. *Journal of computational biology : a journal of computational
342 molecular cell biology* 2012; **19**: 455-77.

343 24. Wirth T, Falush D, Lan R et al. Sex and virulence in *Escherichia coli*: an evolutionary
344 perspective. *Molecular microbiology* 2006; **60**: 1136-51.

345 25. Zankari E, Hasman H, Cosentino S et al. Identification of acquired antimicrobial resistance
346 genes. *The Journal of antimicrobial chemotherapy* 2012; **67**: 2640-4.

347 26. Carattoli A, Zankari E, Garcia-Fernandez A et al. In silico detection and typing of plasmids
348 using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrobial agents and
349 chemotherapy* 2014; **58**: 3895-903.

350 27. Wick RR, Judd LM, Gorrie CL et al. Unicycler: Resolving bacterial genome assemblies from
351 short and long sequencing reads. *PLoS computational biology* 2017; **13**: e1005595.

352 28. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics (Oxford, England)*
353 2014; **30**: 2068-9.

354 29. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain,
355 loss and rearrangement. *PloS one* 2010; **5**: e11147.

356 30. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes.
357 *Nucleic acids research* 2008; **36**: W181-4.

358 31. Cartelle M, del Mar Tomas M, Molina F et al. High-level resistance to ceftazidime conferred
359 by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution.
360 *Antimicrobial agents and chemotherapy* 2004; **48**: 2308-13.

361 32. Caroff N, Espaze E, Gautreau D et al. Analysis of the effects of -42 and -32 ampC promoter
362 mutations in clinical isolates of *Escherichia coli* hyperproducing ampC. *The Journal of antimicrobial
363 chemotherapy* 2000; **45**: 783-8.

364 33. Alzayn M, Findlay J, Mounsey O et al. Characterisation of AmpC Hyper-Producing *Escherichia
365 coli* from Humans and Dairy Farms Collected in Parallel in the Same Geographical Region. 2019;
366 *BioRxiv* 2019; doi: <https://doi.org/10.1101/784694>

367

368

369

370 .
371 34. Johnson TJ, Elnekave E, Miller EA et al. Phylogenomic Analysis of Extraintestinal Pathogenic
372 Escherichia coli Sequence Type 1193, an Emerging Multidrug-Resistant Clonal Group. *Antimicrobial
373 agents and chemotherapy* 2019; **63**.
374 35. Day MJ, Rodriguez I, van Essen-Zandbergen A et al. Diversity of STs, plasmids and ESBL genes
375 among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK.
376 *The Journal of antimicrobial chemotherapy* 2016; **71**: 1178-82.

377

378

379

Isolate	Source/Host	ST	Resistance Genes	Use
DK	Cattle	155	<i>strA</i> , <i>strB</i> , <i>aph(6)-Ic</i> , <i>aph(3')-Ila</i> , <i>tet(B)</i> , <i>bla</i> _{CTX-M-32}	Donor
HC4	Human	1193	<i>aadA5</i> , <i>dfrA17</i> , <i>mdf(A)</i> , <i>sul1</i>	Recipient
HG	Cattle	88	<i>aph(6)-Id</i> , <i>ant(2")-Ia</i> , <i>aph(3')-Ia</i> , <i>aadA24</i> , <i>aph(3")-Ib</i> , <i>sul1</i> , <i>sul2</i> , <i>tet(A)</i> , <i>tet(B)</i> , <i>bla</i> _{TEM-1} , <i>bla</i> _{OXA-1} , <i>catA1</i> , <i>floR</i>	Recipient

380

381 **Table 1.** Characteristics of *E. coli* strains used in transconjugation experiments.

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

Primer	Sequence (5'-3')	Product Size (bp)	Target
aph(3')-Ila_F	TGGCTACCCGTGATATTGCT	642	<i>aph(3')-Ila/aph(6)-Ic</i> junction
aph(6)-Ic_R	CTGGCGGACGGGAAGTATC		
HI2A_F	AGCCTTCTCACGGTAGCAT	526	HI2 <i>repA</i>
HI2A_R	TTCAATTGTCGGTGAGCGTC		
Tral_F	CGGGAAAAGCTGCACTCAAT	396	<i>tral</i>
Tral_R	AAGACTTGTGAGCTTGGCG		
TetB_F	TTCAGCGCAATTGATAGGCC	285	<i>tetB</i>
TetB_R	ATCCCACCACCAAGCCAATAA		
CTX-M-32_F	TTAGGAAGTGTGCCGCTGTA	180	<i>bla</i> _{CTX-M-32}
CTX-M-32_R	CACGGCCATCACTTTACTGG		

408

409 **Table 2.** The primers used for the pMOO-32 multiplex PCR.

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

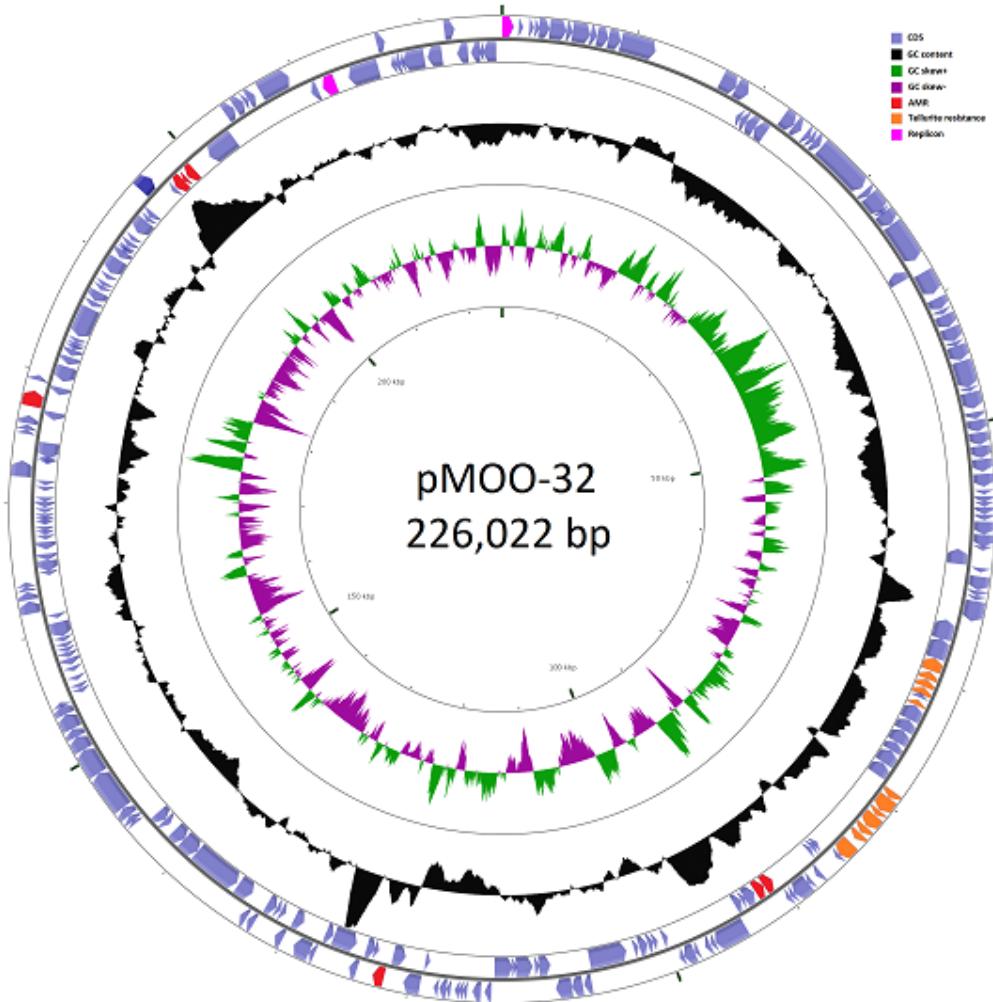
429

430

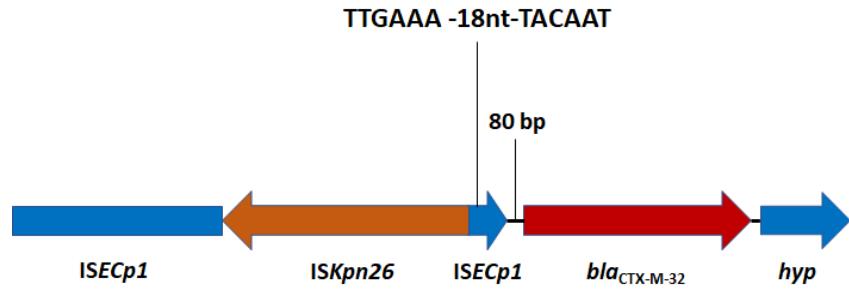
431

No. of isolates/farms	CTX-R mechanisms identified and no. of STs/farms															
	<i>bla</i> _{CTX-M-32}	STs/farms	<i>bla</i> _{CT}	STs/farms	<i>bla</i> _{CT}	STs/farms	<i>bla</i> _{CTX-M-15}	STs/fa	<i>bla</i> _{CTX-M-214}	STs/fa	<i>bla</i> _{DHA-1}	STs/farms	<i>bla</i> _{CMY-2}	STs/farms	AmpC-hyp	STs/farms
4/46	79	27/25	16 ^a	8/6	18 ^a	6/9	16	5/10	3	2/3	1	1/1	6	3/3	46	13/33

Table 3. Characteristics of 184 isolates subjected to whole genome sequencing.


^aOne isolate harboured both *bla*_{CTX-M-1} and *bla*_{CTX-M-14}.

Antimicrobial Agent	Zone Diameters (mm)													
	<i>E. coli</i> DK	S/I/R	<i>E. coli</i> DH5 α	S/I/R	<i>E. coli</i> DH5 α TR	S/I/R	<i>E. coli</i> HG	S/I/R	<i>E. coli</i> HG TR	S/I/R	<i>E. coli</i> HC4	S/I/R	<i>E. coli</i> HC4 TR	S/I/R
AMP	<6	R	30	S	<6	R	<6	R	<6	R	20	S	<6	R
CTX	10	R	45	S	18	I	35	S	10	R	34	S	13	R
CAZ	20	I	45	S	30	S	34	S	20	I	32	S	23	S
FEP	19	R	45	S	28	S	28	S	18	R	35	S	24	I
ETP	30	S	45	S	44	S	34	S	33	S	36	S	36	S
ATM	15	R	45	S	24	I	34	S	15	R	35	S	19	R
STR ^a	<6	R	25	S	10	R	<6	R	<6	R	13	R	<6	R
TOB	17	S	28	S	26	S	<6	R	<6	R	18	S	19	S
NEO ^a	8	R	20	S	12	R	<6	R	<6	R	14	I	8	R
TET ^a	<6	R	36	S	<6	R	<6	R	<6	R	30	S	<6	R


Table 4. Disc susceptibility testing of *E. coli* DK and pMOO-32 transconjugants of various *E. coli* strains.

AMP, ampicillin; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; ETP, ertapenem; ATM, aztreonam; STR, streptomycin; TOB, tobramycin; NEO, neomycin; TET, tetracycline.

^aStreptomycin and neomycin sensitivities were determined using tobramycin EUCAST interpretation guidelines, and tetracycline according to guidelines for *Yersinia enterocolitica*.

Figure 1. Plasmid pMOO-32 created using CGView.³⁰

Figure 2. The genetic environment of *bla*_{CTX-M-32} in pMOO-32 and other IncHI2 positive, *bla*_{CTX-M-32}- harbouring isolates.