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ABSTRACT

An increasing number of field studies show that the phenotype of an individual plant depends
not only on its genotype but also on those of neighboring plants; however, this fact is not
taken into consideration in genome-wide association studies (GWAS). Based on the Ising
model of ferromagnetism, we incorporated neighbor genotypic identity into a regression
model in this study. The proposed method, named “neighbor GWAS”, was applied to
simulated and real phenotypes using Arabidopsis thaliana accessions. Our simulations
showed that phenotypic variation explained by neighbor effects approached a plateau when
an effective spatial scale became narrow. Thus, the effective scale of neighbor effects could
be estimated by patterns of the phenotypic variation explained. The power to detect causal
variants of neighbor effects was moderate to strong when a trait was governed by tens of
variants. In contrast, there was a reasonable power down when hundreds of variants underlay
a single trait. We applied the neighbor GWAS to field herbivory data on 200 accessions of 4.
thaliana, and found that the neighbor effects more largely contributed to the observed
damage variation than self-genotype effects. Interestingly, several defensin family genes were
associated with neighbor effects on the herbivory, while self-genotype effects were related to
flavin-monooxygenase glucosinolate S-oxygenase 2 (FMO GS-0X2). Overall, the neighbor
GWAS highlights the overlooked but significant role of plant neighborhood effects in shaping
phenotypic variation, thereby providing a novel and powerful tool to dissect complex traits in

spatially structured environments.

Keywords: Arabidopsis thaliana, GWAS, Ising model, Neighbor effects, Plant-insect

interaction
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INTRODUCTION
Plants are immobile and thus cannot escape their neighbors. In natural and agricultural fields,
individual phenotypes depend not only on the plants’ own genotype but also on those of other
plants in a neighborhood (Tahvanainen and Root 1972; Barbosa et al. 2009; Underwood et al.
2014). This phenomenon has been termed neighbor effects or associational effects in plant
ecology (Barbosa et al. 2009; Underwood et al. 2014; Sato 2018). Such neighbor effects were
initially reported as a form of interspecific interaction among different plant species
(Tahvanainen and Root 1972), but many studies have thus far illustrated that neighbor effects
occur among different genotypes within a plant species in herbivory (Schuman et al. 2015;
Sato 2018; Ida et al. 2018), pathogen infections (Mundt 2002; Zeller et al. 2012), and
pollinator visitations (Genung et al. 2012). Although neighbor effects are of considerable
interest in plant science (Dicke and Baldwin 2010; Erb 2018) and its potential application to
agriculture (Zeller et al. 2012; Dahlin et al. 2018), these effects are not often considered in
quantitative genetics of field-grown plants.

Complex mechanisms underlie neighbor effects through direct competition (Weiner
1990), herbivore and pollinator movement (Bergvall et al. 2006; Genung et al. 2012; Verschut
et al. 2016), and volatile communication among plants (Schuman et al. 2015; Dahlin et al.
2018). For example, lipoxygenase (LOX) genes govern jasmonate-mediated volatile
emissions that induce defenses of neighboring plants in Nicotiana (Schuman et al. 2015).
Even if direct plant-plant communications are absent, herbivores can mediate indirect
interactions between plant genotypes (Sato and Kudoh 2017; Ida et al. 2018): GLABRA1
(GL1) polymorphism determines hairy or glabrous phenotypes in Arabidopsis plants (Hauser
et al. 2001) and allow a flightless leaf beetle to avoid hairy plants when encountered at a low

frequency (Sato and Kudoh 2017; Sato et al. 2017). Yet, there are few hypothesis-free
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approaches to seek key genetic variants responsible for plant neighborhood effects.

Genome-wide association studies (GWAS) have been increasingly adopted to
resolve the genetic architecture of complex traits in the model plant, Arabidopsis thaliana
(Atwell et al. 2010; Togninalli 2018) and crop species (Hamblin et al. 2011). Plant
interactions with herbivores (Brachi et al. 2015; Nallu et al. 2018), microbes (Horton et al.
2014; Wang et al. 2018), and other plant species (Frachon et al. 2019), are one of such
complex traits dissected through the lens of GWAS. To distinguish causal variants from the
genome structure, GWAS often employs a linear mixed model with kinship considered in a
random effect (Kang et al. 2008; Korte and Farlow 2013). However, it is generally impossible
to test all the gene-by-gene interactions due to combinatorial explosion (Gondro et al. 2013);
thus, some feasible and reasonable approach should be invented for GWAS of neighbor
effects.

To incorporate neighbor effects into GWAS, we focused on a theoretical model of
neighbor effects in a magnetic field, known as the Ising model (Ising 1925; McCoy and
Maillard 2012), which has been applied to forest gap dynamics and community assembly in
plant ecology (Kizaki and Katori 1999; Schlicht and Iwasa 2004; Azaele et al. 2010).
Assuming that an individual plant is a magnet, two alleles at each locus correspond to the
north or south dipole, whereby genome-wide multiple testing across all loci is analogous to a
number of parallel two-dimensional layers. The Ising model has a clear advantage in its
interpretability, such that (i) the optimization problem for a population sum of trait values can
be regarded as an inverse problem of a simple linear model, (ii) the sign of neighbor effects
determines a model trend to generate a clustered or checkered spatial pattern of the two
states, and (iii) the self-genotypic effect determines the general tendency to favor one allele

over another (Fig. 1).
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97 In this study, we proposed a new methodology integrating GWAS and the Ising
98  model, named “neighbor GWAS”. The method was applied to simulated phenotypes and real
99  data of field herbivory on 4. thaliana. We addressed two specific questions: (i) what spatial
100  and genetic factors influenced the power to detect causal variants? (ii) were neighbor effects
101  significant sources of leaf damage variation in field-grown A. thaliana? Based on the
102 simulation and application, we determined the feasibility of our approach to detect neighbor
103 effects in field-grown plants.
104
105 MATERIALS & METHODS
106
107 Neighbor GWAS
108 Basic model. We analyzed neighbor effects in GWAS as an inverse problem of the two-
109  dimensional Ising model (Fig. 1). We consider a situation where a plant accession has either
110  of'two alleles at each locus, and a number of accessions occupy a finite set of field sites in a
111 two-dimensional lattice. Let x represent allelic status at each locus, the allelic status at each
112 locus of the i-th focal plant and j-th neighboring plants can be designated as x;(;) < {-1, +1}.
113 Based on a two-dimensional Ising model, we can define a phenotype value of i-th focal
114 individual plant y; as
115 v, =B+ B, X % [eq. 1],
116  where £; and f2 denote self-genotype and neighbor effects, respectively and L is the number
117 of neighboring plants to refer. If two neighboring plants shared the same allele at a given
118  locus, the product x;x; turned into (-1)x(-1)=+1 or (+1)x(+1)=+1. If two neighbors had
119  different alleles, the product x;x; became (-1)x(+1)=-1 or (+1)x(-1)=-1. Accordingly, the

120  effects of neighbor genotypic identity on a phenotype depended on the coefficient 5> and the
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121  number of two alleles in a neighborhood. If the numbers of identical and different alleles

122 were the same near a focal plant, these neighbors offset the sum of the products Zf: ;X and

123 exerted no effects on a phenotype. When we summed up the phenotype values for the total
124 number of plants n and replaced it as £ = —f2, H =—f;and ¢; =3y, eq. | can be

125 transformed as ¢; = —E ¥, ~ x;x; —H Y. x;, which defines the interaction energy of a two-

126 dimensional ferromagnetic Ising model (McCoy and Maillard 2012). The neighbor effect £
127 and self-genotype effect ; were interpreted as the energy coefficient £ and external magnetic
128  field H, respectively. An individual plant represented a spin and the two allelic states of each
129  locus corresponded to a north or south dipole. The positive or negative value of Y x;x;

130  indicated a ferromagnetism or paramagnetism, respectively. In this study, we did not consider
131  the effects of allele dominance because this model was applied to inbred A. thaliana.

132 However, heterozygotes could be processed if the neighbor covariate xix; was weighted by an
133 estimated degree of dominance in the self-genotypic effects on a phenotype.

134 Mixed model. For association mapping, we needed to determine £; and £ from

135  observed phenotypes and consider a confounding sample structure as advocated by previous
136 GWAS (e.g., Kang et al. 2008; Korte and Farlow 2013). Extending the basic model eq. 1, we

137  described a linear mixed model at an individual level as

B
138 Vi =Byt pxi+ fZZjL=1xixj tute [eq. 2],

139  where fy indicates the intercept, and the term fx; represents fixed self-genotype effects as

140  tested in conventional GWAS; £ is the coefficient of fixed neighbor effects, and the neighbor

141  covariate ZJ-L: ;%X; is scaled by the number of neighboring plants, L. Variance components

142 due to a sample structure in self and neighbor effects was modeled by a random effect

143 u;~Norm(0, c%Ks+03Ky). The residual was expressed as e,~ Norm(0, 62).
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144 The n x n variance-covariance matrices represented the similarity in self-genotypes

145  (i.e., kinship) and neighbor covariates among # individual plants as:

146 KS=quX§XS and
1 T
147 KN=EXNXN5

148 where ¢ indicates the number of markers. As we defined x;;;) €{-1, +1}, the elements of the
149  kinship matrix Kg are scaled to represent the proportion of marker loci shared among n X n
150  plants such that KS=(0.5k5,-j+ 0.5) and ks; = [0, 1]; o and o3, indicates variance

151  component parameters for the self and neighbor effects.

152 The n plants x g markers matrix Xg and Xy are explanatory variables for the self

L
D

153 and neighbor effects as Xg=(x;) and Xy= (T) The individual-level formula eq. 2 could

154  also be converted into a conventional matrix form as:

155 y=Xp+Zu+e [eq. 3],

156 where y is n % 1 vector of phenotypes. X is a matrix of fixed effects, including mean, self-
157  genotype x;, neighbor covariate (Zf: ;Xix;) /L, and other confounding covariates for n plants;
158  fis a vector that represents coefficients of the fixed effects; Z is a design matrix allocating
159  individuals to a genotype, and becomes an identity matrix if all plants are different

160 accessions; u is the random effect with Var(u) = 63Kg+03K)y, and e is residual as Var(e) =
161 ¢2I. In such a mixed model, the proportion of phenotypic variation explained (PVE) by the
162 self and neighbor effects could be calculated as PVEy; = 63/(c3+03+02) and PVE,; =
163 o%/(o2+0%+a2), respectively. The line of extensions to incorporate neighbor effects into
164  GWAS is referred to as “neighbor GWAS” hereafter.

165
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166  Power simulation

167  To examine the power to detect neighbor effects, we applied the neighbor GWAS to

168  simulated phenotypes. Phenotypes were simulated using a part of the real genotypes of A.
169  thaliana. To evaluate the power of the simple linear model, we assumed a complex ecological
170  form of neighbor effects with multiple variance components controlled. The power was

171  evaluated by the receiver operating characteristic (ROC) curve on the association score of -
172 logio(p-value) (e.g., Gage et al. 2018). All analyses were performed using R version 3.4.0 (R
173 Core Team 2017).

174 Genotype data. To consider a realistic genetic structure in the simulation, we used
175  part of the 4. thaliana RegMap panel (Horton et al. 2012). The genotype data on 1307

176 accessions were downloaded from the Joy Bergelson laboratory website

177 (http://bergelson.uchicago.edu/?page 1d=790 accessed on 9 February 2017). We extracted the

178  chromosome 1 and 2 data with the minor allele frequency (MAF) at >0.1, providing a matrix
179 of 1307 plants with 65,226 single nucleotide polymorphisms (SNPs). Pairwise linkage

180  disequilibrium (LD) among the loci was 7> = 0.003 [0.00-0.06: median with upper and lower
181 95 percentiles]. Before generating a phenotype, each locus was centered by its mean and

182  scaled by its standard deviation. Subsequently, we randomly selected 1296 accessions (= 36 X
183 36 accessions) without any replacements for each iteration, and placed them in a 36 x 72

184  checkered space following Arabidopsis experimental settings (see Fig. 2b).

185 Phenotype simulation. To address ecological issues specific to plant neighborhood
186  effects, we considered two extensions, namely asymmetric neighbor effects and spatial

187  scales. Firstly, previous studies showed that such plant-plant interactions are sometimes

188  asymmetric between two accessions in herbivory (e.g., Bergvall et al. 2006; Verschut et al.

189  2016; Sato and Kudoh 2017) and height competition (Weiner 1990). Such asymmetric
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190  neighbor effects can be tested by statistical interactions terms in a linear model (Bergvall et
191  al. 2006; Sato and Kudoh 2017). Secondly, several studies showed that the strength of

192 neighbor effects depended on spatial scales (Hambéck et al. 2014) and the scale of neighbors
193  to be analyzed relied on the dispersal ability of causative organisms (see Hambaéck et al.

194 2009; Sato and Kudoh 2015; Vershut et al. 2018; Ida et al. 2018 for insect and mammal

195  herbivores; Rieux et al. 2014 for pathogen dispersal) or the size of competing plants (Weiner
196  1990). We assumed the distance decay at s-th sites from a focal individual i with the decay
197  coefficient a as w(s, a) = e **"D, since such an exponential distance decay has been widely
198  adopted in empirical studies (Devaux et al. 2007; Carrasco et al. 2010; Rieux et al. 2014; Ida
199  etal. 2018). Therefore, we assumed a more complex model for simulated phenotypes than the

200  model for neighbor GWAS as follows:

201 y, =B, +Bx; + %ZJLZI w(s, o)x;x; +ﬁ]2%2f:1 w(s, a)xx; +u; +e;  [eq. 4],

202 where f;2 is the coefficient for asymmetry in neighbor effects. Total variance components due
203  to the three background effects i.e., the self, neighbor, and self-by-neighbor effects is defined
204 as u,-~N0rm(0, 02K +orKy+os K. SXN). The three variance component parameters o2, o,

205 and o%

..v» determined the relative importance of self-genotype, neighbor, and asymmetric

206  neighbor effects in u;. Given the n plants x ¢ marker explanatory matrix with

207 Xguy= (%Zf: 1 W(s, a)x;x; ), the similarity in asymmetric neighbor effects was calculated as
1 . i .. .
208 Koy = ;ng ~Xsxy- To control phenotypic variations, we further partitioned the proportion

209  of phenotypic variation into those explained by major-effect genes and variance components
210  PVEg+ PVE,, major-effect genes alone PVEyg, and residual error PVE., where PVEg + PVE,
211+ PVE.= 1. The optimize function in R was used to adjust simulated phenotypes to given

212  amounts of PVE.
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213 Parameter setting. Fifteen phenotypes were simulated for each combination of the
214  distance decay a, the proportion of phenotypic variance explained by major-effect genes

215  PVEg, variance components PVE,, and the relative importance of multiple variance

216  components ok:0%:0%.y as: a=0.25,1.0 or 3.0, c:0%:0%= 6:3:1, 4:4:1, or 3:6:1, PVEg =
217 0.1,0.3 or 0.6, and PVEg + PVE, = 0.4 or 0.8. The maximum reference scale was fixed at s =
218 3. The line of simulations was repeated for the number of causal SNPs at 20 or 200 to

219  examine cases of an oligogenic and polygenic control for a trait. The non-zero coefficients for
220  the causal SNPs were randomly sampled from a uniform distribution, Unif(|0.5], |2.0]), and
221  assigned as some causal SNPs were responsible for both the self and neighbor effects. Of the
222 total number of causal SNPs, 15% had all self, neighbor, and asymmetric neighbor effects
223 (i.e., f1#0and f2# 0 and ;2 # 0); another 15% had both the self and neighbor effects, but no
224  asymmetry in the neighbor effects (f;# 0 and f2# 0 and ;2= 0); another 35% had self-

225  genotypic effects only (5;# 0); and the remaining 35% had neighbor effects alone (f2# 0).
226 Given its biological significance, we assumed that some loci having neighbor signals

227  possessed asymmetric interactions between neighbors (f2# 0 and 2 # 0) while the others
228  had symmetric ones (f2# 0 and B;2= 0). Therefore, the number of causal SNPs in f;> was
229  smaller than that in the main neighbor effects f>. According to this assumption, the variance
230  component ¢% Wwas also assumed to be smaller than o3

231 Summary statistics. The simulated phenotypes were fitted by eq. 2 to test the

232 significance of coefficients f; and £, and to estimate the variance component due to self and
233 neighbor effects PVEseir and PVE.ei. The stepwise likelihood ratio tests were performed first
234 between the null model and model with a self-genotype effect alone, and then between the
235  self-genotype effect model and model with both self and neighbor effects. The likelihood

236  ratio was calculated as the difference in deviance i.e., -2 x log-likelihood, which is
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237  asymptotically y? distributed with one degree of freedom. The variance components, PVExir
238  and PVE,e;, were estimated using the average information restricted maximum likelihood
239  (AI-REML) algorithm implemented in the /mm.aireml function in the gaston package of R

240  (Perdry and Dandine-Roulland 2018). Subsequently, the two variance parameters o and

241 o3, were replaced with their estimates 8§ and 8,2\, by the AI-REML, and association tests

242 were performed by solving linear mixed models with a fast approximation by an eigen value
243 decomposition (implemented in the /mm.diago function: Perdry and Dandine-Roulland

244 2018). The likelihood was computed using the Imm.diago.profile.likelihood function to test S,
245  or f2. True or false positive rates were evaluated by ROC curves and area under the ROC

246  curves (AUC) (Gage et al. 2018). An AUC of 0.5 would indicate that GWAS has no power to
247  detect true signals, while an AUC of 1.0 would indicate that all the top signals predicted by
248  GWAS agree with true signals. The roc function in the pROC package (Robin et al. 2011)
249  was used to calculate AUC from -logio(p-value). The AUC and variance components were
250  calculated from s = 1 (the first nearest neighbors) to s = 3 (up to the third nearest neighbors)
251  cases. The AUCs were also calculated using standard linear models without any random

252  effects to examine whether the linear mixed models were superior to the linear models.

253

254 Arabidopsis herbivory data

255  We applied the neighbor GWAS to field data of Arabidopsis herbivory. This field experiment
256  followed our previous publication on a summer herbivory on field-grown 4. thaliana (Sato et
257  al. 2019). We used 200 worldwide accessions comprising the RegMap (Horton et al. 2012)
258  and 1001 Genomes project (Alonso-Blanco et al. 2016), of which most were overlapped with
259  aprevious GWAS of biotic interactions (Horton et al. 2014) and half were included by a

260  GWAS of glucosinolates (Chan et al. 2010). Eight replicates of the 200 accessions were first
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261  prepared in a laboratory and then transferred to the outdoor garden at the Center for

262  Ecological Research, Kyoto University, Japan (Otsu, Japan: 35° 06' N, 134° 56'E, alt. ca. 200
263  m: Fig. 2a). Seeds were sown on Jiffy-seven pots (33-mm diameter), and stratified under 4 °C
264  for a week. Seedlings were cultivated for 1.5 months under a short-day condition (8 h light:
265 16 h dark, 20 °C). Plants were then separately potted in plastic pots (6 cm in diameter) filled
266  with mixed soil of agricultural composts (Metro-mix 350, SunGro Co., USA) and perlites at a
267  3:1 Lratio. In the field setting, 200 accessions were randomly assigned in a checkered

268  manner within a block (Fig. 2b). Eight replicates of these blocks were set >2 m apart from
269  each other (Fig. 2c). Potted plants were exposed to the field environment for 3 wk in June
270 2017. At the end of experiment, we scored leaves eaten as 0 for no visible damage, 1 for

271 <10%, 2 for >10% and < 25%, 3 for > 25% and < 50%, 4 for >50% and < 75%, and 5 for

272 >75% of the leaf area eaten. All plants were scored by a single person to avoid observer bias.
273 The most predominant herbivore in this field trial was the diamond back moth Plutella

274 xylostella, followed by the small white butterfly Pieris rapae. We also recorded the initial
275  plant size and the presence of inflorescence to incorporate them as covariates. Initial plant
276  size was evaluated by the length of the largest rosette leaf (mm) at the beginning of the field
277  experiment and the presence of inflorescence was recorded 2 wk after transplanting.

278 We estimated the variance components and performed the association tests for the
279 leaf damage score with the neighbor covariate at s = 1 and 2. These two scales corresponded
280  to L =4 (the nearest four neighbors) and L = 12 (up to the second nearest neighbors),

281  respectively, in the Arabidopsis dataset. The variation partitioning and association tests were
282  performed using the gaston package, as mentioned above. To determine the significance of
283  variance component parameters, we compared the likelihood between mixed models with one

284  or two random effects. For the genotype data, we used an imputed SNP matrix of all the 2029
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285  accessions studied by the RegMap (Horton et al. 2012) and 1001 Genomes project (Alonso-
286  Blanco et al. 2016). Missing genotypes were imputed using BEAGLE (Browning and
287  Browning 2009), as described by Togninalli et al. (2018) and updated on the AraGWAS

288  Catalog (https://aragwas.1001genomes.org). Of the 10,709,466 SNPs from the full imputed

289  matrix, we used 1,242,128 SNPs with MAF at > 0.05 and LD of adjacent SNPs at 7> <0.8. We
290  considered the initial plant size, presence of inflorescence, and experimental blocks as fixed
291  covariates. After the association mapping, we searched candidate genes within ~10 kb around
292 target SNPs, based on the Araportl] gene model with the latest TAIR annotation (accessed on
293 7 September 2019). Gene ontology (GO) enrichment analysis was applied to the candidate
294  genes near the top 0.1% SNP score. GO categories including >20 and <200 genes were tested
295 by Fisher’s exact probability tests and adjusted by false discovery rate (FDR: Benjamini and
296  Hochberg 1995). The GO.db package (Carlson et al. 2018) and the latest TAIR AGI code

297  annotation were used for the GO enrichment analysis. The R source codes, accession list, and
298  phenotype data are available at the GitHub repository

299  (https://github.com/naganolab/NeighborGWAS).

300

301 RESULTS

302

303  Power simulation

304 A set of phenotypes were simulated from real genotype data following a complex model eq.
305 4, and then fitted by a simplified model eq. 2. Analyzing the factors affecting AUCs, we

306  found that the proportion of phenotypic variation (PVE) explained by major-effect genes

307  PVEgand distance decay of neighbor effects were the most influential on the power to detect

308  neighbor signals (Table 1b, d). In addition to PVEg, the amount of variance components PVE,

p. 13
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309  also significantly affected the AUCs of the self and neighbor effects, but these additional
310  effects were less significant compared to those of PVEg alone (Table 1). In contrast, the

311  AUC:s of neither self nor neighbor effects were significantly affected by the ratio of three
312 variance components o%:0%:0%. (Table 1).

313 Notably, there was a clear relationship between the distance decay a and the

314  proportion of phenotypic variation explained by neighbor effects PVE,ei or AUCs at different
315  spatial scales (Fig. 3). If the distance decay was weak and the effective range of neighbor
316  effects was broad, PVE. and AUCs increased linearly as the reference spatial scale was

317  broadened (Fig. 3a). On the other hand, if the distance decay was strong and the effective
318  scale of neighbor effects was narrow, PVE,i saturated at the scale of the first nearest

319  neighbors (Fig. 3c) or AUCs did not increase (Fig. 3b, ¢). These results remained the same
320  between the number of causal SNPs =20 and 200 (Fig. 3 and Fig. S1). The line of simulation
321  results indicated that the effective spatial scales could be estimated by calculating PVE;
322 across different spatial scales.

323 In the case of the number of causal SNPs = 20, signals of major-effect genes were
324  well detected as AUC ranged from moderate (>0.7) to high (>0.9) (Fig. S2). For the case of
325  the number of causal SNPs = 200, it became relatively difficult to detect the major-effect
326  genes as AUCs were < 0.75 (Fig. S2). The line of simulations indicated that neighbor effects
327  were detectable when a target trait was governed by several major genes and the range of
328  neighbor effects was spatially limited. Additionally, linear mixed models outperformed

329  standard linear models in the detection of self and neighbor signals (AAUCseir= 0.105 [0.101
330 —0.109], AAUCxei = 0.024 [0.021 — 0.026]: 10,000-times bootstrap mean with 95%

331  confidence intervals). This indicated that the mixed models were more appropriate for the

332 neighbor GWAS to deal with spurious associations due to a sample structure.


https://doi.org/10.1101/845735
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/845735; this version posted November 24, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

333

334  Arabidopsis herbivory data

335  The variation partitioning of leaf damage showed that the PVE by neighbor effects were

336  larger than PVE by self-genotypic effects (PVEseir = 0.026, ;{% =0.151, p-value = 0.70;

337 PVEwi=0.218, y; =7.17, p-value = 0.0074: Fig. 4a). Heritability, namely PVEscir without
338  neighbor effects, was 0.159 (X% = 8.73, p-value = 0.003: Fig. S3). This range of heritability
339  was overlapped with PVE by neighbor effects alone (PVEx.i without self-effects = 0.24 at
340 scales=1, X% =15.7, p-value < 0.0001: Fig. S3), indicating that there was an intersection
341  between PVE by self and neighbor effects on the leaf damage variation. Phenotypic variation
342  explained by neighbor effects on leaf damage did not increase when the neighbor scale was

343 referred up to the nearest and second nearest individuals (PVEgeir = 0.083, X? =1.03, p-value
344  =0.311; PVELi=0.13, )(f = 1.29, p-value = 0.256: Fig. 4a); therefore, the variation

345  partitioning was stopped at s = 2. These results indicated a narrow effective scale and

346  significant contribution of neighbor effects to the leaf damage score.

347 Association mapping of the self-genotype effects on the leaf damage found a SNP
348  with the largest -logio(p-values) score at “chr1-23149476”. This SNP was located within ~10
349 kb of the AT1G62540 locus that encoded flavin-monooxygenase glucosinolate S-oxygenase 2
350  (FMO GS-0X2), though this was not above a threshold of Bonferroni correction. Gene

351  ontology annotation of “cellular response to extracellular stimulus” was marginally enriched
352  among genes within ~10 kb around SNPs with the top 0.1% -logio(p-values) score which
353  corresponded to p-values at < 0.00096 (FDR<O0.1: Table 2a). A QQ-plot did not exhibit an
354  inflation of p-values for the self-genotype effects (Fig. S4).

355 We found a marginally significant SNP for neighbor effects at the second and third

356  chromosome (Fig. 4c), of which the second chromosomal region had higher association

p. 15
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357  scores than expected by the QQ-plot (Fig. S4). A locus encoding FAD-binding Berberine

358  family protein (AT2G34810 named BBE16) were located within the ~10 kb window near the
359  SNP with the largest -logio(p-values) at the second chromosome, which are known to be up-
360  regulated by methyl jasmonate (Devoto et al. 2005). Three transposable elements and a

361  pseudogene of lysyl-tRNA synthetase 1 were located near the most significant SNP at the
362  third chromosome. These top ten SNPs significantly related to the neighbor effects exhibited
363  positive estimates of f; and f>. Three defense-related GO annotations of “killing cells of

364  other organisms” and “disruption of cells of other organism” were significantly enriched

365 among genes within ~10 kb around SNPs with the top 0.1% score of -logio(p-values)

366  (FDR<0.05: Table 2b). Of the genes with these GO annotations, we found 22 low-molecular
367  weight cysteine-rich proteins or plant defensin family proteins (Table S2).

368 Based on the estimated coefficients /3 , and B ,» We ran a post hoc simulation to infer
369  aspatial arrangement that minimizes a population sum of the leaf damage 3y, =B, J'x; +
370 ﬂ2 D j>X;X;. The constant intercept o, the variance component u;, and residual e; were not
371  considered because they were not involved in deterministic dynamics of the model. Figure 5
372 shows three representatives and a neutral expectation. For example, a mixture of a

373 dimorphism was expected to decrease the total leaf damage for a SNP at “chr2-14679190”
374  near the BBE16 locus $2>0: Fig. 5a). On the other hand, a clustered distribution of a

375  dimorphism was expected to decrease the total damage for a SNP at “chr2-9422409” near the
376 AT2G22170 locus encoding a lipase/lipooxygenase PLAT/LH2 family protein (5 ,~0, B ,<0:

377  Fig. 5b). Furthermore, near monomorphism was expected to decrease the leaf damage for a
378  SNP at “chr5-19121831” near the AT5G47075 and AT5G47077 loci encoding low-molecular

379  cysteine-rich proteins, LCR20 and LCR6 (B 0, ,32<O: Fig. 5¢). No self and neighbor effects
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380  led to a random distribution and no mitigation of damage i.e., >y, ~0 (Fig. 5d). These post

381  hoc simulations suggested a potential applicability of neighbor GWAS in optimizing spatial
382  arrangements in field cultivation.

383

384  DISCUSSION

385

386  Spatial and genetic factors affecting the power to detect signals

387  Benchmark tests using simulated phenotypes revealed that appropriate spatial scales could be
388  estimated by variation partitioning of observed phenotypes. When the scale of neighbor

389  effects was narrow or moderate (a = 1.0 or 3.0), the scale of the first nearest neighbors would
390  be optimum for the power to detect neighbor signals. In terms of neighbor effects in plant
391  defense, mobile animals, such as mammalian browsers and flying insects, often select a

392 cluster of plant individuals (e.g., Bergvall et al. 2006; Hambéck et al. 2009; Vershut et al.
393 2016); however, neighbor effects could not be detected among individual plants within a

394  cluster (Hambéck et al. 2014; Sato and Kudoh 2015). This case was represented by the

395  exponential distance decay of o = 0.25; only in such a special case should more than the first
396  nearest be referred to gain the power.

397 Neighbor GWAS could retain its power as long as neighbor effects were spatially
398  limited and several major-effect genes governed a trait. In contrast, when hundreds of causal
399  variants involved a single trait and less than half of phenotypic variation was attributable to
400  neighbor effects, we observed a reasonable power down of neighbor GWAS. In GWAS, false
401  positive rates can be reduced using linear mixed models that deal with kinship structure as a
402  random effect (Korte and Farlow 2013). Indeed, mixed models were superior to standard

403  linear models in this simulation. Our simulation also adjusted the three variance components
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404 0%, 03, and oz, but their relative contribution did not have significant effects on the power.
405  This was likely due to the fact that the self-genotypic variable x; was encompassed into the
406  neighbor variable ) xixi/L, and thus the kinship matrix Ky was partially redundant with the
407  similarity matrix of neighbor effects Kj. Indeed, elemental-wise correlations between Kg
408 and K, were strong in our simulations (R> > 0.7). Thus, linear mixed models gain the power
409  to detect neighbor effects if signals are strong, but likelihood ratio tests are reliable enough to
410  deal with the correlated variables.

411

412  Candidate genes related to field herbivory on Arabidopsis

413 Our Arabidopsis data successfully detected known defense-related genes involved in the self-
414  genotype effects on leaf damage. Aliphatic glucosinolates are a major chemical defense

415  against insect herbivory (Brachi et al. 2015; Kerwin et al. 2017). Specifically, FMO GS-OX2
416  1is involved in aliphatic glucosinolate biosynthesis by catalyzing the conversion from

417  methylthioalkyl to corresponding methylsulfinylalkyl glucosinolates (Li et al. 2008).

418  Furthermore, previous GWAS reported methionine synthase 2 (AT3G03780), disease

419  resistance protein (TIR-NBS-LRR class) family (AT4G16950), and monodehydroascorbate
420  reductase 4 (AT3G27820) as candidate genes involved in self-resistance to the white butterfly
421  Pieris rapae (Davila-Olivas et al. 2017; Nallu et al. 2018). In this field experiment, we

422 observed larvae of P. rapae largely feeding on A. thaliana, and the GWAS of self-genotype
423  effects on leaf damage detected the above three candidate genes near SNPs with the top 0.1%
424  association score. Thus, our GWAS results seemed convincing in terms of the detection of
425  known defense-related genes in the self-genotypic effects on herbivory.

426 Notably, the neighbor effects in herbivory were relevant to candidate genes

427  disrupting cells of other organisms. Plant defensins are stable and cysteine-rich peptides that
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428  confer plant resistance by killing cells of other organisms (Stotz 2009). While anti-fungal
429  resistance is a well-known function of plant defensins (Stotz 2009), they can also act as

430  protease inhibitors against insect herbivores (Bloch and Richardson 1991; Pelegrini et al.

431  2008; Choi et al. 2009). Typical examples of neighbor effects may be a direct induction of
432 plant defense via volatile organic chemicals (e.g., Schuman et al. 2015; Dahlin et al. 2018),
433 but ecological studies have shown that herbivore host choice is one of the most important
434  processes leading indirect neighbor effects to anti-herbivore defenses (Bergvall et al. 2006;
435  Verschut et al. 2016; Sato et al. 2017). The findings of our neighbor GWAS suggest a putative
436  role of plant defensins in modulating insect feeding behaviors and thus neighbor effects in
437  herbivory.

438

439  Conclusion and applicability

440  Based on the newly proposed methodology, we suggest that neighbor effects are a more

441  important source of phenotypic variation in field-grown plants than currently appreciated. To
442 date, regional-scale interactions among plants have been analyzed using a genome-

443  environment association study of plant community composition (Frachon et al. 2019), but
444  fine-scale neighbor effects have yet to be examined. Using tens of A. thaliana accessions and
445  their experimentally mixed populations, Wuest and Niklaus (2018) recently showed that a
446  single genomic region drives neighbor effects in plant growth via soil improvements, and this
447  genetic effect shapes a positive relationship between plant genotype diversity and

448  productivity. Our newly proposed methodology of neighbor GWAS could be a powerful tool
449  to identify such a key genetic variant responsible for neighbor effects and resulting

450  biodiversity effects.

451 Neighbor GWAS may also potentially help determine an optimal spatial arrangement
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452 in plant cultivation, as suggested by the post hoc simulation. The Ising model is well

453  established in statistical physics (McCoy and Maillard 2012) and is now applied to a

454  machine-learning pipeline that deals with high-dimensionality in genomics data (Fisher and
455  Mehta 2015). Genome-wide polymorphism data are useful not only to seek causal genes in
456  GWAS, but also to predict breeding values of crop plants in genomic selection (e.g., Jannink
457 et al. 2010; Hamblin et al. 2011; Yamamoto et al. 2017). Although it is still challenging to
458  determine f; and S for all SNPs efficiently, the linear model of neighbor GWAS could also
459  be implemented as a genomic selection at a population level. Thus, our study provides an
460  avenue for future studies to predict population-level phenotypes in spatially structured

461  environments.

462
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TABLES & FIGURES

Table 1. Factors affecting the power to detect signals in simulated phenotypes. The response

variable was the maximum Area Under the ROC Curve (AUC) of the spatial scales from s =

1 to s = 3. ANOVA tables show the degree of freedom (df), sum of squares (SS), F-statistics,

and p-values.

(8) AUCseis, No. of causal SNPs = 20

(c) AUCss, No. of causal SNPs = 200

Factors df SS F p-value Factors df SS F p-value
0205 0%y 2 001120 191 0.149 0210505y 2 0.0000 0.01 0.9909
a 1 0.0003 0.10 0.750 a 1 0.0044 6.05 0.0142
PVEg 1 0.410 1427 <2.2e-16 PVEg 1 0.798 1106 <2.2e-16
PVE; + PVEy 1 0019 6.81 0.00933 PVEgs + PVEu 1 0.0115 16.0  7.29E-05
Residuals 534 1.53 Residuals 534 0.385
(b) AUC,ei, No. of causal SNPs = 20 (d) AUC,ei, No. of causal SNPs = 200
Factors df SS F p-value Factors df SS F p-value

020%: 08N 0.013 1.4 0.259 0%0%: 08N 2 00011 081 0.445
a 1.006 205 <2.2e-16 a 1 019 295 <2.2e-16
PVEg 1.101 225 <2.2e-16 PVEg 1 0.248 375 <2.2e-16
PVE; + PVEy 1 0.060 12.2 0.000520 PVEg + PVEu 1 0.0050 7.60 0.00605
Residuals 174 2.62 Residuals 534 0.352
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Table 2. GO enrichment analysis of the leaf damage score with Fisher’s exact probability

tests at FDR < 0.1. Candidate genes within ~10 kb around SNPs with the top 0.1%

association score -logio(p-values) were subject to the GO analysis.

(a) Self, /1

GO

FDR

Description

G0:0043531
G0:0009267
G0:0031669
G0:0050662
G0:0031668
G0:0042594
G0:0071496
G0:0009605
G0:0004553
G0:0016798
G0:0031667
G0:0005618
G0:0030312
G0:0000166
G0:1901265

0.0071
0.0083
0.0083
0.0127
0.0546
0.0546
0.0673
0.0829
0.0829
0.0829
0.0969
0.0969
0.0969
0.0982
0.0982

ADP binding

cellular response to starvation

cellular response to nutrient levels
coenzyme binding

cellular response to extracellular stimulus
response to starvation

cellular response to external stimulus
response to external stimulus

hydrolase activity, hydrolyzing O-glycosyl compounds
hydrolase activity, acting on glycosyl bonds
response to nutrient levels

cell wall

external encapsulating structure

nucleotide binding

nucleoside phosphate binding

(b) Neighbor, >

GO

FDR

Description

G0:0004857
G0:0031640
G0:0001906
G0:0044364
G0:0043531

G0:0035821

G0:0010393
G0:0045488
G0:0042545
G0:0044419

0.0271
0.0271
0.0271
0.0271
0.0271

0.0307

0.0307
0.0307
0.0341
0.0595

enzyme inhibitor activity

killing of cells of other organism

cell killing

disruption of cells of other organism

ADP binding

modification of morphology or physiology of other
organism

galacturonan metabolic process

pectin metabolic process

cell wall modification

interspecies interaction between organisms
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685 (linear mixed model)

686  Figure 1. Relationship between Neighbor GWAS and Ising model. Upper panels show spatial
687  arrangements expected by a 2-D Ising model Yy, =8, % + B, > xx;. (2) If f2>0, mixed
688  patterns give the argument of the minimum for a population sum of phenotype values 2y;. (b)
689  If f2<0, clustered patterns give the argument of the minimum for 2y;. (¢) In addition, S;

690  determines overall patterns favoring -1 or +1 states. Shown are outcomes from a random 100
691  x 100 lattice after 1000 iterations of Gibbs sampling. Conversely, the neighbor GWAS was
692  implemented as an inverse problem of the 2-D Ising model, where genotypes and its spatial
693  arrangement, x; and x;x;, are given while the coefficients f; and f: are to be estimated from
694  observed phenotypes y:. In addition, the variance component due to self and neighbor effects
695  was considered a random effect in a linear mixed model, such that u;~ Norm(0, 03Ks+o5Ky).
696  Once f; and f: are determined, we could simulate a genotype distribution that maximizes or

697  minimizes Xy;.
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Block 1 Block 2

Block 3 Block 4

Block 5 Block 6

Block 7 Block 8

698 B — 15 m

699  Figure 2. Experimental setting in the Arabidopsis herbivory data. (a) Photograph of the field
700  site. Each 0.6 x 2.6 m block included a replicate of 200 accessions, where 5 x 40 plants were
701  assigned to a row and column, respectively. (b) Arabidopsis thaliana plants were arranged in
702 acheckered manner. Yellow lines represent s-th neighbor scales from a focal i-th plant. (c) A
703  graphical explanation of the experimental area. A meadow (green) was separately covered
704  with weed-masking sheets (grey).

705
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Figure 3. Scale dependence of neighbor effects on simulated phenotypes among all iterations
with the number of causal SNPs = 20. The broad (a), intermediate (b), and narrow (c)
effective range of neighbor effects are represented by weak, moderate, and strong distance
decay, respectively. The proportion of phenotypic variation explained by neighbor effects
(PVEnei) and the area under the ROC curve (AUC) of neighbor effects are shown along the
spatial scale from the first nearest (s = 1) to the third nearest (s = 3) neighbors. An AUC at 1.0
indicates a perfect detection of signals. Boxplots show center line: median, box limits: upper
and lower quartiles, whiskers: 1.5x interquartile range, and points: outliers. The case for the

number of causal SNPs = 200 is given in Figure S1.

p. 34


https://doi.org/10.1101/845735
http://creativecommons.org/licenses/by/4.0/

716

717

718

719

720

721

722

723

724

725

726

727

bioRxiv preprint doi: https://doi.org/10.1101/845735; this version posted November 24, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(a) Variation partitioning (b) Self, B,
M (red): PVE,,, E
M (blue): PVE, g
1.0 2
o)
ko)
0.8 - -
W 061
&
0.4 1 ey
>
0-2 _ - g
.
0.0 - _8?
1 2 '
scale, s

Figure 4. Neighbor GWAS of the leaf damage score on field-grown Arabidopsis thaliana. (a)
The proportion of leaf damage variation explained by self-genotype effects PVEgeir (=
o2/(o5+0%+062): blue fraction), neighbor effects PVEqei (= 03/(05+0%+062): red fraction), and
residuals at the spatial scale of s = 1 and s = 2. Asterisks highlight a significant fraction with
likelihood ratio tests: ~p-value < 0.01. (b, c) Manhattan plots for the self and neighbor effects
on the leaf damage score. Different colors highlight the first to fifth chromosomes of A4.

thaliana. Lighter plots indicate smaller MAF. Results of neighbor effects are shown at s = 1.
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(a) Chr 2, Position 14679190: 8, =0.15, 8, =0.26, 2y; = -176

T

(c) Chr 5, Position 19121831: 8, = 0.13, B, = -0.24, 2y; = -650

o effects: =107, =107, 2y; =107
d) No eff ;=10%, 8,=10% 3y, = 10*

Figure 5. Post hoc simulations exemplifying a spatial arrangement of two alleles expected by
the estimated self and neighbor effects, f; and f2, on the leaf damage score of Arabidopsis
thaliana. Population sum of the leaf damage »y, =B, 'x; + 8,25~ xx; was minimized

using 1000 iterations of Gibbs sampling from a random distribution of two alleles in a 10 %

40 space.
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