

1 **Neighbor GWAS: incorporating neighbor genotypic identity into genome-
2 wide association studies of field herbivory on *Arabidopsis thaliana***

3

4 Yasuhiro Sato^{1,2}, Eiji Yamamoto^{1,3}, Kentaro K. Shimizu^{4,5*}, Atsushi J. Nagano^{6*}

5

6 ¹PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

7 ²Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-
8 cho, Otsu, Shiga 520-2194, Japan

9 ³Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan

10 ⁴Department of Evolutionary Biology and Environmental Studies, University of Zurich,
11 Winterthurerstrasse 190, 8057 Zurich, Switzerland

12 ⁵Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-
13 0813 Totsuka-ward, Yokohama, Japan

14 ⁶Department of Plant Life Sciences, Faculty of Agriculture, Ryukoku University, Yokotani 1-
15 5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan

16 *Co-correspondence:

17 Atsushi J. Nagano

18 anagano@agr.ryukoku.ac.jp

19 Kentaro K. Shimizu

20 kentaro.shimizu@ieu.uzh.ch

21

22

23

24

25 **ABSTRACT**

26 An increasing number of field studies show that the phenotype of an individual plant depends
27 not only on its genotype but also on those of neighboring plants; however, this fact is not
28 taken into consideration in genome-wide association studies (GWAS). Based on the Ising
29 model of ferromagnetism, we incorporated neighbor genotypic identity into a regression
30 model in this study. The proposed method, named “neighbor GWAS”, was applied to
31 simulated and real phenotypes using *Arabidopsis thaliana* accessions. Our simulations
32 showed that phenotypic variation explained by neighbor effects approached a plateau when
33 an effective spatial scale became narrow. Thus, the effective scale of neighbor effects could
34 be estimated by patterns of the phenotypic variation explained. The power to detect causal
35 variants of neighbor effects was moderate to strong when a trait was governed by tens of
36 variants. In contrast, there was a reasonable power down when hundreds of variants underlay
37 a single trait. We applied the neighbor GWAS to field herbivory data on 200 accessions of *A.*
38 *thaliana*, and found that the neighbor effects more largely contributed to the observed
39 damage variation than self-genotype effects. Interestingly, several defensin family genes were
40 associated with neighbor effects on the herbivory, while self-genotype effects were related to
41 flavin-monooxygenase glucosinolate S-oxygenase 2 (FMO GS-OX2). Overall, the neighbor
42 GWAS highlights the overlooked but significant role of plant neighborhood effects in shaping
43 phenotypic variation, thereby providing a novel and powerful tool to dissect complex traits in
44 spatially structured environments.

45

46 Keywords: *Arabidopsis thaliana*, GWAS, Ising model, Neighbor effects, Plant-insect
47 interaction

48

49 **INTRODUCTION**

50 Plants are immobile and thus cannot escape their neighbors. In natural and agricultural fields,
51 individual phenotypes depend not only on the plants' own genotype but also on those of other
52 plants in a neighborhood (Tahvanainen and Root 1972; Barbosa et al. 2009; Underwood et al.
53 2014). This phenomenon has been termed neighbor effects or associational effects in plant
54 ecology (Barbosa et al. 2009; Underwood et al. 2014; Sato 2018). Such neighbor effects were
55 initially reported as a form of interspecific interaction among different plant species
56 (Tahvanainen and Root 1972), but many studies have thus far illustrated that neighbor effects
57 occur among different genotypes within a plant species in herbivory (Schuman et al. 2015;
58 Sato 2018; Ida et al. 2018), pathogen infections (Mundt 2002; Zeller et al. 2012), and
59 pollinator visitations (Genung et al. 2012). Although neighbor effects are of considerable
60 interest in plant science (Dicke and Baldwin 2010; Erb 2018) and its potential application to
61 agriculture (Zeller et al. 2012; Dahlin et al. 2018), these effects are not often considered in
62 quantitative genetics of field-grown plants.

63 Complex mechanisms underlie neighbor effects through direct competition (Weiner
64 1990), herbivore and pollinator movement (Bergvall et al. 2006; Genung et al. 2012; Verschut
65 et al. 2016), and volatile communication among plants (Schuman et al. 2015; Dahlin et al.
66 2018). For example, lipoxygenase (*LOX*) genes govern jasmonate-mediated volatile

67 emissions that induce defenses of neighboring plants in *Nicotiana* (Schuman et al. 2015).

68 Even if direct plant-plant communications are absent, herbivores can mediate indirect
69 interactions between plant genotypes (Sato and Kudoh 2017; Ida et al. 2018): *GLABRA1*
70 (*GL1*) polymorphism determines hairy or glabrous phenotypes in *Arabidopsis* plants (Hauser
71 et al. 2001) and allow a flightless leaf beetle to avoid hairy plants when encountered at a low
72 frequency (Sato and Kudoh 2017; Sato et al. 2017). Yet, there are few hypothesis-free

73 approaches to seek key genetic variants responsible for plant neighborhood effects.

74 Genome-wide association studies (GWAS) have been increasingly adopted to

75 resolve the genetic architecture of complex traits in the model plant, *Arabidopsis thaliana*

76 (Atwell et al. 2010; Togninalli 2018) and crop species (Hamblin et al. 2011). Plant

77 interactions with herbivores (Brachi et al. 2015; Nallu et al. 2018), microbes (Horton et al.

78 2014; Wang et al. 2018), and other plant species (Frachon et al. 2019), are one of such

79 complex traits dissected through the lens of GWAS. To distinguish causal variants from the

80 genome structure, GWAS often employs a linear mixed model with kinship considered in a

81 random effect (Kang et al. 2008; Korte and Farlow 2013). However, it is generally impossible

82 to test all the gene-by-gene interactions due to combinatorial explosion (Gondro et al. 2013);

83 thus, some feasible and reasonable approach should be invented for GWAS of neighbor

84 effects.

85 To incorporate neighbor effects into GWAS, we focused on a theoretical model of

86 neighbor effects in a magnetic field, known as the Ising model (Ising 1925; McCoy and

87 Maillard 2012), which has been applied to forest gap dynamics and community assembly in

88 plant ecology (Kizaki and Katori 1999; Schlicht and Iwasa 2004; Azaele et al. 2010).

89 Assuming that an individual plant is a magnet, two alleles at each locus correspond to the

90 north or south dipole, whereby genome-wide multiple testing across all loci is analogous to a

91 number of parallel two-dimensional layers. The Ising model has a clear advantage in its

92 interpretability, such that (i) the optimization problem for a population sum of trait values can

93 be regarded as an inverse problem of a simple linear model, (ii) the sign of neighbor effects

94 determines a model trend to generate a clustered or checkered spatial pattern of the two

95 states, and (iii) the self-genotypic effect determines the general tendency to favor one allele

96 over another (Fig. 1).

97 In this study, we proposed a new methodology integrating GWAS and the Ising
98 model, named “neighbor GWAS”. The method was applied to simulated phenotypes and real
99 data of field herbivory on *A. thaliana*. We addressed two specific questions: (i) what spatial
100 and genetic factors influenced the power to detect causal variants? (ii) were neighbor effects
101 significant sources of leaf damage variation in field-grown *A. thaliana*? Based on the
102 simulation and application, we determined the feasibility of our approach to detect neighbor
103 effects in field-grown plants.

104

105 **MATERIALS & METHODS**

106

107 **Neighbor GWAS**

108 **Basic model.** We analyzed neighbor effects in GWAS as an inverse problem of the two-
109 dimensional Ising model (Fig. 1). We consider a situation where a plant accession has either
110 of two alleles at each locus, and a number of accessions occupy a finite set of field sites in a
111 two-dimensional lattice. Let x represent allelic status at each locus, the allelic status at each
112 locus of the i -th focal plant and j -th neighboring plants can be designated as $x_{i(j)} \in \{-1, +1\}$.
113 Based on a two-dimensional Ising model, we can define a phenotype value of i -th focal
114 individual plant y_i as

115
$$y_i = \beta_1 x_i + \beta_2 \sum_{j=1}^L x_i x_j \quad [\text{eq. 1}],$$

116 where β_1 and β_2 denote self-genotype and neighbor effects, respectively and L is the number
117 of neighboring plants to refer. If two neighboring plants shared the same allele at a given
118 locus, the product $x_i x_j$ turned into $(-1) \times (-1) = +1$ or $(+1) \times (+1) = +1$. If two neighbors had
119 different alleles, the product $x_i x_j$ became $(-1) \times (+1) = -1$ or $(+1) \times (-1) = -1$. Accordingly, the
120 effects of neighbor genotypic identity on a phenotype depended on the coefficient β_2 and the

121 number of two alleles in a neighborhood. If the numbers of identical and different alleles
122 were the same near a focal plant, these neighbors offset the sum of the products $\sum_{j=1}^L x_i x_j$ and
123 exerted no effects on a phenotype. When we summed up the phenotype values for the total
124 number of plants n and replaced it as $E = -\beta_2$, $H = -\beta_1$ and $\epsilon_I = \sum y_i$, eq. 1 can be
125 transformed as $\epsilon_I = -E \sum_{i,j} x_i x_j - H \sum x_i$, which defines the interaction energy of a two-
126 dimensional ferromagnetic Ising model (McCoy and Maillard 2012). The neighbor effect β_2
127 and self-genotype effect β_1 were interpreted as the energy coefficient E and external magnetic
128 field H , respectively. An individual plant represented a spin and the two allelic states of each
129 locus corresponded to a north or south dipole. The positive or negative value of $\sum x_i x_j$
130 indicated a ferromagnetism or paramagnetism, respectively. In this study, we did not consider
131 the effects of allele dominance because this model was applied to inbred *A. thaliana*.
132 However, heterozygotes could be processed if the neighbor covariate $x_i x_j$ was weighted by an
133 estimated degree of dominance in the self-genotypic effects on a phenotype.

134 **Mixed model.** For association mapping, we needed to determine β_1 and β_2 from
135 observed phenotypes and consider a confounding sample structure as advocated by previous
136 GWAS (e.g., Kang et al. 2008; Korte and Farlow 2013). Extending the basic model eq. 1, we
137 described a linear mixed model at an individual level as

$$138 \quad y_i = \beta_0 + \beta_1 x_i + \frac{\beta_2}{L} \sum_{j=1}^L x_i x_j + u_i + e_i \quad [\text{eq. 2}],$$

139 where β_0 indicates the intercept, and the term $\beta_1 x_i$ represents fixed self-genotype effects as
140 tested in conventional GWAS; β_2 is the coefficient of fixed neighbor effects, and the neighbor
141 covariate $\sum_{j=1}^L x_i x_j$ is scaled by the number of neighboring plants, L . Variance components
142 due to a sample structure in self and neighbor effects was modeled by a random effect
143 $u_i \sim \text{Norm}(0, \sigma_S^2 \mathbf{K}_S + \sigma_N^2 \mathbf{K}_N)$. The residual was expressed as $e_i \sim \text{Norm}(0, \sigma_e^2)$.

144 The $n \times n$ variance-covariance matrices represented the similarity in self-genotypes

145 (i.e., kinship) and neighbor covariates among n individual plants as:

146
$$\mathbf{K}_S = \frac{1}{q-1} \mathbf{X}_S^T \mathbf{X}_S \text{ and}$$

147
$$\mathbf{K}_N = \frac{1}{q-1} \mathbf{X}_N^T \mathbf{X}_N,$$

148 where q indicates the number of markers. As we defined $x_{i(j)} \in \{-1, +1\}$, the elements of the

149 kinship matrix \mathbf{K}_S are scaled to represent the proportion of marker loci shared among $n \times n$

150 plants such that $\mathbf{K}_S = (0.5k_{S,ij} + 0.5)$ and $k_{S,ij} \in [0, 1]$; σ_S^2 and σ_N^2 indicates variance

151 component parameters for the self and neighbor effects.

152 The n plants $\times q$ markers matrix \mathbf{X}_S and \mathbf{X}_N are explanatory variables for the self

153 and neighbor effects as $\mathbf{X}_S = (x_i)$ and $\mathbf{X}_N = \left(\frac{\sum_{j=1}^L x_i x_j}{L} \right)$. The individual-level formula eq. 2 could

154 also be converted into a conventional matrix form as:

155
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e} \quad [\text{eq. 3}],$$

156 where \mathbf{y} is $n \times 1$ vector of phenotypes. \mathbf{X} is a matrix of fixed effects, including mean, self-

157 genotype x_i , neighbor covariate $(\sum_{j=1}^L x_i x_j)/L$, and other confounding covariates for n plants;

158 $\boldsymbol{\beta}$ is a vector that represents coefficients of the fixed effects; \mathbf{Z} is a design matrix allocating

159 individuals to a genotype, and becomes an identity matrix if all plants are different

160 accessions; \mathbf{u} is the random effect with $\text{Var}(\mathbf{u}) = \sigma_S^2 \mathbf{K}_S + \sigma_N^2 \mathbf{K}_N$, and \mathbf{e} is residual as $\text{Var}(\mathbf{e}) =$

161 $\sigma_e^2 \mathbf{I}$. In such a mixed model, the proportion of phenotypic variation explained (PVE) by the

162 self and neighbor effects could be calculated as $\text{PVE}_{\text{self}} = \sigma_S^2 / (\sigma_S^2 + \sigma_N^2 + \sigma_e^2)$ and $\text{PVE}_{\text{nei}} =$

163 $\sigma_N^2 / (\sigma_S^2 + \sigma_N^2 + \sigma_e^2)$, respectively. The line of extensions to incorporate neighbor effects into

164 GWAS is referred to as “neighbor GWAS” hereafter.

165

166 **Power simulation**

167 To examine the power to detect neighbor effects, we applied the neighbor GWAS to
168 simulated phenotypes. Phenotypes were simulated using a part of the real genotypes of *A.*
169 *thaliana*. To evaluate the power of the simple linear model, we assumed a complex ecological
170 form of neighbor effects with multiple variance components controlled. The power was
171 evaluated by the receiver operating characteristic (ROC) curve on the association score of -
172 $\log_{10}(p\text{-value})$ (e.g., Gage et al. 2018). All analyses were performed using R version 3.4.0 (R
173 Core Team 2017).

174 **Genotype data.** To consider a realistic genetic structure in the simulation, we used
175 part of the *A. thaliana* RegMap panel (Horton et al. 2012). The genotype data on 1307
176 accessions were downloaded from the Joy Bergelson laboratory website
177 (http://bergelson.uchicago.edu/?page_id=790 accessed on 9 February 2017). We extracted the
178 chromosome 1 and 2 data with the minor allele frequency (MAF) at >0.1 , providing a matrix
179 of 1307 plants with 65,226 single nucleotide polymorphisms (SNPs). Pairwise linkage
180 disequilibrium (LD) among the loci was $r^2 = 0.003$ [0.00-0.06: median with upper and lower
181 95 percentiles]. Before generating a phenotype, each locus was centered by its mean and
182 scaled by its standard deviation. Subsequently, we randomly selected 1296 accessions ($= 36 \times$
183 36 accessions) without any replacements for each iteration, and placed them in a 36×72
184 checkered space following *Arabidopsis* experimental settings (see Fig. 2b).

185 **Phenotype simulation.** To address ecological issues specific to plant neighborhood
186 effects, we considered two extensions, namely asymmetric neighbor effects and spatial
187 scales. Firstly, previous studies showed that such plant-plant interactions are sometimes
188 asymmetric between two accessions in herbivory (e.g., Bergvall et al. 2006; Verschut et al.
189 2016; Sato and Kudoh 2017) and height competition (Weiner 1990). Such asymmetric

190 neighbor effects can be tested by statistical interactions terms in a linear model (Bergvall et
191 al. 2006; Sato and Kudoh 2017). Secondly, several studies showed that the strength of
192 neighbor effects depended on spatial scales (Hambäck et al. 2014) and the scale of neighbors
193 to be analyzed relied on the dispersal ability of causative organisms (see Hambäck et al.
194 2009; Sato and Kudoh 2015; Vershut et al. 2018; Ida et al. 2018 for insect and mammal
195 herbivores; Rieux et al. 2014 for pathogen dispersal) or the size of competing plants (Weiner
196 1990). We assumed the distance decay at s -th sites from a focal individual i with the decay
197 coefficient α as $w(s, \alpha) = e^{-\alpha(s-1)}$, since such an exponential distance decay has been widely
198 adopted in empirical studies (Devaux et al. 2007; Carrasco et al. 2010; Rieux et al. 2014; Ida
199 et al. 2018). Therefore, we assumed a more complex model for simulated phenotypes than the
200 model for neighbor GWAS as follows:

201
$$y_i = \beta_0 + \beta_1 x_i + \frac{\beta_2}{L} \sum_{j=1}^L w(s, \alpha) x_i x_j + \beta_{12} \frac{x_i}{L} \sum_{j=1}^L w(s, \alpha) x_i x_j + u_i + e_i \quad [\text{eq. 4}],$$

202 where β_{12} is the coefficient for asymmetry in neighbor effects. Total variance components due
203 to the three background effects i.e., the self, neighbor, and self-by-neighbor effects is defined
204 as $u_i \sim \text{Norm}(0, \sigma_S^2 \mathbf{K}_S + \sigma_N^2 \mathbf{K}_N + \sigma_{SxN}^2 \mathbf{K}_{SxN})$. The three variance component parameters σ_S^2 , σ_N^2 ,
205 and σ_{SxN}^2 , determined the relative importance of self-genotype, neighbor, and asymmetric
206 neighbor effects in u_i . Given the n plants \times q marker explanatory matrix with
207 $\mathbf{X}_{SxN} = (\frac{x_i}{L} \sum_{j=1}^L w(s, \alpha) x_i x_j)$, the similarity in asymmetric neighbor effects was calculated as
208 $\mathbf{K}_{SxN} = \frac{1}{q-1} \mathbf{X}_{SxN}^T \mathbf{X}_{SxN}$. To control phenotypic variations, we further partitioned the proportion
209 of phenotypic variation into those explained by major-effect genes and variance components
210 $\text{PVE}_\beta + \text{PVE}_u$, major-effect genes alone PVE_β , and residual error PVE_e , where $\text{PVE}_\beta + \text{PVE}_u$
211 $+ \text{PVE}_e = 1$. The *optimize* function in R was used to adjust simulated phenotypes to given
212 amounts of PVE.

213 **Parameter setting.** Fifteen phenotypes were simulated for each combination of the
214 distance decay α , the proportion of phenotypic variance explained by major-effect genes
215 PVE_β , variance components PVE_u , and the relative importance of multiple variance
216 components $\sigma_S^2:\sigma_N^2:\sigma_{SxN}^2$ as: $\alpha = 0.25, 1.0$ or 3.0 , $\sigma_S^2:\sigma_N^2:\sigma_{SxN}^2 = 6:3:1, 4:4:1$, or $3:6:1$, $\text{PVE}_\beta =$
217 $0.1, 0.3$ or 0.6 , and $\text{PVE}_\beta + \text{PVE}_u = 0.4$ or 0.8 . The maximum reference scale was fixed at $s =$
218 3 . The line of simulations was repeated for the number of causal SNPs at 20 or 200 to
219 examine cases of an oligogenic and polygenic control for a trait. The non-zero coefficients for
220 the causal SNPs were randomly sampled from a uniform distribution, $\text{Unif}(|0.5|, |2.0|)$, and
221 assigned as some causal SNPs were responsible for both the self and neighbor effects. Of the
222 total number of causal SNPs, 15% had all self, neighbor, and asymmetric neighbor effects
223 (i.e., $\beta_1 \neq 0$ and $\beta_2 \neq 0$ and $\beta_{12} \neq 0$); another 15% had both the self and neighbor effects, but no
224 asymmetry in the neighbor effects ($\beta_1 \neq 0$ and $\beta_2 \neq 0$ and $\beta_{12} = 0$); another 35% had self-
225 genotypic effects only ($\beta_1 \neq 0$); and the remaining 35% had neighbor effects alone ($\beta_2 \neq 0$).
226 Given its biological significance, we assumed that some loci having neighbor signals
227 possessed asymmetric interactions between neighbors ($\beta_2 \neq 0$ and $\beta_{12} \neq 0$) while the others
228 had symmetric ones ($\beta_2 \neq 0$ and $\beta_{12} = 0$). Therefore, the number of causal SNPs in β_{12} was
229 smaller than that in the main neighbor effects β_2 . According to this assumption, the variance
230 component σ_{SxN}^2 was also assumed to be smaller than σ_N^2 .

231 **Summary statistics.** The simulated phenotypes were fitted by eq. 2 to test the
232 significance of coefficients β_1 and β_2 , and to estimate the variance component due to self and
233 neighbor effects PVE_{self} and PVE_{nei} . The stepwise likelihood ratio tests were performed first
234 between the null model and model with a self-genotype effect alone, and then between the
235 self-genotype effect model and model with both self and neighbor effects. The likelihood
236 ratio was calculated as the difference in deviance i.e., $-2 \times \log\text{-likelihood}$, which is

237 asymptotically χ^2 distributed with one degree of freedom. The variance components, PVE_{self}
238 and PVE_{nei} , were estimated using the average information restricted maximum likelihood
239 (AI-REML) algorithm implemented in the *lmm.airml* function in the *gaston* package of R
240 (Perdry and Dandine-Roulland 2018). Subsequently, the two variance parameters σ_S^2 and
241 σ_N^2 were replaced with their estimates $\hat{\sigma}_S^2$ and $\hat{\sigma}_N^2$ by the AI-REML, and association tests
242 were performed by solving linear mixed models with a fast approximation by an eigen value
243 decomposition (implemented in the *lmm.diago* function: Perdry and Dandine-Roulland
244 2018). The likelihood was computed using the *lmm.diago.profile.likelihood* function to test β_1
245 or β_2 . True or false positive rates were evaluated by ROC curves and area under the ROC
246 curves (AUC) (Gage et al. 2018). An AUC of 0.5 would indicate that GWAS has no power to
247 detect true signals, while an AUC of 1.0 would indicate that all the top signals predicted by
248 GWAS agree with true signals. The *roc* function in the *pROC* package (Robin et al. 2011)
249 was used to calculate AUC from $-\log_{10}(p\text{-value})$. The AUC and variance components were
250 calculated from $s = 1$ (the first nearest neighbors) to $s = 3$ (up to the third nearest neighbors)
251 cases. The AUCs were also calculated using standard linear models without any random
252 effects to examine whether the linear mixed models were superior to the linear models.
253

254 ***Arabidopsis* herbivory data**

255 We applied the neighbor GWAS to field data of *Arabidopsis* herbivory. This field experiment
256 followed our previous publication on a summer herbivory on field-grown *A. thaliana* (Sato et
257 al. 2019). We used 200 worldwide accessions comprising the RegMap (Horton et al. 2012)
258 and 1001 Genomes project (Alonso-Blanco et al. 2016), of which most were overlapped with
259 a previous GWAS of biotic interactions (Horton et al. 2014) and half were included by a
260 GWAS of glucosinolates (Chan et al. 2010). Eight replicates of the 200 accessions were first

261 prepared in a laboratory and then transferred to the outdoor garden at the Center for
262 Ecological Research, Kyoto University, Japan (Otsu, Japan: 35° 06' N, 134° 56' E, alt. ca. 200
263 m: Fig. 2a). Seeds were sown on Jiffy-seven pots (33-mm diameter), and stratified under 4 °C
264 for a week. Seedlings were cultivated for 1.5 months under a short-day condition (8 h light:
265 16 h dark, 20 °C). Plants were then separately potted in plastic pots (6 cm in diameter) filled
266 with mixed soil of agricultural composts (Metro-mix 350, SunGro Co., USA) and perlites at a
267 3:1 L ratio. In the field setting, 200 accessions were randomly assigned in a checkered
268 manner within a block (Fig. 2b). Eight replicates of these blocks were set >2 m apart from
269 each other (Fig. 2c). Potted plants were exposed to the field environment for 3 wk in June
270 2017. At the end of experiment, we scored leaves eaten as 0 for no visible damage, 1 for
271 ≤10%, 2 for >10% and ≤ 25%, 3 for > 25% and ≤ 50%, 4 for >50% and ≤ 75%, and 5 for
272 >75% of the leaf area eaten. All plants were scored by a single person to avoid observer bias.
273 The most predominant herbivore in this field trial was the diamond back moth *Plutella*
274 *xylostella*, followed by the small white butterfly *Pieris rapae*. We also recorded the initial
275 plant size and the presence of inflorescence to incorporate them as covariates. Initial plant
276 size was evaluated by the length of the largest rosette leaf (mm) at the beginning of the field
277 experiment and the presence of inflorescence was recorded 2 wk after transplanting.

278 We estimated the variance components and performed the association tests for the
279 leaf damage score with the neighbor covariate at $s = 1$ and 2. These two scales corresponded
280 to $L = 4$ (the nearest four neighbors) and $L = 12$ (up to the second nearest neighbors),
281 respectively, in the *Arabidopsis* dataset. The variation partitioning and association tests were
282 performed using the *gaston* package, as mentioned above. To determine the significance of
283 variance component parameters, we compared the likelihood between mixed models with one
284 or two random effects. For the genotype data, we used an imputed SNP matrix of all the 2029

285 accessions studied by the RegMap (Horton et al. 2012) and 1001 Genomes project (Alonso-
286 Blanco et al. 2016). Missing genotypes were imputed using BEAGLE (Browning and
287 Browning 2009), as described by Togninalli et al. (2018) and updated on the AraGWAS
288 Catalog (<https://aragwas.1001genomes.org>). Of the 10,709,466 SNPs from the full imputed
289 matrix, we used 1,242,128 SNPs with MAF at > 0.05 and LD of adjacent SNPs at $r^2 < 0.8$. We
290 considered the initial plant size, presence of inflorescence, and experimental blocks as fixed
291 covariates. After the association mapping, we searched candidate genes within ~ 10 kb around
292 target SNPs, based on the Araport11 gene model with the latest TAIR annotation (accessed on
293 7 September 2019). Gene ontology (GO) enrichment analysis was applied to the candidate
294 genes near the top 0.1% SNP score. GO categories including >20 and <200 genes were tested
295 by Fisher's exact probability tests and adjusted by false discovery rate (FDR: Benjamini and
296 Hochberg 1995). The GO.db package (Carlson et al. 2018) and the latest TAIR AGI code
297 annotation were used for the GO enrichment analysis. The R source codes, accession list, and
298 phenotype data are available at the GitHub repository
299 (<https://github.com/naganolab/NeighborGWAS>).

300

301 **RESULTS**

302

303 **Power simulation**

304 A set of phenotypes were simulated from real genotype data following a complex model eq.
305 4, and then fitted by a simplified model eq. 2. Analyzing the factors affecting AUCs, we
306 found that the proportion of phenotypic variation (PVE) explained by major-effect genes
307 PVE_β and distance decay of neighbor effects were the most influential on the power to detect
308 neighbor signals (Table 1b, d). In addition to PVE_β , the amount of variance components PVE_u

309 also significantly affected the AUCs of the self and neighbor effects, but these additional
310 effects were less significant compared to those of PVE_β alone (Table 1). In contrast, the
311 AUCs of neither self nor neighbor effects were significantly affected by the ratio of three
312 variance components $\sigma_S^2:\sigma_N^2:\sigma_{SxN}^2$ (Table 1).

313 Notably, there was a clear relationship between the distance decay α and the
314 proportion of phenotypic variation explained by neighbor effects PVE_{nei} or AUCs at different
315 spatial scales (Fig. 3). If the distance decay was weak and the effective range of neighbor
316 effects was broad, PVE_{nei} and AUCs increased linearly as the reference spatial scale was
317 broadened (Fig. 3a). On the other hand, if the distance decay was strong and the effective
318 scale of neighbor effects was narrow, PVE_{nei} saturated at the scale of the first nearest
319 neighbors (Fig. 3c) or AUCs did not increase (Fig. 3b, c). These results remained the same
320 between the number of causal SNPs = 20 and 200 (Fig. 3 and Fig. S1). The line of simulation
321 results indicated that the effective spatial scales could be estimated by calculating PVE_{nei}
322 across different spatial scales.

323 In the case of the number of causal SNPs = 20, signals of major-effect genes were
324 well detected as AUC ranged from moderate (>0.7) to high (>0.9) (Fig. S2). For the case of
325 the number of causal SNPs = 200, it became relatively difficult to detect the major-effect
326 genes as AUCs were ≤ 0.75 (Fig. S2). The line of simulations indicated that neighbor effects
327 were detectable when a target trait was governed by several major genes and the range of
328 neighbor effects was spatially limited. Additionally, linear mixed models outperformed
329 standard linear models in the detection of self and neighbor signals ($\Delta AUC_{self} = 0.105$ [0.101
330 – 0.109], $\Delta AUC_{nei} = 0.024$ [0.021 – 0.026]: 10,000-times bootstrap mean with 95%
331 confidence intervals). This indicated that the mixed models were more appropriate for the
332 neighbor GWAS to deal with spurious associations due to a sample structure.

333

334 ***Arabidopsis* herbivory data**

335 The variation partitioning of leaf damage showed that the PVE by neighbor effects were

336 larger than PVE by self-genotypic effects ($PVE_{self} = 0.026$, $\chi^2_1 = 0.151$, p -value = 0.70;

337 $PVE_{nei} = 0.218$, $\chi^2_1 = 7.17$, p -value = 0.0074: Fig. 4a). Heritability, namely PVE_{self} without

338 neighbor effects, was 0.159 ($\chi^2_1 = 8.73$, p -value = 0.003: Fig. S3). This range of heritability

339 was overlapped with PVE by neighbor effects alone (PVE_{nei} without self-effects = 0.24 at

340 scale $s = 1$, $\chi^2_1 = 15.7$, p -value < 0.0001: Fig. S3), indicating that there was an intersection

341 between PVE by self and neighbor effects on the leaf damage variation. Phenotypic variation

342 explained by neighbor effects on leaf damage did not increase when the neighbor scale was

343 referred up to the nearest and second nearest individuals ($PVE_{self} = 0.083$, $\chi^2_1 = 1.03$, p -value

344 = 0.311; $PVE_{nei} = 0.13$, $\chi^2_1 = 1.29$, p -value = 0.256: Fig. 4a); therefore, the variation

345 partitioning was stopped at $s = 2$. These results indicated a narrow effective scale and

346 significant contribution of neighbor effects to the leaf damage score.

347 Association mapping of the self-genotype effects on the leaf damage found a SNP

348 with the largest $-\log_{10}(p\text{-values})$ score at “chr1-23149476”. This SNP was located within ~ 10

349 kb of the AT1G62540 locus that encoded flavin-monooxygenase glucosinolate S-oxygenase 2

350 (FMO GS-OX2), though this was not above a threshold of Bonferroni correction. Gene

351 ontology annotation of “cellular response to extracellular stimulus” was marginally enriched

352 among genes within ~ 10 kb around SNPs with the top 0.1% $-\log_{10}(p\text{-values})$ score which

353 corresponded to p -values at < 0.00096 (FDR < 0.1: Table 2a). A QQ-plot did not exhibit an

354 inflation of p -values for the self-genotype effects (Fig. S4).

355 We found a marginally significant SNP for neighbor effects at the second and third

356 chromosome (Fig. 4c), of which the second chromosomal region had higher association

357 scores than expected by the QQ-plot (Fig. S4). A locus encoding FAD-binding Berberine
358 family protein (AT2G34810 named *BBE16*) were located within the ~10 kb window near the
359 SNP with the largest $-\log_{10}(p\text{-values})$ at the second chromosome, which are known to be up-
360 regulated by methyl jasmonate (Devoto et al. 2005). Three transposable elements and a
361 pseudogene of lysyl-tRNA synthetase 1 were located near the most significant SNP at the
362 third chromosome. These top ten SNPs significantly related to the neighbor effects exhibited
363 positive estimates of β_1 and β_2 . Three defense-related GO annotations of “killing cells of
364 other organisms” and “disruption of cells of other organism” were significantly enriched
365 among genes within ~10 kb around SNPs with the top 0.1% score of $-\log_{10}(p\text{-values})$
366 (FDR<0.05: Table 2b). Of the genes with these GO annotations, we found 22 low-molecular
367 weight cysteine-rich proteins or plant defensin family proteins (Table S2).

368 Based on the estimated coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$, we ran a post hoc simulation to infer
369 a spatial arrangement that minimizes a population sum of the leaf damage $\sum y_i = \beta_1 \sum x_i +$
370 $\beta_2 \sum_{i,j} x_i x_j$. The constant intercept β_0 , the variance component u_i , and residual e_i were not
371 considered because they were not involved in deterministic dynamics of the model. Figure 5
372 shows three representatives and a neutral expectation. For example, a mixture of a
373 dimorphism was expected to decrease the total leaf damage for a SNP at “chr2-14679190”
374 near the *BBE16* locus ($\hat{\beta}_2 > 0$: Fig. 5a). On the other hand, a clustered distribution of a
375 dimorphism was expected to decrease the total damage for a SNP at “chr2-9422409” near the
376 AT2G22170 locus encoding a lipase/lipoxygenase PLAT/LH2 family protein ($\hat{\beta}_1 \approx 0$, $\hat{\beta}_2 < 0$:
377 Fig. 5b). Furthermore, near monomorphism was expected to decrease the leaf damage for a
378 SNP at “chr5-19121831” near the AT5G47075 and AT5G47077 loci encoding low-molecular
379 cysteine-rich proteins, LCR20 and LCR6 ($\hat{\beta}_1 > 0$, $\hat{\beta}_2 < 0$: Fig. 5c). No self and neighbor effects

380 led to a random distribution and no mitigation of damage i.e., $\sum y_i \approx 0$ (Fig. 5d). These post
381 hoc simulations suggested a potential applicability of neighbor GWAS in optimizing spatial
382 arrangements in field cultivation.

383

384 **DISCUSSION**

385

386 **Spatial and genetic factors affecting the power to detect signals**

387 Benchmark tests using simulated phenotypes revealed that appropriate spatial scales could be
388 estimated by variation partitioning of observed phenotypes. When the scale of neighbor
389 effects was narrow or moderate ($\alpha = 1.0$ or 3.0), the scale of the first nearest neighbors would
390 be optimum for the power to detect neighbor signals. In terms of neighbor effects in plant
391 defense, mobile animals, such as mammalian browsers and flying insects, often select a
392 cluster of plant individuals (e.g., Bergvall et al. 2006; Hambäck et al. 2009; Vershut et al.
393 2016); however, neighbor effects could not be detected among individual plants within a
394 cluster (Hambäck et al. 2014; Sato and Kudoh 2015). This case was represented by the
395 exponential distance decay of $\alpha = 0.25$; only in such a special case should more than the first
396 nearest be referred to gain the power.

397 Neighbor GWAS could retain its power as long as neighbor effects were spatially
398 limited and several major-effect genes governed a trait. In contrast, when hundreds of causal
399 variants involved a single trait and less than half of phenotypic variation was attributable to
400 neighbor effects, we observed a reasonable power down of neighbor GWAS. In GWAS, false
401 positive rates can be reduced using linear mixed models that deal with kinship structure as a
402 random effect (Korte and Farlow 2013). Indeed, mixed models were superior to standard
403 linear models in this simulation. Our simulation also adjusted the three variance components

404 σ_S^2 , σ_N^2 , and σ_{SxN}^2 , but their relative contribution did not have significant effects on the power.
405 This was likely due to the fact that the self-genotypic variable x_i was encompassed into the
406 neighbor variable $\sum x_i x_j / L$, and thus the kinship matrix \mathbf{K}_S was partially redundant with the
407 similarity matrix of neighbor effects \mathbf{K}_N . Indeed, elemental-wise correlations between \mathbf{K}_S
408 and \mathbf{K}_N were strong in our simulations ($R^2 > 0.7$). Thus, linear mixed models gain the power
409 to detect neighbor effects if signals are strong, but likelihood ratio tests are reliable enough to
410 deal with the correlated variables.

411

412 **Candidate genes related to field herbivory on *Arabidopsis***

413 Our *Arabidopsis* data successfully detected known defense-related genes involved in the self-
414 genotype effects on leaf damage. Aliphatic glucosinolates are a major chemical defense
415 against insect herbivory (Brachi et al. 2015; Kerwin et al. 2017). Specifically, FMO GS-OX2
416 is involved in aliphatic glucosinolate biosynthesis by catalyzing the conversion from
417 methylthioalkyl to corresponding methylsulfinylalkyl glucosinolates (Li et al. 2008).
418 Furthermore, previous GWAS reported methionine synthase 2 (AT3G03780), disease
419 resistance protein (TIR-NBS-LRR class) family (AT4G16950), and monodehydroascorbate
420 reductase 4 (AT3G27820) as candidate genes involved in self-resistance to the white butterfly
421 *Pieris rapae* (Davila-Olivas et al. 2017; Nallu et al. 2018). In this field experiment, we
422 observed larvae of *P. rapae* largely feeding on *A. thaliana*, and the GWAS of self-genotype
423 effects on leaf damage detected the above three candidate genes near SNPs with the top 0.1%
424 association score. Thus, our GWAS results seemed convincing in terms of the detection of
425 known defense-related genes in the self-genotypic effects on herbivory.

426 Notably, the neighbor effects in herbivory were relevant to candidate genes
427 disrupting cells of other organisms. Plant defensins are stable and cysteine-rich peptides that

428 confer plant resistance by killing cells of other organisms (Stotz 2009). While anti-fungal
429 resistance is a well-known function of plant defensins (Stotz 2009), they can also act as
430 protease inhibitors against insect herbivores (Bloch and Richardson 1991; Pelegrini et al.
431 2008; Choi et al. 2009). Typical examples of neighbor effects may be a direct induction of
432 plant defense via volatile organic chemicals (e.g., Schuman et al. 2015; Dahlin et al. 2018),
433 but ecological studies have shown that herbivore host choice is one of the most important
434 processes leading indirect neighbor effects to anti-herbivore defenses (Bergvall et al. 2006;
435 Verschut et al. 2016; Sato et al. 2017). The findings of our neighbor GWAS suggest a putative
436 role of plant defensins in modulating insect feeding behaviors and thus neighbor effects in
437 herbivory.

438

439 **Conclusion and applicability**

440 Based on the newly proposed methodology, we suggest that neighbor effects are a more
441 important source of phenotypic variation in field-grown plants than currently appreciated. To
442 date, regional-scale interactions among plants have been analyzed using a genome-
443 environment association study of plant community composition (Frachon et al. 2019), but
444 fine-scale neighbor effects have yet to be examined. Using tens of *A. thaliana* accessions and
445 their experimentally mixed populations, Wuest and Niklaus (2018) recently showed that a
446 single genomic region drives neighbor effects in plant growth via soil improvements, and this
447 genetic effect shapes a positive relationship between plant genotype diversity and
448 productivity. Our newly proposed methodology of neighbor GWAS could be a powerful tool
449 to identify such a key genetic variant responsible for neighbor effects and resulting
450 biodiversity effects.

451 Neighbor GWAS may also potentially help determine an optimal spatial arrangement

452 in plant cultivation, as suggested by the post hoc simulation. The Ising model is well
453 established in statistical physics (McCoy and Maillard 2012) and is now applied to a
454 machine-learning pipeline that deals with high-dimensionality in genomics data (Fisher and
455 Mehta 2015). Genome-wide polymorphism data are useful not only to seek causal genes in
456 GWAS, but also to predict breeding values of crop plants in genomic selection (e.g., Jannink
457 et al. 2010; Hamblin et al. 2011; Yamamoto et al. 2017). Although it is still challenging to
458 determine β_1 and β_2 for all SNPs efficiently, the linear model of neighbor GWAS could also
459 be implemented as a genomic selection at a population level. Thus, our study provides an
460 avenue for future studies to predict population-level phenotypes in spatially structured
461 environments.

462

463 **ACKNOWLEDGEMENTS**

464 The authors thank Ü. Seren, A. Korte, and M. Nordborg for kindly providing the full imputed
465 SNP data; and T. Tsuchimatsu and K. Iwayama for discussions. This study was supported by
466 the Japan Science and Technology Agency (JST) PRESTO (Grant number, JPMJPR17Q4 and
467 JPMJPR16Q9) to Y.S. and E.Y.; Japan Society for the Promotion of Science (JSPS)
468 Postdoctoral Fellowship (16J30005) to Y.S.; MEXT KAKENHI (18H04785) and the Swiss
469 National Science Foundation to K.K.S.; and JST CREST (JPMJCR15O2 and JPMJCR16O3)
470 to A.J.N. and K.K.S. The field experiment was supported by the Joint Usage/Research Grant
471 of Center for Ecological Research, Kyoto University, Japan.

472

473 **CONFLICT OF INTEREST**

474 The authors declare that there are no conflicts of interests in this study.

475

476 **DATA ARCHIVING**

477 The leaf damage data on *A. thaliana* are included in the supporting information (Table S1).
478 The R source codes used in this study are available at the GitHub repository
479 (<https://github.com/naganolab/NeighborGWAS>).

480

481 **REFERENCES**

- 482 1. Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwardt KM. et al.
483 (2016). 1,135 genomes reveal the global pattern of polymorphism in *Arabidopsis*
484 *thaliana*. *Cell* 166: 481–491. doi:10.1016/j.cell.2016.05.063
- 485 2. Atwell S, Huang YS, Vilhjálmsdóttir BJ, Willems G, Horton M, Li Y. et al. (2010).
486 Genome-wide association study of 107 phenotypes in *Arabidopsis thaliana* inbred lines.

487 Nature 465: 627–631.

488 3. Azaele S, Muneepeerakul R, Rinaldo A, Rodriguez-Iturbe I. (2010). Inferring plant
489 ecosystem organization from species occurrences. J Theor Biol 262: 323–329.
490 doi:10.1016/j.jtbi.2009.09.026

491 4. Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. (2009).
492 Associational resistance and associational susceptibility: Having right or wrong
493 neighbors. Ann Rev Ecol Evol Sys 40: 1–20.

494 5. Benjamini Y, Hochberg Y. (1995). Controlling the false discovery rate: a practical and
495 powerful approach to multiple testing. J Royal Stat Soc B 57: 289–300.
496 doi:10.1111/j.2517-6161.1995.tb02031.x

497 6. Bergvall UA, Rautio P, Kesti K, Tuomi J, Leimar O. (2006). Associational effects of
498 plant defences in relation to within- and between-patch food choice by a mammalian
499 herbivore: neighbour contrast susceptibility and defence. Oecologia 147: 253–260.
500 doi:10.1007/s00442-005-0260-8

501 7. Bloch C, Richardson M. (1991). A new family of small (5 kDa) protein inhibitors of
502 insect α -amylases from seeds or sorghum (*Sorghum bicolor* (L) Moench) have sequence
503 homologies with wheat γ -purothionins. FEBS letters 279: 101-104.

504 8. Brachi B, Meyer CG, Villoutreix R, Platt A, Morton TC, Roux F, Bergelson J. (2015).
505 Coselected genes determine adaptive variation in herbivore resistance throughout the
506 native range of *Arabidopsis thaliana*. Proc Natl Acad Sci USA 112: 4032–4037.

507 9. Browning BL, Browning SR. (2009). A unified approach to genotype imputation and
508 haplotype-phase inference for large data sets of trios and unrelated individuals. Am J
509 Hum Genet 84: 210-223.

510 10. Carlson M. (2018). GO.db: A set of annotation maps describing the entire Gene

511 Ontology. R package version 3.7.0.

512 11. Carrasco LR, Harwood TD, Toepfer S, MacLeod A, Levay N, Kiss J, Baker RHA,

513 Mumford JD, Knight JD. (2010). Dispersal kernels of the invasive alien western corn

514 rootworm and the effectiveness of buffer zones in eradication programmes in Europe.

515 Ann Appl Biol 156: 63–77. doi:10.1111/j.1744-7348.2009.00363.x

516 12. Chan EKF, Rowe HC, Kliebenstein DJ. (2010). Understanding the evolution of defense

517 metabolites in *Arabidopsis thaliana* using genome-wide association mapping. Genetics

518 185: 991–1007.

519 13. Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST. et al. (2009). Expression of

520 BrD1, a plant defensin from *Brassica rapa*, confers resistance against brown planthopper

521 (*Nilaparvata lugens*) in transgenic rices. Mol Cells 28: 131–137. doi:10.1007/s10059-

522 009-0117-9.

523 14. Dahlin I, Rubene D, Glinwood R, Ninkovic V. (2018). Pest suppression in cultivar

524 mixtures is influenced by neighbor-specific plant-plant communication. Ecol Appl 28:

525 2187–2196. doi:10.1002/eap.1807

526 15. Devaux C, Lavigne C, Austerlitz F, Klein EK. (2007). Modelling and estimating pollen

527 movement in oilseed rape (*Brassica napus*) at the landscape scale using genetic markers.

528 Mol Ecol 16: 487–499. doi:10.1111/j.1365-294X.2006.03155.x

529 16. Davila-Olivas NH, Kruijer W, Gort G, Wijnen CL, van Loon JJA, Dicke M. (2017).

530 Genome-wide association analysis reveals distinct genetic architectures for single and

531 combined stress responses in *Arabidopsis thaliana*. New Phytol 213: 838–851.

532 doi:10.1111/nph.14165

533 17. Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG. (2005).

534 Expression profiling reveals *COII* to be a key regulator of genes involved in wound- and

535 methyl jasmonate-induced secondary metabolism, defence, and hormone interactions.

536 Plant Mol Biol 58: 497–513.

537 18. Dicke M, Baldwin IT. (2010). The evolutionary context for herbivore-induced plant
538 volatiles: beyond the ‘cry for help’. Trends Plant Sci 15: 167–175.
539 doi:10.1016/j.tplants.2009.12.002

540 19. Erb M. (2018). Volatiles as inducers and suppressors of plant defense and immunity -
541 origins, specificity, perception and signaling. Curr Opin Plant Biol 44: 117–121.
542 doi:10.1016/j.pbi.2018.03.008

543 20. Frachon L, Mayjonade B, Bartoli C, Hautekèete NC, Roux F. (2019). Adaptation to plant
544 communities across the genome of *Arabidopsis thaliana*. Mol Biol Evol 36: 1442–1456.

545 21. Fisher CK, Mehta P. (2015). Bayesian feature selection for high-dimensional linear
546 regression via the Ising approximation with applications to genomics. Bioinformatics 31:
547 1754–1761.

548 22. Gage JL, De Leon N, Clayton MK. (2018). Comparing genome-wide association study
549 results from different measurements of an underlying phenotype. G3: Genes, Genomes,
550 Genetics 8: 3715–3722.

551 23. Genung MA, Bailey JK, Schweitzer JA. (2012). Welcome to the neighbourhood:
552 interspecific genotype by genotype interactions in *Solidago* influence above- and
553 belowground biomass and associated communities. Ecol Lett 15: 65–73.

554 24. Gondro C, van der Werf J, Hayes B. (eds.) (2013). Genome-wide association studies and
555 genomic prediction. Methods Mol Biol. Humana Press, New York.

556 25. Hambäck PA, Björkman M, Rämert B, Hopkins RJ. (2009). Scale-dependent responses
557 in cabbage herbivores affect attack rates in spatially heterogeneous systems. Basic Appl
558 Ecol 10: 228–236. doi:10.1016/j.baae.2008.06.004

559 26. Hambäck PA, Inouye BD, Andersson P, Underwood N. (2014). Effects of plant
560 neighborhoods on plant-herbivore interactions: resource dilution and associational
561 effects. *Ecology* 95: 1370–1383. doi:10.1890/13-0793.1

562 27. Hamblin MT, Buckler ES, Jannink JL. (2011). Population genetics of genomics-based
563 crop improvement methods. *Trends Genet* 27: 98–106.

564 28. Hauser MT, Harr B, Schlötterer C. (2001). Trichome distribution in *Arabidopsis thaliana*
565 and its close relative *Arabidopsis lyrata*: molecular analysis of the candidate gene
566 *GLABROUS1*. *Mol Biol Evol* 18: 1754–1763.

567 29. Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, et al. (2012).
568 Genome-wide patterns of genetic variation in worldwide *Arabidopsis thaliana* accessions
569 from the RegMap panel. *Nat Genet* 44: 212–216. doi:10.1038/ng.1042

570 30. Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, et al.
571 (2014). Genome-wide association study of *Arabidopsis thaliana* leaf microbial
572 community. *Nat Commun* 5: 5320. doi:10.1038/ncomms6320

573 31. Ida TY, Takanashi K, Tamura M, Ozawa R, Nakashima Y, Ohgushi T. (2018). Defensive
574 chemicals of neighboring plants limit visits of herbivorous insects: Associational
575 resistance within a plant population. *Ecol Evol* 8: 12981–12990. doi:10.1002/ece3.4750

576 32. Ising E. (1925). Beitrag zur theorie des ferromagnetismus. *Zeitschrift für Physik* 31: 253–
577 258.

578 33. Jannink JL, Lorenz AJ, Iwata H. (2010). Genomic selection in plant breeding: from
579 theory to practice. *Brief Funct Genomic* 9: 166–177.

580 34. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E. (2008).
581 Efficient control of population structure in model organism association mapping.
582 *Genetics* 178: 1709–1723.

583 35. Kerwin RE, Feusier J, Muok A, Lin C, Larson B, Copeland D. et al. (2017). Epistasis ×
584 environment interactions among *Arabidopsis thaliana* glucosinolate genes impact
585 complex traits and fitness in the field. *New Phytol* 215: 1249–1263.

586 36. Kizaki S, Katori M. (1999). Analysis of canopy-gap structures of forests by Ising-Gibbs
587 states-equilibrium and scaling property of real forests. *J Phys Soc Japan* 68: 2553-2560.

588 37. Korte A, Farlow A. (2013). The advantages and limitations of trait analysis with GWAS:
589 a review. *Plant Methods* 9: 29.

590 38. Li J, Hansen BG, Ober JA, Kliebenstein DJ, Halkier BA. (2008). Subclade of flavin-
591 monooxygenases involved in aliphatic glucosinolate biosynthesis. *Plant Physiol* 148:
592 1721–1733.

593 39. McCoy BM, Maillard JM. (2012). The importance of the Ising model. *Progress Theor*
594 *Phys* 127: 791-817.

595 40. Mundt CC. (2002). Use of multiline cultivars and cultivar mixtures for disease
596 management. *Ann Rev Phytopathol* 40: 381-410.

597 41. Nallu S, Hill JA, Don K, Sahagun C, Zhang W, Meslin C. et al. (2018). The molecular
598 genetic basis of herbivory between butterflies and their host plants. *Nat Ecol Evol* 2:
599 1418-1427. doi:10.1038/s41559-018-0629-9

600 42. Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL. (2008). Novel insights on
601 the mechanism of action of A-amylase inhibitors from the plant defensin family.
602 *Proteins: Struct Funct Bioinformatics* 73: 719–729. doi:10.1002/prot.22086.

603 43. Perdry H, Dandine-Roulland C. (2018). *gaston: Genetic Data Handling (QC, GRM, LD,*
604 *PCA) & Linear Mixed Models.* R package version 1.5.4. <https://CRAN.R-project.org/package=gaston>

605 44. R Core Team. (2017). R: A language and environment for statistical computing. R

607 Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

608 45. Rieux A, Soubeyrand S, Bonnot F, Klein EK, Ngando JE, Mehl A. et al. (2014). Long-
609 distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic
610 dispersal kernels from an extensive field experiment. PLoS ONE 9: e103225.
611 doi:10.1371/journal.pone.0103225

612 46. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. (2011).
613 pROC: an open-source package for R and S+ to analyze and compare ROC curves. *BMC
614 Bioinformatics* 12: 77. doi:10.1186/1471-2105-12-77

615 47. Schlicht R, Iwasa Y. (2004). Forest gap dynamics and the Ising model. *J Theoret Biol*
616 230: 65–75. doi:10.1016/j.jtbi.2004.04.027

617 48. Sato Y. (2018). Associational effects and the maintenance of polymorphism in plant
618 defense against herbivores: review and evidence. *Plant Species Biol* 33: 91–108.
619 doi:10.1111/1442-1984.12201

620 49. Sato Y, Kudoh H. (2015). Tests of associational defence provided by hairy plants for
621 glabrous plants of *Arabidopsis halleri* subsp. *gummifera* against insect herbivores. *Ecol
622 Entomol* 40: 269–279. doi:10.1111/een.12179

623 50. Sato Y, Kudoh H. (2017). Herbivore-mediated interaction promotes the maintenance of
624 trichome dimorphism through negative frequency-dependent selection. *Am Nat* 190:
625 E67–E77. doi:10.1086/692603

626 51. Sato Y, Ito K, Kudoh H. (2017). Optimal foraging by herbivores maintains
627 polymorphism in defence in a natural plant population. *Funct Ecol* 31: 2233–2243.
628 doi:10.1111/1365-2435.12937

629 52. Sato Y, Shimizu-Inatsugi R, Yamazaki M, Shimizu KK, Nagano AJ. (2019). Plant
630 trichomes and a single gene *GLABRA1* contribute to insect community composition on

631 field-grown *Arabidopsis thaliana*. BMC Plant Biol 19:163. doi:10.1186/s12870-019-
632 1705-2

633 53. Schuman MC, Allmann S, Baldwin IT. (2015). Plant defense phenotypes determine the
634 consequences of volatile emission for individuals and neighbors. eLife 4: e04490

635 54. Stotz HU, Thomson J, Wang Y. (2009). Plant defensins: defense, development and
636 application. Plant Signal Behav 4: 1010–1012.

637 55. Tahvanainen JO, Root RB. (1972). The influence of vegetational diversity on the
638 population ecology of a specialized herbivore, *Phyllotreta cruciferae* (Coleoptera:
639 Chrysomelidae). Oecologia 10: 321–346.

640 56. Togninalli M, Seren Ü, Meng D, Fitz J, Nordborg M, Weigel D. et al. (2018). The
641 AraGWAS Catalog: a curated and standardized *Arabidopsis thaliana* GWAS catalog.
642 Nucleic Acids Res 46: D1150–D1156.

643 57. Underwood N, Inouye BD, Hambäck PA. (2014). A conceptual framework for
644 associational effects: when do neighbors matter and how would we know? Q Rev Biol
645 89: 1–19.

646 58. Verschut TA, Becher PG, Anderson P, Hambäck PA. (2016). Disentangling associational
647 effects: both resource density and resource frequency affect search behaviour in complex
648 environments. Funct Ecol 30: 1826-1833.

649 59. Wang M, Roux F, Bartoli C, Huard-Chauveau C, Meyer C, Lee H. et al. (2018). Two-
650 way mixed-effects methods for joint association analysis using both host and pathogen
651 genomes. Proc Natl Acad Sci USA 115: E5440–E5449. doi:10.1073/pnas.1710980115

652 60. Weiner J. (1990). Asymmetric competition in plant populations. Trends Ecol Evol 5: 360-
653 364.

654 61. Wuest SE, Niklaus PA. (2018). A plant biodiversity effect resolved to a single

655 chromosomal region. *Nat Ecol Evol* 2: 1933–1939.

656 62. Yamamoto E, Matsunaga H, Onogi A, Ohyama A, Miyatake K, Yamaguchi H. et al.

657 (2017). Efficiency of genomic selection for breeding population design and phenotype

658 prediction in tomato. *Heredity* 118: 202–209.

659 63. Zeller SL, Kalinina O, Flynn DFB, Schmid B. (2012). Mixtures of genetically modified

660 wheat lines outperform monocultures. *Ecol Appl* 22: 1817–1826.

661

662

663 **TABLES & FIGURES**

664 **Table 1.** Factors affecting the power to detect signals in simulated phenotypes. The response
 665 variable was the maximum Area Under the ROC Curve (AUC) of the spatial scales from $s =$
 666 1 to $s = 3$. ANOVA tables show the degree of freedom (df), sum of squares (SS), F -statistics,
 667 and p -values.

(a) AUC_{self} , No. of causal SNPs = 20

Factors	df	SS	F	p-value
$\sigma_S^2:\sigma_N^2:\sigma_{SxN}^2$	2	0.0110	1.91	0.149
α	1	0.0003	0.10	0.750
PVE_β	1	0.410	142.7	< 2.2e-16
$PVE_\beta + PVE_u$	1	0.0196	6.81	0.00933
Residuals	534	1.53		

(c) AUC_{self} , No. of causal SNPs = 200

Factors	df	SS	F	p-value
$\sigma_S^2:\sigma_N^2:\sigma_{SxN}^2$	2	0.0000	0.01	0.9909
α	1	0.0044	6.05	0.0142
PVE_β	1	0.798	1106	< 2.2e-16
$PVE_\beta + PVE_u$	1	0.0115	16.0	7.29E-05
Residuals	534	0.385		

(b) AUC_{nei} , No. of causal SNPs = 20

Factors	df	SS	F	p-value
$\sigma_S^2:\sigma_N^2:\sigma_{SxN}^2$	2	0.013	1.4	0.259
α	1	1.006	205	< 2.2e-16
PVE_β	1	1.101	225	< 2.2e-16
$PVE_\beta + PVE_u$	1	0.060	12.2	0.000520
Residuals	174	2.62		

(d) AUC_{nei} , No. of causal SNPs = 200

Factors	df	SS	F	p-value
$\sigma_S^2:\sigma_N^2:\sigma_{SxN}^2$	2	0.0011	0.81	0.445
α	1	0.195	295	< 2.2e-16
PVE_β	1	0.248	375	< 2.2e-16
$PVE_\beta + PVE_u$	1	0.0050	7.60	0.00605
Residuals	534	0.352		

668

669

670

671

672

673

674

675

676

677

678

679 **Table 2.** GO enrichment analysis of the leaf damage score with Fisher's exact probability
680 tests at FDR < 0.1. Candidate genes within ~10 kb around SNPs with the top 0.1%
681 association score $-\log_{10}(p\text{-values})$ were subject to the GO analysis.

(a) Self, β_1

GO	FDR	Description
GO:0043531	0.0071	ADP binding
GO:0009267	0.0083	cellular response to starvation
GO:0031669	0.0083	cellular response to nutrient levels
GO:0050662	0.0127	coenzyme binding
GO:0031668	0.0546	cellular response to extracellular stimulus
GO:0042594	0.0546	response to starvation
GO:0071496	0.0673	cellular response to external stimulus
GO:0009605	0.0829	response to external stimulus
GO:0004553	0.0829	hydrolase activity, hydrolyzing O-glycosyl compounds
GO:0016798	0.0829	hydrolase activity, acting on glycosyl bonds
GO:0031667	0.0969	response to nutrient levels
GO:0005618	0.0969	cell wall
GO:0030312	0.0969	external encapsulating structure
GO:0000166	0.0982	nucleotide binding
GO:1901265	0.0982	nucleoside phosphate binding

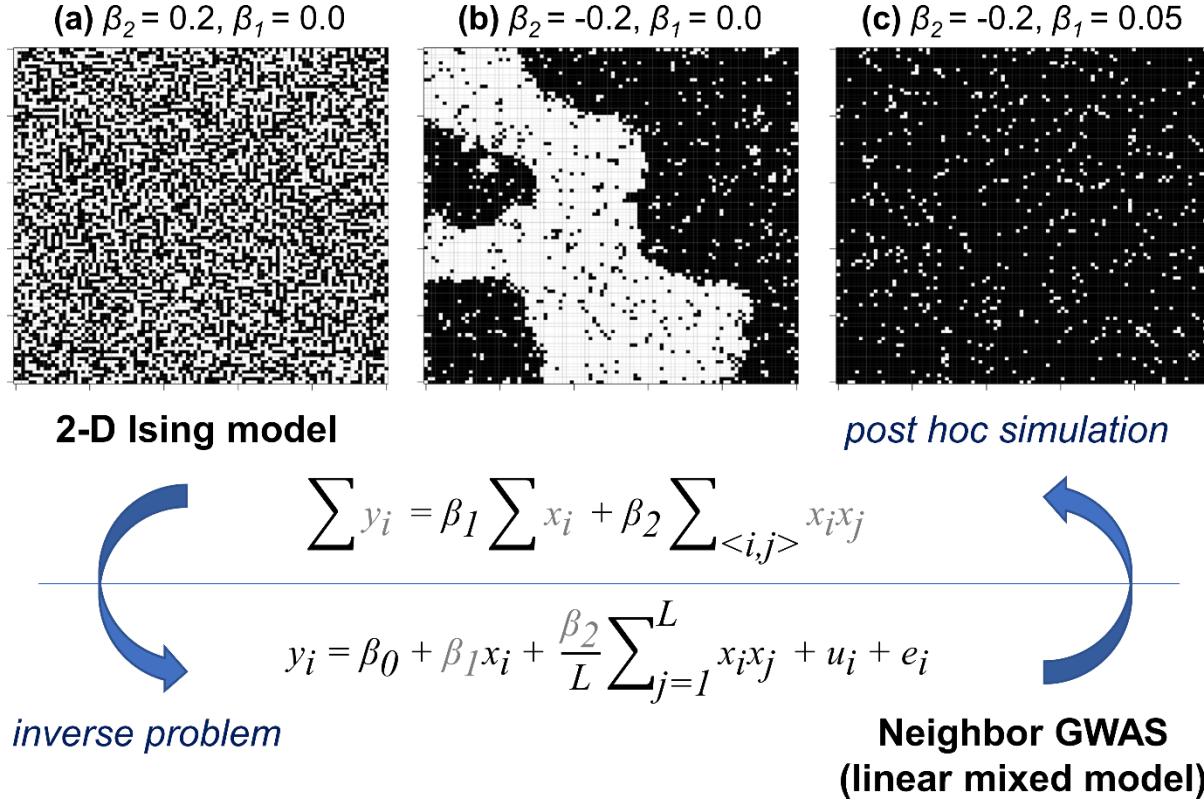
(b) Neighbor, β_2

GO	FDR	Description
GO:0004857	0.0271	enzyme inhibitor activity
GO:0031640	0.0271	killing of cells of other organism
GO:0001906	0.0271	cell killing
GO:0044364	0.0271	disruption of cells of other organism
GO:0043531	0.0271	ADP binding
GO:0035821	0.0307	modification of morphology or physiology of other organism
GO:0010393	0.0307	galacturonan metabolic process
GO:0045488	0.0307	pectin metabolic process
GO:0042545	0.0341	cell wall modification
GO:0044419	0.0595	interspecies interaction between organisms

682

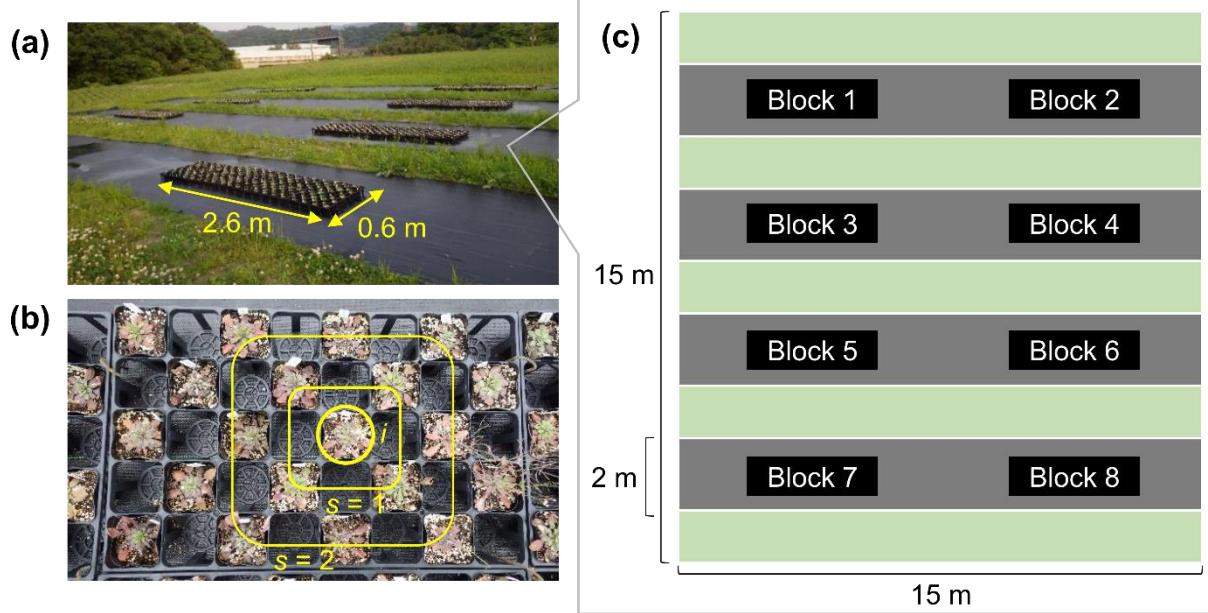
683

684



685

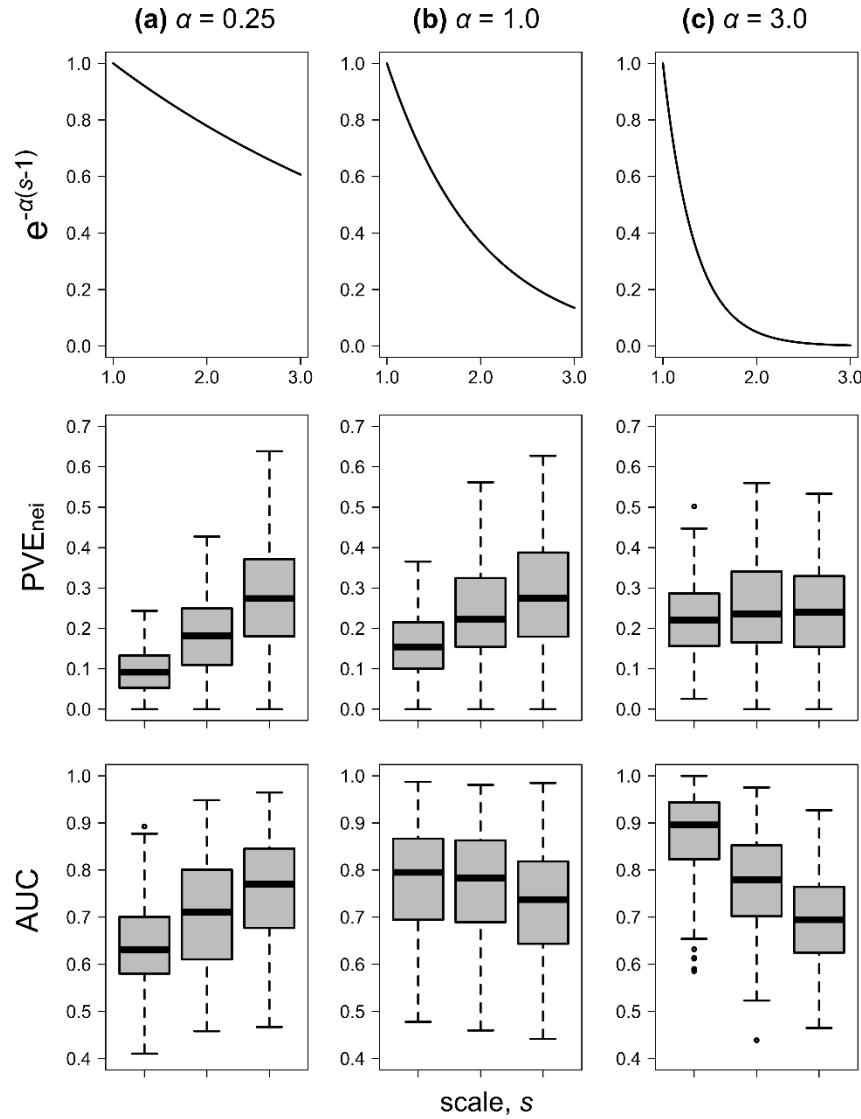
686 **Figure 1.** Relationship between Neighbor GWAS and Ising model. Upper panels show spatial
 687 arrangements expected by a 2-D Ising model $\sum y_i = \beta_1 \sum x_i + \beta_2 \sum_{<i,j>} x_i x_j$. (a) If $\beta_2 > 0$, mixed
 688 patterns give the argument of the minimum for a population sum of phenotype values $\sum y_i$. (b)
 689 If $\beta_2 < 0$, clustered patterns give the argument of the minimum for $\sum y_i$. (c) In addition, β_1
 690 determines overall patterns favoring -1 or +1 states. Shown are outcomes from a random 100
 691 \times 100 lattice after 1000 iterations of Gibbs sampling. Conversely, the neighbor GWAS was
 692 implemented as an inverse problem of the 2-D Ising model, where genotypes and its spatial
 693 arrangement, x_i and $x_i x_j$, are given while the coefficients β_1 and β_2 are to be estimated from
 694 observed phenotypes y_i . In addition, the variance component due to self and neighbor effects
 695 was considered a random effect in a linear mixed model, such that $u_i \sim \text{Norm}(0, \sigma_S^2 \mathbf{K}_S + \sigma_N^2 \mathbf{K}_N)$.
 696 Once β_1 and β_2 are determined, we could simulate a genotype distribution that maximizes or
 697 minimizes $\sum y_i$.

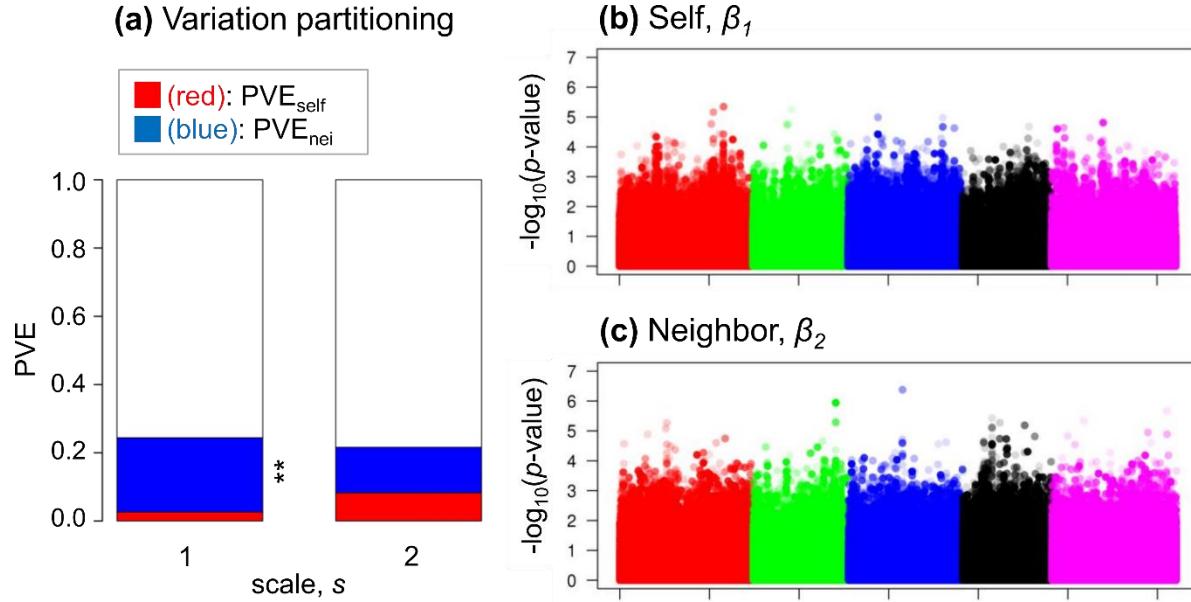


698

699 **Figure 2.** Experimental setting in the *Arabidopsis* herbivory data. (a) Photograph of the field
700 site. Each 0.6×2.6 m block included a replicate of 200 accessions, where 5×40 plants were
701 assigned to a row and column, respectively. (b) *Arabidopsis thaliana* plants were arranged in
702 a checkered manner. Yellow lines represent s -th neighbor scales from a focal i -th plant. (c) A
703 graphical explanation of the experimental area. A meadow (green) was separately covered
704 with weed-masking sheets (grey).

705





716

717 **Figure 4.** Neighbor GWAS of the leaf damage score on field-grown *Arabidopsis thaliana*. (a)
718 The proportion of leaf damage variation explained by self-genotype effects PVE_{self} (=
719 $\sigma_S^2/(\sigma_S^2+\sigma_N^2+\sigma_e^2)$: blue fraction), neighbor effects PVE_{nei} ($=\sigma_N^2/(\sigma_S^2+\sigma_N^2+\sigma_e^2)$: red fraction), and
720 residuals at the spatial scale of $s = 1$ and $s = 2$. Asterisks highlight a significant fraction with
721 likelihood ratio tests: $^{**}p\text{-value} < 0.01$. (b, c) Manhattan plots for the self and neighbor effects
722 on the leaf damage score. Different colors highlight the first to fifth chromosomes of *A.*
723 *thaliana*. Lighter plots indicate smaller MAF. Results of neighbor effects are shown at $s = 1$.

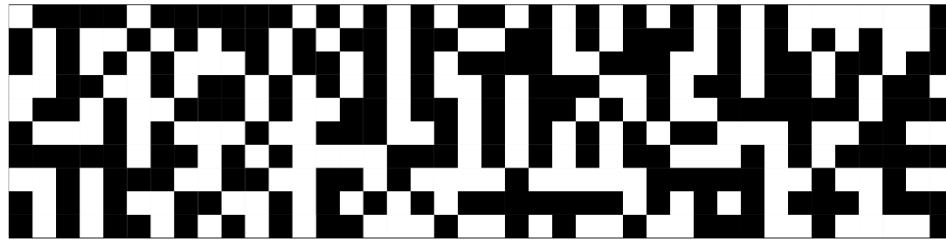
724

725

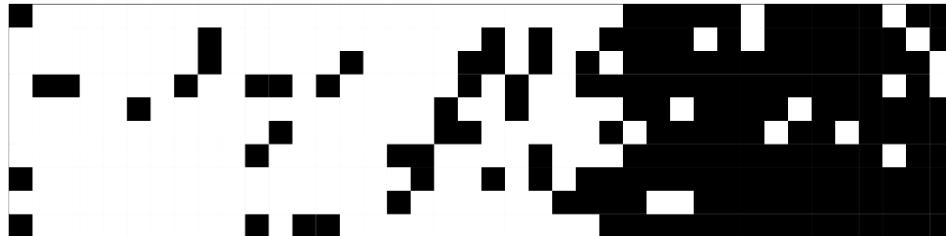
726

727

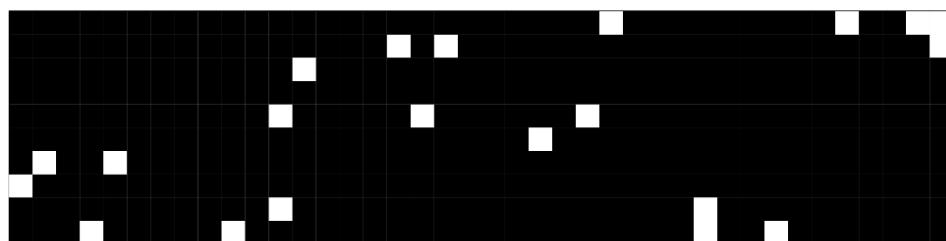
(a) Chr 2, Position 14679190: $\beta_1 = 0.15$, $\beta_2 = 0.26$, $\sum y_i = -176$



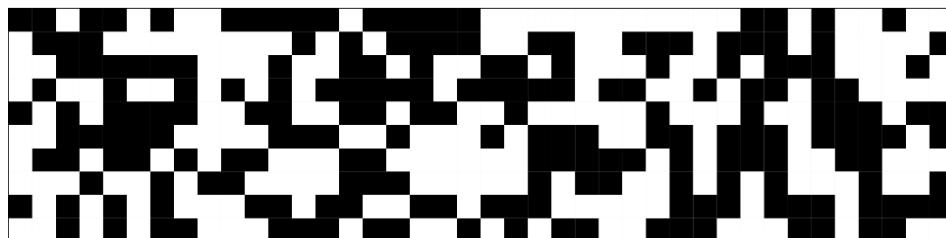
(b) Chr 2, Position 9422409: $\beta_1 = -0.003$, $\beta_2 = -0.18$, $\sum y_i = -290$



(c) Chr 5, Position 19121831: $\beta_1 = 0.13$, $\beta_2 = -0.24$, $\sum y_i = -650$



(d) No effects: $\beta_1 = 10^{-6}$, $\beta_2 = 10^{-6}$, $\sum y_i = 10^{-4}$



728

729 **Figure 5.** Post hoc simulations exemplifying a spatial arrangement of two alleles expected by
730 the estimated self and neighbor effects, β_1 and β_2 , on the leaf damage score of *Arabidopsis*
731 *thaliana*. Population sum of the leaf damage $\sum y_i = \beta_1 \sum x_i + \beta_2 \sum_{i,j} x_i x_j$ was minimized
732 using 1000 iterations of Gibbs sampling from a random distribution of two alleles in a $10 \times$
733 40 space.

734

735