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ABSTRACT. Cancer somatic mutations have been identified as a source of
antigens that can be targeted by cancer immunotherapy. In this work, expanding
on previous studies, we analyse the immunogenic properties of mutations that
are known to drive resistance to cancer targeted-therapies. We survey a large
dataset of mutations that confer resistance to different drugs and occur in
numerous genes and tumour types. We show that a significant number of these
mutations are predicted in silico to have immunogenic potential across a large
proportion of the human population. Two of these mutations had previously
been experimentally validated and it was confirmed that some of their
associated neopeptides elicit T-cell responses in vitro. The identification of
potent cancer-specific antigens can be instrumental for developing more
effective immunotherapies. Resistance mutations, several of which are known to
recur in different patients, could be of particular interest in the context of off-
the-shelf precision immunotherapies such as therapeutic cancer vaccines.
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INTRODUCTION.

Cancer cells express a typically aberrant protein repertoire compared to that of
normal cells. These aberrations, whether functional (drivers) or non-functional
(passengers), have the potential to generate peptide antigens that are not (or are
only partially) subjected to central or peripheral tolerance. As such, when
presented by human leukocyte antigen (HLA) complexes on the surface of cancer
cells, these antigens might lead to recognition by cytotoxic T-cells and,
eventually, to immuno-mediated tumor clearancel2. Tumors, however, can
develop sophisticated escape mechanisms3 and immune evasion is now
recognised as one of the hallmarks of cancer*.

Cancer immunotherapies seek to restore the ability of the host’s immune system
to recognise tumor antigens and attack the cells that express them?>. Checkpoint
blockade therapies (CBTs), in particular, act by inhibiting immune-checkpoint
receptors and thus reinvigorating the cytolytic activity of the patient’s T-cell
repertoire®. As mentioned above, cancer cells that present an aberrant
peptidome are most likely to be targeted by T-cells. Despite remarkable
successes, CBTs are to date approved for treatment in a limited number of solid
malignancies, with only a fraction of patients responding’. As great efforts are
being made toward improving the scope and efficacy of CBTs8, there is growing
interest for the identification of patient’s specific, highly immunogenic antigens
that could be used for more targeted treatments?, possibly in combination with
CBTs. These include therapeutic cancer vaccines0-12 that can be produced ex vivo
and delivered to the patient in the form of peptides, peptide-encoding RNA/DNA
molecules or using peptide-loaded autologous dendritic cells or viruses?3.
Identification of tumor antigens that can serve for these purposes is thus a
priorityl415,

Historically, peptides belonging to a normal cell proteome but preferentially or
almost exclusively expressed in cancer cells (‘tumour-associated antigens’ or
TAAs) were the first to be targeted for the clinic1%1617 along with oncoviral
antigens (encoded by oncogenic viruses)!8. Although the clinical development of
vaccination strategies against TAAs continues, they are now generally regarded
as less-than-ideal and often weak effectors, primarily because of incomplete
tumour specificity and partial central tolerance 1319, Increasingly, researchers
are focusing their attention on cancer-specific peptides such as those associated
with passenger mutations10.20-26, somatic gene fusions??, aberrantly expressed
tumor transcripts2® and tumor-specific alternatively spliced isoforms2° and post-
translational modifications3031,

In this study, building on previous works32-34, we present a comprehensive in
silico survey of the antigenic potential of peptides associated with cancer drug
resistance mutations. Resistance mutations emerge in the context of targeted
therapies, which are aimed at tumors that depend for their growth on specific
oncogenes35. This addiction makes such tumours vulnerable, at least in principle,
to drugs that inhibit the relevant protein(s). Targeted therapies are available for
an increasing number of haematological and solid malignancies (e.g.,3%-38) but a
significant fraction of patients either don’t respond to treatment or eventually
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relapse. Intrinsic (germline or somatic) and acquired (somatic) resistance is
mediated by a range of different molecular mechanisms3°. Among them is the
pre-existence (possibly, if somatic, at very low allele frequencies) or the
acquisition following treatment of protein-modifying mutations on the targeted
oncogenes or on other genes in the same or alternative pathways*941,

Resistance mutations possess a number of properties that are appealing in the
context of precision immunotherapy: they are tumor-specific, thus generating
neoantigens that are less likely to be subjected to central or peripheral tolerance
or to elicit an autoimmune response*?; because they drive resistance, they are
expected to be expressed in therapy-resistant clones; they are usually found on
oncogenes, hence making therapy-escape by the tumor through gene down-
regulation harder; and, finally, several of them are known to recur in different
patients (i.e., they are not patient-specific) making them potential targets for
developing off-the-shelf rather than fully-personalised and potentially highly
expensive precision therapies 43. Here, we report on 226 resistance mutations
(source: COSMIC) that pertain to numerous genes, tumor types and drugs and we
study their immunogenicity in relation to a set of 1,261 individuals from the
1000 Genomes project encompassing a landscape of 195 HLA-A, -B and -C class |
allotypes. We show that several of these mutations generate neopeptides that
are predicted in silico to have immunogenic potential across a significant fraction
of individuals in our dataset. In the context of previous publications that showed
how neopeptides from two resistance mutations (E255K in BCR-ABL132 and
T790M3334 in EGFR) could elicit T-cell responses in vitro, our results support the
idea that drug resistance mutations might be an important (and potentially
expanding) source of tumor antigens for precision immunotherapies. In
particular, this opens up the possibility of tracking the development of resistance
mutations (for example, in circulating tumour DNA), whilst patients are treated
on a particular drug, and using an off-the-shelf vaccine targeting the relevant
neoantigen to prolong the period of clinical benefit.
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METHODS

Mutation datasets. We download from Marty et al 44 the following datasets:
passenger mutations (1,000 in total), recurrent mutations (1,000), germline
SNPs (1,000), random mutations (3,000). In Marty et al., recurrent and
passenger mutations are derived from TCGA data%s. In particular, recurrent
mutations are defined as those found within a list of 200 tumour-associated
genes*® and observed in at least 3 TCGA samples. All TCGA mutations not
occurring in the list of tumour-associated genes are considered as passengers.
Germline SNPs are common germline variants that are sampled from the Exome
Variant Server (1,000 in total). Finally, random mutations are generated
randomly in human proteins from Ensembl (release 89; GRCh37; 3,000 in total).
From the initial list of 1,000 recurrent mutations, we extract those that are
observed in at least 30 TCGA patients and we label them as driver mutations (32
in total). As explained in the next section, in the process of generating the
mutation-associated neopeptides from each of these datasets, we have to discard
a certain number of mutations. The final count for each set is as follows: 961
passengers, 999 recurrent (32 of which constitute our drivers list), 970 germline
SNPs and 2,758 random mutations. These final lists of mutations are reported in
Supplementary Table 1 together with their PMHBR score (see below).

Our resistance mutations are extracted from the CosmicResistanceMutations.tsv
file that we downloaded from the COSMIC website (COSMIC version 86). From
this initial list, we manually remove a few entries (COSM5855836,
COSM1731743, COSM5855814, COSM3534174, COSM763) that appear to be
duplicates of other entries (COSM5855837, COSM1731742, COSM5855815,
COSM3534173, COSM125370, respectively), those for which information about
the exact amino acid substitution is not provided in COSMIC and non-missense
mutations. Overall, we obtain 226 resistance mutations (Supplementary Table
1). Note that 4 of them also appear in our list of driver mutations (NRAS Q61R
and Q61K, PIK3CA E545K, BRAF V600E). Genes, tissues, tumor subtypes and
drugs to which these mutations are associated are reported in Supplementary
Table 2. In COSMIC, each mutation is listed as many times as the number of
patients in which it has been reported in the scientific literature. Although this
can provide us with valuable information on the prevalence of a mutation in
patients that have been treated with a specific drug and for a specific tumor type,
comparisons across different tumor types, genes and drugs are more
complicated. Indeed, the number of cases reported can be influenced by several
factors, including a tumor’s incidence or the time that has passed since a drug’s
approval. For example the EGFR C797S mutation, a mutation of particular
clinical relevance conferring resistance to the lung carcinoma third-generation
EGFR inhibitor Osimertinib#7, is currently reported in COSMIC to have occurred
in 11 patients. This is much less, for example, than the 487 records for the
T790M mutation. Osimertinib, however, is a relatively recent drug (FDA-
approved in 2015) when compared to some of the drugs T790M confers
resistance to (e.g. Gefitinib, FDA-approved in 2003). Here, notwithstanding these
limitations, we make use of the number of occurrences in COSMIC to obtain at
least a rough separation between rare and more frequent resistance mutations,
with the latter being the ones that are more likely to be relevant in the context of
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off-the-shelf cancer vaccine development. In particular, we define the
“resistance>1" dataset as a subset of all resistance mutations reported in COSMIC
to occur in more than one patient (114 in total, Supplementary Table 1). Yet
another set of resistance mutations we use is “resistance-no-BCR-ABL1”, which
contains only COSMIC resistance mutations not found in BCR-ABL1 (124 in total,
Supplementary Table 1). Note that although patients reported to have multiple
resistance mutations might carry compound mutations that could be generating
multiple-mutant neopeptides, this type of information is generally not available
from COSMIC (zygosity is also for the most part unknown); as a consequence, we
consider all resistance mutations as being “isolated” mutations.

Generation of mutation-associated peptides. In order to calculate the HLA-
presentation likelihood for the peptides generated by the above sets of
mutations, we need to map each mutation to a protein sequence. Here, we use
human protein sequences from EnsEMBL as found in the
Homo_sapiens.GRCh37.pep.all.fa.gz file (downloaded from EnsEMBL and,
hereafter, referred to as “EnsEMBL protein file”). For resistance mutations, we
obtain from the CosmicResistanceMutations.tsv table the EnsEMBL transcript
ids, all of which have a corresponding protein entry in the EnsEMBL protein file.
For all other sets of mutations, we first extract the gene id from table S3 of*4;
then, we generate (Jan 2018) from the UCSC Genome Table Browser the mapping
between gene ids (HGNC symbols) and canonical EnsEMBL transcripts and,
additionally, from the EnsEMBL BioMart the mapping between gene ids and non-
canonical EnsEMBL transcripts. Finally, given a mutation and its associated gene
id, we try to map the mutation to the EnsEMBL canonical transcript sequence for
that gene id. If we are not successful, we try to map the mutation to a non-
canonical transcript sequence for the same gene id. If even in this second case we
cannot find any appropriate mapping, we discard the mutation. For mutations
that we can map to a transcript we can then find the corresponding protein
sequence in the EnsEMBL protein file. According to this protocol, occasionally,
two different mutations found in the same gene may end up being mapped to
two different EnsEMBL transcripts and hence protein sequences. We only
consider missense mutations (single amino acid substitutions); we do not
consider indels. As mentioned in the previous section, the final list of mutations
that we utilise from each of the above datasets following mapping to EnsEMBL
transcripts is reported in Supplementary Table 1. The EnsEMBL transcripts used
for genes in these datasets are shown in Supplementary Table 3.

For each mutation part of the datasets in Supplementary Table 1, we use an in-
house Python script to generate all possible peptides of length 8 to 11 that span
the mutation. For mutations that don’t fall within the first 10 or last 10 positions
of a transcript this means generating a total 38 peptides (or correspondingly less
otherwise). A wild-type peptide associated to a specific mutant peptide is
identical to the mutant peptide except for the fact that the mutated amino acid is
reverted to the wild type one.

List of individuals with known HLA allotype combinations. We obtain a list
of individuals with their associated HLA class I allotypes from
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ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical /working/20140725_hla_ge
notypes/20140702_hla_diversity.txt. This dataset includes 1,267 unique
individuals from the 1000 Genomes Project, covering 14 populations and 4
major ancestral groups*8. Each individual is annotated with their 6 HLA class I
allotypes. However, in several cases each of the 6 allotypes is represented by
multiple entries. These typing ambiguities reflect allotypes that do not differ on
exons 2 and 3 of the HLA gene, that is, the exons carrying the antigen recognition
sites. In these cases, we consider only the first reported entry for each allotype.
We exclude individuals that have allotypes that are not well defined at the four
digit level or that are not present in the NetMHCpan-4.0 library of HLA allotypes
(NetMHCpan-4.0 is the method that we use for predicting HLA-presentation, see
below), these are: HLA-A03:03N, HLA-B44, HLA-C15, HLA-C14XX. HLA-C0140
and those labelled “0000”. The complete list of 1,261 individuals and associated
allotype combinations that we use is given in Supplementary Table 4. In the
following, we refer to this as the 10006 dataset and use it to represent the type
and frequency of HLA class | combinations that we expect to find in individuals
within the general population.

HLA-presentation scores. All HLA-presentation scores that we describe in the
following are defined starting from eluted ligand likelihood percentile ranks of
peptides with respect to HLA allotypes; these rank scores are obtained from the
NetMHCpan-4.0 prediction method*°.

Best rank (BR) HLA-presentation score of a mutation. Each missense mutation is
associated to a set of (maximum 38) peptides (see Generation of mutation-
associated peptides above). For each peptide in this set, we use the program
NetMHCpan-4.04° to calculate the eluted ligand likelihood percentile rank and
the interaction core peptide (Icore) with respect to all HLA allotypes observed
in the 1000G dataset (see above). The elution rank takes values in the range from
0 to 100, with lower values representing higher presentation likelihoods. The
Icore is the part of the original peptide predicted by NetMHCpan-4.0 to be
located in the HLA binding site, thus the peptide most likely to interact with
the T-cells. In some of the cases in which the Icore is shorter than the original
peptide, it may not span the mutation at all and may thus be equivalent to a
wild-type peptide. We define the presentation score of a mutation with respect
to a specific HLA allotype as the minimum elution rank among all associated
peptides (this is the same the “Best Rank” score used in*4) excluding those with a
wild-type Icore. We call this presentation score BR.

Population-wide Median Harmonic-mean Best Rank (PMHBR) score of a mutation.
In Marty et al.#4, the authors define a patient-specific presentation score for a
mutation by using a harmonic mean to combine the six best rank scores of the
patient’s 6 HLA allotypes (Patient Harmonic-mean Best Rank or PHBR).
Unfortunately, COSMIC does not contain information about the HLA allotype
combinations of the patients that develop specific resistance mutations. As a
consequence, in order to provide an equal-ground comparison between all
groups of mutations, we alternatively define a score that is representative of the
presentation properties of a mutation across the whole population. We calculate
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our Population-wide Median Harmonic-mean Best Rank (PMHBR) for a mutation
m as:

6
PMHBR(m) = medianlooo(;( —1) (1)
6

2i=1 BR, (m)

where the internal summation is taken over all 6 HLA allotypes of a given
individual (2 each for HLA-A,-B and -C) and the median is taken over the 1,261
individuals from the 1000 Genomes Project for which we could obtain complete
HLA class I annotation (Supplementary Table 4).

Lower PMHBR scores correspond to higher likelihoods for the mutation to be
presented across the population. As remarked in Marty et al.#4, the properties of
the harmonic average imply that the lowest BR; has the biggest impact on the
value of PMHBR (although all 6 terms in the summation can contribute). Because
of this and the fact that HLA-C proteins are generally expressed at lower levels
with respect to HLA-A and HLA-B>9, in the supplementary materials we also
report analyses in which the two HLA-C allotypes are omitted from the
calculation of the harmonic average in (1).

Individual’s best rank. We additionally define an individual’s best rank (IBR) for a
mutation m as the minimum BR of the mutation when considering all the HLA
allotypes of the individual, that is:

IBR(m) = minyqiviquar’s nras( BR) (2)

The IBR is useful for calculating the percentage of individuals in which a
mutation is likely to be immunogenic according to a pre-defined threshold. For
example, we can calculate the percentage of individuals for which IBR(m)<0.5 or,
alternatively, <2.0 (see Results).

Comparison between mutant and wild-type peptide HLA-presentation scores. Given
an individual with their associated HLA allotypes and a mutation, we compare
the individual’s HLA-presentation scores of mutant vs wild-type peptides in the
following ways. We first calculate the minimum eluted ligand likelihood
percentile rank score across all of the patient’s HLA types for each pair of mutant
and corresponding wild-type peptide (mutant and wild-type peptide MinRank,
respectively; note that the MinRank is a property of a single peptide rather than
of a mutation like the previously defined BR). We then do one of two things: (i)
we ask that at least one pair exists such that the MinRank of the mutant peptide
is lower than a given threshold and the MinRank of the wild-type peptide is
higher than the same or different (higher) threshold or (ii) we ask that at least
one pair exists such that the MinRank of the mutant peptide is lower than a given
threshold and, additionally, lower than the one of the wild-type peptide. In both
cases, we use thresholds of 0.5 or 2.0. Indeed, NetMHCpan-4.0 eluted ligand
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likelihood percentile rank score values below 0.5 are usually said to indicate high
presentation likelihood, values between 0.5 and to 2.0 to indicate low
presentation likelihood and values >2.0 to indicate that a peptide is not likely to
be presented. We perform similar calculations for the analysis of the
immunogenic potential of individual peptides in the general population.

Statistical analysis and plots. Throughout this study, statistical analysis is
performed and plots are drawn using GraphPad Prism version 8.1.1 for 0S X,
GraphPad Software, La Jolla California USA, www.graphpad.com. In particular, to
calculate multiple comparison-adjusted p-values we perform Kruskal-Wallis
tests and Dunn’s post hoc tests.
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RESULTS

In order to be immunogenic, protein peptides need to possess two fundamental
properties: they have to be presentable by HLA class [ complexes and they have
to be able to escape central and peripheral tolerance. We start by comparing
predicted HLA class I presentation scores of resistance-mutation associated
neopeptides to those of neopeptides of different origin across the general
population (PMHBR scores, see Experimental Procedures) (Figure 1 and
Supplementary Figure 1 for a violin plot of the same data). We can see that
passenger, germline SNP and random mutations all feature similar PMHBR score
distributions. The distribution of PMHBR scores for driver mutations is instead
shifted toward higher values, indicating a lower likelihood of the associated
neopeptides to be HLA-presented in the general population. Although the
difference between the distributions for passenger and driver mutations is not
significant the trend is in line with the observation made by Marty et al. that
recurrent oncogenic mutations have universally poor HLA class I
presentation*4. If we now look at resistance mutations, we see that their PMHBR
scores are generally significantly lower than the ones of both passenger and
driver mutations. Resistance mutation-associated neopeptides are hence
predicted more likely to be HLA-presented across the general population than
neopeptides generated by other types of mutations. Similar trends are observed
when discarding resistance mutations reported in only one patient (the ones less
relevant for off-the-shelf therapies) (Supplementary Figure 2) or when
considering only HLA-A and HLA-B allotypes for computing the PMHBR score
(Supplementary Figures 3 and 4). When excluding from the resistance set those
mutations that occur in the BCR-ABL1 gene (constituting about half of the whole)
differences appear less significant suggesting that BCR-ABL1 mutations are on
average particularly immunogenic (Supplementary Figure 2 and 4). At the same
time, when plotting PMHBR scores for each resistance gene separately, we see
that additional genes contribute to the overall immunogenic profile of resistance
mutations (e.g., ALK, MET, SMO etc.) (Supplementary Figure 5).

In Figure 2, as examples, we show the BR score-based HLA profile (see
Experimental Procedures) of two resistance mutations of particular clinical
relevance. The EGFR C797S mutation represents a major challenge for treatment
of osimertinib-resistant tumors in non-small cell lung cancer4’. T315], until
approval of the third-generation inhibitor ponatinib>!, was the most common
mutation associated with resistance to BCR-ABL1 inhibitors>253, From these
profiles, we see that both mutations are predicted to generate neopeptides that
produce low BR scores (that is, are predicted to have high presentation
likelihood) for a wide range of common HLA allotypes. This is markedly different
to what we observe for most (though not all) of the common driver mutations
(see, as examples, the BR score-based HLA profiles of the two most common
somatic mutations in TCGA, Supplementary Figure 6).
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Figure 1. Distribution of PMHBR scores for different sets of mutations. Lower
PMHBR values correspond to a higher likelihood of being presented by HLA class
I complexes. The dotted horizontal line is a guide for the eye and corresponds to
the value of the median of the distribution for passenger mutations. Note that for
clarity the y-axis is cut at 10, thus excluding some of the distributions’ outliers.
Asterisks indicate significance of pair-wise differences between PMHBR score
distributions calculated using a Kruskal-Wallis test followed by Dunn’s post hoc
test. p-values are adjusted for multiple testing (all vs all). For clarity, on the plot
we report p-values for only some of the comparisons. (***) stands for p-
value<0.001 and (****) stands for p-value<0.0001; (ns) stands for “not
significant”. The lower and higher edges of each Tukey box represent the 25%
and 75% percentile value, respectively. The horizontal line inside each box
represents the median value.
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Figure 2. BR score-based HLA profiles of two highly clinically relevant cancer
resistance mutations: A) C797S in EGFR and B) T315I in BCR-ABL1. Blue bars
(primary y-axis) represent the BR scores of the mutation with respect to the HLA
allotypes reported on the x-axis. Red bars (secondary y-axis) represent the
frequency of each HLA allotype in the 1000G dataset. For clarity, we report BR
scores for only the HLA-A, -B and -C allotypes that have frequency >1%. The two
dotted lines mark elution rank value limits for strong likelihood of presentation
(SB, i.e score < 0.5) and weaker likelihood of presentation (WB, i.e.
0.5<=score<2.0). For the sake of readability, we cut the primary y-axis to a value
of 2.0. Note that blue bars that reach up to a value of 2.0 often correspond to BR
values >2.0 and are hence cases for which no-peptide generated by the mutation
is predicted likely to be presented by that specific HLA allotype.

As we mentioned in the Introduction, one of the most appealing characteristics
of resistance mutation-associated neopeptides is that they recur in different
patients. It is thus interesting to know in how many potential patients a mutation
can generate neopeptides likely to be presented by HLA class I complexes. In
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Figure 3, for every resistance mutation recorded in at least 5 patients in COSMIC
(61 mutations in total, values for all 226 mutations are in Supplementary Table
5), we calculate the percentage of individuals in our 1000G dataset that are
expected to HLA-present at least one of the mutation-associated neopeptides
when using an IBR score threshold of <0.5 (see also Supplementary Figure 7 for
the same plot but considering only HLA-A and HLA-B allotypes for calculating
the IBR score). We first notice that our results are in line with previous studies
that showed that several BCR-ABL1 mutations3? (and T790M in EGFR3334) are
likely to be HLA-presented (Supplementary Figure 8), although those studies
considered a much smaller set of HLA allotypes. Second and more importantly,
we show that several other resistance mutations occurring in different tumour
tissues (Figure 3) and in several other genes (Supplementary Figure 9) are also
predicted as likely to be HLA-presented across the population. In general, we can
see that 39 of 61 mutations in Figure 3 generate neopeptides that are predicted
to be HLA-presented by at least 50% of individuals in our 1000G dataset. These
39 mutations occur in 6 different tumor tissues and across 12 different genes.
When considering a more relaxed threshold for HLA-presentation (IBR<2.0) all
but one of these mutations are predicted as “presentable” by at least half of
individuals in the 1000G dataset (Supplementary Figure 10). As an example,
neopeptides associated with the osimertinib resistance mutation C797S in EGFR
and to T3151 in BCR-ABL1 are predicted as “presentable” in 99% and 83% of
individuals, respectively (for a patient-BR threshold <0.5). Interestingly, the two
mutations that have been previously validated as able to elicit T-cell responses in
healthy donors and patients alike (E255K in BCR-ABL1 and T790M in EGFR) are
not among our top-ranked ones (215t and 29, respectively).
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Figure 3. Estimates for the percentage of individuals in the general population
predicted to HLA-present resistance mutation-associated neopeptides. For each
mutation, the histogram illustrates the percentage of individuals in the 1000G
dataset with an IBR<0.5 (the IBR score is defined in Experimental Procedures).
Mutations on the x-axis are ordered according to decreasing percentages of
individuals. For clarity, we plot only mutations that have been observed in at
least 5 patients (according to COSMIC). Colours indicate the different tumour
tissues in which the resistance mutations have been observed; “haema&lymph”
stands for haematopoietic and lymphoid tissue. Asterisks mark mutations that
have been shown to elicit T-cell responses in previous works32-34,

We next investigate the possibility that resistance mutation neopeptides, while
likely to be HLA-presented, may be subjected to tolerance, in which case they
would not be immunogenic. Under normal circumstances, tolerance ensures that
there are no T-cells that can recognise germline wild type peptides, thus
preventing auto-immune responses>*. Since neopeptides are generated by
somatic mutations, they are very likely to differ from any germline wild type
peptide. At the same time, neopeptides originating from missense mutations,
such as those that we analyse here, differ from wild type peptides only by a
single amino acid substitution. Given that T-cell binding properties allow for at
least some promiscuity in peptide binding affinity>>, missense mutation-
associated neopeptides might still be subjected to some degree of tolerance. A
common way to identify neopeptides that are more likely to be immunogenic is
to select for those that have wild type counterparts with low HLA-presentation
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likelihood>¢. The rationale is that if a wild type peptide is poorly presented, T-
cells that bind to it and hence possibly to very similar peptides are less likely to
have been negatively selected. It is important to stress, however, that even a
neopeptide for which the wild type counterpart is HLA-presented may be
immunogenic if the mutation it carries make it eligible to binding by a different
T-cell pool with respect to the wild type. In Figure 4, we compare the
presentation likelihood of resistance mutation-associated neopeptides with that
of their wild type counterparts (only mutations recorded in at least 5 patients in
COSMIC; values for all mutations are in Supplementary Table 5). In particular, we
report the percentage of individuals in the 1000G dataset in which at least one
mutant peptide is predicted highly likely to be presented (<0.5% rank) while the
corresponding wild type peptide is not highly likely to be presented (>0.5%
rank). We can see that for 13 mutations the percentage of individuals is at least
50% (see Supplementary Figure 11 for HLA-A and HLA-B only). Again, mutations
previously shown to be immunogenic do not exhibit the highest rankings in this
plot (BCR-ABL1 E255K is 11t and EGFR T790M is 44t). In Supplementary
Figures 12-15, we show the same analysis when using alternative criteria for
evaluating the difference between mutant and wild type peptides. Finally, in
Supplementary Figures 16 and 17, we show the resistance mutations-associated
neopeptides (length 8 to 11) that we estimate to have the highest percentage of
individuals more likely to present them (%rank<0.5 or %rank<2.0) than to
present their wild type counterparts (%rank>0.5 or %rank>2.0 respectively).
With respect to the previously validated neopeptides associated with the E255K
BCR-ABL1 and T790M EGFR resistance mutations we observe the following. We
predict the BCR-ABL1-associated neopeptide KVYEGVWKK to be highly likely to
be HLA-presented by the HLA-A*03:01 allotype, or the allotype for which
immunogenicity has been validated (%rank=0.005), and almost 100-fold more
likely to be presented than its wild type counterpart EVYEGVWKK
(%rank=0.33). However, since the wild type peptide is also predicted as likely to
be presented (%rank<0.5), KVYEGVWKK does not fare high in our plots that use
a fixed threshold for both mutant and wild type peptides while it scores
definitely better when considering a <0.5% rank threshold for the mutant and
simply asking that the wild type has higher ranking than the mutant peptide
(Supplementary Figure 18). In contrast, we don’t predict the T790M-associated
mutant peptides that have been previously validated as immunogenic
(MQLMPFGCLL, LIMQLMPFGCL, IMQLMPFGC) to be likely to be presented by the
experimentally validated HLA-A*02:01 allotype (%ranks=2.12, 16.0 with core
peptide LIMQLMPFL and 5.74, respectively). We do however observe a separate,
not previously tested T790M-associated neopeptide (LTSTVQLIM) as one that
has high immunogenic potential across the population (third from top in
Supplementary Figure 17).

The complete list of resistance mutations that we analyse here along with
estimates of the percentage of individuals in the 1000G dataset that are likely to
present their associated neopeptides and, separately, that are more likely to
present their associated neopeptides than their wild type counterparts can be
found in Supplementary Table 5. The list of resistance mutation-associated
neopeptides likely to be presented by at least 1% of individuals or, separately,
more likely to presented than their wild type counterparts by at least 1% of
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individuals can instead be found in Supplementary Table 6 (peptides associated
to resistance mutations observed in at least 5 patients, COSMIC).
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Figure 4. Population-wide comparison of HLA class I presentation likelihood
between resistance mutation-associated mutant peptides and their corresponding
wild type peptides. For each mutation, the histogram illustrates the estimated
percentage of individuals for which there exists at least one mutant peptide-wild
type peptide pair such that minimum eluted ligand likelihood percentile rank
score across all of the individual’s HLA allotypes is <0.5 for the mutant peptide
and >=0.5 for the wild type peptide. Mutations on the x-axis are ordered
according to decreasing percentages of individuals. We plot only mutations that
have been observed in at least 5 patients (according to COSMIC). Colours
indicate the different tumour tissues in which the resistance mutations have
been observed; “haema&lymph” stands for haematopoietic and lymphoid tissue.
Asterisks mark mutations that have been shown to elicit T-cell responses in
previous works32-34,
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DISCUSSION AND CONCLUSIONS

Cancer immunotherapies seek to invigorate a patient’s immune response against
the tumor?. This response is typically mediated by tumor antigens that originate
from the cancer cells’ aberrant proteome. Cancer drug resistance mutations are
one class of somatic aberrations that generate tumor-specific, potentially
immunogenic antigens. Previous studies showed that two resistance mutations,
E255K in BCR-ABL1 and T790M in EGFR, are indeed immunogenic32-3%;
additionally, Cai et al.32 suggested that this property may be shared by a larger
number of BCR-ABL1 resistance mutations. These previous studies were based
on presentability by a small number of class | HLA allotypes (5 HLA-A and 3
HLA-B allotypes in3? and only HLA-A*02:01 in3334). We asked whether these
immunogenic properties could be shared by a larger number of cancer drug
resistance mutations and when considering individuals featuring a much larger
number of class I HLA allotypes. Using in silico predictions, for the first time, we
present a general survey of the immunogenicity of 226 missense resistance
mutations associated with several genes (19), tissues (9) and tumor subtypes
(27). We show that many of these mutations generate neopeptides that are
predicted to be HLA-presented by a large proportion of the general population.
Additionally, for several resistance mutations and in a significant percentage of
patients, these potential neoantigens are predicted more likely to be HLA-
presented than their wild type counterparts, and are therefore less likely to fall
under central or peripheral tolerance. We also note that while we have
considered only missense mutations, which constitute the vast majority of drug
resistance mutations currently annotated in COSMIC, insertions and deletions
are also known to confer resistance to some drugs. HLA-presented neopeptides
generated by this type of somatic alterations would be more likely to be
immunogenic as they will generally differ substantially from any wild type
protein peptide>’.

Our study comes with a number of limitations. The most obvious is that our
results are based on computational predictions. Although the most recent breed
of prediction methods (such as the NetMHCpan-4.0 program that we use here)
integrate peptides’ HLA-elution mass spectrometry data they are still likely to
over-predict the number of presented peptides>8>9, Also, higher presentation
likelihood with respect to the corresponding wild type peptide is likely to be a
limited proxy for a mutant peptide’s immunogenicity (i.e., recognition by T-cells).
Despite these important caveats, as mentioned above, computational predictions
have been used previously to identify potentially immunogenic neopeptides
from the BCR-ABL1 E255K and EGFR T790M resistance mutations, which were
later proved effective in priming naive T-cells32-34; two of these studies showed,
additionally, that mature T-cells recognising these peptides could pre-exist in
patients3233, Further, methods that predict HLA-presentation have been widely
adopted and instrumental to studies that showed neoantigen load correlation
with CBT response®?, immune-evasion by neoantigen elimination®1-63 and
investigated personalised cancer vaccines against melanoma and glioblastoma in
small clinical trials21-24, In fact, several studies have shown that lists of predicted
neoantigens are indeed enriched in neopeptides capable of stimulating T-cell
responses both in vitro and in vivo?0-24, Another potential concern is the fact that
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some of the proteins that develop resistance mutations to current targeted
therapies are membrane-inserted. Membrane proteins are generally believed to
undergo degradation in lysosomes®# rather than via the ubiquitin-proteasome
pathway, which leads to HLA presentation of protein peptides. There is
compelling evidence, however, that nevertheless membrane protein peptides are
presented by HLA class I complexes®3. Finally, although we show that many
resistance mutations generate neopeptides that are predicted to be HLA-
presented in most individuals, we have not ruled out the possibility that
resistance mutations may be under negative selection in patients. In other
words, they might occur only or primarily in those patients in which the
associated neopeptides are not likely to be presented. Although negative
selection has been reported for driver mutations*4, it would seem less probable
for resistance mutations which typically appear later during cancer evolution or
when immune-evasion by the tumor is likely to have already occurred. One
previous study, however, reported a negative correlation between response to
antigens derived from the EGFR T790M mutation and the occurrence of the
mutation in non-small cell lung cancer patients treated with tyrosine kinase
inhibitors33. Unfortunately, since COSMIC does not provide us with information
about the HLA allotypes of the patients in which the different resistance
mutations occur, we are not able to test this hypothesis directly. If resistance
mutations were under negative selection, however, it would be reasonable to
expect a correlation between their observed frequency in patients and their
PMHBR score (where higher PMHBR scores correspond to a lower likelihood of
being presented in the general population). To reduce the impact of possible
confounding factors, we consider mutations occurring on the same gene and
associated with the same drug (see also Experimental Procedures). We take as
an example the set of imatinib-associated BCR-ABL1 resistance mutations, which
are the most numerous for a single drug-gene pair in COSMIC (84 total,
Supplementary Table 7). In this case, we see no correlation between number of
patients in which the different mutations occur and their PMHBR score
(Supplementary Figure 19, differences between groups are not significant,
Kruskal Wallis test). As an example, T315I or the most common imatinib-
associated BCR-ABL1 mutation in COSMIC (reported in 222 patients)
corresponds to a PMHBR of 0.53 compared to a median of 0.83 for all imatinib-
BCR-ABL1 mutations. This appears to support the idea that at least some of these
mutations might occur in patients in which they are presented and potentially
immunogenic; however, a definitive answer will only come from experimental
testing of the T-cell repertoire in patients carrying these mutations.

In conclusion, expanding on previous studies, we have presented data that
suggests that resistance mutation-associated neoantigens could be particularly
interesting targets for precision immunotherapies such as cancer vaccines®®.
Most recent work in the field has focused on tumor neoantigens associated with
protein-modifying passenger mutations?1-24, However, vaccines derived from
passenger mutations, which are private, would represent fully personalised
treatments with potentially high development costs and scale-up issues for
translation into the clinic#3. In contrast, recurrent neoantigens such as those
potentially derived from resistance mutations could serve as a basis for
developing off-the-shelf vaccines, which could be used in combination with
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targeted therapies, as well as with other types of immunotherapies such as CBTs.
We believe that the recent advances in cancer immunotherapy and the ever-
increasing number of available targeted therapies provide an unprecedented
background on which to test this hypothesis.
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