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ABSTRACT 25 

An increasing number of field studies show that the phenotype of an individual plant depends 26 

not only on its genotype but also on those of neighboring plants; however, this fact is not 27 

taken into consideration in genome-wide association studies (GWAS). Based on the Ising 28 

model of ferromagnetism, we incorporated neighbor genotypic identity into a regression 29 

model in this study. The proposed method, named “neighbor GWAS”, was applied to 30 

simulated and real phenotypes using Arabidopsis thaliana accessions. Our simulations 31 

showed that phenotypic variation explained by neighbor effects approached a plateau when 32 

an effective spatial scale became narrow. Thus, the effective scale of neighbor effects could 33 

be estimated by patterns of the phenotypic variation explained. The power to detect causal 34 

variants of neighbor effects was moderate to strong when a trait was governed by tens of 35 

variants. In contrast, there was a reasonable power down when hundreds of variants underlay 36 

a single trait. We applied the neighbor GWAS to field herbivory data on 200 accessions of A. 37 

thaliana, and found that the neighbor effects more largely contributed to the observed 38 

damage variation than self-genotype effects. Interestingly, several defensin family genes were 39 

associated with neighbor effects on the herbivory, while self-genotype effects were related to 40 

flavin-monooxygenase glucosinolate S-oxygenase 2 (FMO GS-OX2). Overall, the neighbor 41 

GWAS highlights the overlooked but significant role of plant neighborhood effects in shaping 42 

phenotypic variation, thereby providing a novel and powerful tool to dissect complex traits in 43 

spatially structured environments. 44 

 45 

Keywords: Arabidopsis thaliana, GWAS, Ising model, Neighbor effects, Plant-insect 46 

interaction 47 

 48 
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INTRODUCTION 49 

Plants are immobile and thus cannot escape their neighbors. In natural and agricultural fields, 50 

individual phenotypes depend not only on the plants’ own genotype but also on those of other 51 

plants in a neighborhood (Tahvanainen and Root 1972; Barbosa et al. 2009; Underwood et al. 52 

2014). This phenomenon has been termed neighbor effects or associational effects in plant 53 

ecology (Barbosa et al. 2009; Underwood et al. 2014; Sato 2018). Such neighbor effects were 54 

initially reported as a form of interspecific interaction among different plant species 55 

(Tahvanainen and Root 1972), but many studies have thus far illustrated that neighbor effects 56 

occur among different genotypes within a plant species in herbivory (Schuman et al. 2015; 57 

Sato 2018; Ida et al. 2018), pathogen infections (Mundt 2002; Zeller et al. 2012), and 58 

pollinator visitations (Genung et al. 2012). Although neighbor effects are of considerable 59 

interest in plant science (Dicke and Baldwin 2010; Erb 2018) and its potential application to 60 

agriculture (Zeller et al. 2012; Dahlin et al. 2018), these effects are not often considered in 61 

quantitative genetics of field-grown plants. 62 

Complex mechanisms underlie neighbor effects through direct competition (Weiner 63 

1990), herbivore and pollinator movement (Bergvall et al. 2006; Genung et al. 2012; Verschut 64 

et al. 2016), and volatile communication among plants (Schuman et al. 2015; Dahlin et al. 65 

2018). For example, lipoxygenase (LOX) genes govern jasmonate-mediated volatile 66 

emissions that induce defenses of neighboring plants in Nicotiana (Schuman et al. 2015). 67 

Even if direct plant-plant communications are absent, herbivores can mediate indirect 68 

interactions between plant genotypes (Sato and Kudoh 2017; Ida et al. 2018): GLABRA1 69 

(GL1) polymorphism determines hairy or glabrous phenotypes in Arabidopsis plants (Hauser 70 

et al. 2001) and allow a flightless leaf beetle to avoid hairy plants when encountered at a low 71 

frequency (Sato and Kudoh 2017; Sato et al. 2017). Yet, there are few hypothesis-free 72 
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approaches to seek key genetic variants responsible for plant neighborhood effects. 73 

 Genome-wide association studies (GWAS) have been increasingly adopted to 74 

resolve the genetic architecture of complex traits in the model plant, Arabidopsis thaliana 75 

(Atwell et al. 2010; Togninalli 2018) and crop species (Hamblin et al. 2011). Plant 76 

interactions with herbivores (Brachi et al. 2015; Nallu et al. 2018), microbes (Horton et al. 77 

2014; Wang et al. 2018), and other plant species (Frachon et al. 2019), are one of such 78 

complex traits dissected through the lens of GWAS. To distinguish causal variants from the 79 

genome structure, GWAS often employs a linear mixed model with kinship considered in a 80 

random effect (Kang et al. 2008; Korte and Farlow 2013). However, it is generally impossible 81 

to test all the gene-by-gene interactions due to combinatorial explosion (Gondro et al. 2013); 82 

thus, some feasible and reasonable approach should be invented for GWAS of neighbor 83 

effects. 84 

To incorporate neighbor effects into GWAS, we focused on a theoretical model of 85 

neighbor effects in a magnetic field, known as the Ising model (Ising 1925; McCoy and 86 

Maillard 2012), which has been applied to forest gap dynamics and community assembly in 87 

plant ecology (Kizaki and Katori 1999; Schlicht and Iwasa 2004; Azaele et al. 2010). 88 

Assuming that an individual plant is a magnet, two alleles at each locus correspond to the 89 

north or south dipole, whereby genome-wide multiple testing across all loci is analogous to a 90 

number of parallel two-dimensional layers. The Ising model has a clear advantage in its 91 

interpretability, such that (i) the optimization problem for a population sum of trait values can 92 

be regarded as an inverse problem of a simple linear model, (ii) the sign of neighbor effects 93 

determines a model trend to generate a clustered or checkered spatial pattern of the two 94 

states, and (iii) the self-genotypic effect determines the general tendency to favor one allele 95 

over another (Fig. 1). 96 
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In this study, we proposed a new methodology integrating GWAS and the Ising 97 

model, named “neighbor GWAS”. The method was applied to simulated phenotypes and real 98 

data of field herbivory on A. thaliana. We addressed two specific questions: (i) what spatial 99 

and genetic factors influenced the power to detect causal variants? (ii) were neighbor effects 100 

significant sources of leaf damage variation in field-grown A. thaliana? Based on the 101 

simulation and application, we determined the feasibility of our approach to detect neighbor 102 

effects in field-grown plants. 103 

 104 

MATERIALS & METHODS 105 

 106 

Neighbor GWAS 107 

Basic model. We analyzed neighbor effects in GWAS as an inverse problem of the two-108 

dimensional Ising model (Fig. 1). We consider a situation where a plant accession has either 109 

of two alleles at each locus, and a number of accessions occupy a finite set of field sites in a 110 

two-dimensional lattice. Let x represent allelic status at each locus, the allelic status at each 111 

locus of the i-th focal plant and j-th neighboring plants can be designated as xi(j)∈{-1, +1}. 112 

Based on a two-dimensional Ising model, we can define a phenotype value of i-th focal 113 

individual plant yi as 114 

y
i
 = β

1
xi + β

2
∑ xixj

L
j=1    [eq. 1], 115 

where β1 and β2 denote self-genotype and neighbor effects, respectively and L is the number 116 

of neighboring plants to refer. If two neighboring plants shared the same allele at a given 117 

locus, the product xixj turned into (-1)×(-1)=+1 or (+1)×(+1)=+1. If two neighbors had 118 

different alleles, the product xixj became (-1)×(+1)=-1 or (+1)×(-1)=-1. Accordingly, the 119 

effects of neighbor genotypic identity on a phenotype depended on the coefficient β2 and the 120 
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number of two alleles in a neighborhood. If the numbers of identical and different alleles 121 

were the same near a focal plant, these neighbors offset the sum of the products ∑ xixj
L
j=1  and 122 

exerted no effects on a phenotype. When we summed up the phenotype values for the total 123 

number of plants n and replaced it as Ε = –β2, Η = –β1 and ϵI = ∑y
i
, eq. 1 can be 124 

transformed as ϵI = –Ε ∑ xixj<i,j> –Η ∑ xi, which defines the interaction energy of a two-125 

dimensional ferromagnetic Ising model (McCoy and Maillard 2012). The neighbor effect β2 126 

and self-genotype effect β1 were interpreted as the energy coefficient Ε and external magnetic 127 

field Η, respectively. An individual plant represented a spin and the two allelic states of each 128 

locus corresponded to a north or south dipole. The positive or negative value of ∑xixj 129 

indicated a ferromagnetism or paramagnetism, respectively. In this study, we did not consider 130 

the effects of allele dominance because this model was applied to inbred A. thaliana. 131 

However, heterozygotes could be processed if the neighbor covariate xixj was weighted by an 132 

estimated degree of dominance in the self-genotypic effects on a phenotype. 133 

Mixed model. For association mapping, we needed to determine β1 and β2 from 134 

observed phenotypes and consider a confounding sample structure as advocated by previous 135 

GWAS (e.g., Kang et al. 2008; Korte and Farlow 2013). Extending the basic model eq. 1, we 136 

described a linear mixed model at an individual level as 137 

y
i
 = β

0
 + β

1
xi + 

β2

L
∑ xixj

L
j=1  + ui + ei  [eq. 2], 138 

where β0 indicates the intercept, and the term β1xi represents fixed self-genotype effects as 139 

tested in conventional GWAS; β2 is the coefficient of fixed neighbor effects, and the neighbor 140 

covariate ∑ xixj
L
j=1  is scaled by the number of neighboring plants, L. Variance components 141 

due to a sample structure in self and neighbor effects was modeled by a random effect 142 

ui~ Norm(0, σS
2KS+σN

2 KN). The residual was expressed as ei~ Norm(0, σe
2).  143 
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The n × n variance-covariance matrices represented the similarity in self-genotypes 144 

(i.e., kinship) and neighbor covariates among n individual plants as: 145 

KS=
1

q-1
XS

TXS and  146 

KN=
1

q-1
XN

TXN, 147 

where q indicates the number of markers. As we defined xi(j)∈{-1, +1}, the elements of the 148 

kinship matrix KS are scaled to represent the proportion of marker loci shared among n × n 149 

plants such that KS=(0.5kS,ij+ 0.5) and kS,ij = [0, 1]; σS
2 and σN

2  indicates variance 150 

component parameters for the self and neighbor effects.  151 

The n plants × q markers matrix XS and XN are explanatory variables for the self 152 

and neighbor effects as XS=(xi) and XN= (
∑ xixj

L
j=1

L
). The individual-level formula eq. 2 could 153 

also be converted into a conventional matrix form as: 154 

y = Xβ + Zu + e  [eq. 3], 155 

where y is n × 1 vector of phenotypes. X is a matrix of fixed effects, including mean, self-156 

genotype xi, neighbor covariate ( ∑ xixj)
L
j=1 /L, and other confounding covariates for n plants; 157 

β is a vector that represents coefficients of the fixed effects; Z is a design matrix allocating 158 

individuals to a genotype, and becomes an identity matrix if all plants are different 159 

accessions; u is the random effect with Var(u) = σS
2KS+σN

2 KN, and e is residual as Var(e) = 160 

σe
2I. In such a mixed model, the proportion of phenotypic variation explained (PVE) by the 161 

self and neighbor effects could be calculated as PVEself = σS
2/(σS

2+σN
2 +σe

2) and PVEnei = 162 

σN
2 /(σS

2+σN
2 +σe

2), respectively. The line of extensions to incorporate neighbor effects into 163 

GWAS is referred to as “neighbor GWAS” hereafter. 164 

 165 
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Power simulation 166 

To examine the power to detect neighbor effects, we applied the neighbor GWAS to 167 

simulated phenotypes. Phenotypes were simulated using a part of the real genotypes of A. 168 

thaliana. To evaluate the power of the simple linear model, we assumed a complex ecological 169 

form of neighbor effects with multiple variance components controlled. The power was 170 

evaluated by the receiver operating characteristic (ROC) curve on the association score of -171 

log10(p-value) (e.g., Gage et al. 2018). All analyses were performed using R version 3.4.0 (R 172 

Core Team 2017). 173 

Genotype data. To consider a realistic genetic structure in the simulation, we used 174 

part of the A. thaliana RegMap panel (Horton et al. 2012). The genotype data on 1307 175 

accessions were downloaded from the Joy Bergelson laboratory website 176 

(http://bergelson.uchicago.edu/?page_id=790 accessed on 9 February 2017). We extracted the 177 

chromosome 1 and 2 data with the minor allele frequency (MAF) at >0.1, providing a matrix 178 

of 1307 plants with 65,226 single nucleotide polymorphisms (SNPs). Pairwise linkage 179 

disequilibrium (LD) among the loci was r2 = 0.003 [0.00-0.06: median with upper and lower 180 

95 percentiles]. Before generating a phenotype, each locus was centered by its mean and 181 

scaled by its standard deviation. Subsequently, we randomly selected 1296 accessions (= 36 × 182 

36 accessions) without any replacements for each iteration, and placed them in a 36 × 72 183 

checkered space following Arabidopsis experimental settings (see Fig. 2b). 184 

Phenotype simulation. To address ecological issues specific to plant neighborhood 185 

effects, we considered two extensions, namely asymmetric neighbor effects and spatial 186 

scales. Firstly, previous studies showed that such plant-plant interactions are sometimes 187 

asymmetric between two accessions in herbivory (e.g., Bergvall et al. 2006; Verschut et al. 188 

2016; Sato and Kudoh 2017) and height competition (Weiner 1990). Such asymmetric 189 
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neighbor effects can be tested by statistical interactions terms in a linear model (Bergvall et 190 

al. 2006; Sato and Kudoh 2017). Secondly, several studies showed that the strength of 191 

neighbor effects depended on spatial scales (Hambäck et al. 2014) and the scale of neighbors 192 

to be analyzed relied on the dispersal ability of causative organisms (see Hambäck et al. 193 

2009; Sato and Kudoh 2015; Vershut et al. 2018; Ida et al. 2018 for insect and mammal 194 

herbivores; Rieux et al. 2014 for pathogen dispersal) or the size of competing plants (Weiner 195 

1990). We assumed the distance decay at s-th sites from a focal individual i with the decay 196 

coefficient α as w(s, α) = e-α(s-1), since such an exponential distance decay has been widely 197 

adopted in empirical studies (Devaux et al. 2007; Carrasco et al. 2010; Rieux et al. 2014; Ida 198 

et al. 2018). Therefore, we assumed a more complex model for simulated phenotypes than the 199 

model for neighbor GWAS as follows: 200 

y
i
 = β

0
 + β

1
xi + 

β2

L
∑ w(s, α)xixj

L
j=1  + β

12

xi

L
∑ w(s, α)xixj

L
j=1  + ui + ei  [eq. 4], 201 

where β12 is the coefficient for asymmetry in neighbor effects. Total variance components due 202 

to the three background effects i.e., the self, neighbor, and self-by-neighbor effects is defined 203 

as ui~Norm(0, σS
2KS+σN

2 KN+σSxN
2 KSxN). The three variance component parameters σS

2, σN
2 , 204 

and σSxN
2 , determined the relative importance of self-genotype, neighbor, and asymmetric 205 

neighbor effects in ui. Given the n plants × q marker explanatory matrix with 206 

XS×N = (
xi

L
∑ w(s, α)xixj

L
j=1 ), the similarity in asymmetric neighbor effects was calculated as 207 

KS×N = 
1

q-1
XS×N

T XS×N. To control phenotypic variations, we further partitioned the proportion 208 

of phenotypic variation into those explained by major-effect genes and variance components 209 

PVEβ + PVEu, major-effect genes alone PVEβ, and residual error PVEe, where PVEβ + PVEu 210 

+ PVEe = 1. The optimize function in R was used to adjust simulated phenotypes to given 211 

amounts of PVE. 212 
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 Parameter setting. Fifteen phenotypes were simulated for each combination of the 213 

distance decay α, the proportion of phenotypic variance explained by major-effect genes 214 

PVEβ, variance components PVEu, and the relative importance of multiple variance 215 

components σS
2:σN

2 :σSxN
2  as: α = 0.25, 1.0 or 3.0, σS

2:σN
2 :σSxN

2 = 6:3:1, 4:4:1, or 3:6:1, PVEβ = 216 

0.1, 0.3 or 0.6, and PVEβ + PVEu = 0.4 or 0.8. The maximum reference scale was fixed at s = 217 

3. The line of simulations was repeated for the number of causal SNPs at 20 or 200 to 218 

examine cases of an oligogenic and polygenic control for a trait. The non-zero coefficients for 219 

the causal SNPs were randomly sampled from a uniform distribution, Unif(|0.5|, |2.0|), and 220 

assigned as some causal SNPs were responsible for both the self and neighbor effects. Of the 221 

total number of causal SNPs, 15% had all self, neighbor, and asymmetric neighbor effects 222 

(i.e., β1 ≠ 0 and β2 ≠ 0 and β12 ≠ 0); another 15% had both the self and neighbor effects, but no 223 

asymmetry in the neighbor effects (β1 ≠ 0 and β2 ≠ 0 and β12 = 0); another 35% had self-224 

genotypic effects only (β1 ≠ 0); and the remaining 35% had neighbor effects alone (β2 ≠ 0). 225 

Given its biological significance, we assumed that some loci having neighbor signals 226 

possessed asymmetric interactions between neighbors (β2 ≠ 0 and β12 ≠ 0) while the others 227 

had symmetric ones (β2 ≠ 0 and β12 = 0). Therefore, the number of causal SNPs in β12 was 228 

smaller than that in the main neighbor effects β2. According to this assumption, the variance 229 

component σSxN
2  was also assumed to be smaller than σN

2 . 230 

Summary statistics. The simulated phenotypes were fitted by eq. 2 to test the 231 

significance of coefficients β1 and β2, and to estimate the variance component due to self and 232 

neighbor effects PVEself and PVEnei. The stepwise likelihood ratio tests were performed first 233 

between the null model and model with a self-genotype effect alone, and then between the 234 

self-genotype effect model and model with both self and neighbor effects. The likelihood 235 

ratio was calculated as the difference in deviance i.e., -2 × log-likelihood, which is 236 
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asymptotically χ2 distributed with one degree of freedom. The variance components, PVEself 237 

and PVEnei, were estimated using the average information restricted maximum likelihood 238 

(AI-REML) algorithm implemented in the lmm.aireml function in the gaston package of R 239 

(Perdry and Dandine-Roulland 2018). Subsequently, the two variance parameters σS
2 and 240 

σN
2  were replaced with their estimates σ̂S

2
 and σ̂N

2
 by the AI-REML, and association tests 241 

were performed by solving linear mixed models with a fast approximation by an eigen value 242 

decomposition (implemented in the lmm.diago function: Perdry and Dandine-Roulland 243 

2018). The likelihood was computed using the lmm.diago.profile.likelihood function to test β1 244 

or β2. True or false positive rates were evaluated by ROC curves and area under the ROC 245 

curves (AUC) (Gage et al. 2018). An AUC of 0.5 would indicate that GWAS has no power to 246 

detect true signals, while an AUC of 1.0 would indicate that all the top signals predicted by 247 

GWAS agree with true signals. The roc function in the pROC package (Robin et al. 2011) 248 

was used to calculate AUC from -log10(p-value). The AUC and variance components were 249 

calculated from s = 1 (the first nearest neighbors) to s = 3 (up to the third nearest neighbors) 250 

cases. The AUCs were also calculated using standard linear models without any random 251 

effects to examine whether the linear mixed models were superior to the linear models. 252 

 253 

Arabidopsis herbivory data 254 

We applied the neighbor GWAS to field data of Arabidopsis herbivory. This field experiment 255 

followed our previous publication on a summer herbivory on field-grown A. thaliana (Sato et 256 

al. 2019). We used 200 worldwide accessions comprising the RegMap (Horton et al. 2012) 257 

and 1001 Genomes project (Alonso-Blanco et al. 2016), of which most were overlapped with 258 

a previous GWAS of biotic interactions (Horton et al. 2014) and half were included by a 259 

GWAS of glucosinolates (Chan et al. 2010). Eight replicates of the 200 accessions were first 260 
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prepared in a laboratory and then transferred to the outdoor garden at the Center for 261 

Ecological Research, Kyoto University, Japan (Otsu, Japan: 35º 06ꞌ N, 134º 56ꞌ E, alt. ca. 200 262 

m: Fig. 2a). Seeds were sown on Jiffy-seven pots (33-mm diameter), and stratified under 4 ℃ 263 

for a week. Seedlings were cultivated for 1.5 months under a short-day condition (8 h light: 264 

16 h dark, 20 ℃). Plants were then separately potted in plastic pots (6 cm in diameter) filled 265 

with mixed soil of agricultural composts (Metro-mix 350, SunGro Co., USA) and perlites at a 266 

3:1 L ratio. In the field setting, 200 accessions were randomly assigned in a checkered 267 

manner within a block (Fig. 2b). Eight replicates of these blocks were set >2 m apart from 268 

each other (Fig. 2c). Potted plants were exposed to the field environment for 3 wk in June 269 

2017. At the end of experiment, we scored leaves eaten as 0 for no visible damage, 1 for 270 

≤10%, 2 for >10% and ≤ 25%, 3 for > 25% and ≤ 50%, 4 for >50% and ≤ 75%, and 5 for 271 

>75% of the leaf area eaten. All plants were scored by a single person to avoid observer bias. 272 

The most predominant herbivore in this field trial was the diamond back moth Plutella 273 

xylostella, followed by the small white butterfly Pieris rapae. We also recorded the initial 274 

plant size and the presence of inflorescence to incorporate them as covariates. Initial plant 275 

size was evaluated by the length of the largest rosette leaf (mm) at the beginning of the field 276 

experiment and the presence of inflorescence was recorded 2 wk after transplanting. 277 

We estimated the variance components and performed the association tests for the 278 

leaf damage score with the neighbor covariate at s = 1 and 2. These two scales corresponded 279 

to L = 4 (the nearest four neighbors) and L = 12 (up to the second nearest neighbors), 280 

respectively, in the Arabidopsis dataset. The variation partitioning and association tests were 281 

performed using the gaston package, as mentioned above. To determine the significance of 282 

variance component parameters, we compared the likelihood between mixed models with one 283 

or two random effects. For the genotype data, we used an imputed SNP matrix of all the 2029 284 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 24, 2019. ; https://doi.org/10.1101/845735doi: bioRxiv preprint 

https://doi.org/10.1101/845735
http://creativecommons.org/licenses/by/4.0/


p. 13 

accessions studied by the RegMap (Horton et al. 2012) and 1001 Genomes project (Alonso-285 

Blanco et al. 2016). Missing genotypes were imputed using BEAGLE (Browning and 286 

Browning 2009), as described by Togninalli et al. (2018) and updated on the AraGWAS 287 

Catalog (https://aragwas.1001genomes.org). Of the 10,709,466 SNPs from the full imputed 288 

matrix, we used 1,242,128 SNPs with MAF at > 0.05 and LD of adjacent SNPs at r2 <0.8. We 289 

considered the initial plant size, presence of inflorescence, and experimental blocks as fixed 290 

covariates. After the association mapping, we searched candidate genes within ~10 kb around 291 

target SNPs, based on the Araport11 gene model with the latest TAIR annotation (accessed on 292 

7 September 2019). Gene ontology (GO) enrichment analysis was applied to the candidate 293 

genes near the top 0.1% SNP score. GO categories including >20 and <200 genes were tested 294 

by Fisher’s exact probability tests and adjusted by false discovery rate (FDR: Benjamini and 295 

Hochberg 1995). The GO.db package (Carlson et al. 2018) and the latest TAIR AGI code 296 

annotation were used for the GO enrichment analysis. The R source codes, accession list, and 297 

phenotype data are available at the GitHub repository 298 

(https://github.com/naganolab/NeighborGWAS). 299 

 300 

RESULTS 301 

 302 

Power simulation 303 

A set of phenotypes were simulated from real genotype data following a complex model eq. 304 

4, and then fitted by a simplified model eq. 2. Analyzing the factors affecting AUCs, we 305 

found that the proportion of phenotypic variation (PVE) explained by major-effect genes 306 

PVEβ and distance decay of neighbor effects were the most influential on the power to detect 307 

neighbor signals (Table 1b, d). In addition to PVEβ, the amount of variance components PVEu 308 
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also significantly affected the AUCs of the self and neighbor effects, but these additional 309 

effects were less significant compared to those of PVEβ alone (Table 1). In contrast, the 310 

AUCs of neither self nor neighbor effects were significantly affected by the ratio of three 311 

variance components σS
2:σN

2 :σSxN
2  (Table 1). 312 

Notably, there was a clear relationship between the distance decay α and the 313 

proportion of phenotypic variation explained by neighbor effects PVEnei or AUCs at different 314 

spatial scales (Fig. 3). If the distance decay was weak and the effective range of neighbor 315 

effects was broad, PVEnei and AUCs increased linearly as the reference spatial scale was 316 

broadened (Fig. 3a). On the other hand, if the distance decay was strong and the effective 317 

scale of neighbor effects was narrow, PVEnei saturated at the scale of the first nearest 318 

neighbors (Fig. 3c) or AUCs did not increase (Fig. 3b, c). These results remained the same 319 

between the number of causal SNPs = 20 and 200 (Fig. 3 and Fig. S1). The line of simulation 320 

results indicated that the effective spatial scales could be estimated by calculating PVEnei 321 

across different spatial scales. 322 

In the case of the number of causal SNPs = 20, signals of major-effect genes were 323 

well detected as AUC ranged from moderate (>0.7) to high (>0.9) (Fig. S2). For the case of 324 

the number of causal SNPs = 200, it became relatively difficult to detect the major-effect 325 

genes as AUCs were ≤ 0.75 (Fig. S2). The line of simulations indicated that neighbor effects 326 

were detectable when a target trait was governed by several major genes and the range of 327 

neighbor effects was spatially limited. Additionally, linear mixed models outperformed 328 

standard linear models in the detection of self and neighbor signals (∆AUCself = 0.105 [0.101 329 

– 0.109], ∆AUCnei = 0.024 [0.021 – 0.026]: 10,000-times bootstrap mean with 95% 330 

confidence intervals). This indicated that the mixed models were more appropriate for the 331 

neighbor GWAS to deal with spurious associations due to a sample structure. 332 
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 333 

Arabidopsis herbivory data 334 

The variation partitioning of leaf damage showed that the PVE by neighbor effects were 335 

larger than PVE by self-genotypic effects (PVEself = 0.026, χ
1
2 = 0.151, p-value = 0.70; 336 

PVEnei = 0.218, χ
1
2 = 7.17, p-value = 0.0074: Fig. 4a). Heritability, namely PVEself without 337 

neighbor effects, was 0.159 (χ
1
2 = 8.73, p-value = 0.003: Fig. S3). This range of heritability 338 

was overlapped with PVE by neighbor effects alone (PVEnei without self-effects = 0.24 at 339 

scale s = 1, χ
1
2 = 15.7, p-value < 0.0001: Fig. S3), indicating that there was an intersection 340 

between PVE by self and neighbor effects on the leaf damage variation. Phenotypic variation 341 

explained by neighbor effects on leaf damage did not increase when the neighbor scale was 342 

referred up to the nearest and second nearest individuals (PVEself = 0.083, χ
1
2 = 1.03, p-value 343 

= 0.311; PVEnei = 0.13, χ
1
2 = 1.29, p-value = 0.256: Fig. 4a); therefore, the variation 344 

partitioning was stopped at s = 2. These results indicated a narrow effective scale and 345 

significant contribution of neighbor effects to the leaf damage score. 346 

Association mapping of the self-genotype effects on the leaf damage found a SNP 347 

with the largest -log10(p-values) score at “chr1-23149476”. This SNP was located within ~10 348 

kb of the AT1G62540 locus that encoded flavin-monooxygenase glucosinolate S-oxygenase 2 349 

(FMO GS-OX2), though this was not above a threshold of Bonferroni correction. Gene 350 

ontology annotation of “cellular response to extracellular stimulus” was marginally enriched 351 

among genes within ~10 kb around SNPs with the top 0.1% -log10(p-values) score which 352 

corresponded to p-values at < 0.00096 (FDR<0.1: Table 2a). A QQ-plot did not exhibit an 353 

inflation of p-values for the self-genotype effects (Fig. S4). 354 

We found a marginally significant SNP for neighbor effects at the second and third 355 

chromosome (Fig. 4c), of which the second chromosomal region had higher association 356 
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scores than expected by the QQ-plot (Fig. S4). A locus encoding FAD-binding Berberine 357 

family protein (AT2G34810 named BBE16) were located within the ~10 kb window near the 358 

SNP with the largest -log10(p-values) at the second chromosome, which are known to be up-359 

regulated by methyl jasmonate (Devoto et al. 2005). Three transposable elements and a 360 

pseudogene of lysyl-tRNA synthetase 1 were located near the most significant SNP at the 361 

third chromosome. These top ten SNPs significantly related to the neighbor effects exhibited 362 

positive estimates of β1 and β2. Three defense-related GO annotations of “killing cells of 363 

other organisms” and “disruption of cells of other organism” were significantly enriched 364 

among genes within ~10 kb around SNPs with the top 0.1% score of -log10(p-values) 365 

(FDR<0.05: Table 2b). Of the genes with these GO annotations, we found 22 low-molecular 366 

weight cysteine-rich proteins or plant defensin family proteins (Table S2). 367 

Based on the estimated coefficients β̂
1
 and β̂

2
, we ran a post hoc simulation to infer 368 

a spatial arrangement that minimizes a population sum of the leaf damage ∑y
i
 = β

1
∑ xi  + 369 

β
2

∑ xixj<i,j> . The constant intercept β0, the variance component ui, and residual ei were not 370 

considered because they were not involved in deterministic dynamics of the model. Figure 5 371 

shows three representatives and a neutral expectation. For example, a mixture of a 372 

dimorphism was expected to decrease the total leaf damage for a SNP at “chr2-14679190” 373 

near the BBE16 locus (β̂
2
>0: Fig. 5a). On the other hand, a clustered distribution of a 374 

dimorphism was expected to decrease the total damage for a SNP at “chr2-9422409” near the 375 

AT2G22170 locus encoding a lipase/lipooxygenase PLAT/LH2 family protein (β̂
1
≈0,  β̂

2
<0: 376 

Fig. 5b). Furthermore, near monomorphism was expected to decrease the leaf damage for a 377 

SNP at “chr5-19121831” near the AT5G47075 and AT5G47077 loci encoding low-molecular 378 

cysteine-rich proteins, LCR20 and LCR6 (β̂
1
>0,  β̂

2
<0: Fig. 5c). No self and neighbor effects 379 
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led to a random distribution and no mitigation of damage i.e., ∑y
i
 ≈ 0 (Fig. 5d). These post 380 

hoc simulations suggested a potential applicability of neighbor GWAS in optimizing spatial 381 

arrangements in field cultivation. 382 

 383 

DISCUSSION 384 

 385 

Spatial and genetic factors affecting the power to detect signals 386 

Benchmark tests using simulated phenotypes revealed that appropriate spatial scales could be 387 

estimated by variation partitioning of observed phenotypes. When the scale of neighbor 388 

effects was narrow or moderate (α = 1.0 or 3.0), the scale of the first nearest neighbors would 389 

be optimum for the power to detect neighbor signals. In terms of neighbor effects in plant 390 

defense, mobile animals, such as mammalian browsers and flying insects, often select a 391 

cluster of plant individuals (e.g., Bergvall et al. 2006; Hambäck et al. 2009; Vershut et al. 392 

2016); however, neighbor effects could not be detected among individual plants within a 393 

cluster (Hambäck et al. 2014; Sato and Kudoh 2015). This case was represented by the 394 

exponential distance decay of α = 0.25; only in such a special case should more than the first 395 

nearest be referred to gain the power. 396 

Neighbor GWAS could retain its power as long as neighbor effects were spatially 397 

limited and several major-effect genes governed a trait. In contrast, when hundreds of causal 398 

variants involved a single trait and less than half of phenotypic variation was attributable to 399 

neighbor effects, we observed a reasonable power down of neighbor GWAS. In GWAS, false 400 

positive rates can be reduced using linear mixed models that deal with kinship structure as a 401 

random effect (Korte and Farlow 2013). Indeed, mixed models were superior to standard 402 

linear models in this simulation. Our simulation also adjusted the three variance components 403 
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σS
2, σN

2 , and σSxN
2 , but their relative contribution did not have significant effects on the power. 404 

This was likely due to the fact that the self-genotypic variable xi was encompassed into the 405 

neighbor variable ∑xixj/L, and thus the kinship matrix KS was partially redundant with the 406 

similarity matrix of neighbor effects KN. Indeed, elemental-wise correlations between KS 407 

and KN were strong in our simulations (R2 > 0.7). Thus, linear mixed models gain the power 408 

to detect neighbor effects if signals are strong, but likelihood ratio tests are reliable enough to 409 

deal with the correlated variables. 410 

 411 

Candidate genes related to field herbivory on Arabidopsis 412 

Our Arabidopsis data successfully detected known defense-related genes involved in the self-413 

genotype effects on leaf damage. Aliphatic glucosinolates are a major chemical defense 414 

against insect herbivory (Brachi et al. 2015; Kerwin et al. 2017). Specifically, FMO GS-OX2 415 

is involved in aliphatic glucosinolate biosynthesis by catalyzing the conversion from 416 

methylthioalkyl to corresponding methylsulfinylalkyl glucosinolates (Li et al. 2008). 417 

Furthermore, previous GWAS reported methionine synthase 2 (AT3G03780), disease 418 

resistance protein (TIR-NBS-LRR class) family (AT4G16950), and monodehydroascorbate 419 

reductase 4 (AT3G27820) as candidate genes involved in self-resistance to the white butterfly 420 

Pieris rapae (Davila-Olivas et al. 2017; Nallu et al. 2018). In this field experiment, we 421 

observed larvae of P. rapae largely feeding on A. thaliana, and the GWAS of self-genotype 422 

effects on leaf damage detected the above three candidate genes near SNPs with the top 0.1% 423 

association score. Thus, our GWAS results seemed convincing in terms of the detection of 424 

known defense-related genes in the self-genotypic effects on herbivory. 425 

Notably, the neighbor effects in herbivory were relevant to candidate genes 426 

disrupting cells of other organisms. Plant defensins are stable and cysteine-rich peptides that 427 
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confer plant resistance by killing cells of other organisms (Stotz 2009). While anti-fungal 428 

resistance is a well-known function of plant defensins (Stotz 2009), they can also act as 429 

protease inhibitors against insect herbivores (Bloch and Richardson 1991; Pelegrini et al. 430 

2008; Choi et al. 2009). Typical examples of neighbor effects may be a direct induction of 431 

plant defense via volatile organic chemicals (e.g., Schuman et al. 2015; Dahlin et al. 2018), 432 

but ecological studies have shown that herbivore host choice is one of the most important 433 

processes leading indirect neighbor effects to anti-herbivore defenses (Bergvall et al. 2006; 434 

Verschut et al. 2016; Sato et al. 2017). The findings of our neighbor GWAS suggest a putative 435 

role of plant defensins in modulating insect feeding behaviors and thus neighbor effects in 436 

herbivory. 437 

 438 

Conclusion and applicability 439 

Based on the newly proposed methodology, we suggest that neighbor effects are a more 440 

important source of phenotypic variation in field-grown plants than currently appreciated. To 441 

date, regional-scale interactions among plants have been analyzed using a genome-442 

environment association study of plant community composition (Frachon et al. 2019), but 443 

fine-scale neighbor effects have yet to be examined. Using tens of A. thaliana accessions and 444 

their experimentally mixed populations, Wuest and Niklaus (2018) recently showed that a 445 

single genomic region drives neighbor effects in plant growth via soil improvements, and this 446 

genetic effect shapes a positive relationship between plant genotype diversity and 447 

productivity. Our newly proposed methodology of neighbor GWAS could be a powerful tool 448 

to identify such a key genetic variant responsible for neighbor effects and resulting 449 

biodiversity effects. 450 

Neighbor GWAS may also potentially help determine an optimal spatial arrangement 451 
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in plant cultivation, as suggested by the post hoc simulation. The Ising model is well 452 

established in statistical physics (McCoy and Maillard 2012) and is now applied to a 453 

machine-learning pipeline that deals with high-dimensionality in genomics data (Fisher and 454 

Mehta 2015). Genome-wide polymorphism data are useful not only to seek causal genes in 455 

GWAS, but also to predict breeding values of crop plants in genomic selection (e.g., Jannink 456 

et al. 2010; Hamblin et al. 2011; Yamamoto et al. 2017). Although it is still challenging to 457 

determine β1 and β2 for all SNPs efficiently, the linear model of neighbor GWAS could also 458 

be implemented as a genomic selection at a population level. Thus, our study provides an 459 

avenue for future studies to predict population-level phenotypes in spatially structured 460 

environments. 461 

  462 
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TABLES & FIGURES 663 

Table 1. Factors affecting the power to detect signals in simulated phenotypes. The response 664 

variable was the maximum Area Under the ROC Curve (AUC) of the spatial scales from s = 665 

1 to s = 3. ANOVA tables show the degree of freedom (df), sum of squares (SS), F-statistics, 666 

and p-values.  667 

(a) AUCself, No. of causal SNPs = 20  (c) AUCself, No. of causal SNPs = 200 

Factors df SS F p-value  Factors df SS F p-value 

σS
2:σN

2 :σSxN
2  2 0.0110 1.91 0.149  σS

2:σN
2 :σSxN

2  2 0.0000 0.01 0.9909 

α 1 0.0003 0.10 0.750  α 1 0.0044 6.05 0.0142 

PVEβ 1 0.410 142.7 < 2.2e-16  PVEβ 1 0.798 1106 <2.2e-16 

PVEβ + PVEu 1 0.0196 6.81 0.00933  PVEβ + PVEu 1 0.0115 16.0 7.29E-05 

Residuals 534 1.53      Residuals 534 0.385     

           

(b) AUCnei, No. of causal SNPs = 20  (d) AUCnei, No. of causal SNPs = 200 

Factors df SS F p-value  Factors df SS F p-value 

σS
2:σN

2 :σSxN
2  2 0.013 1.4 0.259  σS

2:σN
2 :σSxN

2  2 0.0011 0.81 0.445 

α 1 1.006 205 < 2.2e-16  α 1 0.195 295 < 2.2e-16 

PVEβ 1 1.101 225 < 2.2e-16  PVEβ 1 0.248 375 < 2.2e-16 

PVEβ + PVEu 1 0.060 12.2 0.000520  PVEβ + PVEu 1 0.0050 7.60 0.00605 

Residuals 174 2.62      Residuals 534 0.352     

 668 

 669 

 670 
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Table 2. GO enrichment analysis of the leaf damage score with Fisher’s exact probability 679 

tests at FDR < 0.1. Candidate genes within ~10 kb around SNPs with the top 0.1% 680 

association score -log10(p-values) were subject to the GO analysis. 681 

(a) Self, β1   

GO FDR Description 

GO:0043531 0.0071 ADP binding 

GO:0009267 0.0083 cellular response to starvation 

GO:0031669 0.0083 cellular response to nutrient levels 

GO:0050662 0.0127 coenzyme binding 

GO:0031668 0.0546 cellular response to extracellular stimulus 

GO:0042594 0.0546 response to starvation 

GO:0071496 0.0673 cellular response to external stimulus 

GO:0009605 0.0829 response to external stimulus 

GO:0004553 0.0829 hydrolase activity, hydrolyzing O-glycosyl compounds 

GO:0016798 0.0829 hydrolase activity, acting on glycosyl bonds 

GO:0031667 0.0969 response to nutrient levels 

GO:0005618 0.0969 cell wall 

GO:0030312 0.0969 external encapsulating structure 

GO:0000166 0.0982 nucleotide binding 

GO:1901265 0.0982 nucleoside phosphate binding 
   

(b) Neighbor, β2  

GO FDR Description 

GO:0004857 0.0271 enzyme inhibitor activity 

GO:0031640 0.0271 killing of cells of other organism 

GO:0001906 0.0271 cell killing 

GO:0044364 0.0271 disruption of cells of other organism 

GO:0043531 0.0271 ADP binding 

GO:0035821 0.0307 
modification of morphology or physiology of other 

organism 

GO:0010393 0.0307 galacturonan metabolic process 

GO:0045488 0.0307 pectin metabolic process 

GO:0042545 0.0341 cell wall modification 

GO:0044419 0.0595 interspecies interaction between organisms 
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 685 

Figure 1. Relationship between Neighbor GWAS and Ising model. Upper panels show spatial 686 

arrangements expected by a 2-D Ising model ∑y
i
 = β

1
∑ xi  + β

2
∑ xixj<i,j> . (a) If β2>0, mixed 687 

patterns give the argument of the minimum for a population sum of phenotype values Σyi. (b) 688 

If β2<0, clustered patterns give the argument of the minimum for Σyi. (c) In addition, β1 689 

determines overall patterns favoring -1 or +1 states. Shown are outcomes from a random 100 690 

× 100 lattice after 1000 iterations of Gibbs sampling. Conversely, the neighbor GWAS was 691 

implemented as an inverse problem of the 2-D Ising model, where genotypes and its spatial 692 

arrangement, xi and xixj, are given while the coefficients β1 and β2 are to be estimated from 693 

observed phenotypes yi. In addition, the variance component due to self and neighbor effects 694 

was considered a random effect in a linear mixed model, such that ui~ Norm(0, σS
2KS+σN

2 KN). 695 

Once β1 and β2 are determined, we could simulate a genotype distribution that maximizes or 696 

minimizes Σyi.  697 
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 698 

Figure 2. Experimental setting in the Arabidopsis herbivory data. (a) Photograph of the field 699 

site. Each 0.6 × 2.6 m block included a replicate of 200 accessions, where 5 × 40 plants were 700 

assigned to a row and column, respectively. (b) Arabidopsis thaliana plants were arranged in 701 

a checkered manner. Yellow lines represent s-th neighbor scales from a focal i-th plant. (c) A 702 

graphical explanation of the experimental area. A meadow (green) was separately covered 703 

with weed-masking sheets (grey). 704 

  705 
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 706 

Figure 3. Scale dependence of neighbor effects on simulated phenotypes among all iterations 707 

with the number of causal SNPs = 20. The broad (a), intermediate (b), and narrow (c) 708 

effective range of neighbor effects are represented by weak, moderate, and strong distance 709 

decay, respectively. The proportion of phenotypic variation explained by neighbor effects 710 

(PVEnei) and the area under the ROC curve (AUC) of neighbor effects are shown along the 711 

spatial scale from the first nearest (s = 1) to the third nearest (s = 3) neighbors. An AUC at 1.0 712 

indicates a perfect detection of signals. Boxplots show center line: median, box limits: upper 713 

and lower quartiles, whiskers: 1.5× interquartile range, and points: outliers. The case for the 714 

number of causal SNPs = 200 is given in Figure S1.  715 
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716 

Figure 4. Neighbor GWAS of the leaf damage score on field-grown Arabidopsis thaliana. (a) 717 

The proportion of leaf damage variation explained by self-genotype effects PVEself (= 718 

σS
2/(σS

2+σN
2 +σe

2): blue fraction), neighbor effects PVEnei (= σN
2 /(σS

2+σN
2 +σe

2): red fraction), and 719 

residuals at the spatial scale of s = 1 and s = 2. Asterisks highlight a significant fraction with 720 

likelihood ratio tests: **p-value < 0.01. (b, c) Manhattan plots for the self and neighbor effects 721 

on the leaf damage score. Different colors highlight the first to fifth chromosomes of A. 722 

thaliana. Lighter plots indicate smaller MAF. Results of neighbor effects are shown at s = 1. 723 
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 728 

Figure 5. Post hoc simulations exemplifying a spatial arrangement of two alleles expected by 729 

the estimated self and neighbor effects, β1 and β2, on the leaf damage score of Arabidopsis 730 

thaliana. Population sum of the leaf damage ∑y
i
 = β

1
∑ xi  + β

2
∑ xixj<i,j>  was minimized 731 

using 1000 iterations of Gibbs sampling from a random distribution of two alleles in a 10 × 732 

40 space. 733 

 734 
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